JP2019132393A - Motor-operated valve and refrigeration cycle system - Google Patents

Motor-operated valve and refrigeration cycle system Download PDF

Info

Publication number
JP2019132393A
JP2019132393A JP2018016785A JP2018016785A JP2019132393A JP 2019132393 A JP2019132393 A JP 2019132393A JP 2018016785 A JP2018016785 A JP 2018016785A JP 2018016785 A JP2018016785 A JP 2018016785A JP 2019132393 A JP2019132393 A JP 2019132393A
Authority
JP
Japan
Prior art keywords
valve
sub
main valve
valve body
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018016785A
Other languages
Japanese (ja)
Other versions
JP6857624B2 (en
Inventor
大樹 中川
Daiki Nakagawa
大樹 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP2018016785A priority Critical patent/JP6857624B2/en
Priority to CN201910032327.XA priority patent/CN110107724B/en
Publication of JP2019132393A publication Critical patent/JP2019132393A/en
Application granted granted Critical
Publication of JP6857624B2 publication Critical patent/JP6857624B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/34Cutting-off parts, e.g. valve members, seats
    • F16K1/36Valve members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Electrically Driven Valve-Operating Means (AREA)
  • Lift Valve (AREA)

Abstract

To provide a motor-operated valve and a refrigeration cycle system capable of properly controlling a flow rate in a small flow rate region, in the motor-operated valve having the flow rate control regions of two stages.SOLUTION: A motor-operated valve 10 includes a main valve element 2, an auxiliary valve element 3, and a driving portion 4, and has flow rate control regions of two stages, that is, a small flow rate control region in which the auxiliary valve element 3 changes an opening of an auxiliary valve port 22, and a large flow rate control region in which the main valve element 2 opens and closes a main valve port 1c. The auxiliary valve element 3 has an auxiliary valve element 31 disposed on its outer peripheral face for changing an opening of an auxiliary valve port 22, and a thrust washer 34 disposed on a tip side with respect to the auxiliary valve port 31. At least one of the main valve element 2 and the auxiliary valve element 3 is provided with a through flow channel 35 as a bypass flow channel R' reaching a tip end portion of the auxiliary valve element 3 while bypassing a contact face of a locked portion 23 and the thrust washer 34.SELECTED DRAWING: Figure 1

Description

本発明は、電動弁及び冷凍サイクルシステムに関する。   The present invention relates to an electric valve and a refrigeration cycle system.

従来、空気調和機の冷凍サイクルに設けられる電動弁として、電動モータにより副弁体が軸線方向に進退駆動され、主弁体の副弁ポートでの流量制御を行う小流量制御域と、弁室の主弁ポートを主弁体で開閉して流量制御を行う大流量制御域と、の二段の流量制御域を有するものが提案されている(例えば、特許文献1参照)。   Conventionally, as a motor-operated valve provided in a refrigeration cycle of an air conditioner, a sub-flow body is driven back and forth in an axial direction by an electric motor, and a small flow rate control region for controlling a flow rate at a sub-valve port of the main valve body, and a valve chamber Has been proposed which has a two-stage flow rate control region, that is, a large flow rate control region that performs flow control by opening and closing the main valve port of the main valve port (for example, see Patent Document 1).

特許文献1に記載の電動弁(電動式流量制御弁)は、弁室の主弁ポート(弁孔)を開閉する主弁体(弁体)と、主弁体を閉方向に付勢する主弁ばね(第1ばね)と、主弁体に形成された副弁ポート(副弁孔)を開閉する副弁体と、副弁体を閉方向に付勢する副弁ばね(第2ばね)と、副弁体を駆動する電動モータ(モータ)を有した駆動部と、を備えている。この電動弁では、主弁ばねに付勢された主弁体が着座して主弁ポートを閉じるとともに、副弁ばねに付勢された副弁体が着座して副弁ポートを閉じることで、全閉状態となる。また、駆動部により副弁体が引き上げられることで副弁ポートが開き、これにより小流量制御が行われる。さらに、引き上げられた副弁体の係止部(第1ストッパ)が主弁体に係合して主弁体が引き上げられることで主弁ポートが開き、これにより大流量制御が行われる。   The electric valve (electric flow control valve) described in Patent Document 1 includes a main valve element (valve element) that opens and closes a main valve port (valve hole) of a valve chamber, and a main valve element that urges the main valve element in a closing direction. A valve spring (first spring), a sub-valve element that opens and closes a sub-valve port (sub-valve hole) formed in the main valve element, and a sub-valve spring (second spring) that biases the sub-valve element in the closing direction And a drive unit having an electric motor (motor) for driving the auxiliary valve body. In this electric valve, the main valve body biased by the main valve spring sits and closes the main valve port, and the sub valve body biased by the sub valve spring sits and closes the sub valve port, Fully closed state. Further, the auxiliary valve body is pulled up by the drive unit, so that the auxiliary valve port is opened, whereby the small flow rate control is performed. Further, the main valve port is opened when the latched portion (first stopper) of the sub-valve that has been pulled up engages the main valve and the main valve is pulled up, whereby large flow control is performed.

特開2014−20457号公報JP 2014-20457 A

しかしながら、特許文献1に記載されたような従来の電動弁では、副弁ポートが軸線に沿った長い筒状に形成され、この副弁ポートに長尺棒状の副弁体が遊挿されており、小流量制御時には、副弁ポートの内周面と副弁体の外周面との隙間が冷媒の流路となる構成である。このような細長い流路を流体が通過することになるため、従来の電動弁では、流路に異物が流れ込んで副弁ポートと副弁体の間に噛み込み、副弁体の動作不良が生じて小流量制御時の流量制御に不具合をきたす可能性がある。   However, in the conventional motor-operated valve described in Patent Document 1, the auxiliary valve port is formed in a long cylindrical shape along the axis, and a long rod-like auxiliary valve body is loosely inserted into the auxiliary valve port. In the small flow rate control, the gap between the inner peripheral surface of the sub valve port and the outer peripheral surface of the sub valve body is a refrigerant flow path. Since the fluid passes through such a long and narrow flow path, in the conventional motor-operated valve, foreign matter flows into the flow path and bites between the sub valve port and the sub valve body, resulting in malfunction of the sub valve body. This may cause problems in the flow control during small flow control.

本発明の目的は、二段の流量制御域を有する電動弁において、小流量制御域での流量を適切に制御することができる電動弁を提供することである。   An object of the present invention is to provide a motor-operated valve that can appropriately control a flow rate in a small flow rate control region in a motor-operated valve having a two-stage flow rate control region.

本発明の電動弁は、弁室の主弁ポートを開閉する主弁体と、前記主弁体に設けられた副弁ポートの開度を可変にする副弁体と、前記副弁体を軸線方向に進退駆動する駆動部と、を備え、前記副弁体が前記副弁ポートの開度を変更する小流量制御域と、前記主弁体が前記主弁ポートを開閉する大流量制御域と、の二段の流量制御域を有する電動弁であって、前記小流量制御域において、前記副弁体は、前記副弁ポートに最も近接した第一位置と、前記駆動部の駆動力により前記副弁ポートを開く開方向に移動されて前記主弁体に係合する第二位置と、の間を移動し、前記大流量制御域において、前記主弁体は、前記主弁ポートに着座する閉位置と、前記駆動部の駆動力により前記第二位置に移動した前記副弁体と一体的に移動して前記主弁ポートを開放する開位置と、の間を移動し、前記主弁体は、全体筒状に形成された内周面に前記副弁ポートと、前記副弁ポートよりも前記主弁ポート側の被係止部と、が設けられ、前記副弁体は、全体柱状に形成されて前記主弁体の内部に配設されるとともに、当該副弁体の外周面に設けられて前記副弁ポートの開度を変更する副弁部と、前記副弁部よりも先端側に設けられて前記被係止部を係止可能な係止部と、を有し、前記主弁体及び前記副弁体の少なくとも一方には、前記被係止部と前記係止部との接触面を迂回して前記副弁体の先端部に至る迂回流路が形成されていることを特徴とする。   The motor-operated valve of the present invention includes a main valve element that opens and closes a main valve port of a valve chamber, a sub-valve element that makes the opening degree of the sub-valve port provided in the main valve element variable, and the auxiliary valve element that has an axis line A small flow rate control region in which the sub valve body changes the opening degree of the sub valve port, and a large flow rate control region in which the main valve body opens and closes the main valve port. In the small flow rate control region, the sub-valve element has the first position closest to the sub-valve port and the driving force of the driving unit. The secondary valve port is moved in the opening direction to move to a second position that engages with the main valve body, and the main valve body is seated on the main valve port in the large flow rate control region. The main valve port moves together with the sub-valve body moved to the second position by the closed position and the driving force of the drive unit. The main valve body is connected to the sub-valve port on the inner peripheral surface formed in an overall cylindrical shape, and to the main valve port side more than the sub-valve port. And the auxiliary valve body is formed in an overall columnar shape and disposed inside the main valve body, and is provided on the outer peripheral surface of the auxiliary valve body to open the auxiliary valve port. A sub-valve portion that changes the degree of engagement, and a locking portion that is provided on the distal end side of the sub-valve portion and can lock the locked portion, and the main valve body and the sub-valve body At least one of them is characterized in that a bypass flow path that bypasses the contact surface between the locked portion and the locking portion and reaches the tip of the sub-valve element is formed.

このような本発明によれば、主弁体の内部に配設された副弁体が副弁部と係止部とを有し、主弁体及び副弁体の少なくとも一方に被係止部と係止部との接触面を迂回して副弁体の先端部に至る迂回流路が形成されていることで、小流量制御時の流体が迂回流路を通ることになり、異物の噛み込みを防止することができる。従って、副弁体の動作不良が生じにくくなり、小流量制御域における流量を適切に制御することができる。また、迂回流路を設けたことで、副弁体の係止部と主弁体の内周面との隙間を流体が通らないことから、この隙間を小さく設定することが可能になり、副弁体の係止部と主弁体の内周面とが互いに摺動して案内する摺動案内部として機能させることができる。これにより、副弁体が進退移動する際には主弁体の内周面に案内され、主弁体が進退移動する際には副弁体の係止部に案内されることで、主弁体及び副弁体の振れを抑制することができ、流量制御の精度を向上させることができる。   According to the present invention as described above, the sub-valve disposed inside the main valve body has the sub-valve portion and the locking portion, and the locked portion is provided in at least one of the main valve body and the sub-valve body. By forming a bypass flow path that bypasses the contact surface between the valve and the locking portion and reaches the tip of the sub-valve, the fluid at the time of small flow control passes through the bypass flow path and bites foreign matter. Can be prevented. Accordingly, the malfunction of the sub-valve is less likely to occur, and the flow rate in the small flow rate control region can be appropriately controlled. In addition, by providing a bypass flow path, fluid does not pass through the gap between the locking portion of the sub-valve element and the inner peripheral surface of the main valve element, so that this gap can be set small. The locking portion of the valve body and the inner peripheral surface of the main valve body can function as a sliding guide portion that slides and guides each other. As a result, when the sub-valve element moves forward and backward, it is guided to the inner peripheral surface of the main valve element, and when the main valve element moves forward and backward, it is guided to the locking portion of the sub-valve element, The vibration of the body and the auxiliary valve body can be suppressed, and the accuracy of the flow rate control can be improved.

この際、前記迂回流路は、前記副弁部と前記係止部との間の側面から前記副弁体の先端部まで貫通する貫通流路、前記副弁体の前記係止部を含む外周面を切り欠いた副弁切欠き部、及び、前記主弁体の内周面を切り欠いた主弁切欠き部、の少なくとも1つで構成されることが好ましい。   In this case, the bypass flow path includes a through-flow path that penetrates from a side surface between the sub valve portion and the locking portion to a tip portion of the sub valve body, and an outer periphery including the locking portion of the sub valve body. It is preferable that the main valve body is constituted by at least one of a sub-valve notch portion having a notched surface and a main valve notch portion having an inner peripheral surface of the main valve body notched.

迂回流路を貫通流路で構成すれば、主弁体の内周面と副弁体の外周面とが互いに摺接する摺接面を全周に連続させることができ、摺動抵抗が一定になり、主弁体及び副弁体の進退移動をより安定させることができる。また、迂回流路を副弁切欠き部や主弁切欠き部で構成すれば、貫通流路を形成する場合と比較して、加工が簡便になり、製作コストを抑制することができる。   If the bypass flow path is constituted by a through-flow path, the sliding contact surface where the inner peripheral surface of the main valve body and the outer peripheral surface of the sub-valve element are in sliding contact with each other can be continued all around, and the sliding resistance is constant. Thus, the forward and backward movement of the main valve body and the sub valve body can be further stabilized. Further, if the bypass flow path is constituted by the sub valve notch part or the main valve notch part, the processing becomes simpler and the manufacturing cost can be suppressed as compared with the case where the through flow path is formed.

この際、前記駆動部は、前記副弁体に一体に連結された雄ねじ部と、前記雄ねじ部に螺合して案内する雌ねじ部と、を有したねじ送り機構を備え、前記駆動部の駆動により前記雄ねじ部が前記雌ねじ部に回転案内されることで、前記副弁体が軸線方向に沿って進退駆動されることが好ましい。   At this time, the drive unit includes a screw feeding mechanism having a male screw part integrally connected to the sub-valve body and a female screw part that is screwed into and guided by the male screw part, and drives the drive part. Thus, it is preferable that the auxiliary valve body is driven forward and backward along the axial direction by rotating and guiding the male screw portion to the female screw portion.

この構成によれば、副弁体に一体に連結された雄ねじ部が雌ねじ部に案内されて副弁体が進退駆動されることで、駆動部により副弁体を直接的に駆動することができ、副弁体のがたつきを抑制して小流量制御域における流量制御の精度を向上させることができる。   According to this configuration, the sub-valve element can be directly driven by the drive unit by the male screw part integrally connected to the sub-valve element being guided by the female screw part and the sub-valve element being driven forward and backward. In addition, it is possible to improve the accuracy of the flow rate control in the small flow rate control region by suppressing the rattling of the auxiliary valve body.

さらに、前記係止部、前記副弁部及び前記雄ねじ部は、この順に径が小さくなるように形成されていることが好ましい。   Furthermore, it is preferable that the locking portion, the sub valve portion, and the male screw portion are formed so that the diameters are reduced in this order.

この構成によれば、副弁体の先端部に係止部が設けられ、この係止部が副弁部及び雄ねじ部よりも径大とされ、副弁部が雄ねじ部よりも径大とされていることで、全体筒状の主弁体に対して雄ねじ部の側から差し込むようにして副弁体を組み付けることができ、電動弁の製造効率を向上させることができる。   According to this configuration, the locking portion is provided at the distal end portion of the auxiliary valve body, the locking portion is larger in diameter than the auxiliary valve portion and the male screw portion, and the auxiliary valve portion is larger in diameter than the male screw portion. Therefore, the sub-valve body can be assembled so as to be inserted from the male screw portion side into the entire cylindrical main valve body, and the manufacturing efficiency of the electric valve can be improved.

また、前記弁室を構成する弁本体と、前記弁本体に固定される支持部材と、前記主弁体を閉方向に付勢する主弁ばねと、をさらに備え、前記支持部材は、前記雌ねじ部と、前記主弁体との間に圧縮状態で前記主弁ばねを保持するばね受け部と、前記主弁体を軸線方向に進退案内する主弁ガイド部と、を有して樹脂成形部材で構成されていることが好ましい。   The valve body further comprises a valve main body, a support member fixed to the valve main body, and a main valve spring that biases the main valve body in a closing direction, and the support member includes the female screw. A resin receiving member having a spring receiving portion that holds the main valve spring in a compressed state and a main valve guide portion that advances and retracts the main valve body in the axial direction between the main valve body and the main valve body It is preferable that it is comprised.

この構成によれば、弁本体に固定される支持部材が雌ねじ部とばね受け部と主弁ガイド部とを有し、主弁ガイド部により主弁体を軸線方向に進退案内することで、主弁体の振れを抑制することができ、主弁ポートに確実に着座させることにより弁漏れを防止することができる。従って、副弁ポートを開いた小流量制御時の流量への影響を小さくして、小流量制御域での流量を適切に制御することができる。また、支持部材が樹脂成形部材で構成されていることで、支持部材や主弁体の摩耗を抑制することができ、電動弁の耐久性を向上させることができる。   According to this configuration, the support member fixed to the valve body has the female thread portion, the spring receiving portion, and the main valve guide portion, and the main valve body is guided to advance and retract in the axial direction by the main valve guide portion. The vibration of the valve body can be suppressed, and valve leakage can be prevented by reliably seating on the main valve port. Accordingly, it is possible to appropriately control the flow rate in the small flow rate control region by reducing the influence on the flow rate during the small flow rate control with the sub valve port opened. Moreover, since the support member is made of a resin molded member, wear of the support member and the main valve body can be suppressed, and the durability of the motor-operated valve can be improved.

本発明の冷凍サイクルシステムは、圧縮機と、凝縮器と、膨張弁と、蒸発器と、を含む冷凍サイクルシステムであって、前記いずれかの電動弁が、前記膨張弁として用いられていることを特徴とする。   The refrigeration cycle system of the present invention is a refrigeration cycle system including a compressor, a condenser, an expansion valve, and an evaporator, and any one of the motor-operated valves is used as the expansion valve. It is characterized by.

このような冷凍サイクルシステムによれば、前述の電動弁による効果と同様に、副弁ポートの異物の噛み込みを防止することにより副弁体の動作不良が生じにくくなり、電動弁を膨張弁として用いた冷凍サイクルシステムにおける小流量制御時の流量を適切に制御することができる。   According to such a refrigeration cycle system, similarly to the effect of the motor-operated valve described above, the operation of the sub-valve element is less likely to occur by preventing the foreign valve from being caught in the sub-valve port, and the motor-operated valve is used as an expansion valve. The flow rate at the time of small flow rate control in the used refrigeration cycle system can be appropriately controlled.

本発明の電動弁及び冷凍サイクルシステムによれば、二段の流量制御域を有する電動弁において、小流量制御域での流量を適切に制御することができる。   According to the motor-operated valve and the refrigeration cycle system of the present invention, in the motor-operated valve having a two-stage flow control region, the flow rate in the small flow control region can be appropriately controlled.

本発明の実施形態の電動弁における全閉状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the fully closed state in the motor operated valve of embodiment of this invention. 前記電動弁における全開状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the fully open state in the said motor operated valve. (A),(B)は、前記電動弁の一部を拡大して示す縦断面図である。(A), (B) is a longitudinal cross-sectional view which expands and shows a part of said motor operated valve. 前記電動弁における弁開度と流量の関係を示すグラフである。It is a graph which shows the relationship between the valve opening degree and flow volume in the said motor operated valve. 本発明の冷凍サイクルシステムを示す概略構成図である。It is a schematic block diagram which shows the refrigerating cycle system of this invention. (A),(B)は、本発明の変形例の電動弁の一部を拡大して示す縦断面図及び底面図である。(A), (B) is the longitudinal cross-sectional view and bottom view which expand and show a part of motor-driven valve of the modification of this invention. (A),(B)は、本発明の他の変形例の電動弁の一部を拡大して示す縦断面図及び底面図である。(A), (B) is the longitudinal cross-sectional view and bottom view which expand and show a part of motor-driven valve of the other modification of this invention.

本発明の実施形態に係る電動弁を図1〜4に基づいて説明する。図1、2に示すように、本実施形態の電動弁10は、弁ハウジング1と、主弁体2と、副弁体3と、駆動部4と、を備えている。なお、以下の説明における「上下」の概念は図1、2の図面における上下に対応する。   An electric valve according to an embodiment of the present invention will be described with reference to FIGS. As shown in FIGS. 1 and 2, the motor-operated valve 10 of the present embodiment includes a valve housing 1, a main valve body 2, a sub-valve body 3, and a drive unit 4. The concept of “upper and lower” in the following description corresponds to the upper and lower sides in the drawings of FIGS.

弁ハウジング1は、筒状の弁本体1aを有し、この弁本体1aは、黄銅製(真鍮製)であり、その内部に円筒状の弁室1Aが形成されている。弁本体1aには、側面側から弁室1Aに連通して冷媒が流入される一次継手管11が取り付けられ、底面側から弁室1Aに連通して冷媒が流出される二次継手管12が取り付けられている。さらに、弁本体1aには、弁室1Aと二次継手管12とを連通する位置に主弁座1bが形成されるとともに、この主弁座1bから二次継手管12側に断面形状が円形の主弁ポート1cが形成されている。弁本体1aの上部開口には支持部材13とケース15とが固定されている。   The valve housing 1 has a cylindrical valve body 1a, which is made of brass (made of brass), and a cylindrical valve chamber 1A is formed therein. A primary joint pipe 11 that is connected to the valve chamber 1A from the side surface and into which the refrigerant flows is attached to the valve body 1a, and a secondary joint pipe 12 that is connected to the valve chamber 1A from the bottom side and through which the refrigerant flows out. It is attached. Further, the valve body 1a is formed with a main valve seat 1b at a position where the valve chamber 1A and the secondary joint pipe 12 communicate with each other, and the cross-sectional shape is circular from the main valve seat 1b to the secondary joint pipe 12 side. The main valve port 1c is formed. A support member 13 and a case 15 are fixed to the upper opening of the valve body 1a.

支持部材13は、全体略円筒状に形成された樹脂成形部材であって、弁本体1aの上部開口に溶接される金属製の固定部材14を介して弁ハウジング1に固定されている。支持部材13は、固定部材14よりも下方に延びる円筒状の主弁ガイド部13aと、固定部材14よりも上方に延びて内側に雌ねじが形成された雌ねじ部13bと、筒状の内側上端に設けられたばね受け部13cと、を有している。この支持部材13を構成する樹脂材料としては、適宜な硬度や耐熱性を有したものであればよく、各種のエンジニアリングプラスチックが利用可能である。ケース15は、弁本体1aの上部開口に溶接等によって固定され、弁本体1a及びケース15によって気密な空間が形成されている。   The support member 13 is a resin molded member formed in a substantially cylindrical shape as a whole, and is fixed to the valve housing 1 via a metal fixing member 14 welded to the upper opening of the valve body 1a. The support member 13 includes a cylindrical main valve guide portion 13a extending downward from the fixing member 14, a female screw portion 13b extending upward from the fixing member 14 and having a female screw formed therein, and a cylindrical inner upper end. And a spring receiving portion 13c provided. The resin material constituting the support member 13 may be any resin material having appropriate hardness and heat resistance, and various engineering plastics can be used. The case 15 is fixed to the upper opening of the valve body 1a by welding or the like, and an airtight space is formed by the valve body 1a and the case 15.

主弁体2は、全体略円筒状に形成されたステンレス製部材であって、支持部材13の主弁ガイド部13aの内部にて軸線Lに沿った上下方向に進退自在に支持されている。主弁体2は、主弁座1bに対して着座及び離座する主弁部21と、筒状の内周面に突出した円環状の副弁ポート22と、副弁ポート22よりも主弁ポート1c側(下側)の内周面に段付き状に形成された被係止部23と、上端部に設けられたばね受け部24と、を有している。主弁体2の副弁ポート22よりも上方の内部空間と支持部材13の内部空間とにより副弁室2Aが構成されている。主弁体2の側面には、貫通孔25が形成され、この貫通孔25により弁室1Aと副弁室2Aとが連通されている。また、支持部材13及び主弁体2のばね受け部13c,24間には、主弁ばね26が圧縮状態で配設されており、この主弁ばね26により主弁体2は主弁座1b方向(閉方向)に付勢されている。   The main valve body 2 is a stainless steel member formed in a substantially cylindrical shape as a whole, and is supported inside the main valve guide portion 13a of the support member 13 so as to be movable back and forth along the axis L. The main valve body 2 includes a main valve portion 21 that is seated and separated from the main valve seat 1 b, an annular sub-valve port 22 that projects from a cylindrical inner peripheral surface, and a main valve that is more than the sub-valve port 22. It has the to-be-latched part 23 formed in the inner peripheral surface of the port 1c side (lower side) in the shape of a step, and the spring receiving part 24 provided in the upper end part. A sub-valve chamber 2 </ b> A is configured by the internal space above the sub-valve port 22 of the main valve body 2 and the internal space of the support member 13. A through hole 25 is formed in the side surface of the main valve body 2, and the valve chamber 1 </ b> A and the sub valve chamber 2 </ b> A are communicated with each other through the through hole 25. A main valve spring 26 is disposed in a compressed state between the support member 13 and the spring receiving portions 13c, 24 of the main valve body 2, and the main valve body 2 causes the main valve seat 1b to be compressed by the main valve spring 26. It is biased in the direction (closed direction).

副弁体3は、全体略円柱状に形成されたステンレス製部材であって、主弁体2の内部に配設され、後述する駆動部4のロータ軸(弁軸)50の下端部に一体に連結され、駆動部4によって進退及び回転駆動されるようになっている。この副弁体3は、その外周面に設けられて副弁ポート22の開度を変更する副弁部31と、副弁部31よりも先端側(下側)にて小径とされた小径部32と、小径部32の先端に設けられて副弁部31よりも大径とされたフランジ部33と、を有している。フランジ部33の上側には、高滑性表面の金属製ワッシャ、フッ素樹脂等の高滑性樹脂製ワッシャ、あるいは高滑性樹脂コーディングされたワッシャからなるスラストワッシャ34が設けられ、このスラストワッシャ34が主弁体2の被係止部23を係止可能な係止部となっている。スラストワッシャ34は、フランジ部33の上面及び被係止部23に当接可能になっており、その当接面同士の摩擦力が極めて小さくなるようになっている。副弁部31とフランジ部33との間である小径部32の側面と、副弁体3の先端部であるフランジ部33の下面と、の間には、副弁体3を貫通する貫通流路35が設けられている。   The sub-valve element 3 is a stainless steel member formed in a substantially cylindrical shape as a whole, and is disposed inside the main valve element 2 and integrated with a lower end portion of a rotor shaft (valve shaft) 50 of the drive unit 4 described later. And is driven forward / backward and rotationally by the drive unit 4. The auxiliary valve body 3 includes an auxiliary valve portion 31 provided on the outer peripheral surface thereof for changing the opening degree of the auxiliary valve port 22, and a small diameter portion having a smaller diameter on the distal end side (lower side) than the auxiliary valve portion 31. 32, and a flange portion 33 provided at the tip of the small diameter portion 32 and having a larger diameter than the sub valve portion 31. A thrust washer 34 is provided on the upper side of the flange portion 33. The thrust washer 34 is made of a metal washer having a highly slippery surface, a washer made of highly slippery resin such as fluororesin, or a washer coded with a slippery resin. Is a locking portion capable of locking the locked portion 23 of the main valve body 2. The thrust washer 34 can be brought into contact with the upper surface of the flange portion 33 and the locked portion 23, and the frictional force between the contact surfaces becomes extremely small. Between the side surface of the small-diameter portion 32 between the sub valve portion 31 and the flange portion 33 and the lower surface of the flange portion 33 that is the tip portion of the sub valve body 3, there is a through flow that penetrates the sub valve body 3. A path 35 is provided.

駆動部4は、電動モータとしてのステッピングモータ41と、ステッピングモータ41の回転により副弁体3を進退させるねじ送り機構42と、ステッピングモータ41の回転を規制するストッパ機構43と、を備える。   The drive unit 4 includes a stepping motor 41 as an electric motor, a screw feed mechanism 42 that advances and retracts the sub-valve body 3 by rotation of the stepping motor 41, and a stopper mechanism 43 that restricts rotation of the stepping motor 41.

ステッピングモータ41は、外周部が多極に着磁されたマグネットロータ44と、ケース15の外周に配設されたステータコイル45と、マグネットロータ44に固定されて軸線L方向に延びるロータ軸50と、を備えている。ステッピングモータ41は、ステータコイル45にパルス信号が与えられることにより、そのパルス数に応じてマグネットロータ44が回転される。   The stepping motor 41 includes a magnet rotor 44 whose outer periphery is magnetized in multiple poles, a stator coil 45 disposed on the outer periphery of the case 15, and a rotor shaft 50 that is fixed to the magnet rotor 44 and extends in the axis L direction. It is equipped with. In the stepping motor 41, when a pulse signal is given to the stator coil 45, the magnet rotor 44 is rotated according to the number of pulses.

ロータ軸50は、固定部材50aを介してマグネットロータ44に固定された長尺棒状の部材であり、ステンレス等の金属材料を切削あるいは転造等の加工を施すことで、副弁体3と一体に形成されている。ロータ軸50の中間部には雄ねじ部50bが一体に形成され、この雄ねじ部52bが支持部材13の雌ねじ部13bに螺合し、これによってねじ送り機構42が構成されている。ロータ軸50の上端部はストッパ機構43のガイド46に挿入され、軸線L方向に案内されるようになっている。一体に形成されるロータ軸50及び副弁体3において、フランジ部33及びスラストワッシャ34と、副弁部31と、雄ねじ部52bと、は順に径が小さくなり、すなわち、スラストワッシャ34の外径が最大であり、次にフランジ部33の外径、その次に副弁部31の外径が小さく、雄ねじ部52bの外径が最小となるように形成されている。   The rotor shaft 50 is a long rod-like member fixed to the magnet rotor 44 via a fixing member 50a, and is integrated with the sub-valve element 3 by cutting or rolling a metal material such as stainless steel. Is formed. A male screw portion 50b is formed integrally with the intermediate portion of the rotor shaft 50, and the male screw portion 52b is screwed into the female screw portion 13b of the support member 13, thereby constituting the screw feed mechanism 42. The upper end portion of the rotor shaft 50 is inserted into the guide 46 of the stopper mechanism 43 and is guided in the direction of the axis L. In the integrally formed rotor shaft 50 and auxiliary valve body 3, the diameters of the flange portion 33 and the thrust washer 34, the auxiliary valve portion 31, and the male screw portion 52b become smaller in order, that is, the outer diameter of the thrust washer 34. Is the largest, the outer diameter of the flange portion 33 is next, the outer diameter of the sub-valve portion 31 is next smaller, and the outer diameter of the male screw portion 52b is the smallest.

駆動部4のマグネットロータ44及びロータ軸50が回転すると、雌ねじ部13bによって雄ねじ部50bが案内され、ねじピッチに応じて軸線L方向にマグネットロータ44及びロータ軸50が移動する。ここで、マグネットロータ44及びロータ軸50は、その正回転に伴って下降し、この下降に伴って副弁体3も下降する。一方、マグネットロータ44及びロータ軸50は、その逆回転に伴って上昇し、この上昇に伴って副弁体3も上昇する。   When the magnet rotor 44 and the rotor shaft 50 of the drive unit 4 are rotated, the male screw portion 50b is guided by the female screw portion 13b, and the magnet rotor 44 and the rotor shaft 50 are moved in the axis L direction according to the screw pitch. Here, the magnet rotor 44 and the rotor shaft 50 are lowered along with the forward rotation, and the sub-valve element 3 is also lowered along with the lowering. On the other hand, the magnet rotor 44 and the rotor shaft 50 rise with the reverse rotation, and the sub-valve element 3 also rises with this rise.

ストッパ機構43は、ケース15の天井部から垂下された円筒棒状のガイド46と、ガイド46の外周に固定されたガイドねじ47と、ガイドねじ47にガイドされて回転かつ上下動可能な可動スライダ48と、を備えている。可動スライダ48には、径方向外側に突出した爪部48aが設けられ、マグネットロータ44には、上方に延びて爪部48aと当接する延長部44aが設けられ、マグネットロータ44が回転すると、延長部44aが爪部48aを押すことで、可動スライダ48がガイドねじ47に倣って回転かつ上下するようになっている。   The stopper mechanism 43 includes a cylindrical rod-shaped guide 46 suspended from the ceiling of the case 15, a guide screw 47 fixed to the outer periphery of the guide 46, and a movable slider 48 that is guided by the guide screw 47 and can be rotated and moved up and down. And. The movable slider 48 is provided with a claw portion 48a that protrudes radially outward, and the magnet rotor 44 is provided with an extension portion 44a that extends upward and comes into contact with the claw portion 48a, and extends when the magnet rotor 44 rotates. When the portion 44 a pushes the claw portion 48 a, the movable slider 48 rotates and moves up and down following the guide screw 47.

ガイドねじ47には、マグネットロータ44の最上端位置を規定する上端ストッパ47aと、マグネットロータ44の最下端位置を規定する下端ストッパ47bと、が形成されている。マグネットロータ44の正回転に伴って下降した可動スライダ48が下端ストッパ47bに当接すると、この当接した位置で可動スライダ48が回転不能となり、これによりマグネットロータ44の回転が規制され、副弁体3の下降も停止される。一方、マグネットロータ44の逆回転に伴って上昇した可動スライダ48が上端ストッパ47aに当接すると、この当接した位置で可動スライダ48が回転不能となり、これによりマグネットロータ44の回転が規制され、副弁体3の上昇も停止される。   The guide screw 47 is formed with an upper end stopper 47 a that defines the uppermost position of the magnet rotor 44 and a lower end stopper 47 b that defines the lowermost position of the magnet rotor 44. When the movable slider 48 lowered with the normal rotation of the magnet rotor 44 comes into contact with the lower end stopper 47b, the movable slider 48 cannot rotate at the contacted position, thereby restricting the rotation of the magnet rotor 44 and the subvalve. The descending of the body 3 is also stopped. On the other hand, when the movable slider 48 raised with the reverse rotation of the magnet rotor 44 comes into contact with the upper end stopper 47a, the movable slider 48 becomes unable to rotate at this contacted position, thereby restricting the rotation of the magnet rotor 44, The raising of the auxiliary valve body 3 is also stopped.

次に、図3、4を参照して電動弁10の詳細構造、その動作について説明する。図3(A),(B)は、それぞれ電動弁10の一部を拡大して示す縦断面図であり、主弁体2及び副弁体3の先端部を拡大して示す縦断面図である。図4は、電動弁10における弁開度と流量の関係を示すグラフである。   Next, the detailed structure and operation of the motor-operated valve 10 will be described with reference to FIGS. 3 (A) and 3 (B) are longitudinal sectional views showing a part of the motor-operated valve 10 in an enlarged manner, and are longitudinal sectional views showing the distal end portions of the main valve body 2 and the sub-valve body 3 in an enlarged manner. is there. FIG. 4 is a graph showing the relationship between the valve opening and the flow rate in the electric valve 10.

図3に示すように、副弁体3の副弁部31は、円柱状の円柱部31aと、この円柱部31aよりも先端に向かって徐々に径が小さくなる円錐台状の円錐部31bと、を有して形成されている。円柱部31aの直径は、主弁体2の副弁ポート22の内径よりも小さく形成され、円柱部31a及び円錐部31bの外周面と副弁ポート22の内周面との隙間によって冷媒が通過する流路Rが形成されている。図3(A)は、マグネットロータ44の最下端位置に対応して円柱部31aが副弁ポート22の内側にある位置であり、すなわち副弁ポート22に最も近接する第一位置の副弁体3を示している。図3(B)は、マグネットロータ44の回転により第一位置から副弁体3が上昇し、スラストワッシャ34が被係止部23に当接した位置であり、すなわち主弁体2に係合する第二位置の副弁体3を示している。副弁体3が第一位置から第二位置に向かって上昇することで、円錐部31bが副弁ポート22の内側に位置するようになり、副弁ポート22の開度が徐々に大きくなり、流路Rを通過する冷媒の流量が増加する。   As shown in FIG. 3, the sub-valve part 31 of the sub-valve element 3 includes a columnar column part 31a, and a truncated cone-shaped cone part 31b whose diameter gradually decreases from the cylinder part 31a toward the tip. , Are formed. The diameter of the cylindrical part 31a is smaller than the inner diameter of the sub valve port 22 of the main valve body 2, and the refrigerant passes through the gap between the outer peripheral surface of the cylindrical part 31a and the conical part 31b and the inner peripheral surface of the sub valve port 22. A flow path R is formed. FIG. 3A shows a position where the cylindrical portion 31 a is located inside the auxiliary valve port 22 corresponding to the lowermost position of the magnet rotor 44, that is, the auxiliary valve body in the first position closest to the auxiliary valve port 22. 3 is shown. FIG. 3B shows a position where the sub-valve element 3 is raised from the first position by the rotation of the magnet rotor 44 and the thrust washer 34 is in contact with the locked portion 23, that is, engaged with the main valve element 2. The secondary valve body 3 in the second position is shown. As the auxiliary valve body 3 rises from the first position toward the second position, the conical portion 31b comes to be located inside the auxiliary valve port 22, and the opening degree of the auxiliary valve port 22 gradually increases. The flow rate of the refrigerant passing through the flow path R increases.

以上の電動弁10は、以下のように動作する。まず、図1及び図3(A)の状態では、主弁体2の主弁部21が主弁座1bに着座し、主弁ポート1cが閉じられた弁閉状態である。一方、第一位置にある副弁体3は、円柱部31aが副弁ポート22の内側に位置し、その隙間に流路Rが形成されている。従って、一次継手管11から弁室1Aに流入し、さらに貫通孔25から副弁室2Aに流入した冷媒は、流路Rから副弁ポート22を通って主弁体2の内部に流れ、さらに副弁体3の貫通流路35を通って副弁体3の先端側に流出し、主弁ポート1cから二次継手管12に向かって流出する。すなわち、副弁体3の貫通流路35によって、スラストワッシャ34と被係止部23との接触面を迂回する迂回流路R’が構成されている。このように、流路R及び迂回流路R’を冷媒が通過することで、図4に示すように、弁開度がゼロであっても微少な流量が生じることとなる。   The above motor operated valve 10 operates as follows. First, in the state of FIG.1 and FIG.3 (A), the main valve part 21 of the main valve body 2 is seated on the main valve seat 1b, and is the valve closed state by which the main valve port 1c was closed. On the other hand, in the auxiliary valve body 3 in the first position, the cylindrical portion 31a is located inside the auxiliary valve port 22, and a flow path R is formed in the gap. Therefore, the refrigerant that flows into the valve chamber 1A from the primary joint pipe 11 and further flows into the sub valve chamber 2A from the through hole 25 flows into the main valve body 2 from the flow path R through the sub valve port 22, It flows out to the front end side of the sub-valve body 3 through the through flow path 35 of the sub-valve body 3, and flows out from the main valve port 1 c toward the secondary joint pipe 12. That is, the bypass passage R ′ that bypasses the contact surface between the thrust washer 34 and the locked portion 23 is configured by the through passage 35 of the sub-valve element 3. As described above, when the refrigerant passes through the flow path R and the bypass flow path R ', a minute flow rate is generated even when the valve opening degree is zero, as shown in FIG.

次に、駆動部4のステッピングモータ41を駆動してマグネットロータ44を逆回転させて副弁体3を上昇させることで、副弁体3の円錐部31bが副弁ポート22の内側に位置するようになり、その隙間に流路Rが形成される。ここで、円錐部31bは徐々に直径が小さくなることから副弁ポート22の内周面との隙間が大きくなり、流路Rが拡大されることとなり、図4に示すように、流量が徐々に増加する。この際、主弁体2の主弁部21が主弁座1bに着座したままであるため、副弁体3が主弁体2に係合する第二位置までは、流量の増加は微少である。このように副弁体3を第一位置と第二位置との間で移動させて開度を変更する制御域が小流量制御域であって、この小流量制御域における副弁体3の開度(ステッピングモータ41の回転量)に対する流量の変化は極微少である。   Next, the stepping motor 41 of the drive unit 4 is driven to reversely rotate the magnet rotor 44 to raise the subvalve body 3 so that the conical portion 31 b of the subvalve body 3 is positioned inside the subvalve port 22. Thus, the flow path R is formed in the gap. Here, since the diameter of the conical portion 31b is gradually reduced, the gap with the inner peripheral surface of the auxiliary valve port 22 is increased, and the flow path R is enlarged. As shown in FIG. 4, the flow rate is gradually increased. To increase. At this time, since the main valve portion 21 of the main valve body 2 remains seated on the main valve seat 1b, the flow rate increases little until the second position where the sub valve body 3 engages with the main valve body 2. is there. Thus, the control region in which the sub-valve element 3 is moved between the first position and the second position to change the opening degree is the small flow control region, and the sub-valve element 3 is opened in the small flow control region. The change in the flow rate with respect to the degree (the rotation amount of the stepping motor 41) is extremely small.

次に、第二位置まで上昇させて主弁体2に係合した副弁体3をさらに上昇させると、図2及び図3(B)に示すように、副弁体3によって主弁体2が引き上げられ、主弁部21が主弁座1bから離間して弁開する。このように主弁体2を着座位置(閉位置)から弁開位置(開位置)に向かって上昇させる制御域が大流量制御域であって、この大流量制御域における主弁体2の開度(ステッピングモータ41の回転量)に対する流量の変化は大きなものとなる。そして、図2及び図3(B)に示す弁開位置まで主弁体2を上昇させた全開状態において、流量は最大となる。ここで、全開状態における流量としては、一次継手管11及び二次継手管12の開口面積に対し、主弁部21と主弁座1bの隙間の開口面積が同等以上となり、主弁部21や主弁ポート1cによって流量が絞られない状態、すなわち電動弁10が単なる流路として機能するような開度に設定されている。また、駆動部4のステッピングモータ41を駆動してマグネットロータ44を正回転させて副弁体3を下降させることで、主弁ばね26に付勢された主弁体2も下降し、その主弁部21が主弁座1bに着座して主弁ポート1cが閉じられ、小流量制御域となる。   Next, when the sub-valve element 3 which is raised to the second position and engaged with the main valve element 2 is further raised, the main valve element 2 is driven by the sub-valve element 3 as shown in FIGS. 2 and 3B. Is pulled up, and the main valve portion 21 is opened away from the main valve seat 1b. Thus, the control region for raising the main valve body 2 from the seating position (closed position) toward the valve open position (open position) is the large flow rate control region, and the main valve body 2 is opened in this large flow rate control region. The change in the flow rate with respect to the degree (the amount of rotation of the stepping motor 41) becomes large. And in the fully open state which raised the main valve body 2 to the valve open position shown in FIG.2 and FIG.3 (B), a flow volume becomes the maximum. Here, as the flow rate in the fully opened state, the opening area of the gap between the main valve portion 21 and the main valve seat 1b is equal to or larger than the opening area of the primary joint pipe 11 and the secondary joint pipe 12, and the main valve portion 21 and The opening is set such that the flow rate is not throttled by the main valve port 1c, that is, the motor-operated valve 10 functions as a simple flow path. Further, by driving the stepping motor 41 of the drive unit 4 to rotate the magnet rotor 44 forward and lowering the sub-valve body 3, the main valve body 2 biased by the main valve spring 26 is also lowered, and the main valve body 2 is lowered. The valve portion 21 is seated on the main valve seat 1b, the main valve port 1c is closed, and a small flow rate control region is established.

以上の本実施形態によれば、主弁体2の内部に配設された副弁体3が貫通流路35を有し、小流量制御時に貫通流路35を通って副弁体3の先端側に冷媒が流れることで、主弁体2と副弁体3との間に異物が噛み込むことを防止することができる。従って、副弁体3の動作不良が生じにくくなり、小流量制御域における流量を適切に制御することができる。   According to the above-described embodiment, the sub-valve element 3 disposed inside the main valve element 2 has the through-flow path 35, and the front end of the sub-valve element 3 passes through the through-flow path 35 during small flow control. When the refrigerant flows to the side, foreign matter can be prevented from being caught between the main valve body 2 and the sub-valve body 3. Accordingly, the malfunction of the sub valve body 3 is less likely to occur, and the flow rate in the small flow rate control region can be appropriately controlled.

また、貫通流路35を設けたことで、副弁体3の係止部であるスラストワッシャ34と主弁体2の内周面との隙間を冷媒が通らないことから、この隙間を小さく設定することが可能になり、スラストワッシャ34と主弁体2の内周面とが互いに摺動して案内する摺動案内部として機能させることができる。さらに、迂回流路R’を貫通流路35で構成したことで、主弁体2の内周面と副弁体3の外周面とが互いに摺接する摺接面を全周に連続させることができる。これにより、副弁体3が進退移動する際には主弁体2の内周面に案内され、副弁体3の振れを抑制することができ、流量制御の精度を向上させることができる。また、主弁体2が主弁座1bに着座する際にもスラストワッシャ34によって振れが規制されることで、弁閉性が向上して弁漏れ量を低減することができる。   In addition, since the through channel 35 is provided, the refrigerant does not pass through the gap between the thrust washer 34 that is the locking portion of the sub-valve element 3 and the inner peripheral surface of the main valve element 2, so this gap is set small. Thus, the thrust washer 34 and the inner peripheral surface of the main valve body 2 can function as a sliding guide portion that slides and guides each other. Furthermore, by configuring the bypass flow path R ′ with the through flow path 35, the slidable contact surface where the inner peripheral surface of the main valve body 2 and the outer peripheral surface of the sub-valve element 3 are in slidable contact with each other can be continued all around. it can. Thereby, when the subvalve element 3 moves forward and backward, it is guided to the inner peripheral surface of the main valve element 2, so that the subvalve element 3 can be prevented from swinging, and the accuracy of flow control can be improved. Further, even when the main valve body 2 is seated on the main valve seat 1b, the vibration is restricted by the thrust washer 34, so that the valve closing performance can be improved and the valve leakage amount can be reduced.

また、副弁体3に一体に連結されたロータ軸50の雄ねじ部50bが雌ねじ部13bに案内されて副弁体3が進退駆動されることで、駆動部4により副弁体3を直接的に駆動することができ、副弁体3のがたつきを抑制して小流量制御域における流量制御の精度を向上させることができる。   Further, the male threaded portion 50b of the rotor shaft 50 that is integrally connected to the subsidiary valve body 3 is guided by the female threaded portion 13b, and the subsidiary valve body 3 is driven forward and backward, so that the subsidiary valve body 3 is directly moved by the drive unit 4. Therefore, it is possible to improve the accuracy of the flow control in the small flow control region by suppressing the backlash of the sub valve body 3.

また、副弁体3の先端部に係止部であるスラストワッシャ34が設けられ、スラストワッシャ34、副弁部31、雄ねじ部52bの順に径が小さくなるように形成されていることで、全体筒状の主弁体2に対してロータ軸50の上端側から雄ねじ部52b、副弁部31、スラストワッシャ34及びフランジ部33の順で差し込むようにして副弁体3を組み付けることができ、電動弁10の製造効率を向上させることができる。   In addition, a thrust washer 34 that is a locking portion is provided at the distal end of the sub-valve body 3, and the thrust washer 34, the sub-valve portion 31, and the male screw portion 52b are formed so that the diameter becomes smaller in order, The sub-valve element 3 can be assembled to the cylindrical main valve element 2 by inserting the male screw part 52b, the sub-valve part 31, the thrust washer 34 and the flange part 33 in this order from the upper end side of the rotor shaft 50. The manufacturing efficiency of the electric valve 10 can be improved.

また、弁本体1に固定される支持部材13が主弁ガイド部13aと雌ねじ部13bとばね受け部13cとを有し、主弁ガイド部13aにより主弁体2を軸線L方向に進退案内することで、主弁体2の振れを抑制することができ、主弁座1bに確実に着座させることにより弁漏れを防止することができる。従って、副弁ポート22を開いた小流量制御時の流量への影響を小さくして、小流量制御域での流量を適切に制御することができる。また、支持部材13が樹脂成形部材で構成されていることで、支持部材13や主弁体2の摩耗を抑制することができ、電動弁10の耐久性を向上させることができる。   The support member 13 fixed to the valve body 1 has a main valve guide portion 13a, a female screw portion 13b, and a spring receiving portion 13c. The main valve guide portion 13a guides the main valve body 2 to advance and retreat in the direction of the axis L. Thus, the swing of the main valve body 2 can be suppressed, and valve leakage can be prevented by reliably seating on the main valve seat 1b. Therefore, the influence on the flow rate at the time of the small flow rate control with the sub valve port 22 opened can be reduced, and the flow rate in the small flow rate control region can be controlled appropriately. Moreover, since the support member 13 is comprised by the resin molding member, abrasion of the support member 13 and the main valve body 2 can be suppressed, and durability of the motor operated valve 10 can be improved.

また、第一位置にある副弁体3の円柱部31aの外周面と主弁体2の内周面との隙間によって流路Rが形成されることで、この流路Rによって常に流量が確保される弁開タイプの電動弁10を構成することができる。このような弁開タイプの電動弁10とすることで、家庭用エアコン等の除湿機能を有した空気調和機に好適に利用することができる。さらに、円柱部31aの外周面と主弁体2の内周面との隙間によって流路Rが形成されることで、この流路Rの開口面積を厳密に規定することができ、第一位置に副弁体3があるときの小流量を適切に確保ことができる。   Further, since the flow path R is formed by the gap between the outer peripheral surface of the cylindrical portion 31a of the sub-valve element 3 in the first position and the inner peripheral surface of the main valve body 2, the flow rate is always secured by the flow path R. The valve-opening type motor-operated valve 10 can be configured. By using such a valve-open type electric valve 10, it can be suitably used for an air conditioner having a dehumidifying function such as a home air conditioner. Furthermore, since the flow path R is formed by the gap between the outer peripheral surface of the cylindrical portion 31a and the inner peripheral surface of the main valve body 2, the opening area of the flow path R can be strictly defined, and the first position A small flow rate when the sub-valve element 3 is present can be appropriately secured.

次に、図5に基づいて本発明の冷凍サイクルシステムについて説明する。冷凍サイクルシステム90は、例えば、家庭用エアコン等の空気調和機に用いられる。前記実施形態の電動弁10は、空気調和機の第1室内側熱交換器91(除湿時冷却器として作動)と第2室内側熱交換器92(除湿時加熱器として作動)との間に設けられており、圧縮機93、四方弁94、室外側熱交換器95および電子膨張弁96とともに、ヒ−トポンプ式冷凍サイクルを構成している。第1室内側熱交換器91と第2室内側熱交換器92及び電動弁10は室内に設置され、圧縮機93、四方弁94、室外側熱交換器95および電子膨張弁96は室外に設置されていて冷暖房装置を構成している。   Next, the refrigeration cycle system of the present invention will be described based on FIG. The refrigeration cycle system 90 is used in an air conditioner such as a home air conditioner, for example. The motor-operated valve 10 of the embodiment is between the first indoor heat exchanger 91 (acting as a dehumidifying cooler) and the second indoor heat exchanger 92 (acting as a dehumidifying heater) of the air conditioner. The heat pump refrigeration cycle is configured together with the compressor 93, the four-way valve 94, the outdoor heat exchanger 95, and the electronic expansion valve 96. The first indoor heat exchanger 91, the second indoor heat exchanger 92, and the electric valve 10 are installed indoors, and the compressor 93, the four-way valve 94, the outdoor heat exchanger 95, and the electronic expansion valve 96 are installed outdoor. It constitutes an air conditioning unit.

なお、本発明は、前記実施形態に限定されるものではなく、本発明の目的が達成できる他の構成等を含み、以下に示すような変形等も本発明に含まれる。例えば、前記実施形態では、家庭用エアコン等の空気調和機に用いられる電動弁10を例示したが、本発明の電動弁は、家庭用エアコンに限らず、業務用エアコンであってもよいし、空気調和機に限らず、各種の冷凍機等にも適用可能である。   In addition, this invention is not limited to the said embodiment, Including other structures etc. which can achieve the objective of this invention, the deformation | transformation etc. which are shown below are also contained in this invention. For example, in the above-described embodiment, the electric valve 10 used in an air conditioner such as a home air conditioner is illustrated. However, the electric valve of the present invention is not limited to a home air conditioner, and may be a commercial air conditioner. The present invention can be applied not only to air conditioners but also to various refrigerators.

また、前記実施形態では、ねじ送り機構42がロータ軸50の雄ねじ部50bと支持部材13の雌ねじ部13bとで構成されていたが、副弁体3を進退駆動するねじ送り機構の構成は前記実施形態のものに限らず、任意の構成が採用可能である。さらに、副弁体を進退駆動する機構としては、ねじ送り機構に限らず、適宜な機構が適用可能である。   Moreover, in the said embodiment, although the screw feed mechanism 42 was comprised by the external thread part 50b of the rotor shaft 50, and the internal thread part 13b of the supporting member 13, the structure of the screw feed mechanism which drives the subvalve body 3 forward / backward is described above. Not only the embodiment but also any configuration can be adopted. Furthermore, the mechanism for driving the auxiliary valve element back and forth is not limited to the screw feed mechanism, and an appropriate mechanism can be applied.

また、前記実施形態では、ストッパ機構43がケース15の天井部に設けられたガイド46、ガイドねじ47及び可動スライダ48によって構成されていたが、ストッパ機構としては、マグネットロータ44の回転を規制できるものであればよく、その配設位置や構造は特に限定されない。例えば、マグネットロータの内側や下側にストッパ機構が設けられていてもよい。   In the above embodiment, the stopper mechanism 43 is constituted by the guide 46, the guide screw 47, and the movable slider 48 provided on the ceiling portion of the case 15. However, as the stopper mechanism, the rotation of the magnet rotor 44 can be restricted. There is no particular limitation on the arrangement position and structure thereof. For example, a stopper mechanism may be provided inside or below the magnet rotor.

また、前記実施形態では、迂回流路R’が貫通流路35によって構成されていたが、図6、7に示すように、迂回流路R’が副弁切欠き部36や主弁切欠き部37で構成されてもよく、これらの貫通流路35、副弁切欠き部36及び主弁切欠き部37を適宜に組み合わせてもよい。具体的には、図6に示すように、副弁切欠き部36は、副弁体3の小径部32からフランジ部33にかけて外周面の一部を切り欠いたDカット面として形成されている。従って、迂回流路R’は、小径部32からスラストワッシャ34の内側を通過するように設けられている。一方、図7に示すように、迂回流路R’は、主弁体2の被係止部23から主弁部21にかけて内周面の一部を切り欠いて形成されている。従って、迂回流路R’は、副弁体3の小径部32からスラストワッシャ34の外側及びフランジ部33の外側を通過するように設けられている。   In the above embodiment, the bypass flow path R ′ is constituted by the through flow path 35, but as shown in FIGS. 6 and 7, the bypass flow path R ′ is formed by the auxiliary valve notch 36 or the main valve notch. The through-flow channel 35, the sub-valve notch 36, and the main valve notch 37 may be appropriately combined. Specifically, as shown in FIG. 6, the auxiliary valve notch 36 is formed as a D-cut surface in which a part of the outer peripheral surface is cut from the small diameter portion 32 to the flange portion 33 of the auxiliary valve body 3. . Therefore, the bypass flow path R ′ is provided so as to pass from the small diameter portion 32 to the inside of the thrust washer 34. On the other hand, as shown in FIG. 7, the bypass flow path R ′ is formed by cutting out a part of the inner peripheral surface from the locked portion 23 of the main valve body 2 to the main valve portion 21. Accordingly, the bypass flow path R ′ is provided so as to pass from the small diameter portion 32 of the auxiliary valve body 3 to the outside of the thrust washer 34 and the outside of the flange portion 33.

以上、本発明の実施の形態について図面を参照して詳述してきたが、具体的な構成はこれらの実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。   As described above, the embodiments of the present invention have been described in detail with reference to the drawings. However, the specific configuration is not limited to these embodiments, and the design can be changed without departing from the scope of the present invention. Is included in the present invention.

10 電動弁
1d 主弁ポート
2 主弁体
3 副弁体
4 駆動部
13 支持部材
13a 主弁ガイド部
13b 雌ねじ部
13c ばね受け部
22 副弁ポート
23 被係止部
26 主弁ばね
31 副弁部
34 スラストワッシャ(係止部)
35 貫通流路
36 副弁切欠き部
37 主弁切欠き部
42 ねじ送り機構
50b 雄ねじ部
91 第1室内側熱交換器
92 第2室内側熱交換器
93 圧縮機
95 室外側熱交換器
R’ 迂回流路
DESCRIPTION OF SYMBOLS 10 Electric valve 1d Main valve port 2 Main valve body 3 Sub valve body 4 Drive part 13 Support member 13a Main valve guide part 13b Female thread part 13c Spring receiving part 22 Sub valve port 23 Locked part 26 Main valve spring 31 Sub valve part 34 Thrust washer (locking part)
35 Through passage 36 Sub valve notch 37 Main valve notch 42 Screw feed mechanism 50b Male thread 91 First indoor heat exchanger 92 Second indoor heat exchanger 93 Compressor 95 Outdoor heat exchanger R ' Detour channel

Claims (6)

弁室の主弁ポートを開閉する主弁体と、前記主弁体に設けられた副弁ポートの開度を可変にする副弁体と、前記副弁体を軸線方向に進退駆動する駆動部と、を備え、前記副弁体が前記副弁ポートの開度を変更する小流量制御域と、前記主弁体が前記主弁ポートを開閉する大流量制御域と、の二段の流量制御域を有する電動弁であって、
前記小流量制御域において、前記副弁体は、前記副弁ポートに最も近接した第一位置と、前記駆動部の駆動力により前記副弁ポートを開く開方向に移動されて前記主弁体に係合する第二位置と、の間を移動し、
前記大流量制御域において、前記主弁体は、前記主弁ポートに着座する閉位置と、前記駆動部の駆動力により前記第二位置に移動した前記副弁体と一体的に移動して前記主弁ポートを開放する開位置と、の間を移動し、
前記主弁体は、全体筒状に形成された内周面に前記副弁ポートと、前記副弁ポートよりも前記主弁ポート側の被係止部と、が設けられ、
前記副弁体は、全体柱状に形成されて前記主弁体の内部に配設されるとともに、当該副弁体の外周面に設けられて前記副弁ポートの開度を変更する副弁部と、前記副弁部よりも先端側に設けられて前記被係止部を係止可能な係止部と、を有し、
前記主弁体及び前記副弁体の少なくとも一方には、前記被係止部と前記係止部との接触面を迂回して前記副弁体の先端部に至る迂回流路が形成されていることを特徴とする電動弁。
A main valve body that opens and closes a main valve port of the valve chamber, a sub-valve body that makes the opening degree of the sub-valve port provided in the main valve body variable, and a drive unit that drives the sub-valve body to advance and retreat in the axial direction Two-stage flow rate control: a small flow rate control region in which the sub valve body changes the opening degree of the sub valve port, and a large flow rate control region in which the main valve body opens and closes the main valve port A motor-operated valve having a region,
In the small flow rate control region, the sub-valve element is moved in the first position closest to the sub-valve port and in the opening direction to open the sub-valve port by the driving force of the driving unit and is moved to the main valve element. Move between the second position to engage,
In the large flow rate control region, the main valve body moves integrally with the closed position seated on the main valve port and the sub-valve body moved to the second position by the driving force of the driving unit. Move between the open position to open the main valve port,
The main valve body is provided with the sub-valve port on the inner peripheral surface formed in an overall cylindrical shape, and a locked portion closer to the main valve port than the sub-valve port,
The sub-valve element is formed in an overall columnar shape and disposed inside the main valve element, and is provided on the outer peripheral surface of the sub-valve element to change the opening of the sub-valve port; A locking portion that is provided on the tip side of the auxiliary valve portion and can lock the locked portion,
At least one of the main valve body and the sub-valve body is formed with a bypass flow path that bypasses the contact surface between the locked portion and the locking portion and reaches the tip of the sub-valve body. An electrically operated valve characterized by that.
前記迂回流路は、
前記副弁部と前記係止部との間の側面から前記副弁体の先端部まで貫通する貫通流路、
前記副弁体の前記係止部を含む外周面を切り欠いた副弁切欠き部、及び、
前記主弁体の内周面を切り欠いた主弁切欠き部、の少なくとも1つで構成されることを特徴とする請求項1に記載の電動弁。
The bypass channel is
A through-flow path that penetrates from the side surface between the sub-valve part and the locking part to the tip of the sub-valve element,
A sub-valve notch portion in which an outer peripheral surface including the locking portion of the sub-valve body is cut out, and
2. The motor-operated valve according to claim 1, wherein the motor-operated valve is configured by at least one of main valve notches formed by notching an inner peripheral surface of the main valve body.
前記駆動部は、前記副弁体に一体に連結された雄ねじ部と、前記雄ねじ部に螺合して案内する雌ねじ部と、を有したねじ送り機構を備え、
前記駆動部の駆動により前記雄ねじ部が前記雌ねじ部に回転案内されることで、前記副弁体が軸線方向に沿って進退駆動されることを特徴とする請求項1又は2に記載の電動弁。
The drive unit includes a screw feed mechanism having a male screw part integrally connected to the sub-valve body, and a female screw part guided by screwing into the male screw part,
3. The motor-operated valve according to claim 1, wherein the sub-valve body is driven to advance and retract along the axial direction by rotating and guiding the male screw portion to the female screw portion by driving the driving portion. .
前記係止部、前記副弁部及び前記雄ねじ部は、この順に径が小さくなるように形成されていることを特徴とする請求項3に記載の電動弁。   The motor-operated valve according to claim 3, wherein the locking portion, the auxiliary valve portion, and the male screw portion are formed so that the diameters are reduced in this order. 前記弁室を構成する弁本体と、前記弁本体に固定される支持部材と、前記主弁体を閉方向に付勢する主弁ばねと、をさらに備え、
前記支持部材は、前記雌ねじ部と、前記主弁体との間に圧縮状態で前記主弁ばねを保持するばね受け部と、前記主弁体を軸線方向に進退案内する主弁ガイド部と、を有して樹脂成形部材で構成されていることを特徴とする請求項3又は4に記載の電動弁。
A valve main body constituting the valve chamber; a support member fixed to the valve main body; and a main valve spring for biasing the main valve body in a closing direction,
The support member includes a spring receiving portion that holds the main valve spring in a compressed state between the female screw portion and the main valve body, and a main valve guide portion that guides the main valve body to advance and retreat in the axial direction. The motor-operated valve according to claim 3, wherein the motor-operated valve is formed of a resin molded member.
圧縮機と、凝縮器と、膨張弁と、蒸発器と、を含む冷凍サイクルシステムであって、
請求項1〜5のいずれか一項に記載の電動弁が、前記膨張弁として用いられていることを特徴とする冷凍サイクルシステム。
A refrigeration cycle system including a compressor, a condenser, an expansion valve, and an evaporator,
The refrigeration cycle system, wherein the motor-operated valve according to any one of claims 1 to 5 is used as the expansion valve.
JP2018016785A 2018-02-01 2018-02-01 Electric valve and refrigeration cycle system Active JP6857624B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018016785A JP6857624B2 (en) 2018-02-01 2018-02-01 Electric valve and refrigeration cycle system
CN201910032327.XA CN110107724B (en) 2018-02-01 2019-01-14 Electric valve and refrigeration cycle system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018016785A JP6857624B2 (en) 2018-02-01 2018-02-01 Electric valve and refrigeration cycle system

Publications (2)

Publication Number Publication Date
JP2019132393A true JP2019132393A (en) 2019-08-08
JP6857624B2 JP6857624B2 (en) 2021-04-14

Family

ID=67483377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018016785A Active JP6857624B2 (en) 2018-02-01 2018-02-01 Electric valve and refrigeration cycle system

Country Status (2)

Country Link
JP (1) JP6857624B2 (en)
CN (1) CN110107724B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114060581A (en) * 2020-08-07 2022-02-18 株式会社鹭宫制作所 Electric valve and refrigeration cycle system
WO2023208036A1 (en) * 2022-04-29 2023-11-02 浙江三花汽车零部件有限公司 Electric valve, and integrated assembly
JP7389265B2 (en) 2020-03-30 2023-11-29 浙江盾安人工環境股▲ふん▼有限公司 Nut assembly and electronic expansion valve
JP7485962B2 (en) 2021-10-25 2024-05-17 ダイキン工業株式会社 Air Conditioning Equipment

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7208127B2 (en) * 2019-10-11 2023-01-18 株式会社鷺宮製作所 Electric valve and refrigeration cycle system
JP7337666B2 (en) * 2019-11-07 2023-09-04 愛三工業株式会社 valve device
CN111022653B (en) * 2019-11-18 2022-03-22 宁波奥克斯电气股份有限公司 Electronic expansion valve, adjusting method and air conditioner
JP7361628B2 (en) * 2020-02-19 2023-10-16 株式会社鷺宮製作所 Electric valve and refrigeration cycle system
JP7349963B2 (en) * 2020-07-01 2023-09-25 株式会社鷺宮製作所 Flow control valve and refrigeration cycle system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5076424U (en) * 1973-11-15 1975-07-03
JP2013164211A (en) * 2012-02-10 2013-08-22 Saginomiya Seisakusho Inc Expansion valve
JP2014020457A (en) * 2012-07-18 2014-02-03 Rinnai Corp Electric flow rate regulating valve

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009036182A (en) * 2007-08-03 2009-02-19 Fuji Koki Corp Control valve for variable capacity compressor
JP3145048U (en) * 2008-07-11 2008-09-25 株式会社鷺宮製作所 Electric expansion valve and refrigeration cycle
JP5726506B2 (en) * 2010-12-21 2015-06-03 株式会社不二工機 Electric pilot type control valve
JP5684746B2 (en) * 2012-02-10 2015-03-18 株式会社鷺宮製作所 Expansion valve
JP5830567B2 (en) * 2014-04-23 2015-12-09 株式会社不二工機 Motorized valve
JP6721175B2 (en) * 2016-06-13 2020-07-08 株式会社不二工機 Motorized valve

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5076424U (en) * 1973-11-15 1975-07-03
JP2013164211A (en) * 2012-02-10 2013-08-22 Saginomiya Seisakusho Inc Expansion valve
JP2014020457A (en) * 2012-07-18 2014-02-03 Rinnai Corp Electric flow rate regulating valve

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7389265B2 (en) 2020-03-30 2023-11-29 浙江盾安人工環境股▲ふん▼有限公司 Nut assembly and electronic expansion valve
CN114060581A (en) * 2020-08-07 2022-02-18 株式会社鹭宫制作所 Electric valve and refrigeration cycle system
JP2022030466A (en) * 2020-08-07 2022-02-18 株式会社鷺宮製作所 Motor-operated valve and refrigeration cycle system
JP7372885B2 (en) 2020-08-07 2023-11-01 株式会社鷺宮製作所 Electric valve and refrigeration cycle system
JP7485962B2 (en) 2021-10-25 2024-05-17 ダイキン工業株式会社 Air Conditioning Equipment
WO2023208036A1 (en) * 2022-04-29 2023-11-02 浙江三花汽车零部件有限公司 Electric valve, and integrated assembly

Also Published As

Publication number Publication date
CN110107724A (en) 2019-08-09
CN110107724B (en) 2021-02-19
JP6857624B2 (en) 2021-04-14

Similar Documents

Publication Publication Date Title
JP6845817B2 (en) Electric valve and refrigeration cycle system
JP2019132393A (en) Motor-operated valve and refrigeration cycle system
CN114483980B (en) Electric valve and refrigeration cycle system
JP3145048U (en) Electric expansion valve and refrigeration cycle
JP6194157B2 (en) Motorized valve
JP6209231B2 (en) Motorized valve
JP6959900B2 (en) Valve gear, motorized valves and refrigeration cycle system
JP6175715B2 (en) Stepping motor driven control valve
JP4570484B2 (en) Composite valve, heat pump type air conditioner and control method thereof
JP7383774B2 (en) Electric valve and refrigeration cycle system
JP4476775B2 (en) Electric control valve and refrigeration cycle equipment
JP6359593B2 (en) Motorized valve
JP2022095807A (en) Motor-operated valve and refrigerating cycle system
JP2024010029A (en) Motor-operated valve and refrigeration cycle system
JP6722230B2 (en) Motorized valve
JP6194403B2 (en) Motorized valve
CN111022666A (en) Stop structure of electronic expansion valve
JP7349415B2 (en) Two-stage electric valve and refrigeration cycle system
JP7491734B2 (en) Motor-operated valve and refrigeration cycle system
CN113217640B (en) Electric valve and refrigeration cycle system
JP7478881B2 (en) Motor-operated valve and refrigeration cycle system
JP7349963B2 (en) Flow control valve and refrigeration cycle system
JP7264975B2 (en) Electric valve and refrigeration cycle system
CN113217639A (en) Electric valve and refrigeration cycle system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210322

R150 Certificate of patent or registration of utility model

Ref document number: 6857624

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150