JP2014205751A - Low molecular compound of aphanothece sacrum polysaccharide and method for lowering molecular weight of aphanothece sacrum polysaccharides - Google Patents

Low molecular compound of aphanothece sacrum polysaccharide and method for lowering molecular weight of aphanothece sacrum polysaccharides Download PDF

Info

Publication number
JP2014205751A
JP2014205751A JP2013083291A JP2013083291A JP2014205751A JP 2014205751 A JP2014205751 A JP 2014205751A JP 2013083291 A JP2013083291 A JP 2013083291A JP 2013083291 A JP2013083291 A JP 2013083291A JP 2014205751 A JP2014205751 A JP 2014205751A
Authority
JP
Japan
Prior art keywords
suizendinori
molecular weight
polysaccharide
derived
polysaccharides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013083291A
Other languages
Japanese (ja)
Inventor
小山 直之
Naoyuki Koyama
直之 小山
郁子 菊地
Ikuko Kikuchi
郁子 菊地
河添 宏
Hiroshi Kawazoe
宏 河添
相澤 崇史
Takashi Aizawa
崇史 相澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Hitachi Chemical Co Ltd
Priority to JP2013083291A priority Critical patent/JP2014205751A/en
Publication of JP2014205751A publication Critical patent/JP2014205751A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a low molecular compound of Aphanothece sacrum polysaccharide performed lowering molecular weight by controlling the weight average molecular weight and a method for lowering molecular weight of Aphanothece sacrum polysaccharides.SOLUTION: In a low molecular compound of Aphanothece sacrum polysaccharide, Aphanothece sacrum polysaccharides are performed lowering molecular weight so that the weight average molecular weight is 10,000,000 or less.

Description

本発明は、医薬原料、化粧品、及び健康食品等に適用可能な水溶性多糖類であるスイゼンジノリ多糖体低分子化物及びスイゼンジノリ由来多糖類の低分子化方法に関する。   The present invention relates to a low molecular weight product of a suizendinori polysaccharide, which is a water-soluble polysaccharide applicable to pharmaceutical raw materials, cosmetics, health foods, and the like, and a method for reducing the molecular weight of a suizendinori-derived polysaccharide.

近年、医薬原料、化粧品、及び健康食品等への用途として、石油由来の化学合成材料以外の天然由来材料が注目されている。天然由来材料の具体例として、甲殻類から抽出されるアスタキサンチン、及び鶏の鶏冠から抽出されるヒアルロン酸等が産業化されている。   In recent years, natural-derived materials other than petroleum-derived chemically synthesized materials have attracted attention as uses for pharmaceutical raw materials, cosmetics, health foods, and the like. As specific examples of naturally-derived materials, astaxanthin extracted from crustaceans, hyaluronic acid extracted from chicken crowns, and the like have been industrialized.

近年、日本固有種の食用藍藻であるスイゼンジノリ(Aphanothece sacrum)から抽出される水溶性多糖類であるスイゼンジノリ由来多糖類が注目されている。スイゼンジノリ由来多糖類は硫酸基を有する単糖も含有する分子量1600万の超高分子量の多糖である(例えば、非特許文献1参照)。スイゼンジノリ由来多糖類の水溶液は、保水力が高く、高粘性を示す特徴を有する。さらに、スイゼンジノリ由来多糖類は、抗炎症作用があることも報告されており、ステロイドに代わる抗炎症薬原料としても期待されている(例えば、非特許文献2参照)。   In recent years, a suizendinori-derived polysaccharide, which is a water-soluble polysaccharide extracted from a phagocytic sacrum, which is an edible cyanobacteria native to Japan, has attracted attention. The Suizendinori-derived polysaccharide is an ultra-high molecular weight polysaccharide having a molecular weight of 16 million that also contains a monosaccharide having a sulfate group (for example, see Non-Patent Document 1). An aqueous solution of a suizendinori-derived polysaccharide has a high water-holding ability and a high viscosity. Furthermore, it has been reported that polysaccharides derived from suizendinori have an anti-inflammatory action, and are expected as a raw material for anti-inflammatory drugs that replace steroids (see, for example, Non-Patent Document 2).

スイゼンジノリ由来多糖類の優れた保水力を活かす用途として化粧水では、抽出したスイゼンジノリ由来多糖類をそのまま使用することもできる。一方、医薬品原料として考えた場合には、巨大分子では作用機序と分子構造の相関が不明である、高粘度であるため水溶液の濃度が高めらない、注射器での注入が困難であるなどの課題が挙げられる。   In the lotion, the extracted suizendinori-derived polysaccharide can be used as it is for the purpose of utilizing the excellent water retention of the suizendinori-derived polysaccharide. On the other hand, when considered as a raw material for pharmaceuticals, the correlation between the mechanism of action and the molecular structure is unknown for macromolecules, the concentration of aqueous solution does not increase due to high viscosity, and injection with a syringe is difficult, etc. There are challenges.

低分子化が必要である水溶性多糖類の低分子化方法としては、酸加水分解法、超臨界分解法などが使用されている。しかしながら、通常バッチ式の加熱処理においては、最適温度で所定時間処理をしたとしても、温度を上昇、下降させる際の熱履歴も反映されてしまうため、目的の重量平均分子量に制御した低分子化物が得にくいという問題があった。また、温度上昇、下降の際の時間も加味する必要があるため全体の処理時間が長くなるという問題があった。さらに、熱分布も不均一となるため一部が反応しすぎて、単糖やフラン類を生成してしまうという問題があった。一方、超臨界処理法では、流通式の反応装置の設計も可能であるが、臨界温度が374℃と非常に高く、反応が高速すぎるため反応時間の制御が難しく、また、フラン類も生成しやすいという問題もあった。   As a method for reducing the molecular weight of a water-soluble polysaccharide that requires a reduction in molecular weight, an acid hydrolysis method, a supercritical decomposition method, or the like is used. However, in normal batch-type heat treatment, even if the treatment is performed at the optimum temperature for a predetermined time, the heat history when the temperature is raised or lowered is also reflected, so the low molecular weight product controlled to the target weight average molecular weight. There was a problem that it was difficult to get. Further, since it is necessary to take into account the time for temperature rise and fall, there is a problem that the entire processing time becomes long. Furthermore, since the heat distribution becomes non-uniform, there is a problem that a part of the reaction reacts too much to produce monosaccharides and furans. On the other hand, in the supercritical processing method, it is possible to design a flow reactor, but the critical temperature is very high at 374 ° C., and the reaction time is too fast to control the reaction time, and furans are also produced. There was also a problem that it was easy.

椛田聖孝、金子達雄共著、新発見「サクラン」と伝統のスイゼンジノリ、ハート出版、2009年Sadataka Hamada and Tatsuo Kaneko, new discovery "Sakuran" and traditional suizenjinori, Heart Publishing, 2009 Nlandu Roger Ngatuら,Annals of Allergy, Asthma & Immunology, Vol. 108,117−122 (2012)Nlandu Roger Ngatu et al., Anals of Allergy, Asthma & Immunology, Vol. 108,117-122 (2012)

本発明は、上記の課題を解決するためなされたもので、重量平均分子量を制御して低分子化されたスイゼンジノリ多糖体低分子化物及びスイゼンジノリ由来多糖類の低分子化方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a low molecular weight product of a suizendinori polysaccharide reduced in weight by controlling the weight average molecular weight, and a method for reducing the molecular weight of a suizendinori derived polysaccharide. And

本発明者らは、鋭意検討を重ねた結果、高温高圧下でスイゼンジノリ由来多糖類を分解することにより、上記課題を解決し得ることを見出し、本発明を完成するに至った。
すなわち、本発明は、
(1)スイゼンジノリ由来多糖類であって、重量平均分子量が1000万以下に低分子化されたスイゼンジノリ多糖体低分子化物、
(2)温度範囲が100℃〜250℃、圧力範囲が1MPa〜30MPaでスイゼンジノリ由来多糖類を加水分解する工程を含み、前記スイゼンジノリ由来多糖類の重量平均分子量を1000万以下に低分子化することを特徴とするスイゼンジノリ由来多糖類の低分子化方法、
(3)前記スイゼンジノリ由来多糖類を流通式反応装置にて加水分解することを特徴とする(2)に記載のスイゼンジノリ由来多糖類の低分子化方法、
(4)前記温度範囲が120℃〜250℃であることを特徴とする(2)又は(3)に記載のスイゼンジノリ由来多糖類の低分子化方法、
(5)前記圧力範囲が2MPa〜15MPaであることを特徴とする(2)〜(4)のいずれかに記載のスイゼンジノリ由来多糖類の低分子化方法、
を提供するものである。
As a result of intensive studies, the present inventors have found that the above-mentioned problems can be solved by decomposing the suzenzinori-derived polysaccharide under high temperature and high pressure, and have completed the present invention.
That is, the present invention
(1) Suizendinori polysaccharide, which is a low molecular weight product of Suizendinori polysaccharide whose weight average molecular weight is reduced to 10 million or less,
(2) including a step of hydrolyzing the Suizendinori-derived polysaccharide at a temperature range of 100 ° C. to 250 ° C. and a pressure range of 1 MPa to 30 MPa, and reducing the weight average molecular weight of the Suizendinori-derived polysaccharide to 10 million or less. A method for reducing the molecular weight of a polysaccharide derived from Suizendinori,
(3) The method for reducing the molecular weight of a suizendinori-derived polysaccharide according to (2), wherein the suizendinori-derived polysaccharide is hydrolyzed with a flow reactor.
(4) The method for reducing the molecular weight of a Suizendinori-derived polysaccharide according to (2) or (3), wherein the temperature range is 120 ° C to 250 ° C.
(5) The method for lowering the molecular weight of a Suizendinori-derived polysaccharide according to any one of (2) to (4), wherein the pressure range is 2 MPa to 15 MPa.
Is to provide.

本発明によれば、重量平均分子量を制御して低分子化されたスイゼンジノリ多糖体低分子化物及びスイゼンジノリ由来多糖類の低分子化方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the molecular weight reduction method of the Suizenzinori polysaccharide low molecular weight substance and the Suizenzinori origin polysaccharide which were made low molecular by controlling a weight average molecular weight can be provided.

本発明の実施の形態に係るスイゼンジノリ由来多糖類の低分子化方法の一態様を示す模式図である。It is a schematic diagram which shows the one aspect | mode of the molecular weight reduction method of the Suizendinori origin polysaccharide which concerns on embodiment of this invention.

スイゼンジノリ(Aphanothece sacrum)は、九州地方の熊本県及び福岡県で自生している淡水性藍藻類であり、江戸時代から食用とされている。スイゼンジノリ自体は単細胞生物であるが、寒天質であるスイゼンジノリ由来多糖類を細胞外に分泌することで集合体となっている。スイゼンジノリ由来多糖類の分子構造はまだ完全には明らかとなっていないが、スイゼンジノリ由来多糖類を構成する糖の一部は硫酸基を有する単糖であることが知られている。   Suizenjinori (Aphanothace sacrum) is a freshwater cyanobacteria native to Kumamoto and Fukuoka prefectures in the Kyushu region, and has been edible since the Edo period. Suizenjinori itself is a unicellular organism, but it is an aggregate by secreting polysaccharides derived from Suizenjinori that is agar. Although the molecular structure of the suizendinori-derived polysaccharide has not yet been fully clarified, it is known that some of the sugars constituting the suizendinori-derived polysaccharide are monosaccharides having a sulfate group.

スイゼンジノリ由来多糖類は、別名サクランとも呼ばれ、分子量が1600万にも及ぶ超高分子量多糖類であることが知られている。スイゼンジノリ由来多糖類は、ヘキソース構造を持つ糖構造体及びペントース構造を持つ糖構造体がα−グリコシド結合又はβ−グリコシド結合により直鎖状又は分岐鎖状に連結した糖鎖ユニットの繰り返し構造を持つ。糖鎖ユニットが糖構造体には、硫酸化ムラミン酸を含み、且つ、糖鎖ユニットにおいては、水酸基100個当たり2.7個以上の水酸基が硫酸化され、あるいは全元素中で硫黄元素が1.5質量%以上を占める糖誘導体を含む。
こうした特徴のためスイゼンジノリ由来多糖類は、吸収性が強く、その水溶液の粘度は非常に高くなり、1.0質量%でほぼ流動しなくなりゲル状となる。そのためスイゼンジノリ由来多糖類は優れた保湿剤としても利用可能である。また抗炎症作用も報告されている。
Suizendinori-derived polysaccharides are also called akaran, and are known to be ultra-high molecular weight polysaccharides having a molecular weight of 16 million. Suizendinori-derived polysaccharides have a repeating structure of sugar chain units in which a sugar structure having a hexose structure and a sugar structure having a pentose structure are linked in a linear or branched manner by α-glycoside bonds or β-glycoside bonds. . The sugar chain unit contains sulfated muramic acid in the sugar structure, and in the sugar chain unit, 2.7 or more hydroxyl groups per 100 hydroxyl groups are sulfated, or 1 element of sulfur is present in all elements. Including sugar derivatives occupying 5% by mass or more.
Because of these characteristics, the polysaccharide derived from Suizendinori has strong absorbency, and the viscosity of the aqueous solution becomes very high, and it becomes almost non-flowing at 1.0% by mass and becomes a gel. For this reason, the Suizendinori-derived polysaccharide can be used as an excellent moisturizing agent. Anti-inflammatory effects have also been reported.

しかし、スイゼンジノリ由来多糖類は、超高分子量かつ水溶液が高粘度であるため、保湿性を追求する以外の用途では、取り扱いを良くするために、重量平均分子量が1000万以下に低分子化されたスイゼンジノリ多糖体低分子化物とすることが望まれている。
そこで、本発明の実施の形態に係るスイゼンジノリ由来多糖類の低分子化方法によって、超高分子量多糖類であるスイゼンジノリ由来多糖類を低分子化して、重量平均分子量が1000万以下のスイゼンジノリ多糖体低分子化物を生成する。
However, the suizendinori-derived polysaccharide has an ultra-high molecular weight and a high viscosity in an aqueous solution. Therefore, in applications other than pursuing moisture retention, the weight average molecular weight has been lowered to 10 million or less in order to improve handling. It is desired to obtain a low molecular weight product of a suizendinori polysaccharide.
Therefore, by using the method for reducing the molecular weight of a suizendinori-derived polysaccharide according to an embodiment of the present invention, the suizendinori-derived polysaccharide, which is an ultra-high molecular weight polysaccharide, is reduced in molecular weight so that the weight average molecular weight is 10 million or less. Generate molecular compounds.

本発明の実施の形態に係るスイゼンジノリ由来多糖類の低分子化方法としては、例えば、図1に示す流通式反応装置でスイゼンジノリ由来多糖類を加水分解することで、スイゼンジノリ多糖体低分子化物を生成することができる。以下に、図1に示す流通式反応装置を用いた低分子化方法を示す。   As a method for reducing the molecular weight of a suizendinori-derived polysaccharide according to an embodiment of the present invention, for example, by hydrolyzing a suizendinori-derived polysaccharide with a flow reactor shown in FIG. can do. Hereinafter, a method for reducing the molecular weight using the flow reactor shown in FIG. 1 will be described.

まず、原料となるスイゼンジノリ由来多糖類水溶液10を送液ポンプ20で送液する。スイゼンジノリ由来多糖類水溶液10は、恒温槽21に設置されたステンレス製の配管をコイル状にした昇温器25及び反応器22に導入される。このとき、恒温槽21は、予め設定温度に保たれている。反応器22の内容積と流速を調整してスイゼンジノリ由来多糖類水溶液10の平均滞留時間を制御することにより、反応器22におけるスイゼンジノリ由来多糖類水溶液10の反応時間をコントロールする。
昇温器25は設けなくてもスイゼンジノリ由来多糖類の低分子量化は可能であるが、スイゼンジノリ由来多糖類水溶液を昇温することによって、分子量分布をより制御しやすくするという観点からは、昇温器25を設けることが好ましい。
上記スイゼンジノリ由来多糖類水溶液の濃度は、低分子量スイゼンジノリ由来多糖類の収率を向上させるという観点から、高濃度であることが好ましい。但し、使用する送液ポンプ20の性能によって、スイゼンジノリ由来多糖類水溶液の濃度の上限は制限される。例えば、送液ポンプ20としてシリンジポンプなど高粘度溶液に強いポンプを用いる場合、スイゼンジノリ由来多糖類水溶液の濃度の上限は5質量%程度に制限される。この場合のスイゼンジノリ由来多糖類水溶液の濃度は、5質量%以下であることが好ましく、3質量%以下であることがより好ましく、2質量%以下であることがさらに好ましい。また、例えば、送液ポンプ20としてプランジャーポンプを用いる場合、スイゼンジノリ由来多糖類水溶液の濃度の上限は1質量%程度に制限される。この場合のスイゼンジノリ由来多糖類水溶液の濃度は、1質量%以下であることが好ましく、0.7質量%以下であることがより好ましく、0.5質量%以下であることがさらに好ましい。下限については特に制限されないが、収量確保の観点から0.1質量%以上であることが好ましく、0.2質量%以上であることがより好ましく、0.3質量%以上であることがさらに好ましい。
スイゼンジノリ由来多糖類水溶液には、溶解性を向上させる目的等でアルコール等の有機溶媒を添加してもよい。また、スイゼンジノリ由来多糖類をアルコールに溶解して低分子量化することもできる。
First, a suizendinori-derived polysaccharide aqueous solution 10 as a raw material is fed by a liquid feed pump 20. The Suizendinori-derived polysaccharide aqueous solution 10 is introduced into a temperature riser 25 and a reactor 22 in which stainless steel pipes installed in a thermostatic chamber 21 are coiled. At this time, the thermostat 21 is kept at a preset temperature in advance. By adjusting the internal volume and flow rate of the reactor 22 and controlling the average residence time of the suizendinori-derived polysaccharide aqueous solution 10, the reaction time of the suizendinori-derived polysaccharide aqueous solution 10 in the reactor 22 is controlled.
Although it is possible to reduce the molecular weight of the Suizendinori-derived polysaccharide without providing the temperature raising device 25, from the viewpoint of making the molecular weight distribution easier to control by increasing the temperature of the Suizendinori-derived polysaccharide aqueous solution, A vessel 25 is preferably provided.
The concentration of the aqueous solution of polysaccharides derived from Suizendinori is preferably a high concentration from the viewpoint of improving the yield of polysaccharides derived from Suizendinori. However, the upper limit of the concentration of the aqueous solution of polysaccharides derived from Suizendinori is limited by the performance of the liquid feed pump 20 to be used. For example, when a pump that is strong against a high viscosity solution such as a syringe pump is used as the liquid feeding pump 20, the upper limit of the concentration of the aqueous solution of polysaccharides derived from suizendinori is limited to about 5% by mass. In this case, the concentration of the aqueous solution of Suizendinori-derived polysaccharide is preferably 5% by mass or less, more preferably 3% by mass or less, and further preferably 2% by mass or less. For example, when a plunger pump is used as the liquid feeding pump 20, the upper limit of the concentration of the aqueous solution of polysaccharides derived from suizendinori is limited to about 1% by mass. In this case, the concentration of the aqueous solution of polysaccharides derived from Suizendinori is preferably 1% by mass or less, more preferably 0.7% by mass or less, and further preferably 0.5% by mass or less. The lower limit is not particularly limited, but is preferably 0.1% by mass or more from the viewpoint of securing yield, more preferably 0.2% by mass or more, and further preferably 0.3% by mass or more. .
An organic solvent such as alcohol may be added to the aqueous solution of polysaccharides derived from suizendinori for the purpose of improving solubility. In addition, it is possible to lower the molecular weight by dissolving a suizendinori-derived polysaccharide in alcohol.

反応器22でのスイゼンジノリ由来多糖類の反応温度は、スイゼンジノリ由来多糖類の低分子化反応が進行し、且つ、メイラード反応による糖類の酸化の進行を抑制してフラン化合物等の副生成物を生じさせないようにする観点から、100℃〜250℃であることが好ましく、120℃〜250℃であることがより好ましく、140℃〜240℃であることが更に好ましく、160℃〜240℃であることがより更に好ましい。
また、
反応器22でのスイゼンジノリ由来多糖類の反応圧力は、上述の反応温度において水が水蒸気に変化しないように飽和圧力以上の圧力にするという観点から、1MPa〜30MPaであることが好ましく、2MPa〜15MPaであることがより好ましい。
The reaction temperature of the Suizendinori-derived polysaccharide in the reactor 22 is such that a low-molecular-weight reaction of the Suizendinori-derived polysaccharide proceeds, and the progress of the oxidation of the saccharide by the Maillard reaction is suppressed to produce a by-product such as a furan compound. From the viewpoint of avoiding this, it is preferably 100 ° C to 250 ° C, more preferably 120 ° C to 250 ° C, still more preferably 140 ° C to 240 ° C, and 160 ° C to 240 ° C. Is even more preferable.
Also,
The reaction pressure of the Suizendinori-derived polysaccharide in the reactor 22 is preferably 1 MPa to 30 MPa, preferably 2 MPa to 15 MPa from the viewpoint that the pressure is not less than the saturation pressure so that water does not change into water vapor at the above reaction temperature. It is more preferable that

反応器22を経た水溶液は、冷却器23内で冷却され、背圧弁24を経て常温常圧の反応液11として回収される。   The aqueous solution that has passed through the reactor 22 is cooled in the cooler 23, and is recovered as a reaction solution 11 at normal temperature and pressure through a back pressure valve 24.

図1に示した流通式反応装置は、連続処理であるので、昇温、降温時の熱履歴もなく、安定した反応物を調製することが可能である。
構成単糖が多岐にわたり複雑な構造であるスイゼンジノリ由来多糖類を上述の方法にて加水分解すると、重量平均分子量1000万から数百に制御して低分子化することができる。
単独成分を必要とする場合は、ゲルパーミエイションクロマトグラフィー(GPC)にて分画することが可能である。
Since the flow type reaction apparatus shown in FIG. 1 is a continuous process, it is possible to prepare a stable reaction product without any heat history during temperature rise and fall.
By hydrolyzing a suizendinori-derived polysaccharide having a wide variety of constituent monosaccharides and having a complex structure, the molecular weight can be reduced by controlling the weight average molecular weight from 10 million to several hundreds.
When a single component is required, it can be fractionated by gel permeation chromatography (GPC).

以下、実施例により本発明を具体的に説明するが、本発明の範囲はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, the scope of the present invention is not limited to these Examples.

[実施例1]
60℃に加温したウォーターバスで保温された容器にスイゼンジノリ由来多糖類3gと脱イオン水997gを入れ、攪拌羽を供えたスリーワンモーターにて溶液が均一になるまで攪拌し、0.3質量%のスイゼンジノリ由来多糖類水溶液を調製した。
[Example 1]
Into a container kept warm in a water bath heated to 60 ° C., 3 g of Suizendinori-derived polysaccharide and 997 g of deionized water were added and stirred with a three-one motor equipped with stirring blades until the solution became homogeneous, and 0.3 mass% An aqueous solution of polysaccharides derived from Suizendinori was prepared.

<低分子化反応>
コイル状の昇温器である内径0.8mm、長さ2mのステンレス製配管と、コイル状の反応器である内径2.17mm、長さ5mのステンレス製配管を恒温槽(アズワン製、SOFW−300)内に設置した。反応器の一端には送液ポンプ(株式会社島津製作所製、LC−20A)を配設し、他端には背圧弁(日本分光株式会社製、PU−2080)を配設した。反応器の容量は39.6mLであった。恒温槽の温度を190℃、背圧弁の圧力を5MPaとし、上記のスイゼンジノリ由来多糖類水溶液(0.3質量%)を流速5.3mL/分にて供給した。定常状態となった後に反応液を回収した。反応液はやや茶色に着色していたが沈殿物等は観察されなかった。
<Low molecularization reaction>
A stainless steel pipe having an inner diameter of 0.8 mm and a length of 2 m, which is a coiled temperature rising device, and a stainless steel pipe having an inner diameter of 2.17 mm and a length of 5 m, which is a coiled reactor, are provided with a constant temperature bath (manufactured by ASONE, SOFW- 300). A liquid feed pump (manufactured by Shimadzu Corporation, LC-20A) was disposed at one end of the reactor, and a back pressure valve (manufactured by JASCO Corporation, PU-2080) was disposed at the other end. The reactor volume was 39.6 mL. The temperature of the thermostatic bath was 190 ° C., the pressure of the back pressure valve was 5 MPa, and the above-described aqueous solution of suizendinori-derived polysaccharide (0.3 mass%) was supplied at a flow rate of 5.3 mL / min. After reaching a steady state, the reaction solution was recovered. The reaction solution was slightly brown, but no precipitate was observed.

<分子量測定>
検出器として示差屈折計(株式会社島津製作所製、RID−10A)を備えたHPLCシステムにGPCカラム(株式会社日立ハイテクノロジーズ製、GL−W560)を接続し、移動相として0.2M NaCl水溶液を用い、流量を1.0mL/分にて分子量測定を行った。標準物質としてプルランを用いた検量線から重量平均分子量を算出した。GPC上4つの成分は、それぞれ重量平均分子量760万、5万、1000、440を示した。
<Molecular weight measurement>
A GPC column (manufactured by Hitachi High-Technologies Corporation, GL-W560) is connected to an HPLC system equipped with a differential refractometer (manufactured by Shimadzu Corporation, RID-10A) as a detector, and a 0.2M NaCl aqueous solution is used as a mobile phase. The molecular weight was measured at a flow rate of 1.0 mL / min. The weight average molecular weight was calculated from a calibration curve using pullulan as a standard substance. The four components on GPC showed a weight average molecular weight of 7.6 million, 50,000, 1000, 440, respectively.

[実施例2]
恒温槽の温度を240℃、流速を10mL/分とした以外は実施例1と同様に行った。GPC上3つの成分は、それぞれ四糖、二糖、単糖を示した。
[Example 2]
The same operation as in Example 1 was performed except that the temperature of the thermostatic bath was 240 ° C. and the flow rate was 10 mL / min. Three components on GPC showed tetrasaccharide, disaccharide, and monosaccharide, respectively.

[実施例3]
恒温槽の温度を160℃、流速を2.6mL/分とした以外は実施例1と同様に行った。GPC上1つの成分は、重量平均分子量130万を示した。
[Example 3]
The same operation as in Example 1 was performed except that the temperature of the thermostatic bath was 160 ° C. and the flow rate was 2.6 mL / min. One component on GPC showed a weight average molecular weight of 1.3 million.

[比較例1]
恒温槽の温度を300℃、流速を4mL/分とした以外は実施例1と同様に反応を行った。反応液には濃い茶色に呈色した沈殿物と上澄みに分離してしまった。
[Comparative Example 1]
The reaction was performed in the same manner as in Example 1 except that the temperature of the thermostatic bath was 300 ° C. and the flow rate was 4 mL / min. The reaction solution was separated into a dark brown precipitate and a supernatant.

10…スイゼンジノリ由来多糖類水溶液
11…反応液
20…送液ポンプ
21…恒温槽
22…反応器
23…冷却器
24…背圧弁
25…昇温器
DESCRIPTION OF SYMBOLS 10 ... Suizendinori origin polysaccharide aqueous solution 11 ... Reaction liquid 20 ... Liquid feed pump 21 ... Constant temperature bath 22 ... Reactor 23 ... Cooler 24 ... Back pressure valve 25 ... Temperature riser

Claims (5)

スイゼンジノリ由来多糖類であって、重量平均分子量が1000万以下に低分子化されたスイゼンジノリ多糖体低分子化物。   A suizendinori polysaccharide, which is a polysaccharide derived from suizendinori, having a weight average molecular weight of 10 million or less. 温度範囲が100℃〜250℃、圧力範囲が1MPa〜30MPaでスイゼンジノリ由来多糖類を加水分解する工程を含み、前記スイゼンジノリ由来多糖類の重量平均分子量を1000万以下に低分子化することを特徴とするスイゼンジノリ由来多糖類の低分子化方法。   Characterized in that it comprises a step of hydrolyzing a suizendinori-derived polysaccharide at a temperature range of 100 ° C. to 250 ° C. and a pressure range of 1 MPa to 30 MPa, wherein the weight-average molecular weight of the suizendinori-derived polysaccharide is reduced to 10 million or less. A method for reducing the molecular weight of a polysaccharide derived from Suizendinori. 前記スイゼンジノリ由来多糖類を流通式反応装置にて加水分解することを特徴とする請求項2に記載のスイゼンジノリ由来多糖類の低分子化方法。   The method for reducing the molecular weight of a suizendinori-derived polysaccharide according to claim 2, wherein the suizendinori-derived polysaccharide is hydrolyzed with a flow reactor. 前記温度範囲が120℃〜250℃であることを特徴とする請求項2又は3に記載のスイゼンジノリ由来多糖類の低分子化方法。   The temperature range is 120 ° C to 250 ° C, and the method for reducing the molecular weight of a suizendinori-derived polysaccharide according to claim 2 or 3. 前記圧力範囲が2MPa〜15MPaであることを特徴とする請求項2〜4のいずれかに記載のスイゼンジノリ由来多糖類の低分子化方法。   The pressure range is 2 MPa to 15 MPa, The method for reducing the molecular weight of a suizendinori-derived polysaccharide according to any one of claims 2 to 4.
JP2013083291A 2013-04-11 2013-04-11 Low molecular compound of aphanothece sacrum polysaccharide and method for lowering molecular weight of aphanothece sacrum polysaccharides Pending JP2014205751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013083291A JP2014205751A (en) 2013-04-11 2013-04-11 Low molecular compound of aphanothece sacrum polysaccharide and method for lowering molecular weight of aphanothece sacrum polysaccharides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013083291A JP2014205751A (en) 2013-04-11 2013-04-11 Low molecular compound of aphanothece sacrum polysaccharide and method for lowering molecular weight of aphanothece sacrum polysaccharides

Publications (1)

Publication Number Publication Date
JP2014205751A true JP2014205751A (en) 2014-10-30

Family

ID=52119588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013083291A Pending JP2014205751A (en) 2013-04-11 2013-04-11 Low molecular compound of aphanothece sacrum polysaccharide and method for lowering molecular weight of aphanothece sacrum polysaccharides

Country Status (1)

Country Link
JP (1) JP2014205751A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015076244A1 (en) * 2013-11-19 2015-05-28 国立大学法人熊本大学 Anti-inflammatory agent using low-molecular-weight polysaccharide from aphanothece sacrum
JP2020045305A (en) * 2018-09-18 2020-03-26 国立大学法人北海道大学 Methods for producing cellooligosaccharide

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008062574A1 (en) * 2006-11-22 2008-05-29 Tatsuo Kaneko Sugar derivative and use thereof
WO2009113435A1 (en) * 2008-03-14 2009-09-17 Kaneko Tatsuo Sugar derivative preparation
JP2014133809A (en) * 2013-01-10 2014-07-24 Kumamoto Univ Novel nucleic acid delivery system using aphanothece sacrum polysaccharide body low molecular compound, manufacturing method of nucleic acid delivery carrier using the system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008062574A1 (en) * 2006-11-22 2008-05-29 Tatsuo Kaneko Sugar derivative and use thereof
WO2009113435A1 (en) * 2008-03-14 2009-09-17 Kaneko Tatsuo Sugar derivative preparation
JP2014133809A (en) * 2013-01-10 2014-07-24 Kumamoto Univ Novel nucleic acid delivery system using aphanothece sacrum polysaccharide body low molecular compound, manufacturing method of nucleic acid delivery carrier using the system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015076244A1 (en) * 2013-11-19 2015-05-28 国立大学法人熊本大学 Anti-inflammatory agent using low-molecular-weight polysaccharide from aphanothece sacrum
JP2020045305A (en) * 2018-09-18 2020-03-26 国立大学法人北海道大学 Methods for producing cellooligosaccharide
JP7191313B2 (en) 2018-09-18 2022-12-19 国立大学法人北海道大学 Method for producing cellooligosaccharide

Similar Documents

Publication Publication Date Title
Zhang et al. Antioxidant activities of Sagittaria sagittifolia L. polysaccharides with subcritical water extraction
Quitain et al. Microwave–hydrothermal extraction and degradation of fucoidan from supercritical carbon dioxide deoiled Undaria pinnatifida
Zhang et al. Ultrasound effects on the degradation kinetics, structure and rheological properties of apple pectin
Xia et al. Preparation of water soluble chitosan by hydrolysis using hydrogen peroxide
Luan et al. Structural diversity and bioactivity of polysaccharides from medicinal mushroom Phellinus spp.: A review
Shi et al. Extraction, purification, and characterization of polysaccharides from marine algae Gracilaria lemaneiformis with anti-tumor activity
Chen et al. Extraction optimization, preliminary characterization and immunological activity of polysaccharides from figs
Ma et al. A natural anti-obesity reagent derived from sea buckthorn polysaccharides: Structure characterization and anti-obesity evaluation in vivo
Xu et al. Optimization, characterization, sulfation and antitumor activity of neutral polysaccharides from the fruit of Borojoa sorbilis cuter
Li et al. Purification, characterization and bioactivities of polysaccharides from Pleurotus ferulae
Zhao et al. Hydrolysis of cassava starch, chitosan and their mixtures in pressurized hot water media
Liu et al. Extraction, structural characterization, and immunobiological activity of ABP Ia polysaccharide from Agaricus bisporus
Wu et al. Degradation of curdlan using hydrogen peroxide
Osada et al. Conversion of N-acetyl-d-glucosamine to nitrogen-containing chemicals in high-temperature water
Liu et al. Effects and kinetics of a novel temperature cycling treatment on the N-deacetylation of chitin in alkaline solution
Zhang et al. Structural elucidation of a novel heteropolysaccharide from the fruiting bodies of Pleurotus eryngii
Zhang et al. Structure of a water-soluble heteropolysaccharide from fruiting bodies of Hericium erinaceus
JP2014205751A (en) Low molecular compound of aphanothece sacrum polysaccharide and method for lowering molecular weight of aphanothece sacrum polysaccharides
Perumal et al. Advances in oligosaccharides production from algal sources and potential applications
Liu et al. Structural characterization and prebiotic potential of an acidic polysaccharide from Imperial Chrysanthemum
Burek et al. Trehalose–properties, biosynthesis and applications
Villamiel What we know about pectin?
Wu et al. Synthesis of branched β-1, 3-glucan oligosaccharide with narrow degree of polymerization by fungi co-cultivation
Yamabhai et al. Valorization of shrimp processing waste-derived chitosan into anti-inflammatory chitosan-oligosaccharides (CHOS)
CN104496779B (en) Method for preparing tetrahydrocurcumin

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170801