JP5726506B2 - Electric pilot type control valve - Google Patents

Electric pilot type control valve Download PDF

Info

Publication number
JP5726506B2
JP5726506B2 JP2010284560A JP2010284560A JP5726506B2 JP 5726506 B2 JP5726506 B2 JP 5726506B2 JP 2010284560 A JP2010284560 A JP 2010284560A JP 2010284560 A JP2010284560 A JP 2010284560A JP 5726506 B2 JP5726506 B2 JP 5726506B2
Authority
JP
Japan
Prior art keywords
pilot
valve body
valve
main
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010284560A
Other languages
Japanese (ja)
Other versions
JP2012132498A (en
Inventor
義則 内田
義則 内田
友也 東家
友也 東家
共存 大内
共存 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Original Assignee
Fujikoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp filed Critical Fujikoki Corp
Priority to JP2010284560A priority Critical patent/JP5726506B2/en
Publication of JP2012132498A publication Critical patent/JP2012132498A/en
Application granted granted Critical
Publication of JP5726506B2 publication Critical patent/JP5726506B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Electrically Driven Valve-Operating Means (AREA)
  • Fluid-Driven Valves (AREA)

Description

本発明は、空調機等のヒートポンプ装置に使用するのに好適なパイロット型制御弁に係り、特に、パイロット弁として電動式のものを用いた電動式パイロット型制御弁に関する。   The present invention relates to a pilot-type control valve suitable for use in a heat pump apparatus such as an air conditioner, and more particularly to an electric pilot-type control valve using an electric type as a pilot valve.

一般に、パイロット型制御弁は、パイロット弁として電磁弁を用いた電磁式のものと、パイロット弁として電動弁を用いた電動式のものとがあり、いずれも小口径のパイロット弁部を開けば、それに応動して大口径の主弁部を開くことができるので、主弁の開閉を小さな駆動力で行える等の利点を有しているが、電磁式のものは、実質的に全閉状態と全開状態の二位置しかとることができず、弁開度(開口面積)をきめ細かく調整することはできない等の短所を有している。それに対し、電動式のものは、電動モータ(ステッピングモータ)に供給するパルス数等を変えることにより、弁開度(開口面積)をきめ細かく調整することが可能であるという利点を有している。 In general, the pilot-type control valve, and of an electromagnetic type using the electromagnetic valve as a pilot valve, while others of the electric type using an electric valve as a pilot valve, both when being opened pilot valve portion of the small diameter In response to this, the large-diameter main valve portion can be opened, so there is an advantage that the main valve can be opened and closed with a small driving force, but the electromagnetic type is substantially fully closed. Only two positions in the fully open state, and the valve opening (opening area) cannot be finely adjusted. On the other hand, the electric type has the advantage that the valve opening degree (opening area) can be finely adjusted by changing the number of pulses supplied to the electric motor (stepping motor).

図5は、かかる電動式パイロット型制御弁の一例を示す縦断面図である(下記特許文献1も参照)。   FIG. 5 is a longitudinal sectional view showing an example of such an electric pilot type control valve (see also Patent Document 1 below).

図示例の電動式パイロット型制御弁1’は、マルチエアコン等の空調機において、室外機と室内機との間に配在するのに好適なもので、主弁5と該主弁5の上側に設けられた電動式パイロット弁7とからなっている。   The electric pilot type control valve 1 'in the illustrated example is suitable for being distributed between an outdoor unit and an indoor unit in an air conditioner such as a multi air conditioner. And an electric pilot valve 7 provided in the motor.

前記主弁5は、穴付き底部を有する円筒状の弁室筒体11とこの弁室筒体11の底部穴に溶接等により密封固定された弁座部材12とからなる弁本体10を有し、該弁本体10には、弁室13が形成され、また、周側部には高圧の冷媒を弁室13に導入するための入口導管(継手)41が連結され、底部(弁座部材12)には弁室13から冷媒を導出するための出口導管(継手)42が連結され、さらに、弁本体10(弁室筒体11)の上面開口を塞ぐように、画成台座部材32が溶接等により密封固定されている。   The main valve 5 has a valve body 10 including a cylindrical valve chamber cylinder 11 having a bottom with a hole, and a valve seat member 12 hermetically fixed to the bottom hole of the valve chamber cylinder 11 by welding or the like. The valve body 10 is formed with a valve chamber 13, and an inlet conduit (joint) 41 for introducing a high-pressure refrigerant into the valve chamber 13 is connected to the peripheral side portion, and the bottom portion (the valve seat member 12). ) Is connected to an outlet conduit (joint) 42 for leading out the refrigerant from the valve chamber 13, and the defined base member 32 is welded so as to close the upper surface opening of the valve body 10 (valve chamber cylinder 11). It is sealed and fixed by etc.

前記主弁5の弁座部材12には円錐面の主弁座14a付き主弁出口14が設けられ、弁本体10(弁室筒体11)内における弁座部材12上には、断面逆凸字状のピストン型の主弁体20が摺動自在に嵌挿され、この主弁体20(の大径部20A)と前記画成台座部材32との間には背圧室33が画成されている。   The valve seat member 12 of the main valve 5 is provided with a main valve outlet 14 with a main valve seat 14a having a conical surface, and the valve seat member 12 in the valve body 10 (valve chamber cylinder 11) has an inverted convex cross section. A piston-shaped main valve body 20 is slidably fitted, and a back pressure chamber 33 is defined between the main valve body 20 (the large diameter portion 20A thereof) and the defining base member 32. Has been.

前記主弁体20には、その下端部(小径部20B)に前記主弁座14aに接離する主弁体部21が設けられ、また、主弁体20の大径部20Aには、前記弁室13と背圧室33とを連通するように小径の均圧孔24が形成され、また、大径部20Aと弁室筒体11との間にはシール材58が配在されている。   The main valve body 20 is provided with a main valve body portion 21 that contacts and separates from the main valve seat 14a at a lower end portion (small diameter portion 20B), and the large diameter portion 20A of the main valve body 20 includes the A small diameter equalizing hole 24 is formed so as to allow the valve chamber 13 and the back pressure chamber 33 to communicate with each other, and a sealing material 58 is disposed between the large diameter portion 20 </ b> A and the valve chamber cylinder 11. .

前記主弁体20は、その大径部20Aの下端面部20aと前記弁座部材12との間に縮装された圧縮コイルばね(開弁ばね)25により常時開弁方向(上方)に付勢されている。詳細には、前記圧縮コイルばね25の上端部25aを受ける、前記主弁体20における大径部20Aの下端面部20a(上側ばね受け部)には、前記上端部25aの不所望な挙動を抑えるべく、該上端部25aが外挿される短円柱状の下向き突出部20bが設けられている。   The main valve body 20 is always urged in the valve opening direction (upward) by a compression coil spring (valve opening spring) 25 that is compressed between the lower end surface portion 20a of the large diameter portion 20A and the valve seat member 12. Has been. Specifically, an undesired behavior of the upper end portion 25a is suppressed on the lower end surface portion 20a (upper spring receiving portion) of the large diameter portion 20A of the main valve body 20 that receives the upper end portion 25a of the compression coil spring 25. Accordingly, a short cylindrical downward projecting portion 20b into which the upper end portion 25a is extrapolated is provided.

また、前記弁座部材12は、主弁座14a付き主弁出口14が形成されている小径円筒部12Aと、前記出口導管(継手)42が内挿連結されている大径円筒部12Bと、前記弁室筒体11の下端部が連結される段付き鍔状部12Cとを有し、該段付き鍔状部12Cの段丘面部(上面)12cが前記圧縮コイルばね25の下端部25bを受ける下側ばね受け部とされ、前記圧縮コイルばね25の下端部25bの不所望な挙動を抑えるべく、前記小径円筒部12Aに前記下端部25bが外挿されている。   The valve seat member 12 includes a small diameter cylindrical portion 12A in which a main valve outlet 14 with a main valve seat 14a is formed, a large diameter cylindrical portion 12B in which the outlet conduit (joint) 42 is inserted and connected, A stepped hook-like portion 12C to which the lower end of the valve chamber cylinder 11 is connected, and a stepped surface (upper surface) 12c of the stepped hook-like portion 12C receives the lower end 25b of the compression coil spring 25; In order to suppress an undesired behavior of the lower end portion 25b of the compression coil spring 25, the lower end portion 25b is extrapolated to the small diameter cylindrical portion 12A.

さらに、前記主弁体20には、その中央を上下に貫通するようにパイロット通路28が形成されている。詳細には、前記主弁体20の上面部中央には、後述するパイロット弁体35の下端部に設けられたパイロット弁体部36が接離するパイロット弁座部材22が圧入固定されている。パイロット弁座部材22は、パイロット弁座27a付きのパイロット弁口27が設けられ、このパイロット弁口27が前記パイロット通路28の上端部となっている。   Further, a pilot passage 28 is formed in the main valve body 20 so as to penetrate the center vertically. Specifically, a pilot valve seat member 22 to which a pilot valve body portion 36 provided at a lower end portion of a pilot valve body 35 to be described later contacts and separates is press-fitted and fixed at the center of the upper surface portion of the main valve body 20. The pilot valve seat member 22 is provided with a pilot valve port 27 with a pilot valve seat 27 a, and this pilot valve port 27 is an upper end portion of the pilot passage 28.

前記主弁5の上側に設けられた電動式パイロット弁7は、前記したパイロット弁座27aに接離するパイロット弁体部36を有する段付きニードル状のパイロット弁体35の他、前記画成台座部材32にその下端部が溶接により密封接合されたキャン34と、このキャン34の内周に所定の間隙をあけて配在されて、回転軸線O回りに回転せしめられるロータ55と、該ロータ55を回転駆動すべくキャン34に外装されたステータ50Aと、を備えている。   The electric pilot valve 7 provided on the upper side of the main valve 5 includes a stepped needle-like pilot valve body 35 having a pilot valve body portion 36 that contacts and separates from the pilot valve seat 27a, and the defined pedestal. A can 34 whose lower end is sealed and joined to the member 32 by welding, a rotor 55 disposed around the inner periphery of the can 34 with a predetermined gap, and rotated about the rotation axis O, the rotor 55 And a stator 50 </ b> A that is externally mounted on the can 34 so as to be rotationally driven.

前記ステータ50Aは、磁性材からなるヨーク51と、このヨーク51にボビン52を介して巻回される上下のステータコイル53,53と、樹脂モールドカバー56とからなり、ロータ55とステータ50Aによりステッピングモータ50が構成されている。   The stator 50A includes a yoke 51 made of a magnetic material, upper and lower stator coils 53, 53 wound around the yoke 51 via a bobbin 52, and a resin mold cover 56, and is stepped by the rotor 55 and the stator 50A. A motor 50 is configured.

前記キャン34は、ステンレス等の非磁性の金属板を素材として、深絞り加工等により天井を有する円筒状に形成されたもので、その下端部(開口端縁部)が、画成台座部材32の上部段差部に突き合わせ溶接により密封接合され、内部は気密状態に保たれている。   The can 34 is made of a non-magnetic metal plate such as stainless steel as a material and is formed into a cylindrical shape having a ceiling by deep drawing or the like, and the lower end portion (opening edge portion) of the can 34 is the defining pedestal member 32. It is hermetically sealed by butt welding to the upper stepped portion, and the inside is kept airtight.

前記パイロット弁体35(のパイロット弁体部36)をパイロット弁座27aに接離させる駆動機構は、パイロット弁体35が摺動自在に嵌挿された筒状のガイドブッシュ37とその外周に配在された下方開口の筒状の弁体ホルダ40とに形成されるねじ送り機構60とされる。すなわち、前記ガイドブッシュ37は、画成台座部材32にその下端部が圧入(又は螺合)固定されるとともに、その中央部付近に雄ねじ部62が形成され、前記弁体ホルダ40は、ガイドブッシュ37の雄ねじ部(固定ねじ部)62に螺合する雌ねじ部(移動ねじ部)61が形成され、また、その天底中央部にパイロット弁体35の上部小径部が相対回転及び相対移動可能に挿通せしめられている。パイロット弁体35の上部小径部の上端部は、弁体ホルダ40の天底上面(凹部)に乗せられたナット44に圧入固定されている。   The drive mechanism for bringing the pilot valve body 35 (the pilot valve body portion 36) into and out of contact with the pilot valve seat 27a is arranged on a cylindrical guide bush 37 into which the pilot valve body 35 is slidably inserted and an outer periphery thereof. The screw feed mechanism 60 is formed on the existing cylindrical valve body holder 40 having a lower opening. That is, the lower end portion of the guide bush 37 is press-fitted (or screwed) and fixed to the defining pedestal member 32, and a male screw portion 62 is formed in the vicinity of the center portion thereof. A female screw portion (moving screw portion) 61 that is screwed into the male screw portion (fixed screw portion) 62 is formed, and the upper small-diameter portion of the pilot valve body 35 is capable of relative rotation and relative movement at the center of the nadir. It is inserted. The upper end portion of the upper small-diameter portion of the pilot valve body 35 is press-fitted and fixed to a nut 44 placed on the top surface (concave portion) of the valve body holder 40.

また、前記パイロット弁体35は、弁体ホルダ40の天底とパイロット弁体35の中間段差部との間に縮装された緩衝用のコイルばね38によって常時下方に付勢されている。ガイドブッシュ37の側面には背圧室33とキャン34内の均圧を図る均圧孔37aが形成されている。   The pilot valve body 35 is always urged downward by a buffering coil spring 38 that is mounted between the nadir of the valve body holder 40 and the intermediate step portion of the pilot valve body 35. A pressure equalizing hole 37 a for equalizing the pressure in the back pressure chamber 33 and the can 34 is formed on the side surface of the guide bush 37.

弁体ホルダ40の天底上には、コイルばねからなる復帰ばね45が設けられている。復帰ばね45は、ガイドブッシュ37の固定ねじ部62と弁体ホルダ40の移動ねじ部61との螺合が外れたときに、キャン34の天井に当接して固定ねじ部62と移動ねじ部61との螺合を復帰させるように働く。   A return spring 45 made of a coil spring is provided on the top of the valve body holder 40. The return spring 45 abuts against the ceiling of the can 34 when the fixed screw portion 62 of the guide bush 37 and the moving screw portion 61 of the valve element holder 40 are unscrewed, and the return spring 45 contacts the ceiling of the can 34. It works to restore the screwing.

弁体ホルダ40とロータ55とは支持リング43を介して結合されており、支持リング43に弁体ホルダ40の上部突部がかしめ固定され、これにより、ロータ55、支持リング43及び弁体ホルダ40が一体的に連結されている。   The valve body holder 40 and the rotor 55 are coupled via a support ring 43, and the upper protrusion of the valve body holder 40 is caulked and fixed to the support ring 43, whereby the rotor 55, the support ring 43, and the valve body holder are fixed. 40 are integrally connected.

前記ガイドブッシュ37には、ストッパ機構の一方を構成する下ストッパ体(固定ストッパ)66が固着され、弁体ホルダ40にはストッパ機構の他方を構成する上ストッパ体(移動ストッパ)67が固着されている。   A lower stopper body (fixed stopper) 66 constituting one of the stopper mechanisms is fixed to the guide bush 37, and an upper stopper body (moving stopper) 67 constituting the other stopper mechanism is fixed to the valve body holder 40. ing.

なお、前記主弁体20の大径部20Aの外径Daは、主弁出口14の口径Dbの1.5〜3倍とされるとともに、前記ロータ55の外径Dcよりも大きくされ、また、主弁出口14の口径は、パイロット弁口27の口径の3〜9倍とされ、パイロット弁口27の口径は、均圧孔24の孔径(最小部)より大きくされている。   The outer diameter Da of the large-diameter portion 20A of the main valve body 20 is 1.5 to 3 times the diameter Db of the main valve outlet 14, and is larger than the outer diameter Dc of the rotor 55. The diameter of the main valve outlet 14 is 3 to 9 times the diameter of the pilot valve port 27, and the diameter of the pilot valve port 27 is larger than the diameter (minimum portion) of the pressure equalizing hole 24.

ここで、図示例の電動式パイロット型制御弁1’において、弁室13の圧力をP1、背圧室33の圧力をP2、主弁出口14の圧力をP3、弁室筒体11の水平断面積(主弁体20の受圧面積)をAp、主弁出口14の水平断面積をAv、圧縮コイルばね(開弁ばね)25の付勢力をPfとし、主弁体20を押し上げる力を開弁力、主弁体20を押し下げる力を閉弁力とすれば、主弁開弁条件は、
閉弁力=P2×Ap<開弁力=P1×(Ap-Av)+P3×Av+Pf
となる。
Here, in the electric pilot type control valve 1 ′ shown in the drawing, the pressure in the valve chamber 13 is P1, the pressure in the back pressure chamber 33 is P2, the pressure in the main valve outlet 14 is P3, and the valve chamber cylinder 11 is horizontally disconnected. Ap is the area (pressure receiving area of the main valve body 20), Av is the horizontal cross-sectional area of the main valve outlet 14, and Pf is the urging force of the compression coil spring (open valve spring) 25. If the force, the force that pushes down the main valve body 20 is the valve closing force, the main valve opening condition is
Valve closing force = P2 × Ap <Valve opening force = P1 × (Ap−Av) + P3 × Av + Pf
It becomes.

このような構成とされた図示例の電動式パイロット型制御弁1’にあっては、前記主弁5が閉状態(主弁体20の主弁体部21が主弁座14aに着座している状態)にあり、かつ、電動式パイロット弁7が開状態(パイロット弁体35がパイロット弁座27aから離れている状態)のとき、ステッピングモータ50(ステータコイル53,53)に例えば順位相でパルス供給を行って、ロータ55をガイドブッシュ37に対して一方向に回転させると、ガイドブッシュ37の固定ねじ部62と弁体ホルダ40の移動ねじ部61とのねじ送りにより、弁体ホルダ40が下方に移動してパイロット弁体35のパイロット弁体部36がパイロット弁座27aに着座圧接して閉状態となる。   In the electric pilot-type control valve 1 'of the illustrated example having such a configuration, the main valve 5 is in a closed state (the main valve body portion 21 of the main valve body 20 is seated on the main valve seat 14a. And the electric pilot valve 7 is in an open state (a state in which the pilot valve body 35 is separated from the pilot valve seat 27a), the stepping motor 50 (stator coils 53, 53) is, for example, in a rank phase. When pulse supply is performed and the rotor 55 is rotated in one direction with respect to the guide bush 37, the valve body holder 40 is fed by screw feed between the fixing screw portion 62 of the guide bush 37 and the moving screw portion 61 of the valve body holder 40. Moves downward, the pilot valve body portion 36 of the pilot valve body 35 is seated and pressed against the pilot valve seat 27a, and is closed.

この時点では、上ストッパ体67は未だ下ストッパ体66に当接しておらず、パイロット弁体35のパイロット弁体部36がパイロット弁座27aに着座したまま弁体ホルダ40はさらに回転下降する。このときは、パイロット弁体35に対して弁体ホルダ40が下降するため、緩衝用のコイルばね38が圧縮せしめられることにより弁体ホルダ40の下降力は吸収される。その後、ロータ55がさらに回転して弁体ホルダ40が下降すると、上ストッパ体67が下ストッパ体66に衝接し、ステータコイル53,53に対するパルス供給が続行されても弁体ホルダ40の下降は強制的に停止される。   At this time, the upper stopper body 67 is not yet in contact with the lower stopper body 66, and the valve body holder 40 is further rotated and lowered while the pilot valve body portion 36 of the pilot valve body 35 is seated on the pilot valve seat 27a. At this time, since the valve body holder 40 is lowered with respect to the pilot valve body 35, the descent force of the valve body holder 40 is absorbed by the compression coil spring 38 being compressed. Thereafter, when the rotor 55 further rotates and the valve body holder 40 is lowered, the upper stopper body 67 comes into contact with the lower stopper body 66 and the valve body holder 40 is lowered even if the pulse supply to the stator coils 53 and 53 is continued. It is forcibly stopped.

上記のように主弁5及びパイロット弁7が閉状態にあるときには、入口導管41から弁室13に導入された高圧(圧力P1)の冷媒は、均圧孔24を介して背圧室33に導入され、背圧室33の圧力P2が高圧となるので、主弁体20の主弁体部21が主弁座4aに強く押し付けられる。このとき(パルス数が0からTaまで)の、当該電動式パイロット型制御弁1’における入口導管41側から主弁出口14を介して出口導管42側へ流出する冷媒流量は、図6に示される如くに0となる。   When the main valve 5 and the pilot valve 7 are in the closed state as described above, the high-pressure (pressure P1) refrigerant introduced from the inlet conduit 41 into the valve chamber 13 enters the back pressure chamber 33 via the pressure equalizing hole 24. Since the pressure P2 in the back pressure chamber 33 is increased, the main valve body portion 21 of the main valve body 20 is strongly pressed against the main valve seat 4a. FIG. 6 shows the flow rate of the refrigerant flowing out from the inlet conduit 41 side to the outlet conduit 42 side through the main valve outlet 14 in the electric pilot-type control valve 1 ′ at this time (number of pulses from 0 to Ta). 0 as it is.

前記主弁5及びパイロット弁7が閉状態にあるときから、ステッピングモータ50(ステータコイル53,53)に例えば逆位相でパルス供給を行って、ロータ55をガイドブッシュ37に対して前記とは逆方向に回転させると、ガイドブッシュ37の固定ねじ部62と弁体ホルダ40の移動ねじ部61とのねじ送りにより、パルス数(回転量)がTaとなったとき、弁体ホルダ40の上方移動に伴ってパイロット弁体35のパイロット弁体部36がパイロット弁座27aから離れ始めてパイロット弁7が開き始め、パルス数がTbになるまで、背圧室33の冷媒がパイロット通路28を通じて出口導管42に流出(当該制御弁1’の冷媒流量が徐々に微増)し、背圧室33の圧力P2が徐々に減圧される。   Since the main valve 5 and the pilot valve 7 are in the closed state, for example, pulses are supplied to the stepping motor 50 (stator coils 53, 53) in the opposite phase, and the rotor 55 is reversed with respect to the guide bush 37. When the number of pulses (rotation amount) becomes Ta due to screw feed between the fixing screw portion 62 of the guide bush 37 and the moving screw portion 61 of the valve body holder 40, the valve body holder 40 moves upward. Accordingly, the pilot valve body portion 36 of the pilot valve body 35 begins to move away from the pilot valve seat 27a, the pilot valve 7 begins to open, and the refrigerant in the back pressure chamber 33 passes through the pilot passage 28 until the number of pulses reaches Tb. (The refrigerant flow rate of the control valve 1 ′ gradually increases slightly), and the pressure P2 in the back pressure chamber 33 is gradually reduced.

そして、パルス数(回転量)がTbになると、パイロット弁体35のパイロット弁体部36がパイロット弁座27aから所定距離だけ離れて冷媒流量がJaとなり、主弁体20を押し上げる力(開弁力)が主弁体20を押し下げる力(閉弁力)に打ち勝ち、主弁体20が押し上げられて、主弁体部21が主弁座4aから離れ始め、主弁5が開き始める。   When the number of pulses (rotation amount) reaches Tb, the pilot valve body portion 36 of the pilot valve body 35 is separated from the pilot valve seat 27a by a predetermined distance, the refrigerant flow rate becomes Ja, and the force (valve opening) pushes up the main valve body 20. Force) overcomes the force (valve closing force) that pushes down the main valve body 20, the main valve body 20 is pushed up, the main valve body portion 21 begins to move away from the main valve seat 4a, and the main valve 5 begins to open.

続いて、パルス数をさらに増加させていくと、パルス数がTcになるまで、パイロット弁体35の上昇移動に追従するように、主弁体20が押し上げられる。詳細には、パイロット弁体35のパイロット弁体部36がパイロット弁座27aから前記所定距離だけ離れた状態、つまり、電動式パイロット弁7の開度を略一定に保った状態で、前記パイロット弁体35及び主弁体20が一緒に上方(開弁方向)に移動する。これにより、パルス数(回転量)がTbからTcの間は、当該電動式パイロット型制御弁1における冷媒流量が一定の勾配をもって滑らかに増加していく。すなわち、パルス数がTbからTcになるまでは、パイロット弁体35のパイロット弁体部36がパイロット弁座27aから所定距離だけ離れた状態を維持したまま、パイロット弁体35と主弁体20とがパルス数(回転量)に対して同距離ずつ上昇する(ように、各部の寸法仕様等が設定されている)。   Subsequently, when the number of pulses is further increased, the main valve body 20 is pushed up so as to follow the upward movement of the pilot valve body 35 until the number of pulses reaches Tc. Specifically, in a state where the pilot valve body portion 36 of the pilot valve body 35 is separated from the pilot valve seat 27a by the predetermined distance, that is, in a state where the opening degree of the electric pilot valve 7 is maintained substantially constant, The body 35 and the main valve body 20 move upward (in the valve opening direction) together. As a result, when the number of pulses (rotation amount) is between Tb and Tc, the refrigerant flow rate in the electric pilot control valve 1 increases smoothly with a constant gradient. That is, until the number of pulses is changed from Tb to Tc, the pilot valve body 35 and the main valve body 20 remain in a state where the pilot valve body portion 36 of the pilot valve body 35 is separated from the pilot valve seat 27a by a predetermined distance. Increases by the same distance with respect to the number of pulses (rotation amount) (so that dimensional specifications and the like of each part are set).

そして、パルス数がTcになると、主弁体20の上面ストッパ部29が画成台座部材32の下面に設けられた固定ストッパ39に接当し、主弁体20の上昇が阻止される。したがって、パルス数がTcを越えても、当該電動式パイロット型制御弁1における冷媒流量(開度)は、パルス数がTcのときのJbよりは大きくならず、このときの開度(最大開度)を維持することになる。   When the number of pulses reaches Tc, the upper surface stopper portion 29 of the main valve body 20 comes into contact with the fixed stopper 39 provided on the lower surface of the defining pedestal member 32 and the main valve body 20 is prevented from rising. Therefore, even if the pulse number exceeds Tc, the refrigerant flow rate (opening degree) in the electric pilot-type control valve 1 does not become larger than Jb when the pulse number is Tc, and the opening degree at this time (maximum opening). Degree) will be maintained.

以上のように、図示例の電動式パイロット型制御弁1’では、パイロット弁として、電磁式ではなく電動式のものを用いているので、パイロット弁7に供給するパルス数に応じて冷媒流量を滑らかに変化させることができるとともに、均圧時間を早くすることができる。そのため、弁開度(開口面積)を任意にかつきめ細かく調整することができる。   As described above, in the electric pilot type control valve 1 ′ shown in the figure, the pilot valve is an electric type instead of an electromagnetic type, so that the refrigerant flow rate is adjusted according to the number of pulses supplied to the pilot valve 7. The pressure can be changed smoothly and the pressure equalization time can be shortened. Therefore, the valve opening degree (opening area) can be arbitrarily and finely adjusted.

特開2008-64301号公報JP 2008-64301 A

しかしながら、前記した如くの従来の電動式パイロット型制御弁1’では、主弁5の開弁時において弁室13と背圧室33との圧力バランスが不安定になって、所謂チャタリングが発生し、耳障りな異音(連続叩音、振動音)が出るという問題があった。このチャタリングの発生は、次のようなことが原因と考えられる。   However, in the conventional electric pilot control valve 1 ′ as described above, the pressure balance between the valve chamber 13 and the back pressure chamber 33 becomes unstable when the main valve 5 is opened, and so-called chattering occurs. There was a problem that an unusual sound (continuous beating sound, vibration sound) was generated. The occurrence of chattering is considered to be caused by the following.

すなわち、前述したように、パイロット弁7が開き始めると、背圧室33の冷媒はパイロット通路28を介して主弁出口14側に抜け始め、背圧室33の圧力P2が徐々に下がり、背圧室33の圧力P2が前記主弁開弁条件[閉弁力=P2×Ap<開弁力=P1×(Ap-Av)+P3×Av+Pf]を満たすまで下がったとき、主弁5が開き始める。主弁5が開くと、弁室13の圧力P1は主弁出口14の圧力P3より相当大きいので、弁室13の冷媒は、主弁座14aと主弁体部21との間の隙間を通って主弁出口14側に急速に抜け、弁室13の圧力P1が急激に下がる。   That is, as described above, when the pilot valve 7 starts to open, the refrigerant in the back pressure chamber 33 starts to escape to the main valve outlet 14 side through the pilot passage 28, and the pressure P2 in the back pressure chamber 33 gradually decreases, and the back pressure chamber 33 gradually decreases. When the pressure P2 in the pressure chamber 33 decreases until the main valve opening condition [valve closing force = P2 × Ap <valve opening force = P1 × (Ap−Av) + P3 × Av + Pf]], the main valve 5 starts to open. . When the main valve 5 is opened, the pressure P1 in the valve chamber 13 is considerably larger than the pressure P3 in the main valve outlet 14, so that the refrigerant in the valve chamber 13 passes through the gap between the main valve seat 14a and the main valve body 21. As a result, the pressure P1 in the valve chamber 13 drops rapidly.

このように弁室13の圧力P1が急激に下がると、[閉弁力>開弁力]となり、主弁体20が急激に押し下げられて、主弁体部21が主弁座14aに叩き付けられるようにしてが閉じられる(叩音が出る)。このようにして主弁5が閉じられると、主弁出口14側に抜ける冷媒流量は、パイロット通路28を介したものだけとなるため、背圧室33の圧力P2が下がり、[閉弁力<開弁力]となり、主弁5が再び開き、以下、上記と同様な挙動を繰り返し、これがチャタリングとなる。   Thus, when the pressure P1 in the valve chamber 13 suddenly decreases, [valve closing force> valve opening force] is established, the main valve body 20 is rapidly pushed down, and the main valve body portion 21 is hit against the main valve seat 14a. Is closed (sounding sound). When the main valve 5 is closed in this way, the flow rate of refrigerant flowing out to the main valve outlet 14 side is only through the pilot passage 28, so the pressure P2 in the back pressure chamber 33 decreases, and [valve closing force < Valve opening force], the main valve 5 opens again, and the same behavior as described above is repeated, and this becomes chattering.

本発明は、上記事情に鑑みてなされたもので、その目的とするところは、主弁開弁時におけるチャタリングの発生を効果的に抑えることのできる電動式パイロット型制御弁を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an electric pilot type control valve capable of effectively suppressing chattering when the main valve is opened. .

前記の目的を達成すべく、本発明に係る電動式パイロット型制御弁は、基本的には、弁室及び主弁出口が設けられた弁本体、該弁本体内に摺動自在に嵌挿されて前記主弁出口を開閉するピストン型の主弁体、及び前記主弁体との間に背圧室を画成する画成部材を有する主弁と、ニードル状のパイロット弁体を有する電動式パイロット弁とを備え、前記主弁体に、前記弁室と前記背圧室とを連通する均圧孔、前記背圧室と前記主弁出口とを連通しかつ前記パイロット弁体が挿入されたパイロット通路、及び該パイロット通路と前記弁室とを連通する連通孔が設けられ、前記パイロット弁体に、前記パイロット通路における前記背圧室側を開閉するための主パイロット弁体部が設けられるとともに、前記パイロット通路における前記連通孔より下流側に設けられたパイロット出口を開閉するための副パイロット弁体部が設けられ、前記パイロット弁体が上方に移動せしめられるとき、前記副パイロット弁体部が前記パイロット出口を開いた後、少し遅れて前記主パイロット弁体部が前記パイロット通路における前記背圧室側を開くようにされていることを特徴としている。   In order to achieve the above object, the electric pilot type control valve according to the present invention is basically slidably fitted in a valve body provided with a valve chamber and a main valve outlet, and the valve body. A piston-type main valve body that opens and closes the main valve outlet, a main valve that has a defining member that defines a back pressure chamber between the main valve body, and an electric motor that has a needle-like pilot valve body A pilot valve, and a pressure equalizing hole that communicates the valve chamber and the back pressure chamber, the back pressure chamber communicates with the main valve outlet, and the pilot valve body is inserted into the main valve body. A pilot passage and a communication hole for communicating the pilot passage and the valve chamber are provided, and a main pilot valve body portion for opening and closing the back pressure chamber side in the pilot passage is provided in the pilot valve body. , Below the communication hole in the pilot passage When the pilot valve body part is provided to open and close the pilot outlet provided on the side, and the pilot valve body is moved upward, the sub pilot valve body part slightly delays after opening the pilot outlet. The main pilot valve element is configured to open the back pressure chamber side in the pilot passage.

好ましい態様では、前記パイロット弁体における主パイロット弁体部と副パイロット弁体部との間の部分と前記パイロット通路の内周面との間に、前記背圧室の流体を前記パイロット通路を通じて前記主弁出口に逃がすための、実効通路断面積が前記均圧孔の実効通路断面積と前記連通孔の実効通路断面積との和より大きな流路が形成される。   In a preferred aspect, the fluid in the back pressure chamber is passed through the pilot passage between the portion of the pilot valve body between the main pilot valve body portion and the sub pilot valve body portion and the inner peripheral surface of the pilot passage. A passage having an effective passage sectional area for allowing escape to the main valve outlet is larger than the sum of the effective passage sectional area of the pressure equalizing hole and the effective passage sectional area of the communication hole.

この場合、好ましい態様では、前記主パイロット弁体部は、前記パイロット通路の上端部に摺動自在に嵌挿される大径部で構成され、前記パイロット弁体における前記主パイロット弁体部より下側は、前記主パイロット弁体部より小径の小径部で構成される。   In this case, in a preferred aspect, the main pilot valve body portion is configured by a large-diameter portion that is slidably fitted into an upper end portion of the pilot passage, and is below the main pilot valve body portion in the pilot valve body. Is constituted by a small diameter portion having a smaller diameter than the main pilot valve body portion.

他の好ましい態様では、前記パイロット弁体の上方移動に追従するように、前記主弁体が上方に移動するように各部の寸法形状が設定される。   In another preferred aspect, the dimensional shape of each part is set so that the main valve body moves upward so as to follow the upward movement of the pilot valve body.

他の好ましい態様では、前記主弁体を開弁方向に付勢する開弁ばねをさらに備えている。  In another preferred embodiment, a valve opening spring that urges the main valve body in the valve opening direction is further provided.

更に他の好ましい態様では、前記電動式パイロット弁は、キャンと、該キャンの内周に配在されるロータと、該ロータを回転駆動すべく前記キャンに外装されたステータと、前記ロータと前記パイロット弁体との間に配在され、前記ロータの回転を利用して前記パイロット弁体を軸方向に移動させる駆動機構と、を備える。   In still another preferred aspect, the electric pilot valve includes a can, a rotor disposed on an inner periphery of the can, a stator sheathed on the can to rotationally drive the rotor, the rotor, and the rotor. A drive mechanism that is disposed between the pilot valve body and moves the pilot valve body in an axial direction by utilizing rotation of the rotor.

本発明に係る電動式パイロット型制御弁では、主弁体にパイロット通路と弁室とを連通する連通孔が設けられ、パイロット弁体に、パイロット通路における背圧室側を開閉するための主パイロット弁体部が設けられられるとともに、パイロット出口を開閉するための副パイロット弁体部が設けられ、パイロット弁体が上方に移動せしめられるとき、副パイロット弁体部がパイロット出口を開いた後、少し遅れて主パイロット弁体部がパイロット通路の背圧室側を開くようにされているので、副パイロット弁体部がパイロット出口を開いたときから主パイロット弁体部がパイロット通路の背圧室側上端部を開くまでの間において、弁室の圧力P1が低下せしめられ、それによって、主弁が開くまでに弁室の圧力P1と主弁出口の圧力P3との差圧が小さくされることになる。   In the electric pilot type control valve according to the present invention, the main valve body is provided with a communication hole for communicating the pilot passage and the valve chamber, and the main pilot for opening and closing the back pressure chamber side in the pilot passage is provided in the pilot valve body. A valve body is provided, and a sub pilot valve body for opening and closing the pilot outlet is provided. When the pilot valve body is moved upward, the sub pilot valve body opens a little after the pilot outlet is opened. Since the main pilot valve body opens the back pressure chamber side of the pilot passage after a delay, the main pilot valve body portion opens from the back pressure chamber side of the pilot passage after the sub pilot valve body opens the pilot outlet. Until the upper end is opened, the pressure P1 in the valve chamber is lowered, and thereby the difference between the pressure P1 in the valve chamber and the pressure P3 at the main valve outlet before the main valve is opened. So that is small.

このように、主弁の開弁時に弁室の圧力P1と主弁出口の圧力P3との差圧が小さくされることにより、主弁が開き始めた直後に弁室の冷媒が主弁出口へ急速に流出しなくなり、そのため、弁室の圧力P1が急激に下がることが回避され、主弁の開弁時において弁室と背圧室との圧力バランスが崩れにくくなり、その結果、チャタリングの発生を効果的に抑えることができ、耳障りな異音(連続叩音、振動音)が出ることを抑制できる。   Thus, when the main valve is opened, the pressure difference between the valve chamber pressure P1 and the main valve outlet pressure P3 is reduced, so that the refrigerant in the valve chamber flows to the main valve outlet immediately after the main valve starts to open. As a result, the pressure P1 in the valve chamber is prevented from dropping rapidly, and the pressure balance between the valve chamber and the back pressure chamber is less likely to be lost when the main valve is opened, resulting in chattering. Can be effectively suppressed, and an unpleasant noise (continuous beating sound, vibration sound) can be suppressed.

本発明に係る電動式パイロット型制御弁の一実施例を示す主要部縦断面図であり、パイロット弁の主パイロット弁体部及び副パイロット弁体部:閉状態、主弁:閉状態を示している。BRIEF DESCRIPTION OF THE DRAWINGS It is a principal part longitudinal cross-sectional view which shows one Example of the electrically driven pilot type control valve which concerns on this invention, and shows the main pilot valve body part and subpilot valve body part of a pilot valve: a closed state, and the main valve: a closed state Yes. 図1に示される電動式パイロット型制御弁の動作説明に供される主要部縦断面図であり、パイロット弁の主パイロット弁体部:閉状態、副パイロット弁体部:開状態、主弁:閉状態を示している。It is a principal part longitudinal cross-sectional view used for operation | movement description of the electrically driven pilot type control valve shown by FIG. 1, The main pilot valve body part of a pilot valve: A closed state, a sub pilot valve body part: An open state, A main valve: Indicates the closed state. 図1に示される電動式パイロット型制御弁の動作説明に供される主要部縦断面図であり、パイロット弁の主パイロット弁体部:開状態、副パイロット弁体部:開状態、主弁:状態を示している。It is a principal part longitudinal cross-sectional view used for operation | movement description of the electrically driven pilot type control valve shown by FIG. 1, The main pilot valve body part of a pilot valve: An open state, a subpilot valve body part: An open state, Main valve: The open state is shown. 図1に示される電動式パイロット型制御弁の動作説明に供されるグラフ。The graph with which it uses for operation | movement description of the electrically driven pilot type control valve shown by FIG. 従来の電動式パイロット型制御弁の一例を示す縦断面図であり、パイロット弁:閉状態、主弁:閉状態を示している。It is a longitudinal cross-sectional view which shows an example of the conventional electric pilot type control valve, and has shown the pilot valve: closed state and the main valve: closed state. 図5に示される電動式パイロット型制御弁の動作説明に供されるグラフ。FIG. 6 is a graph for explaining the operation of the electric pilot type control valve shown in FIG. 5.

以下、本発明の実施形態を図面を参照しながら説明する。
図1は、本発明に係る電動式パイロット型制御弁の一実施例を示す主要部拡大縦断面図である。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is an enlarged longitudinal sectional view of a main part showing an embodiment of an electric pilot type control valve according to the present invention.

本実施例の電動式パイロット型制御弁1は、前述した図5に示される従来の電動式パイロット型制御弁1’と電動式パイロット弁7部分(画成台座部材32より上側の部分)は略同じ構成であり、相違するのは、画成台座部材32より下側の主弁体20とパイロット弁体35部分であるので、図5に示されるものの各部に対応する部分には共通の符号を付して重複説明を省略し、以下においては、相違点を重点的に説明する。   The electric pilot type control valve 1 of this embodiment is substantially the same as the conventional electric pilot type control valve 1 ′ shown in FIG. 5 and the electric pilot valve 7 (the portion above the defining pedestal member 32). Since the same structure and the difference are the main valve body 20 and the pilot valve body 35 below the defining pedestal member 32, parts corresponding to those in FIG. A duplicate description will be omitted, and the following will focus on the differences.

本実施例の電動式パイロット型制御弁1では、主弁体20に、弁室13と背圧室33とを連通する均圧孔(縦孔)24及び背圧室33と主弁出口14とを連通するパイロット通路28に加えて、パイロット通路28の下部と弁室13とを連通する連通孔(横孔)70が設けられ、パイロット通路28にはパイロット弁体35(の下部)が挿入されている。   In the electric pilot type control valve 1 of the present embodiment, the main valve body 20 is connected to the pressure equalizing hole (vertical hole) 24 and the back pressure chamber 33 and the main valve outlet 14 communicating with the valve chamber 13 and the back pressure chamber 33. In addition to the pilot passage 28 communicating with the pilot passage 28, a communication hole (lateral hole) 70 for communicating the lower portion of the pilot passage 28 and the valve chamber 13 is provided, and a pilot valve body 35 (lower portion) is inserted into the pilot passage 28. ing.

パイロット弁体35には、パイロット通路28における連通孔70より下流側に設けられた弁座28c付きのパイロット出口28bを開閉するための副パイロット弁体部36Bが設けられるとともに、パイロット通路28における背圧室側上端部28aを開閉するための主パイロット弁体部36Aが設けられ、パイロット弁体35が上方に移動せしめられるとき、副パイロット弁体部36Bがパイロット出口28bを開いた後、少し遅れて主パイロット弁体部36Aがパイロット通路28における背圧室側上端部28aを開くようにされている。   The pilot valve body 35 is provided with a sub pilot valve body portion 36B for opening and closing a pilot outlet 28b with a valve seat 28c provided on the downstream side of the communication hole 70 in the pilot passage 28, and at the back of the pilot passage 28. When the main pilot valve body portion 36A for opening and closing the pressure chamber side upper end portion 28a is provided and the pilot valve body 35 is moved upward, the sub pilot valve body portion 36B is slightly delayed after opening the pilot outlet 28b. Thus, the main pilot valve body portion 36A opens the back pressure chamber side upper end portion 28a of the pilot passage 28.

前記主パイロット弁体部36Aは、パイロット通路28における背圧室側上端部28aに摺動自在に嵌挿される大径部で構成され、パイロット弁体35における主パイロット弁体部36Aより下側は、前記主パイロット弁体部36Aより小径の小径部36Cで構成されており、パイロット弁体35における副パイロット弁体部36Bと主パイロット弁体部36Aとの間の小径部36Cとパイロット通路28の内周面との間に、背圧室33の冷媒をパイロット通路28を通じて主弁出口14に逃がすための、実効通路断面積が前記均圧孔24の実効通路断面積と前記連通孔70の実効通路断面積との和より大きな逃がし流路72が形成されている。   The main pilot valve body portion 36A is composed of a large-diameter portion that is slidably fitted into the back pressure chamber side upper end portion 28a of the pilot passage 28, and the lower side of the pilot valve body 35 from the main pilot valve body portion 36A is The main pilot valve body portion 36A has a smaller diameter portion 36C. The pilot valve body 35 has a small diameter portion 36C between the auxiliary pilot valve body portion 36B and the main pilot valve body portion 36A and the pilot passage 28. The effective passage cross-sectional area for allowing the refrigerant in the back pressure chamber 33 to escape to the main valve outlet 14 through the pilot passage 28 between the inner peripheral surface and the effective passage cross-sectional area of the pressure equalizing hole 24 is effective. An escape passage 72 larger than the sum of the passage cross-sectional areas is formed.

なお、主パイロット弁体部36Aがパイロット通路28における背圧室側上端部28aに嵌挿されてこれを閉じている状態では、主パイロット弁体部36Aとパイロット通路28における背圧室側上端部28aの内周面との間に形成される摺動面間隙を介して背圧室33の冷媒が逃がし流路72側に多少は漏れるが、弁動作にほとんど影響はない。   In the state where the main pilot valve body portion 36A is fitted and inserted into the back pressure chamber side upper end portion 28a of the pilot passage 28 and is closed, the back pressure chamber side upper end portion of the main pilot valve body portion 36A and the pilot passage 28 is closed. The refrigerant in the back pressure chamber 33 escapes through the sliding surface gap formed between the inner peripheral surface 28a and slightly leaks to the flow path 72 side, but has little influence on the valve operation.

次に、上記構成とされた本実施例の電動式パイロット型制御弁1の動作を、図1、図2、図3、図4を参照しながら説明する。   Next, the operation of the electric pilot type control valve 1 of the present embodiment having the above-described configuration will be described with reference to FIG. 1, FIG. 2, FIG. 3, and FIG.

図1に示される如くに、主弁5及びパイロット弁7が閉状態にあるときから、ステッピングモータ50にパルス供給を行って、ロータ55をガイドブッシュ37に対して回転させると、図2、図4に示される如くに、パルス数(回転量)がTgとなったとき、弁体ホルダ40及びパイロット弁体35の上方移動に伴って、副パイロット弁体部36Bがパイロット出口28bの弁座28cから離れ始めてパイロット出口28bが開き始める。パイロット出口28bが開くと、弁室13の冷媒が連通孔70→パイロット通路28の下部→パイロット出口28bを介して主弁出口14に流出し、弁室13の圧力P1が徐々に低下し、これに伴い背圧室33の圧力P2も均圧孔24を介して弁室13に抜けるので徐々に低下し(略P1=P2の状態)、弁室13の圧力P1と主弁出口14の圧力P3との差圧は徐々に小さくなる。しかし、このときは、前記した主弁開弁条件[閉弁力=P2×Ap<開弁力=P1×(Ap-Av)+P3×Av+Pf]を満たさず、したがって、主弁5は未だ開かず、このときの冷媒流量は比較的少量のKaである。   As shown in FIG. 1, when the main valve 5 and the pilot valve 7 are in the closed state, when the pulse is supplied to the stepping motor 50 and the rotor 55 is rotated with respect to the guide bush 37, FIG. As shown in FIG. 4, when the number of pulses (rotation amount) reaches Tg, the sub pilot valve body portion 36B moves to the valve seat 28c of the pilot outlet 28b as the valve body holder 40 and the pilot valve body 35 move upward. The pilot outlet 28b begins to open. When the pilot outlet 28b is opened, the refrigerant in the valve chamber 13 flows out to the main valve outlet 14 through the communication hole 70 → the lower part of the pilot passage 28 → the pilot outlet 28b, and the pressure P1 in the valve chamber 13 gradually decreases. Along with this, the pressure P2 in the back pressure chamber 33 also drops to the valve chamber 13 through the pressure equalizing hole 24 and gradually decreases (a state of approximately P1 = P2). The pressure P1 in the valve chamber 13 and the pressure P3 at the main valve outlet 14 The pressure difference between and gradually decreases. However, at this time, the main valve opening condition [valve closing force = P2 × Ap <valve opening force = P1 × (Ap−Av) + P3 × Av + Pf] is not satisfied, and thus the main valve 5 is not yet opened. The refrigerant flow rate at this time is a relatively small amount of Ka.

続いて、パルス数(回転量)がTgからThに増加すると、言い換えれば、副パイロット弁体部36Bがパイロット出口28bを開いた後少し遅れて、図3に示される如くに、パイロット弁体35の上方移動により、主パイロット弁体部36Aがパイロット通路28における背圧室側上端部28aを開く。これにより、背圧室33の冷媒が逃がし流路72→パイロット出口28bを介して主弁出口14に流出する。   Subsequently, when the number of pulses (the amount of rotation) increases from Tg to Th, in other words, as shown in FIG. 3, the pilot valve body 35 is slightly delayed after the auxiliary pilot valve body portion 36B opens the pilot outlet 28b. The main pilot valve body portion 36 </ b> A opens the back pressure chamber side upper end portion 28 a in the pilot passage 28. As a result, the refrigerant in the back pressure chamber 33 escapes and flows out to the main valve outlet 14 via the flow path 72 → the pilot outlet 28b.

この場合、弁室13の冷媒も均圧孔24を介して背圧室33へ流れるとともに、連通孔70を介して主弁出口14へ流れるが、逃がし流路72の実効通路断面積が均圧孔24の実効通路断面積と連通孔70の実効通路断面積との和より大きく設定されているので、逃がし流路72を流れる冷媒流量は、弁室13から均圧孔24を介して背圧室33へ流れる冷媒流量と弁室13から連通孔70を介して主弁出口14へ流れる冷媒流量との和より大きくなり、そのため、弁室13の減圧度合いよりも大きな減圧度合いをもって背圧室33の圧力P2が下がる。   In this case, the refrigerant in the valve chamber 13 also flows to the back pressure chamber 33 via the pressure equalizing hole 24 and also flows to the main valve outlet 14 via the communication hole 70, but the effective passage cross-sectional area of the escape flow path 72 is equalized. Since the effective passage cross-sectional area of the hole 24 and the effective passage cross-sectional area of the communication hole 70 are set larger than each other, the flow rate of the refrigerant flowing through the escape passage 72 is back pressure from the valve chamber 13 through the pressure equalizing hole 24. The sum of the refrigerant flow rate flowing to the chamber 33 and the refrigerant flow rate flowing from the valve chamber 13 through the communication hole 70 to the main valve outlet 14 is greater than the sum of the pressure reduction degree of the valve chamber 13 and the back pressure chamber 33. The pressure P2 is reduced.

そして、背圧室33の圧力P2が前記主弁開弁条件[閉弁力=P2×Ap<開弁力=P1×(Ap-Av)+P3×Av+Pf]を満たすまで下がったとき(パルス数がTiになったときで、このときの冷媒流量はKbである)、主弁5が開き始める。主弁5が開くと、弁室13の冷媒は、主弁座14aと主弁体部21との間を通って主弁出口14側に流れる。   When the pressure P2 in the back pressure chamber 33 decreases until the main valve opening condition [valve closing force = P2 × Ap <valve opening force = P1 × (Ap−Av) + P3 × Av + Pf] (the number of pulses is When the pressure reaches Ti, the refrigerant flow rate at this time is Kb), and the main valve 5 starts to open. When the main valve 5 is opened, the refrigerant in the valve chamber 13 flows between the main valve seat 14a and the main valve body 21 to the main valve outlet 14 side.

ここで、本実施例の電動式パイロット型制御弁1においては、主弁体20にパイロット通路28と弁室13とを連通する連通孔70が設けられ、パイロット弁体35に、パイロット通路28における背圧室側上端部28aを開閉するための主パイロット弁体部36Aが設けられられるとともに、パイロット出口28bを開閉するための副パイロット弁体部36Bが設けられ、パイロット弁体35が上方に移動せしめられるとき、副パイロット弁体部36Bがパイロット出口28bを開いた後、少し遅れて主パイロット弁体部36Aがパイロット通路28の背圧室側上端部28aを開くようにされているので、副パイロット弁体部36Bがパイロット出口28bを開いたときから主パイロット弁体部36Aがパイロット通路28の背圧室側上端部28aを開くまでの間において、弁室13の圧力P1が低下せしめられ、それによって、主弁5が開くまでに弁室13の圧力P1と主弁出口14の圧力P3との差圧が小さくされることになる。   Here, in the electric pilot type control valve 1 of the present embodiment, the main valve body 20 is provided with a communication hole 70 for communicating the pilot passage 28 and the valve chamber 13, and the pilot valve body 35 is provided in the pilot passage 28. A main pilot valve body portion 36A for opening and closing the back pressure chamber side upper end portion 28a is provided, and a sub pilot valve body portion 36B for opening and closing the pilot outlet 28b is provided, and the pilot valve body 35 moves upward. Since the main pilot valve body portion 36A opens the back pressure chamber side upper end portion 28a of the pilot passage 28 after a slight delay after the sub pilot valve body portion 36B opens the pilot outlet 28b, The main pilot valve body 36A is located on the back pressure chamber side upper end of the pilot passage 28 from when the pilot valve body 36B opens the pilot outlet 28b. Until the valve 28a is opened, the pressure P1 in the valve chamber 13 is reduced, and thereby the pressure difference between the pressure P1 in the valve chamber 13 and the pressure P3 at the main valve outlet 14 is reduced until the main valve 5 is opened. Will be.

このように、主弁5の開弁時に弁室13の圧力P1と主弁出口14の圧力P3との差圧が小さくされることにより、主弁5が開き始めた直後に弁室13の冷媒が主弁出口14へ急速に流出しなくなり、そのため、弁室13の圧力P1が急激に下がることが回避され、主弁5の開弁時において弁室13と背圧室33との圧力バランスが崩れにくくなり、その結果、チャタリングの発生を効果的に抑えることができ、耳障りな異音(連続叩音、振動音)が出ることを抑制できる。   Thus, when the main valve 5 is opened, the pressure difference between the pressure P1 of the valve chamber 13 and the pressure P3 of the main valve outlet 14 is reduced, so that the refrigerant in the valve chamber 13 immediately after the main valve 5 starts to open. Does not flow out rapidly to the main valve outlet 14, so that the pressure P1 in the valve chamber 13 is prevented from dropping rapidly, and the pressure balance between the valve chamber 13 and the back pressure chamber 33 is maintained when the main valve 5 is opened. As a result, the occurrence of chattering can be effectively suppressed, and an unpleasant noise (continuous beating sound, vibration sound) can be suppressed.

なお、上記実施例において、パルス数をTiからさらに増加させていくと、パルス数がTjになるまで、従来例と同様に、パイロット弁体35の上昇移動に追従するように、主弁体20が押し上げられる。これにより、パルス数(回転量)がTiからTjの間は、当該電動式パイロット型制御弁1における冷媒流量が一定の勾配をもって滑らかに増加していく。そして、パルス数がTjになると、主弁体20の上面ストッパ部29が画成台座部材32の下面に設けられた固定ストッパ39に接当し、主弁体20の上昇が阻止され、冷媒流量は、パルス数がTjのときのKcよりは大きくならず、このときの流量を維持することになる。   In the above embodiment, when the number of pulses is further increased from Ti, the main valve body 20 is adapted to follow the upward movement of the pilot valve body 35 as in the conventional example until the number of pulses reaches Tj. Is pushed up. Thereby, when the number of pulses (rotation amount) is between Ti and Tj, the refrigerant flow rate in the electric pilot type control valve 1 increases smoothly with a constant gradient. When the number of pulses reaches Tj, the upper surface stopper portion 29 of the main valve body 20 comes into contact with the fixed stopper 39 provided on the lower surface of the defining pedestal member 32 to prevent the main valve body 20 from rising, and the refrigerant flow rate Does not become larger than Kc when the number of pulses is Tj, and the flow rate at this time is maintained.

また、圧縮コイルばね25は、特に設けられる必要はないことは当然である。
更に、符号25のばねを引張りコイルばねとして、主弁体20を主弁座14a側に付勢するようにしても良い。
Of course, the compression coil spring 25 need not be provided.
Furthermore, the main valve body 20 may be urged toward the main valve seat 14a by using a spring of reference numeral 25 as a tension coil spring.

圧縮コイルばね25を用いるか用いないか、あるいは、圧縮コイルばねの代わりに引張りコイルばねを用いて主弁体20を主弁座14a側に付勢するか否かは、主弁体20に求められる開閉特性に応じて適宜決定されれば良い。   Whether or not the compression coil spring 25 is used or not, or whether or not the main valve body 20 is urged toward the main valve seat 14a by using a tension coil spring instead of the compression coil spring is obtained from the main valve body 20. What is necessary is just to determine suitably according to the opening-and-closing characteristic to be performed.

1 電動式パイロット型制御弁
5 主弁
7 電動式パイロット弁
10 弁本体
13 弁室
14 主弁出口
14a 主弁座
20 主弁体
24 均圧孔
25 圧縮コイルばね
28 パイロット通路
28a 背圧室側上端部
28b パイロット出口
32 画成台座部材
33 背圧室
35 パイロット弁体
36A 主パイロット弁体部
36B 副パイロット弁体部
40 弁体ホルダ
50 ステッピングモータ
55 ロータ
70 連通孔
DESCRIPTION OF SYMBOLS 1 Electric pilot type control valve 5 Main valve 7 Electric pilot valve 10 Valve main body 13 Valve chamber 14 Main valve outlet 14a Main valve seat 20 Main valve body 24 Pressure equalizing hole 25 Compression coil spring 28 Pilot passage 28a Back pressure chamber side upper end Portion 28b Pilot outlet 32 Definition base member 33 Back pressure chamber 35 Pilot valve body 36A Main pilot valve body portion 36B Sub pilot valve body portion 40 Valve body holder 50 Stepping motor 55 Rotor 70 Communication hole

Claims (6)

弁室及び主弁出口が設けられた弁本体、該弁本体内に摺動自在に嵌挿されて前記主弁出口を開閉するピストン型の主弁体、及び前記主弁体との間に背圧室を画成する画成部材を有する主弁と、ニードル状のパイロット弁体を有する電動式パイロット弁とを備えた電動式パイロット型制御弁であって、
前記主弁体に、前記弁室と前記背圧室とを連通する均圧孔、前記背圧室と前記主弁出口とを連通しかつ前記パイロット弁体が挿入されたパイロット通路、及び該パイロット通路と前記弁室とを連通する連通孔が設けられ、
前記パイロット弁体に、前記パイロット通路における前記背圧室側を開閉するための主パイロット弁体部が設けられるとともに、前記パイロット通路における前記連通孔より下流側に設けられたパイロット出口を開閉するための副パイロット弁体部が設けられ、
前記パイロット弁体が上方に移動せしめられるとき、前記副パイロット弁体部が前記パイロット出口を開いた後、少し遅れて前記主パイロット弁体部が前記パイロット通路における前記背圧室側を開くようにされていることを特徴とする電動式パイロット型制御弁。
A valve body provided with a valve chamber and a main valve outlet, a piston-type main valve body that is slidably inserted into the valve body and opens and closes the main valve outlet, and a back between the main valve body An electric pilot type control valve comprising a main valve having an defining member that defines a pressure chamber, and an electric pilot valve having a needle-like pilot valve body,
A pressure equalization hole that communicates the valve chamber and the back pressure chamber to the main valve body, a pilot passage that communicates the back pressure chamber and the main valve outlet, and the pilot valve body is inserted, and the pilot A communication hole for communicating the passage and the valve chamber is provided,
The pilot valve body is provided with a main pilot valve body portion for opening and closing the back pressure chamber side in the pilot passage, and for opening and closing a pilot outlet provided on the downstream side of the communication hole in the pilot passage. Of the secondary pilot valve body,
When the pilot valve body is moved upward, the main pilot valve body portion opens the back pressure chamber side in the pilot passage with a slight delay after the sub pilot valve body portion opens the pilot outlet. An electrically operated pilot type control valve.
前記パイロット弁体における主パイロット弁体部と副パイロット弁体部との間の部分と前記パイロット通路の内周面との間に、前記背圧室の流体を前記パイロット通路を通じて前記主弁出口に逃がすための、実効通路断面積が前記均圧孔の実効通路断面積と前記連通孔の実効通路断面積との和より大きな流路が形成されていることを特徴とする請求項1に記載の電動式パイロット型制御弁。   Between the portion of the pilot valve body between the main pilot valve body portion and the sub pilot valve body portion and the inner peripheral surface of the pilot passage, fluid in the back pressure chamber is passed through the pilot passage to the main valve outlet. 2. The flow path having an effective passage cross-sectional area for escaping larger than a sum of an effective passage cross-sectional area of the pressure equalizing hole and an effective passage cross-sectional area of the communication hole is formed according to claim 1. Electric pilot type control valve. 前記主パイロット弁体部は、前記パイロット通路の上端部に摺動自在に嵌挿される大径部で構成され、前記パイロット弁体における前記主パイロット弁体部より下側は、前記主パイロット弁体部より小径の小径部で構成されていることを特徴とする請求項1又は2に記載の電動式パイロット型制御弁。   The main pilot valve body portion is configured by a large-diameter portion that is slidably inserted into an upper end portion of the pilot passage, and the lower side of the main pilot valve body portion in the pilot valve body is the main pilot valve body The electric pilot-type control valve according to claim 1, wherein the electric pilot-type control valve is configured by a small-diameter portion having a smaller diameter than the portion. 前記パイロット弁体の上方移動に追従するように、前記主弁体が上方に移動するように各部の寸法形状が設定されていることを特徴とする請求項1から3のいずれかに記載の電動式パイロット型制御弁。   4. The electric motor according to claim 1, wherein the dimensional shape of each part is set so that the main valve body moves upward so as to follow the upward movement of the pilot valve body. 5. Type pilot type control valve. 前記主弁体を開弁方向に付勢する開弁ばねをさらに備えていることを特徴とする請求項1から4のいずれかに記載の電動式パイロット型制御弁。   5. The electric pilot-type control valve according to claim 1, further comprising a valve-opening spring that biases the main valve body in a valve-opening direction. 前記電動式パイロット弁は、キャンと、該キャンの内周に配在されるロータと、該ロータを回転駆動すべく前記キャンに外装されたステータと、前記ロータと前記パイロット弁体との間に配在され、前記ロータの回転を利用して前記パイロット弁体を軸方向に移動させる駆動機構と、を備えていることを特徴とする請求項1から5のいずれかに記載の電動式パイロット型制御弁。   The electric pilot valve includes a can, a rotor disposed on the inner periphery of the can, a stator externally mounted on the can to rotationally drive the rotor, and between the rotor and the pilot valve body. An electrically driven pilot type according to any one of claims 1 to 5, further comprising: a drive mechanism that is arranged and moves the pilot valve body in an axial direction by utilizing rotation of the rotor. Control valve.
JP2010284560A 2010-12-21 2010-12-21 Electric pilot type control valve Active JP5726506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010284560A JP5726506B2 (en) 2010-12-21 2010-12-21 Electric pilot type control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010284560A JP5726506B2 (en) 2010-12-21 2010-12-21 Electric pilot type control valve

Publications (2)

Publication Number Publication Date
JP2012132498A JP2012132498A (en) 2012-07-12
JP5726506B2 true JP5726506B2 (en) 2015-06-03

Family

ID=46648319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010284560A Active JP5726506B2 (en) 2010-12-21 2010-12-21 Electric pilot type control valve

Country Status (1)

Country Link
JP (1) JP5726506B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6031931B2 (en) * 2012-10-03 2016-11-24 株式会社デンソー Refrigeration cycle equipment
JP6178557B2 (en) * 2012-10-17 2017-08-09 株式会社鷺宮製作所 Flow control valve
JP6322562B2 (en) * 2014-12-19 2018-05-09 太平洋工業株式会社 Motorized valve
KR101623681B1 (en) 2015-01-30 2016-05-23 김성태 Pneumatic on off valve
JP2018021655A (en) * 2016-07-22 2018-02-08 株式会社Soken Valve device
JP6492129B2 (en) * 2017-07-14 2019-03-27 株式会社鷺宮製作所 Flow control valve
JP6474863B2 (en) * 2017-07-14 2019-02-27 株式会社鷺宮製作所 Flow control valve
JP6857624B2 (en) * 2018-02-01 2021-04-14 株式会社鷺宮製作所 Electric valve and refrigeration cycle system
JP7055768B2 (en) * 2019-04-12 2022-04-18 株式会社鷺宮製作所 Solenoid valve and refrigeration cycle system
JP7491734B2 (en) * 2020-05-15 2024-05-28 株式会社鷺宮製作所 Motor-operated valve and refrigeration cycle system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0332945Y2 (en) * 1985-05-13 1991-07-12
JP2898906B2 (en) * 1995-06-29 1999-06-02 株式会社不二工機 Electric flow control valve
JPH10148420A (en) * 1996-11-18 1998-06-02 Toshiba Corp Air-conditioning equipment
JP2000227165A (en) * 1999-02-05 2000-08-15 Saginomiya Seisakusho Inc Motor control valve
JP3957956B2 (en) * 2000-07-19 2007-08-15 株式会社テージーケー Two-stage pilot solenoid valve
JP5019862B2 (en) * 2006-08-07 2012-09-05 株式会社不二工機 Pilot type control valve

Also Published As

Publication number Publication date
JP2012132498A (en) 2012-07-12

Similar Documents

Publication Publication Date Title
JP5726506B2 (en) Electric pilot type control valve
JP6258703B2 (en) High pressure regulating valve
JP4795806B2 (en) Electric valve and solenoid valve
JP5019862B2 (en) Pilot type control valve
US9133954B2 (en) Electromagnetic linear valve
US20100108927A1 (en) Silent solenoid valve for fluid regulation system
JP5572516B2 (en) Motorized valve
CN110296223B (en) Electrically driven valve
KR20080013701A (en) Pilot type control valve
JP5731562B2 (en) High pressure pump
JP2008121711A (en) Flow control valve
US20090032750A1 (en) Control valve for variable capacity compressors
JP2013100916A (en) Flow path opening/closing control device
CN111173981A (en) Flow control valve
KR20070096792A (en) Electric motor valve
JP2006194114A (en) Control valve for variable displacement compressor
KR100903413B1 (en) Balance solenoid valve
JP2016156429A (en) Electrical drive valve
JP2006242291A (en) Three-way valve
JP2009228689A (en) Electric valve
JP4963929B2 (en) Flow control valve and method for manufacturing the flow control valve can
EP2912354B1 (en) A magnetic valve with a one-piece housing
JP5881452B2 (en) Compound valve
KR20170058602A (en) Hydraulic pressure buffer solenoid valve and method for operating the solenoid valve
JP2012002336A (en) Shock absorber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150401

R150 Certificate of patent or registration of utility model

Ref document number: 5726506

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250