JP7190199B2 - electric valve - Google Patents

electric valve Download PDF

Info

Publication number
JP7190199B2
JP7190199B2 JP2020218216A JP2020218216A JP7190199B2 JP 7190199 B2 JP7190199 B2 JP 7190199B2 JP 2020218216 A JP2020218216 A JP 2020218216A JP 2020218216 A JP2020218216 A JP 2020218216A JP 7190199 B2 JP7190199 B2 JP 7190199B2
Authority
JP
Japan
Prior art keywords
valve
seat
valve body
valve seat
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020218216A
Other languages
Japanese (ja)
Other versions
JP2022103524A (en
Inventor
宏気 相原
良太 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Original Assignee
Fujikoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp filed Critical Fujikoki Corp
Priority to JP2020218216A priority Critical patent/JP7190199B2/en
Priority to CN202111158483.4A priority patent/CN114688275A/en
Publication of JP2022103524A publication Critical patent/JP2022103524A/en
Application granted granted Critical
Publication of JP7190199B2 publication Critical patent/JP7190199B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/34Cutting-off parts, e.g. valve members, seats
    • F16K1/36Valve members
    • F16K1/38Valve members of conical shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/34Cutting-off parts, e.g. valve members, seats
    • F16K1/42Valve seats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K25/00Details relating to contact between valve members and seats
    • F16K25/005Particular materials for seats or closure elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K25/00Details relating to contact between valve members and seats
    • F16K25/04Arrangements for preventing erosion, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/06Damage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Lift Valve (AREA)
  • Electrically Driven Valve-Operating Means (AREA)

Description

本発明は、電動弁に係り、特に、先端に逆円錐状のニードル部を有する弁体を備えた電動弁の弁体構造に関する。 TECHNICAL FIELD The present invention relates to a motor-operated valve, and more particularly to a valve body structure of a motor-operated valve having a valve body having an inverted conical needle portion at its tip.

ステッピングモータ等の電動機を使用して弁の開度を制御する電動弁が空気調和機や冷蔵装置、冷凍装置など冷媒回路を備えた冷凍サイクル装置に従来から使用されている。 2. Description of the Related Art Motor-operated valves that control the degree of opening of valves using electric motors such as stepping motors have been conventionally used in refrigeration cycle devices including refrigerant circuits, such as air conditioners, refrigerators, and freezers.

このような電動弁の一つとして、逆円錐状または逆円錐台状に尖ったニードル部を先端に有する弁体を備え、当該ニードル部を弁口に抜き差しするように進退動させて弁の開度を調整し、流体(冷媒等)の流量を制御する電動弁がある(例えば下記特許文献1参照)。 As one of such motor-operated valves, a valve body is provided with a needle portion that is sharpened in the shape of an inverted cone or an inverted truncated cone at the tip, and the needle portion is advanced and retracted so as to be inserted into and removed from the valve opening to open the valve. There is a motor-operated valve that adjusts the temperature and controls the flow rate of a fluid (refrigerant, etc.) (see, for example, Patent Document 1 below).

特開2012-197849号公報JP 2012-197849 A

ところで近年、冷媒回路を構成する各装置の性能向上と冷媒自体の能力向上に伴い、冷媒の流量が少ない低流量時の制御が求められている。 By the way, in recent years, along with the improvement in the performance of each device constituting the refrigerant circuit and the improvement in the performance of the refrigerant itself, there is a demand for control when the flow rate of the refrigerant is low.

ここで、ニードル部を備えた電動弁において低流量時に高精度の制御を行う一つの方法としては、ニードル部の角度、つまり逆円錐状または逆円錐台状のニードル部の対向する母線同士(対向する周面同士)がなす角度(以下、この角度を「弁角度」と称する)を鋭角にすれば良い。 Here, as one method of performing high-precision control at a low flow rate in an electric valve provided with a needle portion, the angle of the needle portion, that is, the opposing generatrices of the inverted conical or inverted truncated conical needle portion (opposing The angle (hereinafter referred to as the "valve angle") formed by the adjacent peripheral surfaces) may be made an acute angle.

ところが、弁角度を鋭角にすると、閉弁時に弁体が弁座に喰いつき、スムーズに開弁することができない現象が生じることがある。より具体的には、弁角度を45°より小さくすると、所謂くさびの原理(ニードル部が楔のように弁口に刺さって抜けなくなる)により着座後に弁体が弁座から離脱できずにロックしてしまう(開弁できない)現象が生じる。 However, if the valve angle is set to an acute angle, the valve disc may bite into the valve seat when the valve is closed, and a phenomenon may occur in which the valve cannot be opened smoothly. More specifically, when the valve angle is made smaller than 45°, the valve disc cannot be removed from the valve seat after seating and is locked due to the so-called wedge principle (the needle portion sticks into the valve opening like a wedge and cannot be pulled out). A phenomenon that the valve cannot be opened occurs.

また、弁角度が小さくなるほど、弁座と弁体との間に異物を挟み込みやすくなり、異物の噛み込みにより弁体や弁座が損傷を受け、弁漏れ量が増大する問題も生じ得る。 In addition, as the valve angle becomes smaller, foreign matter is more likely to be caught between the valve seat and the valve body, and the foreign matter may get caught and damage the valve body and the valve seat, which may lead to an increase in the amount of valve leakage.

したがって、本発明の目的は、低流量時に精度の高い流量制御を可能にするとともに、異物の噛み込みによる弁漏れ量の増大を防ぐことにある。 SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to enable highly accurate flow rate control when the flow rate is low and to prevent an increase in valve leakage caused by foreign matter.

前記課題を解決し目的を達成するため、本発明に係る第1の電動弁は、弁室および弁座付き弁口が設けられた弁本体と、弁座に対して回転せずに進退動することにより流体の通過量を制御する弁体と、弁口を介して弁室に連通する第一流路口と、弁室に連通する第二流路口と、弁体を駆動する電気的駆動部とを備え、弁体が、弁座に向けて次第に径が小さくなる逆円錐状または逆円錐台状の形状を有する着座部を含み且つ当該着座部が弁座に着座した閉弁時に弁口に差し込まれて弁口を閉塞可能なニードル部を備えた電動弁であって、前記着座部の対向する母線同士がなす角度を26°以上45°未満に設定するとともに、前記着座部および弁座のいずれか一方または双方の表面に、フッ素樹脂を含む被覆層を備えた。 In order to solve the above-mentioned problems and achieve the object, a first electrically operated valve according to the present invention includes a valve main body having a valve chamber and a valve opening with a valve seat, and a valve body that advances and retreats relative to the valve seat without rotating. a valve body for controlling the amount of fluid passing through the valve body, a first flow path port communicating with the valve chamber via the valve port, a second flow path port communicating with the valve chamber, and an electric drive section for driving the valve body. , the valve body includes a seat portion having an inverted cone shape or an inverted truncated cone shape whose diameter gradually decreases toward the valve seat, and the seat portion is inserted into the valve opening when the valve is closed when seated on the valve seat. A motor-operated valve having a needle portion capable of closing a valve port, wherein an angle between opposing generatrices of the seating portion is set to 26° or more and less than 45°, and either one of the seating portion and the valve seat is provided. Alternatively, both surfaces were provided with a coating layer containing a fluororesin.

低流量時の制御性を高めるには、弁角度、すなわちニードル部(特に、弁座に当接する着座部)の対向する母線同士がなす角度を小さくする必要があるが、従来のこの種の電動弁では弁角度を45°より小さくするとニードル部が弁口に楔のように刺さって弁体が弁座に喰いついてしまい、スムーズな開弁ができなくなる現象が生じることがあることは、既に述べたとおりである。 In order to improve the controllability at low flow rates, it is necessary to reduce the valve angle, that is, the angle formed by the facing generatrices of the needle portion (especially the seating portion that abuts the valve seat). It has already been mentioned that if the valve angle is less than 45°, the needle sticks into the valve opening like a wedge, causing the valve body to bite into the valve seat and prevent the valve from opening smoothly. Just like that.

そこで、本発明では、ニードル部(着座部)と弁座のいずれか一方または双方の表面にフッ素樹脂を含む被覆層を形成する。フッ素樹脂を含む被覆層を表面に形成すれば弁座(弁口)に対して抜き差しされるニードル部の摩擦抵抗を小さくすることが出来るから、弁角度を小さくしても(45°未満としても)弁体が弁口から抜けやすくなり、弁座への弁体の喰いつきを防ぐことが出来る。 Therefore, in the present invention, a coating layer containing a fluororesin is formed on the surface of one or both of the needle portion (seating portion) and the valve seat. If a coating layer containing fluororesin is formed on the surface, it is possible to reduce the frictional resistance of the needle portion that is inserted into and removed from the valve seat (valve port). ) The valve disc can be easily removed from the valve opening, and the valve disc can be prevented from biting into the valve seat.

なお、弁角度の下限は26°とするが、その理由については後に実施形態において詳しく述べる。 The lower limit of the valve angle is set to 26°, the reason for which will be described in detail later in the embodiment.

また、本発明に係る第2の電動弁は、弁室および弁座付き弁口が設けられた弁本体と、弁座に対して回転しながら進退動することにより流体の通過量を制御する弁体と、弁口を介して弁室に連通する第一流路口と、弁室に連通する第二流路口と、弁体を駆動する電気的駆動部とを備え、弁体が、弁座に向けて次第に径が小さくなる逆円錐状または逆円錐台状の形状を有する着座部を含み且つ当該着座部が弁座に着座した閉弁時に弁口に差し込まれて弁口を閉塞可能なニードル部を備えた電動弁であって、前記着座部の対向する母線同士がなす角度を26°以上60°未満に設定するとともに、前記着座部および弁座のいずれか一方または双方の表面に、フッ素樹脂を含む被覆層を備えた。 A second motor-operated valve according to the present invention includes a valve body having a valve chamber and a valve opening with a valve seat, and a valve body that moves forward and backward while rotating with respect to the valve seat to control the amount of fluid passing through. a first channel port communicating with the valve chamber via the valve port; a second channel port communicating with the valve chamber; It includes a seat portion having an inverted cone shape or an inverted truncated cone shape with a gradually decreasing diameter, and a needle portion that can be inserted into the valve opening to close the valve opening when the seat portion is seated on the valve seat and the valve is closed. wherein the angle formed by the facing generatrices of the seating portion is set to 26° or more and less than 60°, and the surfaces of one or both of the seating portion and the valve seat contain fluororesin. provided with a cover layer.

前記第1の電動弁は、弁体が弁座に対して回転せずに進退動する構造を有するものであったが、弁体が弁座に対して回転しながら進退動する構造(以下「弁体回転構造」と言う)の電動弁にも本発明は適用が可能である。 The first motor-operated valve has a structure in which the valve body advances and retreats without rotating with respect to the valve seat. The present invention can also be applied to a motor-operated valve having a "valve body rotation structure".

すなわち、このような弁体回転構造では、弁体が弁材に対して回転しながら接離するため摩擦が大きく、弁角度が60°程度で(60°より小さくすると)弁座への喰いつき現象が生じる。したがって、本発明に係る第2の電動弁では、上述のように着座部の対向する母線同士がなす角度を26°以上60°未満に設定するとともに、前記第1の電動弁と同様に、着座部および弁座のいずれか一方または双方の表面に、フッ素樹脂を含む被覆層を備える。 That is, in such a valve body rotation structure, friction is large because the valve body comes into contact with and separates from the valve material while rotating, and when the valve angle is about 60 degrees (below 60 degrees), the valve seat bites. phenomenon occurs. Therefore, in the second motor-operated valve according to the present invention, as described above, the angle between the facing generatrices of the seating portion is set to 26° or more and less than 60°, and the seating angle is set to 26° or more and less than 60° as in the case of the first motor-operated valve. A coating layer containing a fluororesin is provided on the surface of one or both of the portion and the valve seat.

また、上記フッ素樹脂は、例えば、PTFE、FEP、PFA、ETFE、および、変性PTFEのうちのいずれかとする。 Further, the fluororesin is, for example, one of PTFE, FEP, PFA, ETFE, and modified PTFE.

さらに、本発明の好ましい態様では、上記被覆層と母材(ニードル部(弁体)の本体部分および弁座の本体部分)との間に、母材より硬度の高い下地層を形成する。異物の噛み込みにより弁体と弁座が傷付けられることを防ぐためである。硬質の下地層を備えることにより異物の噛み込みによる弁体と弁座の損傷を最小限に抑え、弁漏れが生じ或いは弁漏れ量が増大することを防ぐことが出来る。 Further, in a preferred embodiment of the present invention, a base layer having a hardness higher than that of the base material is formed between the coating layer and the base material (the main body portion of the needle portion (valve body) and the main body portion of the valve seat). This is to prevent the valve body and the valve seat from being damaged by foreign matter. By providing a hard base layer, it is possible to minimize damage to the valve body and valve seat due to foreign matter getting caught, and to prevent valve leakage or an increase in the amount of valve leakage.

上記下地層は、例えばNi-Pめっき層とする。また当該下地層の厚さは、当該電動弁を冷媒回路に使用する場合に一般に許容される弁漏れ量である毎分200cm3以下の条件を満たすとともにめっきを施すコスト(処理時間)を考慮すると、10μm以上30μm以下とすることが好ましい。なおこの点については、後に実施形態においてさらに詳しく述べる。 The underlying layer is, for example, a Ni—P plated layer. In addition, the thickness of the base layer should be 200 cm 3 per minute or less, which is the generally allowable valve leakage rate when the motor-operated valve is used in the refrigerant circuit. , 10 μm or more and 30 μm or less. This point will be described in more detail later in the embodiment.

また上記被覆層の厚さは、5μm以上30μm以下の厚さを有することが好ましい。この理由についても後に実施形態において詳述する。 Moreover, the thickness of the coating layer is preferably 5 μm or more and 30 μm or less. The reason for this will also be described in detail later in the embodiment.

本発明によれば、低流量時に精度の高い流量制御が可能となるとともに、異物の噛み込みによる弁漏れ量の増大を防ぐことが出来る。 According to the present invention, it is possible to control the flow rate with high accuracy when the flow rate is low, and to prevent an increase in the amount of valve leakage due to foreign matter getting caught.

本発明の他の目的、特徴および利点は、図面に基いて述べる以下の本発明の実施の形態の説明により明らかにする。なお、各図中、同一の符号は、同一又は相当部分を示す。 Other objects, features and advantages of the present invention will become apparent from the following description of embodiments of the present invention based on the drawings. In addition, the same code|symbol shows the same or a corresponding part in each figure.

図1は、本発明の一実施形態に係る電動弁(閉弁状態)を示す縦断面図である。FIG. 1 is a longitudinal sectional view showing an electrically operated valve (closed state) according to one embodiment of the present invention. 図2は、前記実施形態に係る電動弁(開弁状態)を示す縦断面図である。FIG. 2 is a longitudinal sectional view showing the electric valve (valve open state) according to the embodiment. 図3は、前記実施形態に係る電動弁のニードル部と弁座を拡大して概念的に示す縦断面図である。FIG. 3 is a longitudinal sectional view conceptually showing an enlarged needle portion and valve seat of the electric valve according to the embodiment. 図4は、弁角度を小さくした場合の弁開度と弁を通過する流体の流量との関係を示す線図である。FIG. 4 is a graph showing the relationship between the valve opening degree and the flow rate of fluid passing through the valve when the valve angle is made small. 図5は、Ni-Pめっき層を備えていない電動弁(従来品)、厚さ5μmのNi-Pめっき層を備えた電動弁(比較例)、厚さ10μmのNi-Pめっき層を備えた電動弁(実施形態)、ならびに、厚さ15μmのNi-Pめっき層を備えた電動弁(実施形態)について、直径15μmおよび直径130μmのピアノ線をそれぞれ噛み込ませた後の弁漏れ量を測定した結果を示す線図である。FIG. 5 shows an electrically operated valve (conventional product) without a Ni-P plating layer, an electrically operated valve (comparative example) with a 5 μm thick Ni—P plating layer, and a 10 μm thick Ni—P plating layer. For the motor-operated valve (embodiment) and the motor-operated valve (embodiment) provided with a Ni—P plating layer with a thickness of 15 μm, the valve leakage amount was measured after piano wires with a diameter of 15 μm and a piano wire with a diameter of 130 μm were bitten. It is a diagram showing the result of the measurement.

〔全体構成〕
図1から図3に示すように、本発明の一実施形態に係る電動弁1は、例えばヒートポンプ式冷暖房システムのような冷凍サイクル装置において冷媒流量を調整するため使用するのに好適な電動弁であり、弁室12と当該弁室12に開口する弁口18と弁座17とを内部に備えた弁本体11と、上面が開放された弁本体11の上面部を覆って弁本体11とともに密閉空間を形成するキャン34と、弁座17に対して進退動(上下動)することにより流体の通過量を制御する弁体19と、弁口18を介して弁室12に連通する第一流路口13と、弁室12に連通する第二流路口15と、弁体19を駆動するステッピングモータ(電気的駆動部)41と、ステッピングモータ41の回転を減速する減速機構(不思議遊星歯車減速機構)54と、減速した回転運動を直線運動に変換して弁体19に伝達する伝達機構(ねじ送り機構)30とを備えている。
〔overall structure〕
As shown in FIGS. 1 to 3, a motor-operated valve 1 according to one embodiment of the present invention is a motor-operated valve suitable for use in refrigerating cycle devices such as heat pump cooling and heating systems for adjusting the flow rate of refrigerant. A valve body 11 internally provided with a valve chamber 12, a valve port 18 opening to the valve chamber 12, and a valve seat 17; A can 34 that forms a space, a valve element 19 that controls the flow rate of fluid by moving back and forth (up and down) with respect to the valve seat 17, and a first flow passage port that communicates with the valve chamber 12 via the valve port 18. 13, a second flow path port 15 communicating with the valve chamber 12, a stepping motor (electrical drive unit) 41 for driving the valve body 19, and a reduction mechanism (magnitude planetary gear reduction mechanism) for reducing the rotation of the stepping motor 41. 54 and a transmission mechanism (screw feed mechanism) 30 that converts the reduced rotational motion into linear motion and transmits it to the valve body 19 .

なお、各図には上下および左右方向を表す互いに直交する二次元座標を示し、以下、これらの方向に基いて説明を行う。また、図1および図2では、弁体19と弁座17の表面に形成する下地層と被覆層(後に図3を参照して説明する)は図示していない。 Each figure shows mutually orthogonal two-dimensional coordinates representing vertical and horizontal directions, and the following description is based on these directions. 1 and 2 do not show a base layer and a coating layer (described later with reference to FIG. 3) formed on the surfaces of the valve body 19 and the valve seat 17. FIG.

弁本体11の上端部には、リング状のベースプレート25を介して無底有蓋の(底面が開放され天面が閉塞された)円筒状のキャン34を接合し、キャン34の外周(外側)にはステータ42を備える一方、キャン34の内周(内側)にはロータ47を回転自在に設置する。なお、これらロータ47とステータ42は、前記ステッピングモータ41を構成するものである。 A cylindrical can 34 with a lid (open bottom and closed top) is joined to the upper end of the valve body 11 via a ring-shaped base plate 25 . has a stator 42 and a rotor 47 is rotatably installed on the inner circumference (inner side) of the can 34 . The rotor 47 and stator 42 constitute the stepping motor 41 .

キャン34の外側に配置したステータ42は、ヨーク43、ボビン44、コイル45、樹脂モールドカバー46を含む。また、キャン34の内側に配置したロータ47は、磁性材料で作製された円筒状のロータ部材47aと、樹脂材料で作製した太陽ギヤ部材48とを一体に連結して構成する。太陽ギヤ部材48の中心部にはシャフト32を挿入し、シャフト32の上部はキャン34の頂部内側に配置した支持部材33により支持する。 A stator 42 arranged outside the can 34 includes a yoke 43 , a bobbin 44 , a coil 45 and a resin mold cover 46 . The rotor 47 arranged inside the can 34 is constructed by integrally connecting a cylindrical rotor member 47a made of a magnetic material and a sun gear member 48 made of a resin material. A shaft 32 is inserted into the central portion of the sun gear member 48 and the upper portion of the shaft 32 is supported by a support member 33 arranged inside the top portion of the can 34 .

太陽ギヤ部材48の太陽ギヤ48aは、出力ギヤ53の底面上に載置したキャリア51に設けたシャフト50に回転自在に支持させた複数の遊星ギヤ49に噛み合っている。遊星ギヤ49の上部は、弁本体11の上部に固定した円筒部材35の上部に取り付けた環状のリングギヤ(内歯固定ギヤ)55に噛み合い、遊星ギヤ49の下部は、環状の出力ギヤ53の内歯ギヤ52に噛み合っている。リングギヤ55の歯数と出力ギヤ53の内歯ギヤ52の歯数とは僅かに異なる歯数としてあり、これにより、太陽ギヤ48aの回転数が大きな減速比で減速されて出力ギヤ53に伝達される。なお、これらの歯車機構(太陽ギヤ48a、遊星ギヤ49、リングギヤ55および出力ギヤ53)は、前述したステッピングモータ41の回転を減速する減速機構(不思議遊星歯車減速機構)54を構成するものである。 The sun gear 48 a of the sun gear member 48 meshes with a plurality of planetary gears 49 rotatably supported by a shaft 50 provided on a carrier 51 placed on the bottom surface of the output gear 53 . The upper part of the planetary gear 49 meshes with an annular ring gear (internal fixed gear) 55 attached to the upper part of the cylindrical member 35 fixed to the upper part of the valve body 11 , and the lower part of the planetary gear 49 meshes with the annular output gear 53 . It meshes with tooth gear 52 . The number of teeth of the ring gear 55 and the number of teeth of the internal gear 52 of the output gear 53 are slightly different. be. These gear mechanisms (sun gear 48a, planetary gear 49, ring gear 55, and output gear 53) constitute a reduction mechanism (paradox planetary gear reduction mechanism) 54 that reduces the rotation of the stepping motor 41 described above. .

弁本体11の弁室12の上部には、筒状の軸受部材26を嵌挿し、弁本体11にかしめて固定してある。出力ギヤ53は、軸受部材26の上面に摺動接触している。また、出力ギヤ53の底部中央には段付き円筒状の出力軸31の上部を圧入し、出力軸31の下部は軸受部材26の中心部上面部に形成した嵌挿穴26aに回転自在に挿入する。また、出力軸31の上部には、シャフト32の下端部を回転自在に嵌め込んである。 A cylindrical bearing member 26 is inserted into the upper portion of the valve chamber 12 of the valve body 11 and is crimped and fixed to the valve body 11 . The output gear 53 is in sliding contact with the upper surface of the bearing member 26 . The upper portion of a stepped cylindrical output shaft 31 is press-fitted into the center of the bottom of the output gear 53, and the lower portion of the output shaft 31 is rotatably inserted into a fitting hole 26a formed in the upper surface of the central portion of the bearing member 26. do. A lower end portion of a shaft 32 is rotatably fitted to the upper portion of the output shaft 31 .

軸受部材26の中心部下部には雌ねじ部27を形成し、この雌ねじ部27にねじ駆動部材28の外周面に形成した雄ねじ部29が螺合している。これら軸受部材26(雌ねじ部27)とねじ駆動部材28(雄ねじ部29)は、前述したねじ送り機構30、すなわち、減速機構54を介してステッピングモータ41から供給される回転運動を上下方向への直線運動に変換して弁体19に伝達する伝達機構を構成するものである。 A female threaded portion 27 is formed in the lower center portion of the bearing member 26, and a male threaded portion 29 formed on the outer peripheral surface of a screw driving member 28 is screwed into the female threaded portion 27. As shown in FIG. The bearing member 26 (female threaded portion 27) and the screw driving member 28 (male threaded portion 29) vertically rotate the screw feed mechanism 30, that is, the rotational motion supplied from the stepping motor 41 via the reduction mechanism 54. It constitutes a transmission mechanism that converts the motion into linear motion and transmits it to the valve body 19 .

ここで、出力ギヤ53は上下方向の一定位置で上下動せずに回転運動しており、出力ギヤ53に連結された出力軸31の下端部に設けたスリット状の嵌合溝31aにねじ駆動部材28の上端部に設けた平ドライバ形状の板状部28aを挿入して出力ギヤ53の回転運動をねじ駆動部材28側に伝達する。ねじ駆動部材28に設けた板状部28aが出力軸31の嵌合溝31a内で上下方向に摺動することにより、出力ギヤ53(ロータ47)が回転すれば出力ギヤ53は上下方向に移動しないにも拘らず、ねじ駆動部材28は前記ねじ送り機構30によって上下方向に直線運動する。 Here, the output gear 53 rotates at a fixed position in the vertical direction without moving up and down. A flat driver-shaped plate-like portion 28a provided at the upper end portion of the member 28 is inserted to transmit the rotational motion of the output gear 53 to the screw driving member 28 side. When the plate-shaped portion 28a provided on the screw driving member 28 slides vertically in the fitting groove 31a of the output shaft 31, the output gear 53 (rotor 47) rotates, thereby moving the output gear 53 vertically. Despite this, the screw driving member 28 is linearly moved vertically by the screw feed mechanism 30 .

このねじ駆動部材28の直線運動は、ボール23と、弁体19の上面部中央に設けた嵌合穴19bに嵌め込まれたボール受座24とからなるボール状継手22を介して弁体19に伝達される。弁体19は、弁本体11の内部に固定された段付き円筒状のばねケース20(の下部)に摺動可能に内挿してあり、弁体19は当該ばねケース20により案内されて上下方向に移動する。なお、駆動部側のねじ駆動部材28と弁体19はボール23(回転摺動部)を介して中心軸(本発明の中心軸はロータ47の回転軸と一致する)周りに回転摺動し、ねじ駆動部材28の回転は弁体19に伝わらない。また、ばねケース20の上向き段差面と、弁体19上部の下向きの段差面との間には、弁体19を常時開弁方向(上方)に付勢する圧縮コイルばね21を備えてある。 The linear motion of the screw drive member 28 is applied to the valve body 19 via a ball joint 22 consisting of a ball 23 and a ball seat 24 fitted in a fitting hole 19b provided in the center of the upper surface of the valve body 19. transmitted. The valve body 19 is slidably inserted in (the lower part of) a stepped cylindrical spring case 20 fixed inside the valve body 11, and the valve body 19 is guided by the spring case 20 to move vertically. move to The screw driving member 28 and the valve body 19 on the driving part side rotate and slide about the central axis (the central axis of the present invention coincides with the rotation axis of the rotor 47) via the ball 23 (rotating sliding part). , the rotation of the screw drive member 28 is not transmitted to the valve body 19 . A compression coil spring 21 is provided between the upward step surface of the spring case 20 and the downward step surface of the upper portion of the valve body 19 to normally bias the valve body 19 in the valve opening direction (upward).

さらに、弁室12(弁本体11)の底面部には前記第一流路口13を形成してこの第一流路口13に管継手14を接続するとともに、弁室12(弁本体11)の一側部には前記第二流路口15を形成してこの第二流路口15に管継手16を接続する。また、第一流路口13は、円筒状内周面と当該内周面の上縁部である弁座17とからなる弁口(オリフィス)18を介して弁室12に連通している。なお、第一流路口13および第二流路口15のうちのいずれか一方を弁室12に冷媒を流入させる流入口とし、他方を弁室12から冷媒を流出させる流出口とする。 Further, the first flow passage port 13 is formed in the bottom portion of the valve chamber 12 (valve main body 11), and a pipe joint 14 is connected to the first flow passage port 13, and one side portion of the valve chamber 12 (valve main body 11) is formed with the second flow path port 15 and a pipe joint 16 is connected to the second flow path port 15 . Further, the first flow path port 13 communicates with the valve chamber 12 via a valve port (orifice) 18 which is composed of a cylindrical inner peripheral surface and a valve seat 17 which is the upper edge of the inner peripheral surface. One of the first flow path port 13 and the second flow path port 15 is used as an inlet through which the refrigerant flows into the valve chamber 12 , and the other is used as an outlet through which the refrigerant flows out from the valve chamber 12 .

〔弁体ニードル部および弁座の構造〕
弁体19は、略円柱状の全体形状を有するが、弁口18に対して抜き差し可能なように、弁口18に向けて次第に径が小さくなる逆円錐台状(又は逆円錐状)の形状を有するニードル部19aを下端に備えている。弁体19が最も下方まで変位した閉弁状態(図1および図3参照)では、ニードル部19aのテーパ状の側面(着座面(本発明に言う「着座部」に相当する))が弁座17に当接して弁口18を閉塞する。
[Structure of valve body needle and valve seat]
The valve body 19 has a substantially cylindrical overall shape, but has an inverted truncated cone shape (or an inverted cone shape) whose diameter gradually decreases toward the valve opening 18 so that it can be inserted into and removed from the valve opening 18 . is provided at the lower end. In the valve closed state (see FIGS. 1 and 3) in which the valve body 19 is displaced to the lowest position, the tapered side surface (seating surface (corresponding to the “seating portion” in the present invention)) of the needle portion 19a serves as the valve seat. 17 to block the valve opening 18 .

一方、弁体19を最も上方まで変位させた全開状態(図2参照)を含め、図1の閉弁状態より上方へ弁体19を変位させた開弁状態では、弁体19と弁座17との間に間隙が形成され、この間隙を通って冷媒が流通する。また、弁体19の上下方向への変位量を変えることにより冷媒流量を調整することが出来る。 On the other hand, in the open state in which the valve body 19 is displaced upward from the closed state in FIG. A gap is formed between and through which the coolant flows. Also, the refrigerant flow rate can be adjusted by changing the amount of displacement of the valve body 19 in the vertical direction.

図3はニードル部19aと弁座17部分(弁本体11の底部中央の弁口18部分)を拡大して示す断面図である。この図に示すようにニードル部19aは、ステンレス等の金属製の弁体本体部分63の表面に下地層61を形成し、さらに下地層61の上に(表面に)被覆層62を形成することにより構成する。また、弁座17側、すなわち弁座17と、弁口18を含む弁本体11の底部とは、真鍮等の金属製の弁本体の本体部分64の表面に弁体19と同様に下地層61を形成し、さらにその上に被覆層62を形成することにより構成する。 FIG. 3 is an enlarged cross-sectional view showing the needle portion 19a and the valve seat 17 portion (the valve port 18 portion at the center of the bottom portion of the valve body 11). As shown in this figure, the needle portion 19a is formed by forming an underlying layer 61 on the surface of a valve body portion 63 made of metal such as stainless steel, and further forming a coating layer 62 on the underlying layer 61 (on the surface). Consists of The valve seat 17 side, that is, the valve seat 17 and the bottom portion of the valve body 11 including the valve port 18 is formed by applying a base layer 61 to the surface of the body portion 64 of the valve body made of a metal such as brass, similar to the valve body 19 . is formed, and a coating layer 62 is further formed thereon.

なお、図3は、説明のために下地層61や被覆層62の厚さを強調して描いており、各部の寸法比率、すなわち、弁体本体部分63の外径や弁口18の内径に対する下地層61の厚さ寸法ならびに被覆層62の厚さ寸法の比率を正確に表すものではない。なお、下地層61の硬度は異物より高い硬度のものが望ましく、一例を挙げると、冷媒回路内の異物は、銅紛・鉄粉などが主であることからビッカース硬さ(HV)500以上の硬度を持つものが良い。また、被覆層62は、下地層61よりも硬さの低いものが選択される。 3 emphasizes the thickness of the base layer 61 and the coating layer 62 for explanation, and the dimensional ratio of each part, that is, the outer diameter of the valve body portion 63 and the inner diameter of the valve port 18. It does not accurately represent the ratio of the thickness dimension of the underlying layer 61 and the thickness dimension of the covering layer 62 . It should be noted that the hardness of the underlying layer 61 is preferably higher than that of the foreign matter. Hardness is good. Also, the covering layer 62 is selected to have a hardness lower than that of the underlying layer 61 .

〔弁角度と被覆層〕
弁角度θ(ニードル部(着座部)19aの対向する母線同士がなす角度/図3参照)は、本実施形態では26°に設定する。また、被覆層62(弁体19側の被覆層62および弁座17側の被覆層62)は、PTFE分散めっきによるPTFE層とする。なお、PTFE分散めっきによるPTFE層とは、Ni-PめっきマトリックスにPTFEが分散した粒子状に取り込まれた組織を有する複合メッキ皮膜である。Ni-Pめっきマトリックス部分は、異物よりも硬さが高くなっている。
[Valve angle and covering layer]
In this embodiment, the valve angle θ (the angle formed by the opposed generatrices of the needle portion (seat portion) 19a/see FIG. 3) is set to 26°. The coating layer 62 (the coating layer 62 on the valve body 19 side and the coating layer 62 on the valve seat 17 side) is a PTFE layer formed by PTFE dispersion plating. The PTFE layer formed by PTFE dispersion plating is a composite plating film having a structure in which PTFE is dispersed in a Ni—P plating matrix and taken in in the form of particles. The Ni—P plating matrix portion has higher hardness than the foreign matter.

図4は、弁角度θが45°の場合(破線)と弁角度θが26°の場合(実線)について弁開度(弁体19のリフト量(上方への移動距離))と電動弁1を通過する流体の流量との関係を示す線図であるが、この図から明らかなように弁角度θを小さくすると、弁開度の増大に対する流量の増加傾向が穏やかになり、低流量時のより精度の高い制御が可能となる。したがって、本実施形態では、弁角度θを従来の下限値(45°)よりさらに小さい26°としている。 FIG. 4 shows the valve opening degree (lift amount (upward movement distance) of the valve body 19) and the valve 1 when the valve angle θ is 45° (broken line) and when the valve angle θ is 26° (solid line). As is clear from this diagram, when the valve angle θ is decreased, the increasing tendency of the flow rate with respect to the increase in the valve opening becomes moderate, and when the flow rate is low, Control with higher precision becomes possible. Therefore, in this embodiment, the valve angle θ is set to 26°, which is even smaller than the conventional lower limit (45°).

一方、弁角度θを小さくすると弁座17への弁体19の喰いつき現象が生じることがあるため、本実施形態では、弁体19と弁座17の表面を覆う被覆層62としてPTFE層を備える。これにより、弁体19と弁座17間の摩擦抵抗を低下させ、当該喰いつき現象が生じることを防ぐ。また、被覆層62をPTFE分散めっきで形成することにより、被覆層62の耐久性(耐食性や耐摩耗性等)を向上させることが出来る。 On the other hand, if the valve angle θ is reduced, the valve body 19 may bite into the valve seat 17 . Prepare. As a result, the frictional resistance between the valve body 19 and the valve seat 17 is reduced to prevent the biting phenomenon from occurring. Further, by forming the coating layer 62 by PTFE dispersion plating, the durability (corrosion resistance, wear resistance, etc.) of the coating layer 62 can be improved.

さらに、本発明では弁角度θの下限値を26°とするが、その理由は次のとおりである。従来、弁角度θを鋭角化して45°より小さくすると弁座17への喰いつき現象が生じることがあることは既に述べたとおりであるが、下記式1および式2で表されるくさびの計算式を用いて、開弁荷重(くさびを抜くときの力)F2と着座荷重(くさびを打ち込むときの力)F1との比である緩み率F2/F1を、従来構造(弁体19と弁座17が共に被覆層62を持たず且つ弁角度θが下限値である45°の場合)について算出し、この緩み率と同程度の緩み率を有する弁角度θを、被覆層62を備えた本願構造(本願発明の構造)について求める。 Furthermore, in the present invention, the lower limit of the valve angle θ is set to 26° for the following reasons. Conventionally, when the valve angle θ is sharpened to be less than 45°, the valve seat 17 is bitten, as already described. Using the formula, the slack rate F2/F1, which is the ratio of the valve opening load (force when pulling out the wedge) F2 and the seating load (force when driving in the wedge) F1, is calculated as the conventional structure (valve body 19 and valve seat 17 do not have the coating layer 62 and the valve angle θ is 45°, which is the lower limit value), and the valve angle θ having the same degree of slackness as this slackness rate is The structure (the structure of the present invention) is sought.

F1=2×R×(μ×cosθ+sinθ)…(式1) F1=2×R×(μ×cos θ+sin θ) (Formula 1)

F2=2×R×(μ×cosθ-sinθ)…(式2) F2=2×R×(μ×cos θ−sin θ) (Formula 2)

なお、上記各式において、Rは面圧力〔kgf〕を、μは摩擦係数を、θ/2(弁角度θの2分の1)は着座角度〔°〕をそれぞれ表す。また、金属同士が接触する場合の摩擦係数は0.1~0.2程度であることから当該範囲の中央値をとって従来構造の摩擦係数μを0.15とするとともに、フッ素樹脂の摩擦係数は0.07~0.1程度であることから当該範囲の中央値をとって本願構造の摩擦係数μを0.085とする。 In the above equations, R represents surface pressure [kgf], μ represents friction coefficient, and θ/2 (half of valve angle θ) represents seating angle [°]. In addition, since the coefficient of friction when metals come into contact with each other is about 0.1 to 0.2, the median value of the range is taken to set the friction coefficient μ of the conventional structure to 0.15, and the friction of fluororesin Since the coefficient is about 0.07 to 0.1, the median value of the range is taken to set the friction coefficient μ of the structure of the present application to 0.085.

そして、従来構造(弁角度45°)の緩み率F2/F1を算出すると、F2/F1=-0.4683となる。 When the slackness rate F2/F1 of the conventional structure (valve angle 45°) is calculated, F2/F1=-0.4683.

また、本願構造(弁角度θ)について逆に、当該従来構造の緩み率F2/F1=-0.4683となる弁角度θを求めると、下記式3にF2/F1=-0.4683、および、μ=0.085を代入した下記式4から、θ≒26°を得ることが出来る。 Conversely, for the structure of the present application (valve angle θ), when the valve angle θ at which the slack rate of the conventional structure is F2/F1 = -0.4683 is obtained, F2/F1 = -0.4683 and , .mu.=0.085, .theta..apprxeq.26.degree.

F2/F1={2×R×(μ×cosθ-sinθ)}/{2×R×(μ×cosθ+sinθ)}…(式3) F2/F1={2×R×(μ×cos θ−sin θ)}/{2×R×(μ×cos θ+sin θ)} (Formula 3)

-0.4683={2×R×(0.085×cosθ-sinθ)}/{2×R×(0.085×cosθ+sinθ)}…(式4) −0.4683={2×R×(0.085×cos θ−sin θ)}/{2×R×(0.085×cos θ+sin θ)} (Formula 4)

したがって、本願構造によれば、弁角度θを26°としても従来構造における弁角度θの下限値45°と同程度の緩み率を実現することが出来ることから、当該26°を本願構造の弁角度θの下限値とする。 Therefore, according to the structure of the present application, even if the valve angle θ is set to 26°, it is possible to achieve a slack rate equivalent to the lower limit of 45° for the valve angle θ of the conventional structure. be the lower limit of the angle θ.

上述した実施形態では、駆動部と弁体の間に回転摺動部が介在し、弁体が弁座に対して接離(当接・離間)する際に駆動部側の回転力が弁体に伝わらない構造(つまり、弁座に対して弁体が回転せずに進退動する構造)の電動弁に本発明を適用した例を挙げた。しかし本発明は、弁体がロータの回転に応じて回転し、弁体が回転しながら弁座に対して接離(当接・離間)する構造(つまり、弁座に対して弁体が回転しながら進退動する構造)にも適用できる。 In the above-described embodiment, the rotary sliding portion is interposed between the driving portion and the valve body, and when the valve body comes into contact with or separates from the valve seat, the rotational force of the driving portion is applied to the valve body. An example in which the present invention is applied to a motor-operated valve having a structure in which the vibration is not transmitted to the valve seat (that is, a structure in which the valve body advances and retreats without rotating with respect to the valve seat) was given. However, the present invention has a structure in which the valve body rotates according to the rotation of the rotor, and the valve body contacts and separates (abuts and separates) from the valve seat while rotating (that is, the valve body rotates with respect to the valve seat). It can also be applied to a structure that advances and retreats while moving).

弁体が回転しながら昇降する従来構造(弁体回転構造)は、例えば、弁体の弁軸に形成されたねじ部(例えば雄ねじ)と弁本体側に固定されたねじ部(例えば雌ねじ)を有し、ロータを弁軸側に固定されている構造であり、ロータの回転に伴い弁軸(弁体)が昇降する。このような弁体回転構造は、弁体が弁座に対して回転しながら接離するため摩擦が大きく、金属同士が接触する摩擦係数が0.2程度となり、弁角度θが60°程度で弁座17への喰いつき現象が生じる。しかしながら、このような構造にも本発明を適用すれば、摩擦係数μが0.085程度になることから前記実施形態で弁角度θを26°としたときと同程度の緩み率を実現することが可能となる。したがって、当該弁体回転構造における弁角度θの下限値は60°とする。 A conventional structure in which the valve body moves up and down while rotating (rotating valve body structure) has, for example, a threaded portion (e.g., male thread) formed on the valve shaft of the valve body and a threaded portion (e.g., female thread) fixed to the valve body side. The rotor is fixed on the valve shaft side, and the valve shaft (valve body) moves up and down as the rotor rotates. In this type of valve body rotation structure, the valve body rotates to contact and separate from the valve seat, resulting in large friction. A biting phenomenon on the valve seat 17 occurs. However, if the present invention is applied to such a structure, the coefficient of friction μ will be about 0.085. Therefore, it will be possible to achieve the same degree of slackness as when the valve angle θ is 26° in the above embodiment. becomes possible. Therefore, the lower limit of the valve angle θ in the valve body rotation structure is set to 60°.

なお、上述の構造(本願構造、弁体回転構造)では、弁体19と弁座17の表面をいずれも被覆層62で覆うものとしたが、弁体19と弁座17のいずれか一方を被覆層62で覆う構成であっても弁角度θを45°未満(弁体回転構造では弁角度θが60°未満)とすることができる。 In the structure described above (the structure of the present application, the valve body rotating structure), the surfaces of both the valve body 19 and the valve seat 17 are covered with the coating layer 62, but either the valve body 19 or the valve seat 17 Even with the structure covered with the coating layer 62, the valve angle ?

また、本願構造は図3に示すように下地層61および被覆層62をいずれも備えているものとしたが、弁角度θを従来の下限値(45°、弁体回転構造では60°)より小さくできる効果は、下地層61のない構成、すなわち、母材(弁体本体部分63および弁座本体部分64)の上に被覆層62のみを形成した構成でも発揮できる。なお、母材の上に被覆層62のみを形成する場合の被覆層62の厚さは5μm以上でその効果が認められた。 In addition, the structure of the present application includes both the base layer 61 and the coating layer 62 as shown in FIG. The effect that can be reduced can be exhibited even in a configuration without the base layer 61, that is, in a configuration in which only the coating layer 62 is formed on the base material (the valve body portion 63 and the valve seat body portion 64). When only the coating layer 62 was formed on the base material, the effect was recognized when the thickness of the coating layer 62 was 5 μm or more.

また、本願構造では逆円錐台形状の弁体を例に説明したが、弁体の着座面(着座部)が逆円錐台状であればよく、着座面(着座部)よりも先端側の形状は種々選択できる。この場合、弁角度θは着座面の逆円錐台の角度となり、開弁直後の低流量時では、弁開度の増大に対する流量の増加傾向が穏やかになり、精度の高い制御が可能となる。 In addition, in the structure of the present application, an inverted truncated cone-shaped valve body has been described as an example. can be selected in various ways. In this case, the valve angle θ is the angle of the inverted truncated cone of the seating surface, and when the flow rate is low immediately after the valve is opened, the increasing tendency of the flow rate with respect to the increase in the valve opening degree becomes moderate, enabling highly accurate control.

〔下地層とその厚さ〕
前記下地層61(弁体19側の下地層61および弁座17側の下地層61)は、Ni-Pめっき(無電解ニッケルめっき)によるNi-Pめっき層とする。母材(ステンレス等の金属製の弁体本体部分63および真鍮等の金属製の弁座本体部分64であって、いずれもNi-Pめっき層より硬さの低い材質とする)より硬度の高い硬質の下地層61を備えることにより、異物の噛み込みによる弁体19と弁座17の損傷を最小限に抑え、弁漏れ量の増大を防ぐためである。またこのような硬質の下地層61を備えることで、異物を噛み込んだ傷跡により流量のばらつきが生じ、流量制御の精度が低下することを防止ないし抑制することが出来る。
[Underlayer and its thickness]
The underlying layer 61 (the underlying layer 61 on the valve body 19 side and the underlying layer 61 on the valve seat 17 side) is a Ni—P plated layer by Ni—P plating (electroless nickel plating). Higher hardness than the base material (valve body portion 63 made of metal such as stainless steel and valve seat body portion 64 made of metal such as brass, both of which are lower in hardness than the Ni—P plating layer) This is because the provision of the hard base layer 61 minimizes damage to the valve element 19 and the valve seat 17 due to foreign matter getting caught, and prevents an increase in valve leakage. In addition, by providing such a hard base layer 61, it is possible to prevent or suppress a decrease in the accuracy of flow rate control due to variations in the flow rate caused by scars caused by foreign matter.

また、下地層61の厚さは、本実施形態では10μm以上とするが、その理由は次のとおりである。 Further, the thickness of the underlying layer 61 is set to 10 μm or more in this embodiment for the following reasons.

図5は、Ni-Pめっき層(下地層)の厚さを5μm、10μmおよび15μmとした場合について、直径15μmと130μmのピアノ線を噛み込ませた後の弁漏れ量を測定した結果を示すものである。 FIG. 5 shows the results of measuring the amount of valve leakage after piano wires with diameters of 15 μm and 130 μm were bitten in when the thickness of the Ni—P plating layer (base layer) was 5 μm, 10 μm, and 15 μm. It is.

これらの試験結果から、下地層61の厚さを厚くするほど弁漏れ量は少なくなり、冷媒回路に使用されるこの種の電動弁で一般に許容される弁漏れ量である200cm3/分以下の条件を満たすためには、下地層61の厚さを10μm以上とすれば良いことが分かる。したがって、本実施形態では下地層61の厚さを10μm以上とする。なお、めっきを施すコスト(処理時間)を考慮すると下地層61の厚さは30μm以下が望ましい。 From these test results, the thicker the base layer 61 , the smaller the valve leakage. It can be seen that the thickness of the underlying layer 61 should be 10 μm or more in order to satisfy the conditions. Therefore, in this embodiment, the thickness of the underlying layer 61 is set to 10 μm or more. Considering the cost (processing time) of plating, the thickness of the underlying layer 61 is preferably 30 μm or less.

図5に示した試験は、母材の上に下地層61のみを形成し、被覆層62は形成していない電動弁にて行った。図5の試験後に130μmのピアノ線が噛み込んだ傷跡の断面組織を観察すると、下地層61の厚さは変わらず、母材部分に窪みが生じていた。下地層61の厚さが厚くなるほど窪みは小さくなっていた。 The test shown in FIG. 5 was conducted with a motor-operated valve in which only the base layer 61 was formed on the base material and the coating layer 62 was not formed. Observation of the cross-sectional structure of the scar caused by the 130 μm piano wire biting after the test in FIG. As the thickness of the underlying layer 61 became thicker, the recesses became smaller.

また、下地層61の上に種々の厚さの被覆層62を形成した条件を追加し、図5のピアノ線(130μm)の噛み込み試験(追加試験)を行った結果、被覆層62の厚さ5μm以上で有意に弁漏れ量の低下が認められ、被覆層62を厚くすると漏れ量がさらに低下した。 In addition, the condition of forming the coating layer 62 with various thicknesses on the base layer 61 was added, and as a result of conducting a bite test (additional test) of the piano wire (130 μm) in FIG. 5, the thickness of the coating layer 62 was A significant reduction in valve leakage was observed at a thickness of 5 μm or more, and the leakage was further reduced when the thickness of the coating layer 62 was increased.

〔被覆層とその厚さ〕
まず、喰いつき現象を緩和するための被覆層62の厚さについて記載する。喰いつき現象が発生する弁角度θを低減する(本願では26°)ためには、下地層61がなくても、弁体19と弁座17の表面にフッ素樹脂が露出していればよく、被覆層62の厚さを1μmとした試験では弁角度θを26°とすることができた。なお、被覆層62の厚さが30μmを超えると処理時間が長く高コストになるため被覆層62は30μm以下が望ましい。すなわち、喰いつき現象を抑えるためには被覆層62の厚さは1μm以上30μm以下である。
[Coating layer and its thickness]
First, the thickness of the coating layer 62 for alleviating the biting phenomenon will be described. In order to reduce the valve angle θ at which the biting phenomenon occurs (26° in this application), it is sufficient that the fluorine resin is exposed on the surfaces of the valve body 19 and the valve seat 17 even without the underlying layer 61. In a test in which the thickness of the coating layer 62 was 1 μm, the valve angle θ could be set to 26°. If the thickness of the coating layer 62 exceeds 30 μm, the processing time will be long and the cost will be high. That is, the thickness of the coating layer 62 is 1 μm or more and 30 μm or less in order to suppress the biting phenomenon.

次に、異物の悪影響を緩和するための被覆層62の厚さについて記載する。弁体19と弁座17の間に異物の噛み込みが生じた場合に、被覆層62が一時的に変形することで弁体19や弁座17の母材の塑性変形を防ぐことができると考えられる。また、閉弁時に被覆層62が変形することで弁体19や弁座17の母材や下地層61に生じた傷跡を埋めることで傷跡の影響を緩和することができると考えられる。これらの効果を発揮するには上述したように被覆層62の厚さは5μm以上がよいが、被覆層62の厚さが30μmを超える厚さとするには処理時間が長く高コストになる。すなわち、母材や下地層61の異物の悪影響を緩和するとともに処理コストが許容できる被覆層62の厚さは5μm以上30μm以下である。 Next, the thickness of the coating layer 62 for alleviating the adverse effects of foreign matter will be described. It is said that when a foreign object is caught between the valve body 19 and the valve seat 17, the plastic deformation of the base material of the valve body 19 and the valve seat 17 can be prevented by temporarily deforming the coating layer 62. Conceivable. In addition, it is considered that the influence of the scars can be alleviated by filling the scars generated in the base material of the valve body 19 and the valve seat 17 and the underlying layer 61 due to the deformation of the covering layer 62 when the valve is closed. In order to exhibit these effects, the thickness of the coating layer 62 should be 5 μm or more as described above. In other words, the thickness of the coating layer 62 that mitigates the adverse effects of foreign matter on the base material and the underlying layer 61 and allows for the processing cost is 5 μm or more and 30 μm or less.

以上より、下地層61の厚さを10μm以上30μm以下、且つ被覆層62の厚さを5μm以上30μm以下とすると、喰いつき現象と異物の悪影響をいずれも緩和できる。 As described above, if the thickness of the base layer 61 is set to 10 μm or more and 30 μm or less and the thickness of the coating layer 62 is set to 5 μm or more and 30 μm or less, both the biting phenomenon and the adverse effects of the foreign matter can be alleviated.

以上、本発明の実施の形態について説明したが、本発明はこれらに限定されるものではなく、特許請求の範囲に記載の範囲内で種々の変更を行うことができることは当業者に明らかである。 Although the embodiments of the present invention have been described above, it is obvious to those skilled in the art that the present invention is not limited to these, and that various modifications can be made within the scope of the claims. .

例えば、被覆層62を構成する材料は、本実施形態ではPTFEとしたが、他のフッ素樹脂、例えばFEPやPFA、ETFE、変性PTFE等としても良い。また、弁体19ならびに弁座17側の上記下地層61および被覆層62は、両者(弁体19と弁座17)が接触する部分について形成されていれば本発明の目的を達成することが出来るから、必ずしも弁体19の外面全体あるいは弁本体11の内面全体に下地層61と被覆層62を備える必要はない。 For example, the material forming the coating layer 62 is PTFE in the present embodiment, but may be other fluororesins such as FEP, PFA, ETFE, modified PTFE, or the like. Further, the object of the present invention can be achieved if the base layer 61 and the coating layer 62 on the valve body 19 and valve seat 17 sides are formed at the portions where the two (the valve body 19 and the valve seat 17) contact each other. Therefore, it is not necessary to provide the base layer 61 and the coating layer 62 over the entire outer surface of the valve body 19 or the entire inner surface of the valve body 11 .

また、本発明に係る電動弁は、典型的にはエアコン(空気調和機)や冷凍庫・冷蔵庫など冷媒回路を備えた冷凍サイクル装置に好ましく使用することが出来るが、これらに限らず、他にも様々な用途に本発明に係る電動弁を用いることが可能である。したがって、本発明に言う「流体」には熱媒体(冷媒および熱媒)のほか、各種の液体や気体(ガス)が含まれる。 In addition, the motor-operated valve according to the present invention can typically be preferably used in a refrigeration cycle device having a refrigerant circuit, such as an air conditioner (air conditioner), a freezer, or a refrigerator. It is possible to use the electrically operated valve according to the present invention in various applications. Therefore, the "fluid" referred to in the present invention includes heat carriers (refrigerants and heat carriers) as well as various liquids and gases (gases).

1 電動弁
11 弁本体
12 弁室
13 第一流路口
14,16 管継手
15 第二流路口
17 弁座
18 弁口
19 弁体
19a ニードル部(着座部)
19b 嵌合穴
20 ばねケース
21 圧縮コイルばね
22 ボール状継手
23 ボール
24 ボール受座
25 ベースプレート
26 軸受部材
26a 嵌挿穴
27 雌ねじ部
28 ねじ駆動部材
28a 板状部
29 雄ねじ部
30 ねじ送り機構
31 出力軸
31a 嵌合溝
32 シャフト
33 支持部材
34 キャン
35 円筒部材
41 ステッピングモータ
42 ステータ
43 ヨーク
44 ボビン
45 コイル
46 樹脂モールドカバー
47 ロータ
48 太陽ギヤ部材
48a 太陽ギヤ
49 遊星ギヤ
50 シャフト
51 キャリア
52 内歯ギヤ
53 出力ギヤ
54 不思議遊星歯車減速機構
55 リングギヤ
61 下地層
62 被覆層
63 弁体の本体部分(母材)
64 弁座の本体部分(母材)
Reference Signs List 1 electric valve 11 valve body 12 valve chamber 13 first channel port 14, 16 pipe joint 15 second channel port 17 valve seat 18 valve port 19 valve body 19a needle portion (seating portion)
19b Fitting hole 20 Spring case 21 Compression coil spring 22 Ball-shaped joint 23 Ball 24 Ball receiving seat 25 Base plate 26 Bearing member 26a Insertion hole 27 Female screw part 28 Screw driving member 28a Plate-like part 29 Male screw part 30 Screw feeding mechanism 31 Output Shaft 31a Fitting groove 32 Shaft 33 Supporting member 34 Can 35 Cylindrical member 41 Stepping motor 42 Stator 43 Yoke 44 Bobbin 45 Coil 46 Resin mold cover 47 Rotor 48 Sun gear member 48a Sun gear 49 Planetary gear 50 Shaft 51 Carrier 52 Internal gear 53 Output gear 54 Mechanical paradox planetary gear reduction mechanism 55 Ring gear 61 Base layer 62 Coating layer 63 Main body portion (base material) of valve body
64 Body portion of valve seat (base material)

Claims (7)

弁室および弁座付き弁口が設けられた弁本体と、
前記弁座に対して回転せずに進退動することにより流体の通過量を制御する弁体と、
前記弁口を介して前記弁室に連通する第一流路口と、
前記弁室に連通する第二流路口と、
前記弁体を駆動する電気的駆動部と
を備え、
前記弁口は、円筒状内周面と当該円筒状内周面の上縁部である前記弁座とからなり、
前記弁体が、
前記弁座に向けて次第に径が小さくなる逆円錐状または逆円錐台状の形状を有する着座部を含み且つ当該着座部が前記弁座に着座した閉弁時に前記弁口に差し込まれて前記弁口を閉塞可能なニードル部
を備えた
電動弁であって、
前記着座部の対向する母線同士がなす角度を26°以上45°未満に設定するとともに、
前記着座部および前記弁座のいずれか一方または双方の表面に、フッ素樹脂を含む被覆層を備えた
ことを特徴とする電動弁。
a valve body provided with a valve chamber and a valve port with a valve seat;
a valve body that controls the amount of passage of fluid by moving back and forth without rotating with respect to the valve seat;
a first channel port communicating with the valve chamber via the valve port;
a second channel port communicating with the valve chamber;
an electric drive unit that drives the valve body,
The valve port comprises a cylindrical inner peripheral surface and the valve seat that is the upper edge of the cylindrical inner peripheral surface,
The valve body
The valve includes a seat portion having an inverted cone shape or an inverted truncated cone shape whose diameter gradually decreases toward the valve seat, and is inserted into the valve opening when the valve is closed when the seat portion is seated on the valve seat. A motor-operated valve having a needle part capable of closing a mouth,
setting the angle formed by the opposing generatrices of the seating portion to 26° or more and less than 45°;
A motor-operated valve, comprising a coating layer containing a fluororesin on the surface of one or both of the seat portion and the valve seat.
弁室および弁座付き弁口が設けられた弁本体と、
前記弁座に対して回転しながら進退動することにより流体の通過量を制御する弁体と、
前記弁口を介して前記弁室に連通する第一流路口と、
前記弁室に連通する第二流路口と、
前記弁体を駆動する電気的駆動部と
を備え、
前記弁口は、円筒状内周面と当該円筒状内周面の上縁部である前記弁座とからなり、
前記弁体が、
前記弁座に向けて次第に径が小さくなる逆円錐状または逆円錐台状の形状を有する着座部を含み且つ当該着座部が前記弁座に着座した閉弁時に前記弁口に差し込まれて前記弁口を閉塞可能なニードル部
を備えた
電動弁であって、
前記着座部の対向する母線同士がなす角度を26°以上60°未満に設定するとともに、
前記着座部および前記弁座のいずれか一方または双方の表面に、フッ素樹脂を含む被覆層を備えた
ことを特徴とする電動弁。
a valve body provided with a valve chamber and a valve port with a valve seat;
a valve body that controls the flow rate of fluid by moving forward and backward while rotating with respect to the valve seat;
a first channel port communicating with the valve chamber via the valve port;
a second channel port communicating with the valve chamber;
an electric drive unit that drives the valve body,
The valve port comprises a cylindrical inner peripheral surface and the valve seat that is the upper edge of the cylindrical inner peripheral surface,
The valve body
The valve includes a seat portion having an inverted cone shape or an inverted truncated cone shape whose diameter gradually decreases toward the valve seat, and is inserted into the valve opening when the valve is closed when the seat portion is seated on the valve seat. A motor-operated valve having a needle part capable of closing a mouth,
setting the angle formed by the opposing generatrices of the seating portion to 26° or more and less than 60°;
A motor-operated valve, comprising a coating layer containing a fluororesin on the surface of one or both of the seat portion and the valve seat.
前記フッ素樹脂は、PTFE、FEP、PFA、ETFE、および、変性PTFEのうちのいずれかである
請求項1または2に記載の電動弁。
The motor operated valve according to claim 1 or 2, wherein the fluororesin is any one of PTFE, FEP, PFA, ETFE, and modified PTFE.
前記被覆層と母材との間に、当該母材より硬度の高い下地層を備えた
請求項1から3のいずれか一項に記載の電動弁。
4. The electrically operated valve according to any one of claims 1 to 3, further comprising an underlying layer having hardness higher than that of the base material between the coating layer and the base material.
前記下地層は、Ni-Pめっき層である
請求項4に記載の電動弁。
The electric valve according to claim 4, wherein the base layer is a Ni—P plating layer.
前記下地層は、10μm以上30μm以下の厚さを有する
請求項5に記載の電動弁。
The electric valve according to claim 5, wherein the base layer has a thickness of 10 µm or more and 30 µm or less.
前記被覆層は、5μm以上30μm以下の厚さを有する
請求項4から6のいずれか一項に記載の電動弁。
The motor operated valve according to any one of claims 4 to 6, wherein the coating layer has a thickness of 5 µm or more and 30 µm or less.
JP2020218216A 2020-12-28 2020-12-28 electric valve Active JP7190199B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020218216A JP7190199B2 (en) 2020-12-28 2020-12-28 electric valve
CN202111158483.4A CN114688275A (en) 2020-12-28 2021-09-29 Electric valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020218216A JP7190199B2 (en) 2020-12-28 2020-12-28 electric valve

Publications (2)

Publication Number Publication Date
JP2022103524A JP2022103524A (en) 2022-07-08
JP7190199B2 true JP7190199B2 (en) 2022-12-15

Family

ID=82135808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020218216A Active JP7190199B2 (en) 2020-12-28 2020-12-28 electric valve

Country Status (2)

Country Link
JP (1) JP7190199B2 (en)
CN (1) CN114688275A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012197849A (en) 2011-03-22 2012-10-18 Fuji Koki Corp Motor-operated valve

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5123731B2 (en) * 1973-07-09 1976-07-19

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012197849A (en) 2011-03-22 2012-10-18 Fuji Koki Corp Motor-operated valve

Also Published As

Publication number Publication date
CN114688275A (en) 2022-07-01
JP2022103524A (en) 2022-07-08

Similar Documents

Publication Publication Date Title
US11261974B2 (en) Electronic expansion valve
JP2012117584A (en) Electric flow control valve
EP3273186B1 (en) Motor-operated valve
JP6567336B2 (en) Motorized valve
JP7462092B2 (en) Motor-operated valve
US10330214B2 (en) Control valve
EP3418613A1 (en) Electric valve
JP7190199B2 (en) electric valve
JP2013040626A (en) Feeding mechanism of valve body of fluid control valve and fluid control valve using the same
US20120193560A1 (en) Valve device
JP6950988B2 (en) Electric valve
JP2000120885A (en) Motor operated valve
JP2019167982A (en) Electric valve
KR20050013057A (en) Motor operated valve
JP2020173004A (en) Electric-operated valve and refrigeration cycle system
CN2934794Y (en) Electronic expansion valve needle structure
JP2009030696A (en) Flow control valve
JPH09170664A (en) Motor-driven valve
JPH10332024A (en) Motor operated valve
JPH10220616A (en) Electric operated valve
JP6209265B2 (en) Motorized valve
JP6087397B2 (en) Motorized valve
JP7141423B2 (en) Electric valve and refrigeration cycle system
JP2019124315A (en) Motor-operated valve
JP2014043949A (en) Motor-operated valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221128

R150 Certificate of patent or registration of utility model

Ref document number: 7190199

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150