JP7190861B2 - 遠心式流体機械 - Google Patents

遠心式流体機械 Download PDF

Info

Publication number
JP7190861B2
JP7190861B2 JP2018190689A JP2018190689A JP7190861B2 JP 7190861 B2 JP7190861 B2 JP 7190861B2 JP 2018190689 A JP2018190689 A JP 2018190689A JP 2018190689 A JP2018190689 A JP 2018190689A JP 7190861 B2 JP7190861 B2 JP 7190861B2
Authority
JP
Japan
Prior art keywords
crossover
blade
flow path
wall surface
trailing edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018190689A
Other languages
English (en)
Other versions
JP2020060114A (ja
Inventor
和寛 塚本
ロマン プリュニエール
崇 沖原
孝英 長原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Products Ltd
Original Assignee
Hitachi Industrial Products Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Products Ltd filed Critical Hitachi Industrial Products Ltd
Priority to JP2018190689A priority Critical patent/JP7190861B2/ja
Priority to PCT/JP2019/030820 priority patent/WO2020075378A1/ja
Publication of JP2020060114A publication Critical patent/JP2020060114A/ja
Application granted granted Critical
Publication of JP7190861B2 publication Critical patent/JP7190861B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D1/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D1/06Multi-stage pumps
    • F04D1/08Multi-stage pumps the stages being situated concentrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

本発明は、遠心式流体機械に関する。
回転する遠心羽根車を有する遠心式流体機械は、従来から様々なプラントや各種機器のポンプや圧縮機として使用されている。特に、近年、環境負荷(消費電力)の低減要求の高まりを受けて、これら流体機械には、従来以上の高効率化と広作動範囲化とが求められている。
こうした本技術分野の背景技術として、特開2016―169672号公報(特許文献1)がある。この公報には、羽根車を通過した流体を半径方向外方に導くむディフューザ流路と、反対側の環状隔壁の第2面側に形成されリターン流路と、環状隔壁、ディフューザ流路及びリターン流路の外周側において、ディフューザ流路からリターン流路に流体を軸方向に導くように構成された環状流路と、少なくともディフューザ流路部内に形成されたディフューザベーン部と、少なくともリターン流路部内に形成されたリターンベーン部と、を備え、ディフューザベーン部又はリターンベーン部の少なくとも一方が環状流路内に延設されていることが記載されている(要約参照)。
また、こうした本技術分野の背景技術として、特開2010―255451号公報(特許文献2)がある。この公報には、エアガイドが、略円盤状の土台部と、土台部を挟んで構成される複数の上面翼および複数の下面翼と、土台部の外周位置に上面翼と下面翼を繋ぐ外周翼とを有し、上面翼と下面翼と外周翼は略均一厚みの板状とし、隣り合う前記外周翼の一部が、回転軸向から見た投影面上で重なる構成としたことにより、上面流路から下面流路へスムーズに空気を流すことが可能となるため、曲がり損失を低減させ、送風効率を向上させることができることが記載されている(要約参照)。
特開2016―169672号公報 特開2010―255451号公報
特許文献1に記載される遠心ポンプは、ディフューザ流路またはリターン流路に設けられた翼列の少なくとも一方が曲がり流路にまで延長されている。また、特許文献2に記載される電動送風機は、曲がり流路の内部の翼を変形させている。いずれも曲がり流路の内部の損失を低減し、効率向上を図っている。しかし、特許文献1や特許文献2は、リターン流路における流れのはく離を抑制し、効率向上を図るものではない。また、特許文献1や特許文献2には、遠心式流体機械の径方向の外径寸法を小さくした場合であっても、効率を維持できる遠心式流体機械は記載されていない。
そこで、本発明は、リターン流路における流れのはく離を抑制し、効率向上を図った遠心式流体機械を提供する。
上記課題を解決するために、本発明の遠心式流体機械は、遠心羽根車と、遠心羽根車の下流に配置されるディフューザ流路、曲がり流路、およびリターン流路を連通して形成されるクロスオーバー翼と、を有し、このクロスオーバー翼の後縁であってシュラウド壁面側の後縁が、ハブ壁面側の後縁に対して、周方向であって遠心羽根車の回転方向の上流側に傾斜し、クロスオーバー翼のシュラウド壁面上のキャンバーラインと、クロスオーバー翼のハブ壁面上のキャンバーラインとは、遠心羽根車の回転軸方向から俯瞰した際に、曲がり流路の内部に交差点を有し、交差点が、曲がり流路の中間位置より下流に位置することを特徴とする。
本発明によれば、リターン流路における流れのはく離を抑制し、効率向上を図った遠心式流体機械を提供することができる。
なお、上記した以外の課題、構成および効果は、以下の実施例の説明により明らかにされる。
遠心式流体機械を説明する断面図である。 本実施例に係るクロスオーバーディフューザを拡大した子午面断面図である。 比較例に係るクロスオーバーディフューザの静止流路を説明する外形図である。 比較例に係るクロスオーバーディフューザのリターン流路側を説明する外形図である。 本実施例に係るクロスオーバーディフューザのリターン流路側を説明する外形図である。 比較例と本実施例とに係るクロスオーバー翼の翼間の流路断面積の変化を比較したグラフである。 数値流体解析によって得られた、比較例と本実施例とに係るクロスオーバー翼の後縁付近の流速分布を比較した解析図である。 本実施例に係るクロスオーバーディフューザのリターン流路側を拡大した説明図である。 実施例2に係るクロスオーバーディフューザのリターン流路側を説明する外形図である。
以下、本発明の実施例を、図面を用いて説明する。なお、同一の構成には、同一の符号を付し、説明が重複する場合は、その説明を省略する場合がある。
図1は、遠心式流体機械を説明する断面図である。本実施例では、遠心式流体機械として、多段の遠心ポンプを使用して説明する。なお、単段の遠心ポンプ、多段の遠心圧縮機や単段の遠心圧縮機にも適用できる。
本実施例に記載する遠心ポンプは、ケーシング11を貫通して、水平方向に伸びる回転軸12が配置される。ケーシング11の内部には、8個の羽根車13と、最終段を除く7個の遠心羽根車(以下、「羽根車」と称して説明する)13に対応する7個の静止流路(図1では、U字が逆さになっているような流路)21が収容される。
羽根車13は、回転軸12に固定され、静止流路21はケーシング11に固定される。なお、羽根車13の数は、8個に限定されるものではない。静止流路21は最終段を除く羽根車13に対応するように配置される。
ケーシング11は、吸込口15と吐出口16とを備え、回転軸12の軸方向において、吸込口15の側を上流とし、吐出口16の側を下流とする。
回転軸12は、図1においては図示しない駆動源によって回転される。羽根車13は回転軸12に固定され、回転軸12と共に回転する。
つまり、流体は、上流側の吸込口15から流入し、羽根車13および静止流路21介して、下流側の吐出口16から流出することになる。
図2は、本実施例に係るクロスオーバーディフューザを拡大した子午面断面図である。
流体は、羽根車13の径方向の中心に位置する羽根車入口13Aから流入し、羽根車13の径方向の外周側に位置する羽根車出口13Bから流出する。羽根車出口13Bから流出した流体は、静止流路21を通過して、次段の羽根車13に流入する。
隣り合う羽根車13と羽根車13との間の流路は、静止流路21によって構成される。静止流路21は、ディフューザ流路22、曲がり流路23、リターン流路24から構成される。ディフューザ流路22を通過した流体は、曲がり流路23を通過する際に、流れ方向が外向きから内向きへと転向する。転向した流体は、リターン流路24を通過して、次段の羽根車13に流入する。
また、静止流路21は、羽根車13の下流に配置され、ディフューザ流路22、曲がり流路23、リターン流路24にかけて連通して形成されるクロスオーバー翼(周方向に配置される静止翼列)25を有し、周方向に均一に複数枚が配置される。なお、クロスオーバーディフューザは、クロスオーバー翼25を有する静止流路21からなる。
また、静止流路21の内側をハブ壁面(ハブ)26と、静止流路21の外側をシュラウド壁面(シュラウド)27と称する。
静止流路21は、羽根車13から流出した流体の流れの速度を減速させ、流体の圧力を回復する効果と、次段の羽根車13へ流入する流体の流れの旋回角(流れの角度)を調整する効果と、を有するものである。
図3は、比較例に係るクロスオーバーディフューザの静止流路を説明する外形図である。
なお、図3の左側の図は、クロスオーバーディフューザをディフューザ流路22側から、図3の中の図は、クロスオーバーディフューザを曲がり流路23側から、図3の右側の図は、クロスオーバーディフューザをリターン流路24側(斜視的に)から、それぞれ表したものである。
クロスオーバー翼25は、ディフューザ流路22、曲がり流路23、リターン流路24にかけて連通する10枚の翼を有する。なお、本実施例では、クロスオーバー翼25の枚数は10枚であったが、10枚に限定されるものではなく、8枚でも12枚でもよい。
また、クロスオーバー翼25は、一般的には、ハブ壁面26との一体物として、鋳物で形成されることが多い。
そして、クロスオーバー翼25は、その翼間を矢印で示す方向(クロスオーバー翼25の前縁30からクロスオーバー翼25の後縁31に向かう方向)に流体が流れ、流体が流れる過程で、流体の圧力を回復する機能と流体の流れの旋回角を調整する機能とを有する。
なお、図3の左側の図、図3の中の図、および、図3の右側の図に、共通して記載されている中心線(一点鎖線)は、クロスオーバーディフューザの中心であり、羽根車13の回転中心を表すものである。
図4は、比較例に係るクロスオーバーディフューザのリターン流路側を説明する外形図である。
図5は、本実施例に係るクロスオーバーディフューザのリターン流路側を説明する外形図である。
図4および図5は、クロスオーバー翼25をリターン流路24側から表したものであり、回転軸12と平行な視線で、リターン流路24側から静止流路21を俯瞰したものである。図4に示すクロスオーバー翼25、および、図5に示すクロスオーバー翼25は、周方向に均一に複数枚が配置される。
図4と図5とを比較すると、本実施例の特徴は、静止流路21のうち、主に曲がり流路23からリターン流路24にかけての翼形状の構造にあることがわかる。逆に言うと、ディフューザ流路22の翼形状の構造については、本実施例に記載する翼形状の構造(以下「本実施例形状」と称して説明する場合がある)と比較例に記載する翼形状の構造(以下「比較例形状」と称して説明する場合がある)とは同一である。
つまり、本実施例に記載する翼形状の構造と比較例に記載する翼形状の構造とは、クロスオーバー翼25の後縁31の翼形状の構造に違いがあることがわかる。
比較例に記載する翼形状の構造は、クロスオーバー翼25の後縁31が、回転軸12と平行に配置される。このため、図4に示すアングル(視線角度)からでは、クロスオーバー翼25の圧力面28は図示されるが、クロスオーバー翼25の負圧面29は図示されない。
一方、本実施例に記載する翼形状の構造は、クロスオーバー翼25の後縁31が周方向に傾斜する。このとき、クロスオーバー翼25の後縁31は、シュラウド壁面27側の後縁33が、ハブ壁面26側の後縁32に対して、羽根車13の回転方向の上流側に、傾斜して配置される。つまり、クロスオーバー翼25の後縁31は、シュラウド壁面27側の後縁33が、ハブ壁面26側の後縁32に対して、羽根車13の回転方向の上流側に、シフトした位置に配置される。
このため、図5に示すアングル(視線角度)からでも、クロスオーバー翼25の圧力面28、および、クロスオーバー翼25の負圧面29が図示される。つまり、本実施例に記載する翼形状の構造では、比較例に記載する翼形状の構造では図示されなかったクロスオーバー翼25の負圧面29が、図示される。
このように本実施例では、クロスオーバー翼25の後縁31を周方向に傾斜させることにより、クロスオーバー翼25の翼間の流路断面積を調整する。
そして、本実施例に記載する遠心ポンプは、静止流路21に配置されるクロスオーバー翼25の後縁31を周方向に傾斜させるため、リターン流路24における流体の流れの壁面からのはく離を抑制することができ、効率向上を図ることができる。そして、遠心ポンプの径方向の外径寸法を小さくした場合であっても、その効率を維持することができる。
図6は、比較例と本実施例とに係るクロスオーバー翼の翼間の流路断面積の変化を比較したグラフである。
つまり、図6は、クロスオーバー翼25の翼間の流路断面積の変化を、子午面断面方向位置と翼間の流路断面積との関係で示すものである。この翼間の流路断面積は、隣接するクロスオーバー翼25とクロスオーバー翼25との間を通過する流体の流れ方向に対して垂直な断面上の流路断面積を表す。また、クロスオーバー翼25の前縁30を0とし、クロスオーバー翼25の後縁31を1とし、この0から1までで、クロスオーバー翼25の前縁30からクロスオーバー翼25の後縁31までを表す。
ディフューザ流路22から曲がり流路23の前半までにかけては、比較例形状と本実施例形状とでは、その翼間の流路断面積に差異はない。しかし、クロスオーバー翼25の傾斜が始まる曲がり流路23の中半(中間位置)からリターン流路24までにかけては、その違いが確認され、本実施例形状は、従来例形状に比較して、翼間の流路断面積が狭くなっていることがわかる。
このため、曲がり流路23の中半(中間位置)から下流に至る(リターン流路24までにかけての)翼間の流路断面積の拡大角は小さくなっていると言える。
一般的に、翼間の流路断面積の拡大角が大きいほど、ディフューザ効果が大きくなり、静圧回復率は高くなる。一方、翼間の流路断面積の拡大角が大きすぎると、流体の流れが壁面からはく離し、損失が増大するため、逆に、静圧回復率は低くなる(悪化する)。このため、静止流路21の設計には、翼間の流路断面積の拡大角を大きくしすぎないように、調整することが求められる。
また、幾何学的には、クロスオーバー翼25を周方向から径方向に曲げると、翼間の流路断面積が大きくなる。このため、翼間の流路断面積を調整するためには、周方向から径方向へのクロスオーバー翼25の曲げ方が重要になる。
一方、静止流路21、特にリターン流路24においては、ディフューザ流路22から曲がり流路23を経て、リターン流路24へと流入する流体の周方向への旋回速度成分を除去しなければならない。これは、リターン流路24の下流に位置する次段の羽根車13への影響を小さくするためである。
このため、曲がり流路23からリターン流路24にかけて、クロスオーバー翼25を周方向から径方向に曲げる必要がある。この曲げにより、流体の周方向への旋回速度成分を除去する。しかし、クロスオーバー翼25を周方向から径方向に曲げると、翼間の流路断面積が拡大する。このため、翼間の流路断面積の過度の拡大を抑えつつ、流体の流れを周方向から径方向へと転向させる必要がある。
そこで、本実施例では、クロスオーバー翼25の後縁31を周方向に傾斜させることにより、翼間の流路断面積を調整する。クロスオーバー翼25の後縁31を周方向に傾斜させると、シュラウド壁面27側のクロスオーバー翼25は周方向から径方向に急激に曲げられ、一方、ハブ壁面26側のクロスオーバー翼25は周方向から径方向に緩やかに曲げられる。このため、ハブ壁面26側の流路断面積は、狭くなり、翼間の流路断面積の変化も小さくなり、一方、シュラウド壁面27側の流路断面積は、広くなり、翼間の流路断面積の変化も大きくなる。
シュラウド壁面27側は、流れの遠心力の作用により、翼間の流路断面積の拡大角が大きくても、比較的、流体の流れが壁面からはく離しにくい。一方、ハブ壁面26側は、流れが壁面からはく離する方向に、流れの遠心力が作用するため、翼間の流路断面積の拡大角を小さくしなければ、流体の流れが壁面からはく離し、損失が増加する。
つまり、本実施例では、クロスオーバー翼25の後縁31を周方向に傾斜させるによって、ハブ壁面26側の翼間の流路断面積の拡大を抑制し、ハブ壁面26側のはく離を抑制することができる。
このように、本実施例では、ハブ壁面26側の流路断面積が狭くなるように、そして、シュラウド壁面27側の流路断面積が広くなるように、クロスオーバー翼25の後縁31を周方向に傾斜させることにより、リターン流路24における流体の流れの壁面からのはく離を抑制することができ、効率向上を図ることができる。そして、遠心ポンプの径方向の外径寸法を小さくした場合であっても、その効率を維持することができる。
また、図6に示す翼間の流路断面積の変化を見ると、翼間の流路断面積の拡大は、曲がり流路23の中半(中間位置)から生じていることがわかる。これは、クロスオーバー翼25を曲がり流路23の内部で、周方向から径方向に曲げ始めていると言える。逆に言えば、この位置からクロスオーバー翼25を曲げ始めないと、静止流路21の出口(クロスオーバー翼25の後縁31またはリターン流路24の出口)までに流体の周方向の旋回速度成分を除去しきれないことを意味する。
特に、本実施例の目的の一つである遠心ポンプの径方向の外径寸法を小さくする、つまり静止流路21の外径を縮小すると、ディフューザ流路22の最外径部の流路断面積も小さくなる。これにより、ディフューザ流路22の出口の流速の絶対値は、静止流路21の外径を縮小する前と比較して、大きくなる。すなわち、流体の周方向への旋回速度成分が大きくなることを意味する。流体の周方向への旋回速度成分が大きくなると、流体の流れを転向させるためにクロスオーバー翼25を大きく周方向から径方向へ曲げなければならない。
一方、静止流路21の外径を縮小するためには、静止流路21の外径を縮小する前と比較して、静止流路21の外径を縮小する前よりも、更に短い静止流路21で、更に早い流速の流体を転向しなければならない。
また、静止流路21が短くなるため、静止流路21の出口(クロスオーバー翼25の後縁31またはリターン流路24の出口)の流路断面積においては、より適切に、翼間の流路断面積の拡大角を設定する必要がある。
静止流路21の外径を縮小することによって、ディフューザ流路22における流体の減速効果が小さくなるため、曲がり流路23へ流入する流体の流速が大きくなる。特に、ディフューザ流路22が短くなることにより、ディフューザ流路22の翼列が担う、流れを転向させる効果も小さくなるため、流体の周方向の旋回速度成分が大きくなる。
流体の周方向の旋回速度成分が大きいまま、曲がり流路23へと流入した流体の流れは、曲がり流路23の翼面またはリターン流路24の翼面からはく離しやすくなる。流体の周方向の旋回速度成分が支配的ということは、クロスオーバー翼25から流れがはく離する方向の成分が支配的ということであるため、比較例形状では、流れが壁面からはく離することとなる。
流れが壁面からはく離すると、損失が増加するため、効率の低下につながる。加えて、翼面に添って流体が流れないため、流体の周方向の旋回速度成分が支配的なまま、リターン流路24の出口に流体が到達するため、次段の羽根車13への流入角が小さくなり、次段の羽根車13における流体性能の低下につながる。
ディフューザ流路22における流れの転向を大きくするために、ディフューザ流路22の翼列を周方向に立てることにより、静止流路21の外径を縮小する前と同程度の減速効果を得ることも可能だが、ディフューザ流路22の翼列を周方向に立てると、低流量運転時に翼列におけるはく離が生じやすくなり、安定に運転ができなくなる可能性がある。
そこで、本実施例では、こうした課題を解決するため、クロスオーバー翼25の後縁31を周方向に傾斜させることにより、翼間の流路断面積を調整し、翼間の流路断面積の拡大が始まる、つまり、クロスオーバー翼25の傾斜が始めるポイントを、曲がり流路23の内部とする。さらに、クロスオーバー翼25の傾斜が始めるポイントを、曲がり流路23の中半(中間位置)とすることが好ましい。
これにより、リターン流路24における流体の流れの壁面からのはく離を抑制することができ、効率向上を図ることができる。そして、遠心ポンプの径方向の外径寸法を小さくした場合であっても、その効率を維持することができる。
また、遠心ポンプの径方向の外径寸法を小さくすることは、遠心ポンプの体積の低減につながり、コスト低減に直結する。本実施例では、高い効率を維持しつつ、より小さい遠心ポンプを開発することできる。
図7は、数値流体解析によって得られた、比較例と本実施例とに係るクロスオーバー翼の後縁付近の流速分布を比較した解析図である。
比較例形状、および、本実施例形状ともに、ハブ壁面26側の流速が低くなっていることがわかる。比較例形状では、負圧面29付近に、流れのはく離の影響による低流速域が確認できる。一方、本実施例形状では、この低流速域は確認されず、流れのはく離を抑制していることがわかる。これにより、効率向上が期待できる。
これにより、リターン流路24における流体の流れの壁面からのはく離を抑制することができ、効率向上を図ることができる。そして、遠心ポンプの径方向の外径寸法を小さくした場合であっても、その効率を維持することができる。
図8は、本実施例に係るクロスオーバーディフューザのリターン流路側を拡大した説明図である。
クロスオーバー翼25のハブ側のキャンバーライン34とクロスオーバー翼25のシュラウド側のキャンバーライン35とが交差する交差点36が、曲がり流路23の内部に位置する。
つまり、クロスオーバー翼25のシュラウド壁面27上のキャンバーライン35と、クロスオーバー翼25のハブ壁面26上のキャンバーライン34とは、羽根車13の回転軸方向から俯瞰した際に、曲がり流路23の内部に交差点36を有することになる。
また、この交差点36は、曲がり流路23の中間位置より下流に位置することが好ましい。
これにより、曲がり流路部23の内部における翼間の流路断面積の変化を調整することができる。具体的には、主に、ハブ壁面26側の翼間の流路断面積の変化を小さくすることができ、ハブ壁面26側の流体の流れのはく離を抑制することができる。
比較例形状では、この交差点36は、クロスオーバー翼25の後縁31と一致し、この交差点36は、存在しない。この交差点36の存在は、本実施例形状の構造上の特徴点の一つである。
また、図8に示すように、クロスオーバー翼25の後縁31が、周方向に傾斜を有するため、αで示すような周方向リーン角37を、新たに形状パラメータとして得ることができる。
この周方向リーン角37は、クロスオーバー翼25の後縁31が周方向に傾斜を有するため、つまり、シュラウド壁面27側の後縁33が、ハブ壁面26側の後縁32に対して、羽根車13の回転方向の上流側にシフトした位置に配置されるため、得ることができる。
この周方向リーン角37(α)は、クロスオーバーディフューザの中心から、シュラウド壁面27側の後縁33に対して形成した直線と、ハブ壁面26側の後縁32に対して形成した直線と、の間の角度である。
つまり、この角度は、シュラウド壁面27側の後縁33と羽根車13の回転中心とを結んだ線分と、ハブ壁面26側の後縁32と羽根車13の回転中心とを結んだ線分とが、羽根車13の回転中心においてなす角である。
この周方向リーン角37(α)の値は、3~20°とすると効果的である。αを20°以上とすると、主にシュラウド壁面27側のクロスオーバー翼25の転向角が過大となり、シュラウド壁面27側の翼面における流体の流れがはく離し、損失が生じてしまう。また、αを3°以下では、クロスオーバー翼25の後縁31を周方向に傾斜する効果が十分に発揮されない可能性がある。なお、この周方向リーン角37(α)の値は、5~15°であることが、より好ましい。
このように、本実施例によれば、低流量運転から高流量運転まで適用できる、いわゆる広作動範囲に適用でき、効率低下を抑制する遠心ポンプを提供することができる。
また、本実施例によれば、遠心ポンプの径方向の外径寸法を小さくした場合であっても、高い効率を維持しつつ、全流量範囲域において安定して運転することができる。
また、本実施例によれば、静止流路21における損失発生を抑制し、高効率化を図かることができる。
また、本実施例によれば、翼間の流路断面積を調整することができ、特に、曲がり流路23からリターン流路24までの流路で、翼間の流路断面積の変化を緩やかにし、翼間の流路断面積の急拡大に伴う損失の増加を抑制することができる。また、翼間の流路断面積の急拡大に伴う流体の流れの壁面からのはく離を抑制することができ、損失の低減と次段の羽根車13への流体の流入角を適切に調整することができる。
また、本実施例によれば、遠心ポンプの径方向の外径寸法を小さくした場合であっても、その効率を維持することができるため、コスト低減と運用効率の向上とが期待でき、遠心ポンプの設置面積も低減することができる。
図9は、実施例2に係るクロスオーバーディフューザのリターン流路側を説明する外形図である。
本実施例では、実施例1と同様にクロスオーバー翼25の後縁31は、周方向に傾斜しているが、そのクロスオーバー翼25の後縁31の下流には、下流静翼38が配置される。下流静翼38は、リターン流路24の内部に配置され、クロスオーバー翼25では転向しきれなかった流体の流れを、更に転向させる際に有効なデバイスである。
下流静翼38の配置箇所は種々考えることができるが、クロスオーバー翼25と同様に、リターン流路24の内部に配置され、クロスオーバー翼25のシュラウド壁面27側の後縁33に対して、羽根車13の回転方向の上流側に位置する様に配置される。これにより、最も流れの転向角が大きくなる。なお、下流静翼38は、クロスオーバー翼25と同一枚数を配置することが好ましい。
本実施例では、下流静翼38は2次元的な翼構造であったが、この構造も種々考えることができ、クロスオーバー翼25と同様に周方向に傾斜させてもよいし、3次元的な翼構造であってもよい。
このように、遠心ポンプの径方向の外径寸法を小さくした場合であっても、高い効率を維持しつつ、全流量範囲域において安定して運転することができる。
また、これら実施例は、多段の遠心ポンプを想定して説明したが、ディフューザ流路22、曲がり流路23、リターン流路24を有するような遠心ポンプであれば、単段の遠心ポンプにも適用できる。更には、類似構造を有する単段又は多段の遠心式の気体機にも適用できる。
なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
11 ケーシング
12 回転軸
13 遠心羽根車
13A 羽根車入口
13B 羽根車出口
15 吸込口
16 吐出口
21 静止流路
22 ディフューザ流路
23 曲がり流路
24 リターン流路
25 クロスオーバー翼
26 ハブ壁面
27 シュラウド壁面
28 クロスオーバー翼の圧力面
29 クロスオーバー翼の負圧面
30 クロスオーバー翼の前縁
31 クロスオーバー翼の後縁
32 ハブ壁面側の後縁
33 シュラウド壁面側の後縁
34 ハブ側キャンバーライン
35 シュラウド側キャンバーライン
36 交差点
37 周方向リーン角
38 下流静翼

Claims (5)

  1. 遠心羽根車と、前記遠心羽根車の下流に配置されるディフューザ流路、曲がり流路、およびリターン流路を連通して形成されるクロスオーバー翼と、を有し、
    前記クロスオーバー翼の後縁であってシュラウド壁面側の後縁が、ハブ壁面側の後縁に対して、周方向であって前記遠心羽根車の回転方向の上流側に傾斜し
    前記クロスオーバー翼のシュラウド壁面上のキャンバーラインと、前記クロスオーバー翼のハブ壁面上のキャンバーラインとは、前記遠心羽根車の回転軸方向から俯瞰した際に、前記曲がり流路の内部に交差点を有し、
    前記交差点が、前記曲がり流路の中間位置より下流に位置することを特徴とする遠心式流体機械。
  2. 前記シュラウド壁面側の後縁と遠心羽根車の回転中心とを結んだ線分と、前記ハブ壁面側の後縁と遠心羽根車の回転中心とを結んだ線分とが、前記遠心羽根車の回転中心においてなす角が、3~20°であることを特徴とする請求項に記載の遠心式流体機械。
  3. 前記クロスオーバー翼の後縁の下流に、下流静翼を有することを特徴とする請求項1~請求項のいずれか1項に記載の遠心式流体機械。
  4. 前記下流静翼は、前記リターン流路に配置されることを特徴とする請求項に記載の遠心式流体機械。
  5. 前記下流静翼は、前記クロスオーバー翼のシュラウド壁面上の後縁に対して、遠心羽根車の回転方向の上流側に位置することを特徴とする請求項に記載の遠心式流体機械。
JP2018190689A 2018-10-09 2018-10-09 遠心式流体機械 Active JP7190861B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018190689A JP7190861B2 (ja) 2018-10-09 2018-10-09 遠心式流体機械
PCT/JP2019/030820 WO2020075378A1 (ja) 2018-10-09 2019-08-06 遠心式流体機械

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018190689A JP7190861B2 (ja) 2018-10-09 2018-10-09 遠心式流体機械

Publications (2)

Publication Number Publication Date
JP2020060114A JP2020060114A (ja) 2020-04-16
JP7190861B2 true JP7190861B2 (ja) 2022-12-16

Family

ID=70164270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018190689A Active JP7190861B2 (ja) 2018-10-09 2018-10-09 遠心式流体機械

Country Status (2)

Country Link
JP (1) JP7190861B2 (ja)
WO (1) WO2020075378A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004340000A (ja) 2003-05-14 2004-12-02 Torishima Pump Mfg Co Ltd 多段流体機械
JP2015094293A (ja) 2013-11-12 2015-05-18 株式会社日立製作所 遠心形ターボ機械

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004340000A (ja) 2003-05-14 2004-12-02 Torishima Pump Mfg Co Ltd 多段流体機械
JP2015094293A (ja) 2013-11-12 2015-05-18 株式会社日立製作所 遠心形ターボ機械

Also Published As

Publication number Publication date
WO2020075378A1 (ja) 2020-04-16
JP2020060114A (ja) 2020-04-16

Similar Documents

Publication Publication Date Title
JP5316365B2 (ja) ターボ型流体機械
US8308420B2 (en) Centrifugal compressor, impeller and operating method of the same
US20090317232A1 (en) Blade shroud with aperture
US8834116B2 (en) Fluid flow machine with peripheral energization near the suction side
JP2010216456A (ja) 多段遠心圧縮機及び多段遠心圧縮機の改造方法
JP2009057959A (ja) 遠心圧縮機とその羽根車およびその運転方法
WO2019176426A1 (ja) 遠心ポンプ
JP2001200797A (ja) 多段遠心圧縮機
EP3421815A1 (en) Centrifugal compressor
EP3567260B1 (en) Centrifugal rotary machine
JP7429810B2 (ja) 多段遠心流体機械
JP7190861B2 (ja) 遠心式流体機械
JP2018135836A (ja) 遠心圧縮機
WO2018074591A1 (ja) インペラ及び回転機械
JP5232721B2 (ja) 遠心圧縮機
JP4146371B2 (ja) 遠心圧縮機
JP7433261B2 (ja) 多段遠心圧縮機
WO2022064751A1 (ja) 遠心圧縮機
KR20030006810A (ko) 원심 압축기
JP2022052691A (ja) 遠心圧縮機
JP2000291593A (ja) 圧縮機
JP2023006935A (ja) 遠心送風機
WO2017170285A1 (ja) 遠心羽根車、およびこれを備える遠心式流体機械
JP5589989B2 (ja) 遠心送風機
KR20020084613A (ko) 원심압축기

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20200122

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221206

R150 Certificate of patent or registration of utility model

Ref document number: 7190861

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150