JP2014043949A - Motor-operated valve - Google Patents

Motor-operated valve Download PDF

Info

Publication number
JP2014043949A
JP2014043949A JP2013243641A JP2013243641A JP2014043949A JP 2014043949 A JP2014043949 A JP 2014043949A JP 2013243641 A JP2013243641 A JP 2013243641A JP 2013243641 A JP2013243641 A JP 2013243641A JP 2014043949 A JP2014043949 A JP 2014043949A
Authority
JP
Japan
Prior art keywords
female screw
male screw
screw member
valve
expansion coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013243641A
Other languages
Japanese (ja)
Inventor
Hiromasa Takada
裕正 高田
Naoki Kusaka
直樹 日下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP2013243641A priority Critical patent/JP2014043949A/en
Publication of JP2014043949A publication Critical patent/JP2014043949A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrically Driven Valve-Operating Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To ensure stable operability by securing play of a screw feed mechanism even when a motor-operated valve is used under a high temperature environment such as a hot gas bypass passage, in the motor-operated valve opened and closed by moving a valve element relative to a valve seat by converting a rotating motion of a rotor of an electric motor (stepping motor) into a linear motion of an operating shaft by the screw feed mechanism composed of a female screw and a male screw.SOLUTION: Materials of a male screw member and a female screw member are selected so that a linear expansion coefficient in a direction vertical to an axial direction of the female screw member is larger than a linear expansion coefficient in a direction vertical to an axial direction of the male screw member. Or the male screw member and the female screw member are made of a resin material in which fibrous filler is mixed. The fibrous filler of the male screw member is mixed while oriented in the direction vertical to the axis. The fibrous filler of the female screw member is mixed while oriented in the direction in parallel with the axis.

Description

本発明は、ヒートポンプ式の冷凍サイクル等の冷媒流量を制御する電動弁に関する。   The present invention relates to a motor-operated valve that controls the flow rate of a refrigerant such as a heat pump refrigeration cycle.

従来、電動弁として、例えば、特開2004−197800号公報(特許文献1)及び特開2002−39417号公報(特許文献2)に開示されたものがある。特許文献1のものは、電動モータのロータ軸側に雄ねじが形成され、このロータ軸が貫通する雌ねじが配置され、ロータ軸の下端に弁体を備えている。また、特許文献2のものは、電動モータのロータ側に雌ねじが形成され、このロータの中心を貫通する雄ねじが配置され、作動軸の下端部に弁体を備えている。そして、電動モータのロータの回転運動を雌ねじと雄ねじとのねじ送り機構によって作動軸の直線運動に変換し、弁体を弁シートに対して移動して弁の開閉を行う。また、これらの電動弁は、例えば特開平5−45027号公報(特許文献3)に開示されているような冷却装置の冷凍サイクル(冷媒配管系)に用いられる。   Conventionally, as an electric valve, there exist some which were disclosed by Unexamined-Japanese-Patent No. 2004-197800 (patent document 1) and Unexamined-Japanese-Patent No. 2002-39417 (patent document 2), for example. In Patent Document 1, a male screw is formed on the rotor shaft side of the electric motor, a female screw through which the rotor shaft passes is disposed, and a valve body is provided at the lower end of the rotor shaft. Moreover, the thing of patent document 2 has a female screw formed in the rotor side of an electric motor, the male screw which penetrates the center of this rotor is arrange | positioned, and is equipped with the valve body in the lower end part of the operating shaft. Then, the rotational movement of the rotor of the electric motor is converted into a linear movement of the operating shaft by a screw feed mechanism of a female screw and a male screw, and the valve body is moved with respect to the valve seat to open and close the valve. These motor-operated valves are used in a refrigeration cycle (refrigerant piping system) of a cooling device as disclosed in, for example, Japanese Patent Laid-Open No. 5-45027 (Patent Document 3).

特開2004−197800号公報Japanese Patent Laid-Open No. 2004-197800 特開2002−39417号公報JP 2002-39417 A 特開平5−45027号公報JP-A-5-45027

特許文献3のような冷凍サイクルのホットガスバイパス路では、冷媒の温度は120℃程度まで上昇する。このため従来の電動弁をホットガスバイパス路に用いると、雌ねじを構成する部材と雄ねじを構成する部材のそれぞれの線膨張率の違いにより、この雌ねじと雄ねじの噛み合い部分(ねじ部)の縦横のガタが小さくなり、ねじ送り機構の作動性が悪化するという問題がある。また、繰り返しの作動により発生するねじ部や他の摺動部の摩耗粉等が堆積し、実際のねじ部のクリアランスが、規定されたクリアランスより小さくなってしまう。さらに高温時にはマグネットの減磁やコイルの電気抵抗が増加するためモータトルクが減少する為、適正なクリアランスの確保が重要になる。また、一般的に高温時では材料の強度が落ちるためホットガスバイパス路に用いる電動弁においては、ねじの噛み合い長さを大きくする必要がある為、ねじ間のピッチのずれの影響が大きくなる、これらの問題点により所望の作動性が得られなくなる。   In the hot gas bypass path of the refrigeration cycle as in Patent Document 3, the temperature of the refrigerant rises to about 120 ° C. For this reason, when the conventional motor-operated valve is used for the hot gas bypass passage, the vertical and horizontal engagement portions (screw portions) of the female screw and the male screw are different due to the difference in linear expansion coefficient between the member constituting the female screw and the member constituting the male screw. There is a problem that the play is reduced and the operability of the screw feed mechanism is deteriorated. In addition, wear powder generated by repetitive operations and other sliding parts accumulate, and the actual clearance of the screw part becomes smaller than the prescribed clearance. Furthermore, since the motor torque decreases because the magnet demagnetization and the coil electrical resistance increase at high temperatures, it is important to secure an appropriate clearance. In addition, since the strength of the material generally decreases at high temperatures, in the motorized valve used for the hot gas bypass passage, it is necessary to increase the engagement length of the screws, so the influence of the pitch deviation between the screws becomes large. These problems prevent desired operability from being obtained.

本発明は、上述の如き問題点を解消するためになされたものであり、高温環境で使用されても、電動弁のねじ送り機構におけるねじ部のガタを確保し、安定した作動性を確保することを課題とする。   The present invention has been made to solve the above-described problems, and even when used in a high temperature environment, the backlash of the screw portion in the screw feed mechanism of the electric valve is ensured, and stable operability is ensured. This is the issue.

請求項1の電動弁は、弁ハウジング側に設けられた雌ねじと、電動モータのロータ側に形成され前記雌ねじの中心に貫通配置された雄ねじとを備え、前記電動モータのロータの回転運動を、前記雌ねじと前記雄ねじとのねじ送り機構によって、作動軸の直線運動に変換し、この作動軸に配置された弁体を弁シートに対して移動して弁の開閉を行う電動弁において、前記雌ねじを構成する部材と前記雄ねじを構成する部材とを、前記雌ねじの軸方向に垂直な方向の線膨張率が、前記雄ねじの軸方向に垂直な方向の線膨張率より大きくなるような材質によりそれぞれ形成したことを特徴とする。   The electric valve according to claim 1 includes a female screw provided on the valve housing side and a male screw formed on the rotor side of the electric motor and disposed through the center of the female screw, and the rotational movement of the rotor of the electric motor is In the motor-operated valve that converts the linear motion of the operating shaft by a screw feed mechanism of the female screw and the male screw and moves the valve element arranged on the operating shaft with respect to the valve seat to open and close the valve, the female screw The members constituting the male screw and the members constituting the male screw are each made of a material whose linear expansion coefficient in the direction perpendicular to the axial direction of the female screw is larger than the linear expansion coefficient in the direction perpendicular to the axial direction of the male screw. It is formed.

請求項2の電動弁は、請求項1に記載の電動弁であって、前記雌ねじの軸方向の線膨張率と前記雄ねじの軸方向の線膨張率とが同等となる材質により、前記雌ねじを構成する部材と前記雄ねじを構成する部材とをそれぞれ形成したことを特徴とする。   The motor-operated valve according to claim 2 is the motor-operated valve according to claim 1, wherein the female screw is made of a material having an axial linear expansion coefficient of the female screw and an axial linear expansion coefficient of the male screw equivalent to each other. The member which comprises and the member which comprises the said external thread were formed, respectively.

請求項3の電動弁は、請求項1に記載の電動弁であって、前記雌ねじを構成する部材を、樹脂材料を基材としてこの樹脂材料に繊維状のフィラーを前記雌ねじの軸方向と同一の方向となるように混入したことを特徴とする。   The motor-driven valve according to claim 3 is the motor-operated valve according to claim 1, wherein a member constituting the female screw is a resin material as a base material, and a fibrous filler is added to the resin material in the axial direction of the female screw. It is characterized by being mixed so as to be in the direction.

請求項1の電動弁によれば、雄ねじ部材の軸方向と垂直な方向の線膨張率よりも、雌ねじ部材の軸方向と垂直な方向の線膨張率のほうが大きくなるように、雄ねじ部材及び雌ねじ部材が構成されているので、高温環境で雄ねじ部材よりも雌ねじ部材のほうが外側により多く膨張するので、この雄ねじ部材と雌ねじ部材のガタを確保することができ、ねじ送り機構の安定した作動性を確保することができる。   According to the motor-operated valve of claim 1, the male screw member and the female screw are arranged such that the linear expansion coefficient in the direction perpendicular to the axial direction of the female screw member is larger than the linear expansion coefficient in the direction perpendicular to the axial direction of the male screw member. Since the member is configured, the female screw member expands more outward than the male screw member in a high temperature environment, so that the play between the male screw member and the female screw member can be secured, and the stable operation of the screw feeding mechanism can be ensured. Can be secured.

請求項2の電動弁によれば、請求項1の効果に加えて、軸L方向の膨張が雄ねじ部材と雌ねじ部材とで同等となり、雄ねじの軸方向のピッチ変化と雌ねじの軸方向のピッチ変化とが同等になり、ピッチ変化によるねじ全体の軸方向のガタの低減を防止できる。   According to the electric valve of the second aspect, in addition to the effect of the first aspect, the expansion in the direction of the axis L is equivalent between the male screw member and the female screw member, and the pitch change in the axial direction of the male screw and the pitch change in the axial direction of the female screw. And the backlash in the axial direction of the entire screw due to the pitch change can be prevented.

請求項3の電動弁によれば、請求項1の効果に加えて、フィラーの向き、強度を任意に選択できるため、雌ねじの軸方向の線膨張率と雄ねじの軸方向の線膨張率とを同等にできるとともに、雌ねじの軸方向とは垂直な方向の線膨張率を雄ねじの軸方向と垂直な方向の線膨張率よりも大きくすることができ、さらに基材として樹脂材料を用いるので製造が容易になる。   According to the electric valve of the third aspect, in addition to the effect of the first aspect, since the direction and strength of the filler can be arbitrarily selected, the linear expansion coefficient in the axial direction of the female screw and the linear expansion coefficient in the axial direction of the male screw are obtained. The linear expansion coefficient in the direction perpendicular to the axial direction of the female screw can be made larger than the linear expansion coefficient in the direction perpendicular to the axial direction of the male screw. It becomes easy.

本発明の第1参考例の電動弁の縦断面図である。It is a longitudinal cross-sectional view of the motor operated valve of the 1st reference example of this invention. 本発明の第2参考例の電動弁の縦断面図である。It is a longitudinal cross-sectional view of the motor operated valve of the 2nd reference example of this invention. 実施形態における雄ねじ部材と雌ねじ部材を繊維状のフィラーを混入した樹脂材料で形成する例を示す図である。It is a figure which shows the example which forms the external thread member and internal thread member in embodiment with the resin material which mixed the fibrous filler.

次に、本発明の電動弁の実施形態を図面を参照して説明する。まず、参考例について説明するが、後述の実施形態のように、参考例のロータに対する雌ねじと雄ねじの関係を逆にした場合にも参考例と同様な効果が得られる。図1は第1参考例の電動弁縦断面図である。なお、以下の説明における「上下」の概念は図1の図面における上下に対応する。この参考例の電動弁は、弁ハウジング1を有し、弁ハウジング1には、弁室1aと、弁室1aの片側内周面に開口した入口ポート1bと、弁室1aの軸L方向の片側端部に開口した出口ポート1cと、出口ポート1cと弁室1aを連通する弁ポート1dと、弁室1aの上部に貫通する円筒状のガイド嵌合孔1eが形成されている。弁ポート1dの弁室1a側端部は弁シート1d1を構成している。入口ポート1bは横孔として形成され、この入口ポート1bにはホットガスバイパス路に接続される継手管11がろう付けにより固着されている。出口ポート1cは下穴として形成され、この出口ポート1cにはホットガスバイパス路に接続される継手管12がろう付けにより固着されている。   Next, an embodiment of the motor-operated valve of the present invention will be described with reference to the drawings. First, a reference example will be described. Even when the relationship between the female screw and the male screw with respect to the rotor of the reference example is reversed as in the embodiment described later, the same effect as the reference example can be obtained. FIG. 1 is a longitudinal sectional view of a motor operated valve of a first reference example. Note that the concept of “upper and lower” in the following description corresponds to the upper and lower sides in the drawing of FIG. The motor-operated valve of this reference example has a valve housing 1, and the valve housing 1 includes a valve chamber 1a, an inlet port 1b opened on one inner peripheral surface of the valve chamber 1a, and an axis L direction of the valve chamber 1a. An outlet port 1c opened at one end, a valve port 1d communicating with the outlet port 1c and the valve chamber 1a, and a cylindrical guide fitting hole 1e penetrating the valve chamber 1a are formed. An end of the valve port 1d on the valve chamber 1a side constitutes a valve seat 1d1. The inlet port 1b is formed as a horizontal hole, and a joint pipe 11 connected to the hot gas bypass is fixed to the inlet port 1b by brazing. The outlet port 1c is formed as a pilot hole, and a joint pipe 12 connected to the hot gas bypass path is fixed to the outlet port 1c by brazing.

弁室1aの上部のガイド嵌合孔1eには円筒状のガイド13が嵌合され、弁ハウジング1の上部をかしめることによりガイド13は弁ハウジング1に固着されている。このガイド13内には、円筒状の弁体14とピストン15が挿通され、弁体14はベアリング17を介して作動軸2の下端に取り付けられている。なお、弁体14内には緩衝用のコイルばね14aが配設されている。ガイド13の上端には雄ねじ受け部13aが形成されており、作動軸2はこの雄ねじ受け部13aにより軸L方向に摺動可能とされ、この作動軸2の上部は後述のステッピングモータ10側に延設されている。作動軸2のステッピングモータ10内の外周には雄ねじ21aが形成された雄ねじ部材21が固着されている。   A cylindrical guide 13 is fitted in the guide fitting hole 1e in the upper part of the valve chamber 1a, and the guide 13 is fixed to the valve housing 1 by caulking the upper part of the valve housing 1. A cylindrical valve body 14 and a piston 15 are inserted into the guide 13, and the valve body 14 is attached to the lower end of the operating shaft 2 via a bearing 17. A buffering coil spring 14 a is disposed in the valve body 14. A male screw receiving portion 13a is formed at the upper end of the guide 13, and the operating shaft 2 can be slid in the direction of the axis L by the male screw receiving portion 13a, and the upper portion of the operating shaft 2 faces the stepping motor 10 described later. It is extended. A male screw member 21 having a male screw 21a is fixed to the outer periphery of the operation shaft 2 in the stepping motor 10.

弁ハウジング1の上部には皿状の蓋ケース16がろう付けにより気密に固着されており、この蓋ケース16に電動モータとしてのステッピングモータ10が取り付けられている。ステッピングモータ10の円筒状のロータケース10aは蓋ケース16に気密に固着されている。ロータケース10aの内側にはロータ3が回転可能に配置されている。ロータ3は、内側から順に、雌ねじ部材31,雌ねじホルダ32,連結金具33、マグネット34により構成されている。連結金具33は雌ねじホルダ32とマグネット34とを連結している。また、雌ねじ部材31の内側には雌ねじ31aが形成されている。そして、この雄ねじ31aが、雄ねじ部材21の外周面の雄ねじ21aに螺合されている。また、ロータケース10aの外周には、ステータユニット10bが配設されており、ステッピングモータ10は、ステータユニット10bのステータコイルにパルス信号が与えられることにより、そのパルス数に応じてロータ3を回転させる。   A dish-like lid case 16 is airtightly fixed to the upper portion of the valve housing 1 by brazing, and a stepping motor 10 as an electric motor is attached to the lid case 16. A cylindrical rotor case 10 a of the stepping motor 10 is airtightly fixed to the lid case 16. The rotor 3 is rotatably disposed inside the rotor case 10a. The rotor 3 includes a female screw member 31, a female screw holder 32, a coupling fitting 33, and a magnet 34 in order from the inside. The connection fitting 33 connects the female screw holder 32 and the magnet 34. An internal thread 31 a is formed inside the internal thread member 31. The male screw 31 a is screwed to the male screw 21 a on the outer peripheral surface of the male screw member 21. A stator unit 10b is disposed on the outer periphery of the rotor case 10a, and the stepping motor 10 rotates the rotor 3 according to the number of pulses when a pulse signal is given to the stator coil of the stator unit 10b. Let

ロータケース10aの内側にはストッパ保持ロッド41が垂下固定されている。ストッパ保持ロッド41には螺旋ガイド42が取り付けられており、螺旋ガイド42には可動ストッパ43が係合している。可動ストッパ43は、ロータ3の連結金具33に取り付けられたピン33aによって蹴り回されることにより、ロータ3の回転に伴って螺旋ガイド42に案内されて旋回しつつ上下移動する。そして、可動ストッパ43は、螺旋ガイド42の下端のストッパ部42aあるいは上端のストッパ部42bに当接することにより、弁閉方向、あるいは弁開方向のロータ3の回転を制限する。   A stopper holding rod 41 is suspended and fixed inside the rotor case 10a. A spiral guide 42 is attached to the stopper holding rod 41, and a movable stopper 43 is engaged with the spiral guide 42. The movable stopper 43 is moved up and down while being swung by being guided by the spiral guide 42 as the rotor 3 rotates by being kicked around by the pin 33 a attached to the connection fitting 33 of the rotor 3. The movable stopper 43 is in contact with the stopper portion 42a at the lower end of the spiral guide 42 or the stopper portion 42b at the upper end, thereby restricting the rotation of the rotor 3 in the valve closing direction or the valve opening direction.

以上の構成により、ステッピングモータ10を駆動すると、ロータ3は可動ストッパ43及びストッパ部42a,42bで規制される範囲内で回動する。このロータ3の回転は、ロータ3側の雌ねじ31aと雄ねじ21aとのねじ送り作用により、作動軸2の直線運動に変換され、作動軸2を介して弁体14が軸L方向に移動する。これにより、弁体14が弁ポート1dの開度を調整し、継手管11から流入して継手管12から流出する冷媒の流量が制御される。   With the above configuration, when the stepping motor 10 is driven, the rotor 3 rotates within a range regulated by the movable stopper 43 and the stopper portions 42a and 42b. The rotation of the rotor 3 is converted into a linear motion of the operating shaft 2 by the screw feeding action of the female screw 31a and the male screw 21a on the rotor 3 side, and the valve body 14 moves in the direction of the axis L via the operating shaft 2. Thereby, the valve body 14 adjusts the opening degree of the valve port 1d, and the flow rate of the refrigerant flowing in from the joint pipe 11 and flowing out from the joint pipe 12 is controlled.

図2は第2参考例の電動弁縦断面図であり、図1と同じまたは対応する要素には図1と同符号を付記して詳細な説明は省略する。この第2参考例においては、弁体14が作動軸2と一体に形成され、出口ポート1cと弁室1aとの間には弁ポート部材1fが嵌め込まれている。弁ポート部材1fには弁ポート1gが形成され、この弁ポート部材1fの端部が弁シート1f1を構成している。   FIG. 2 is a longitudinal sectional view of a motor-driven valve according to a second reference example. Elements that are the same as or correspond to those in FIG. In the second reference example, the valve body 14 is formed integrally with the operating shaft 2, and a valve port member 1f is fitted between the outlet port 1c and the valve chamber 1a. A valve port 1g is formed in the valve port member 1f, and an end portion of the valve port member 1f constitutes a valve seat 1f1.

この第2参考例においても、ステッピングモータ10の駆動によりロータ3が回動すると、このロータ3の回転は、ロータ3側の雌ねじ31aと作動軸2側の雄ねじ21aのねじ送り作用により、作動軸2の直線運動に変換され、作動軸2を介して弁体14が軸L方向に移動する。これにより、弁体14が弁ポート1gの開度を調整し、継手管11から流入して継手管12から流出する冷媒の流量が制御される。   Also in the second reference example, when the rotor 3 is rotated by driving the stepping motor 10, the rotation of the rotor 3 is caused by the screw feeding action of the female screw 31a on the rotor 3 side and the male screw 21a on the working shaft 2 side. 2 is converted into a linear motion of 2 and the valve body 14 moves in the direction of the axis L via the operating shaft 2. Thereby, the valve body 14 adjusts the opening degree of the valve port 1g, and the flow rate of the refrigerant flowing in from the joint pipe 11 and flowing out from the joint pipe 12 is controlled.

雄ねじ部材21と雌ねじ部材31は、軸Lと垂直な方向の線膨張率を考慮してその材質が選ばれている。また、一般的に樹脂材料は、炭素繊維やガラス繊維等の強化材(フィラー)を混入させ、混入させるフィラーの量、強度によって線膨張率や熱伝導率といった性質を変化させることができる。次表1は雄ねじ部材21と雌ねじ部材31との材質とその線膨張率の各実施例を示している。   The material of the male screw member 21 and the female screw member 31 is selected in consideration of the linear expansion coefficient in the direction perpendicular to the axis L. In general, a resin material can be mixed with a reinforcing material (filler) such as carbon fiber or glass fiber, and properties such as linear expansion coefficient and thermal conductivity can be changed depending on the amount and strength of the filler to be mixed. Table 1 below shows examples of the materials of the male screw member 21 and the female screw member 31 and their linear expansion coefficients.

Figure 2014043949
Figure 2014043949

これらの材質を組み合わせて、「雄ねじ部材21の軸L方向と垂直な方向の線膨張率よりも、雌ねじ部材31の軸L方向と垂直な方向の線膨張率のほうが大きくなる」という条件を満たすように雄ねじ部材21と雌ねじ部材31の材質を決める。また、繊維状のフィラーを混入したPPS(ポリファニレンサルファイド)は繊維状のフィラーの方向性を変える事で線膨張率に異方性を持たせることができ、軸方向と垂直な方向とで異なる線膨張率を持たせることができる。例えば、炭素繊維をフィラーとした場合、ある方向では線膨張率が2.5×10-5となり、この方向に対して垂直な方向の線膨張率は3.5×10-5とすることができる。また、混入させるフィラーの量、強度によりある方向では線膨張率が1.0×10-5となり、この方向に対して垂直な方向の線膨張率は3.5×10-5となるものもある。そこで、線膨張率が小さい方向を軸L方向、線膨張率が大きい方向を軸L方向と垂直な方向となるように雌ねじ部材31を形成する。そして、雄ねじ部材21の軸L方向と垂直な方向の線膨張率を、この雌ねじ部材31の軸L方向と垂直な方向の線膨張率より小さくなるように、雄ねじ部材21を形成する。なお、雄ねじ部材21がステンレスの場合と、雄ねじ部材21が黄銅の場合について、それぞれ雌ねじ部材31に採用できない材質について表1の下部に記載したが、これ以外で上記の条件を満足するように雄ねじ部材21と雌ねじ部材31の材質を組み合わる。 A combination of these materials satisfies the condition that “the linear expansion coefficient in the direction perpendicular to the axis L direction of the female screw member 31 is greater than the linear expansion coefficient in the direction perpendicular to the axis L direction of the male screw member 21”. Thus, the material of the male screw member 21 and the female screw member 31 is determined. In addition, PPS (polyphenylene sulfide) mixed with fibrous filler can give anisotropy to the linear expansion coefficient by changing the directionality of the fibrous filler, and in a direction perpendicular to the axial direction. Different linear expansion coefficients can be provided. For example, when carbon fiber is used as a filler, the linear expansion coefficient is 2.5 × 10 −5 in a certain direction, and the linear expansion coefficient in a direction perpendicular to this direction is 3.5 × 10 −5. it can. Depending on the amount and strength of the filler to be mixed, the linear expansion coefficient is 1.0 × 10 −5 in a certain direction, and the linear expansion coefficient in a direction perpendicular to this direction is 3.5 × 10 −5. is there. Therefore, the female screw member 31 is formed so that the direction in which the linear expansion coefficient is small is the axis L direction, and the direction in which the linear expansion coefficient is large is the direction perpendicular to the axis L direction. Then, the male screw member 21 is formed so that the linear expansion coefficient of the male screw member 21 in the direction perpendicular to the axis L direction is smaller than the linear expansion coefficient of the female screw member 31 in the direction perpendicular to the axis L direction. In the case where the male screw member 21 is made of stainless steel and the case where the male screw member 21 is made of brass, the materials that cannot be used for the female screw member 31 are described in the lower part of Table 1, but other than this, The materials of the member 21 and the female screw member 31 are combined.

例えば、雄ねじ部材21をステンレスとし、雌ねじ部材31を黄銅とする。あるいは、雄ねじ部材21をステンレスとし、雌ねじ部材31を軸L方向と垂直な方向の線膨張率が3.5×10-5となるように炭素繊維をフィラーとしたPPSとする。あるいは、雄ねじ部材21を黄銅とし、雌ねじ部材31を、軸L方向と垂直な方向の線膨張率が3.5×10-5となるPPSまたはPEEK(ポリエーテルエーテルケトン)またはPI(ポリイミド)またはPAI(ポリアミドイミド)とする。 For example, the male screw member 21 is made of stainless steel and the female screw member 31 is made of brass. Alternatively, the male screw member 21 is made of stainless steel, and the female screw member 31 is made of PPS using carbon fiber as a filler so that the linear expansion coefficient in the direction perpendicular to the axis L direction is 3.5 × 10 −5 . Alternatively, the male screw member 21 is made of brass, and the female screw member 31 is made of PPS or PEEK (polyether ether ketone) or PI (polyimide) or a linear expansion coefficient in the direction perpendicular to the axis L direction of 3.5 × 10 −5 or PAI (polyamideimide) is used.

また、雄ねじ部材21を線膨張率が1.05×10-5のセラミック(ジルコニア)とし、雌ねじ部材31を軸L方向と垂直な方向の線膨張率が3.5×10-5で軸L方向の線膨張率が1.0×10-5となるように炭素繊維をフィラーとしたPPSとする。このようにすると、前記条件を満足しながら、雌ねじ部材31の軸L方向の線膨張率と雄ねじ部材の軸L方向の線膨張率とが同等となる。これにより、軸L方向の膨張が雄ねじ部材21と雌ねじ部材31とで同等となり、雄ねじ21aのピッチ変化と雌ねじ31aのピッチ変化が同等になり、ピッチ変化によるねじ全体の軸L方向のガタの低減を防止できる。 The male screw member 21 is made of ceramic (zirconia) having a linear expansion coefficient of 1.05 × 10 −5 , and the female screw member 31 has a linear expansion coefficient of 3.5 × 10 −5 in the direction perpendicular to the axis L direction and the axis L The PPS is made of carbon fiber filler so that the linear expansion coefficient in the direction is 1.0 × 10 −5 . If it does in this way, the linear expansion coefficient of the axial L direction of the internal thread member 31 and the linear expansion coefficient of the external thread member in the axial L direction will become equivalent, satisfying the said conditions. As a result, the expansion in the axis L direction is equivalent between the male screw member 21 and the female screw member 31, the pitch change of the male screw 21a is equal to the pitch change of the female screw 31a, and the backlash of the entire screw in the axis L direction due to the pitch change is reduced. Can be prevented.

次表2は、雄ねじ部材21と雌ねじ部材31の両方の材質をPPSとした例を示している。   Table 2 below shows an example in which the material of both the male screw member 21 and the female screw member 31 is PPS.

Figure 2014043949
Figure 2014043949

すなわち、軸L方向の線膨張率を3.5×10-5で軸Lと垂直な方向の線膨張率が2.5×10-5となるように炭素繊維をフィラーとしたPPSにより雄ねじ部材21を形成する。そして、軸L方向の線膨張率を2.5×10-5で軸Lと垂直な方向の線膨張率が3.5×10-5となるように炭素繊維をフィラーとしたPPSにより雌ねじ部材31を形成する。これにより、前記の条件が満足される。 That is, the male screw member is made of PPS using carbon fiber as a filler so that the linear expansion coefficient in the direction of the axis L is 3.5 × 10 −5 and the linear expansion coefficient in the direction perpendicular to the axis L is 2.5 × 10 −5. 21 is formed. The female screw member is made of PPS using carbon fiber as a filler so that the linear expansion coefficient in the axis L direction is 2.5 × 10 −5 and the linear expansion coefficient in the direction perpendicular to the axis L is 3.5 × 10 −5. 31 is formed. Thus, the above condition is satisfied.

図3は、雄ねじ部材21と雌ねじ部材31を、炭素繊維をフィラーとした樹脂材料で形成する例を示す図である。雄ねじ部材21は、樹脂材料からなる基材21Aに対して炭素繊維フィラー21Bを軸Lと垂直な方向に配向して混入して形成されている。雌ねじ部材31は、樹脂材料からなる基材31Aに対して炭素繊維フィラー31Bを軸Lと平行な方向に配向して混入して形成されている。   FIG. 3 is a diagram illustrating an example in which the male screw member 21 and the female screw member 31 are formed of a resin material using carbon fiber as a filler. The male screw member 21 is formed by aligning and mixing a carbon fiber filler 21B in a direction perpendicular to the axis L with respect to a base material 21A made of a resin material. The female screw member 31 is formed by aligning and mixing a carbon fiber filler 31B in a direction parallel to the axis L with respect to a base material 31A made of a resin material.

このようにすることにより、雄ねじ部材21では基材21Aの軸L方向と垂直な方向の線膨張率が炭素繊維フィラー21Aの強度により低減され、雌ねじ部材31では基材31Aの軸L方向の線膨張率が炭素繊維フィラー21Aの強度により低減されるとともに、軸L方向と垂直な方向の線膨張率は炭素繊維フィラー31Bの影響を殆どうけない。したがって、前記の条件を満足することができる。なお、この炭素繊維フィラーの配向方向は、例えば樹脂成形時のゲートの位置により設定することができる。   By doing so, in the male screw member 21, the linear expansion coefficient in the direction perpendicular to the axis L direction of the base material 21A is reduced by the strength of the carbon fiber filler 21A, and in the female screw member 31, the line in the axis L direction of the base material 31A. The expansion coefficient is reduced by the strength of the carbon fiber filler 21A, and the linear expansion coefficient in the direction perpendicular to the axis L direction is hardly affected by the carbon fiber filler 31B. Therefore, the above conditions can be satisfied. In addition, the orientation direction of this carbon fiber filler can be set by the position of the gate at the time of resin molding, for example.

このように、雄ねじ部材21の軸Lと垂直な方向の線膨張率よりも、雌ねじ部材31の軸Lと垂直な方向の線膨張率のほうが大きくなるように、雄ねじ部材21及び雌ねじ部材31を形成しているので、高温環境で使用されても、雄ねじ部材21と雌ねじ部材31のガタを確保することができ、ねじ送り機構の安定した作動性を確保することができる。   In this way, the male screw member 21 and the female screw member 31 are made so that the linear expansion coefficient in the direction perpendicular to the axis L of the female screw member 31 is larger than the linear expansion coefficient in the direction perpendicular to the axis L of the male screw member 21. Since it forms, even if it uses in a high temperature environment, the backlash of the external thread member 21 and the internal thread member 31 can be ensured, and the stable operativity of a screw feed mechanism can be ensured.

前記第1、第2参考例では、ロータ側に雌ねじが形成され、作動軸側に形成された雄ねじをロータ側の雌ねじの中心に貫通配置した例であるが、雌ねじを弁ハウジング側に形成し、ロータ側に作動軸及び雄ねじを形成してこの雄ねじを弁ハウジング側の雌ねじの中心に貫通配置した場合でもよい。この場合にも、雄ねじ部材の軸と垂直な方向の線膨張率よりも、雌ねじ部材の軸と垂直な方向の線膨張率のほうが大きくなるように、雄ねじ部材及び雌ねじ部材を形成することは前記参考例と同様である。したがって、この実施形態でも、高温環境で使用されても、雄ねじ部材と雌ねじ部材のガタを確保することができ、ねじ送り機構の安定した作動性を確保することができる。   In the first and second reference examples, an internal thread is formed on the rotor side, and an external thread formed on the operating shaft side is disposed through the center of the internal thread on the rotor side. However, the internal thread is formed on the valve housing side. Alternatively, an operation shaft and a male screw may be formed on the rotor side, and the male screw may be disposed through the center of the female screw on the valve housing side. Also in this case, the male screw member and the female screw member are formed so that the linear expansion coefficient in the direction perpendicular to the axis of the female screw member is larger than the linear expansion coefficient in the direction perpendicular to the axis of the male screw member. The same as the reference example. Therefore, even in this embodiment, even when used in a high temperature environment, the play of the male screw member and the female screw member can be secured, and the stable operability of the screw feed mechanism can be secured.

1 弁ハウジング
1d1 弁シート
1f1 弁シート
14 弁体
2 作動軸
21 雄ねじ部材
21a 雄ねじ
3 ロータ
31 雌ねじ部材
31a 雌ねじ
10 ステッピングモータ(電動モータ)
DESCRIPTION OF SYMBOLS 1 Valve housing 1d1 Valve seat 1f1 Valve seat 14 Valve body 2 Actuating shaft 21 Male screw member 21a Male screw 3 Rotor 31 Female screw member 31a Female screw 10 Stepping motor (electric motor)

Claims (3)

弁ハウジング側に設けられた雌ねじと、電動モータのロータ側に形成され前記雌ねじの中心に貫通配置された雄ねじとを備え、前記電動モータのロータの回転運動を、前記雌ねじと前記雄ねじとのねじ送り機構によって、作動軸の直線運動に変換し、この作動軸に配置された弁体を弁シートに対して移動して弁の開閉を行う電動弁において、
前記雌ねじを構成する部材と前記雄ねじを構成する部材とを、前記雌ねじの軸方向に垂直な方向の線膨張率が、前記雄ねじの軸方向に垂直な方向の線膨張率より大きくなるような材質によりそれぞれ形成したことを特徴とする電動弁。
A female screw provided on the valve housing side and a male screw formed on the rotor side of the electric motor and penetratingly arranged at the center of the female screw, and the rotational movement of the rotor of the electric motor is controlled by a screw between the female screw and the male screw. In the motor operated valve that opens and closes the valve by converting the linear motion of the operating shaft by the feed mechanism and moving the valve element arranged on the operating shaft with respect to the valve seat,
The material constituting the female screw and the member constituting the male screw are such that the linear expansion coefficient in the direction perpendicular to the axial direction of the female screw is greater than the linear expansion coefficient in the direction perpendicular to the axial direction of the male screw. A motor-operated valve formed by each of the above.
前記雌ねじの軸方向の線膨張率と前記雄ねじの軸方向の線膨張率とが同等となる材質により、前記雌ねじを構成する部材と前記雄ねじを構成する部材とをそれぞれ形成したことを特徴とする請求項1に記載の電動弁。   The member that constitutes the female screw and the member that constitutes the male screw are respectively formed of a material in which the linear expansion coefficient in the axial direction of the female screw is equal to the linear expansion coefficient in the axial direction of the male screw. The motor-operated valve according to claim 1. 前記雌ねじを構成する部材を、樹脂材料を基材としてこの樹脂材料に繊維状のフィラーを前記雌ねじの軸方向と同一の方向となるように混入したことを特徴とする請求項1に記載の電動弁。   2. The electric motor according to claim 1, wherein a member constituting the female screw is a resin material as a base material, and a fibrous filler is mixed in the resin material in the same direction as the axial direction of the female screw. valve.
JP2013243641A 2013-11-26 2013-11-26 Motor-operated valve Pending JP2014043949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013243641A JP2014043949A (en) 2013-11-26 2013-11-26 Motor-operated valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013243641A JP2014043949A (en) 2013-11-26 2013-11-26 Motor-operated valve

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010040604A Division JP5425661B2 (en) 2010-02-25 2010-02-25 Motorized valve

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015131103A Division JP6087397B2 (en) 2015-06-30 2015-06-30 Motorized valve

Publications (1)

Publication Number Publication Date
JP2014043949A true JP2014043949A (en) 2014-03-13

Family

ID=50395350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013243641A Pending JP2014043949A (en) 2013-11-26 2013-11-26 Motor-operated valve

Country Status (1)

Country Link
JP (1) JP2014043949A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016089870A (en) * 2014-10-30 2016-05-23 株式会社鷺宮製作所 Solenoid valve
CN111120664A (en) * 2019-12-20 2020-05-08 珠海格力电器股份有限公司 Electronic expansion valve and air conditioner

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004197800A (en) * 2002-12-17 2004-07-15 Saginomiya Seisakusho Inc Motor operated valve
JP2011174587A (en) * 2010-02-25 2011-09-08 Saginomiya Seisakusho Inc Motor-operated valve

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004197800A (en) * 2002-12-17 2004-07-15 Saginomiya Seisakusho Inc Motor operated valve
JP2011174587A (en) * 2010-02-25 2011-09-08 Saginomiya Seisakusho Inc Motor-operated valve

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016089870A (en) * 2014-10-30 2016-05-23 株式会社鷺宮製作所 Solenoid valve
CN111120664A (en) * 2019-12-20 2020-05-08 珠海格力电器股份有限公司 Electronic expansion valve and air conditioner
CN111120664B (en) * 2019-12-20 2021-02-02 珠海格力电器股份有限公司 Electronic expansion valve and air conditioner

Similar Documents

Publication Publication Date Title
JP5425661B2 (en) Motorized valve
JP6481155B2 (en) Motorized valve
KR20150062965A (en) Stepping motor driven control valve
KR20150062964A (en) Stepping motor driven control valve
KR101814423B1 (en) Flow control valve
ATE449277T1 (en) FLUID REGULATION VALVE, ESPECIALLY FOR COOLANTS
JP2019132393A (en) Motor-operated valve and refrigeration cycle system
JP6209265B2 (en) Motorized valve
JP2014043949A (en) Motor-operated valve
CN110494682B (en) Butterfly valve
JP6087397B2 (en) Motorized valve
JP6051634B2 (en) Valve device and hot water supply device
CN108071701A (en) Motor-driven valve and refrigerating circulation system
JP2006524786A (en) Stepper motor driven fluid valve
CN107166073B (en) Motor-driven valve and its manufacturing method
KR20080112147A (en) A long-stroke regulator valve with a stop function
JP6643450B2 (en) Electric valve
JP6445654B2 (en) Motorized valve and motorized valve manufacturing method
JP2019152246A (en) Motor valve
JP2019094928A (en) Valve device and steam turbine
CN211261369U (en) Electronic expansion valve
JP2019045058A (en) Flow regulating valve
JP5318631B2 (en) Linear actuator
JP7161016B2 (en) Electric valve and refrigeration cycle system
JP2019094991A (en) Flow rate control device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140916

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150630