JP4963929B2 - Flow control valve and method for manufacturing the flow control valve can - Google Patents

Flow control valve and method for manufacturing the flow control valve can Download PDF

Info

Publication number
JP4963929B2
JP4963929B2 JP2006282187A JP2006282187A JP4963929B2 JP 4963929 B2 JP4963929 B2 JP 4963929B2 JP 2006282187 A JP2006282187 A JP 2006282187A JP 2006282187 A JP2006282187 A JP 2006282187A JP 4963929 B2 JP4963929 B2 JP 4963929B2
Authority
JP
Japan
Prior art keywords
rotor
thickness
stator
valve
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006282187A
Other languages
Japanese (ja)
Other versions
JP2008101633A (en
Inventor
英樹 外園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Original Assignee
Fujikoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp filed Critical Fujikoki Corp
Priority to JP2006282187A priority Critical patent/JP4963929B2/en
Publication of JP2008101633A publication Critical patent/JP2008101633A/en
Application granted granted Critical
Publication of JP4963929B2 publication Critical patent/JP4963929B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrically Driven Valve-Operating Means (AREA)
  • Valve Housings (AREA)

Description

本発明は、空気調和機、冷凍機等に組み込まれて使用される流量制御弁に係り、特に低コスト化を図りながらロータ側に所要のトルクを得ることができ、かつ、溶接部分の接合強度を向上させることができるようにされた流量制御弁及び該流量制御弁用キャンの製造方法に関する。   The present invention relates to a flow control valve used by being incorporated in an air conditioner, a refrigerator, or the like, and in particular, can obtain a required torque on the rotor side while achieving cost reduction, and has a joint strength at a welded portion. The present invention relates to a flow rate control valve capable of improving the flow rate and a method for manufacturing the flow rate control valve can.

この種の流量制御弁の従来例を図4に示す。図示の流量制御弁10’は、弁室21、弁座22(弁口22a)、鍔状部材23等を有する弁本体20は、弁座22に接離する弁体24a(弁軸24)により冷媒等の流体の通過流量を調整するようになっており、弁本体20の鍔状部材23(に形成された段差部23a)に、半球状の天井部60cを有する下方開口の円筒状のキャン60’の下端部60b’が突き合わせ溶接により密封接合されている。   A conventional example of this type of flow control valve is shown in FIG. The illustrated flow control valve 10 ′ includes a valve body 21 having a valve chamber 21, a valve seat 22 (valve port 22 a), a flange-like member 23, and the like, and a valve body 24 a (valve shaft 24) that contacts and separates from the valve seat 22. The flow rate of a fluid such as a refrigerant is adjusted, and a cylindrical can with a lower opening having a hemispherical ceiling portion 60c is formed on the flange-like member 23 of the valve body 20 (a step portion 23a formed therein). The lower end portion 60b 'of 60' is hermetically joined by butt welding.

前記弁本体20の弁室21の一側方には冷媒導入管61が連結されるとともに、弁室21の下方には、冷媒導出管62が連結されている。   A refrigerant introduction pipe 61 is connected to one side of the valve chamber 21 of the valve body 20, and a refrigerant outlet pipe 62 is connected to the lower side of the valve chamber 21.

前記キャン60’の内周には、所定の間隙α’をあけてロータ30’が配在され、該ロータ30’を回転駆動すべく前記キャン60の円筒状部分60a’の外周には、ヨーク51、ボビン52、ステータコイル53,53、及び樹脂モールドカバー56等からなるステータ50が外嵌されている。   A rotor 30 'is disposed on the inner periphery of the can 60' with a predetermined gap α '. A yoke portion 60a' is disposed on the outer periphery of the cylindrical portion 60a 'of the can 60 so as to rotate the rotor 30'. 51, the stator 50 which consists of the bobbin 52, the stator coils 53 and 53, the resin mold cover 56, etc. is externally fitted.

そして、ロータ30’と弁軸24との間には、ロータ30’の回転を利用して前記弁体24aを前記弁座22に接離させる駆動機構が設けられている。この駆動機構は、弁本体20にその下端部26aが圧入固定されるとともに、弁軸24が摺動自在に内挿された筒状のガイドブッシュ26(の外周に形成された固定ねじ部25)と、前記弁軸24及びガイドブッシュ26の外周に配在された下方開口の筒状の弁軸ホルダ32(の内周に形成されて前記固定ねじ部25に螺合せしめられた移動ねじ部31)と、から構成されるねじ送り機構とされている(詳細は、下記特許文献1等を参照)。   A drive mechanism is provided between the rotor 30 ′ and the valve shaft 24 to bring the valve body 24 a into and out of contact with the valve seat 22 using the rotation of the rotor 30 ′. This drive mechanism has a cylindrical guide bush 26 (fixed screw portion 25 formed on the outer periphery thereof) in which a lower end portion 26a is press-fitted and fixed to the valve body 20 and a valve shaft 24 is slidably inserted. And a moving screw portion 31 formed on the inner periphery of a cylindrical valve shaft holder 32 having a downward opening disposed on the outer periphery of the valve shaft 24 and the guide bush 26 and screwed into the fixed screw portion 25. )) (For details, refer to Patent Document 1 below).

かかる構成の従来の流量制御弁10’においては、ロータ30’の材料として、希土類焼結マグネットが用いられている。しかし、希土類焼結マグネットは、保磁力は極めて大きいが高価である。そこで、比較的安価な希土類プラスチックマグネットを用いることが考えられている。   In the conventional flow control valve 10 ′ having such a configuration, a rare earth sintered magnet is used as the material of the rotor 30 ′. However, rare earth sintered magnets are very expensive although they have a very large coercive force. Therefore, it is considered to use a relatively inexpensive rare earth plastic magnet.

ところが、希土類プラスチックマグネットは、希土類焼結マグネットに比して安価ではあるが保磁力が小さいので、前記キャン60’やロータ30’の寸法形状等を同じにすると、ロータ30’側に必要とするトルクが得られない。すなわち、ロータ30’側に発生するトルクは、ヨーク51からロータ30’までの距離、つまり、キャン60’の肉厚にキャン60’とロータ30’との間の間隙α’を加算した距離により決まる。しかし、間隙α’を狭くすると、ロータ30’がキャン60’の内周面に接触するおそれがあるので、これ以上狭めることはできない。そこで、キャン60’の肉厚を薄くすることが考えられている。しかし、キャン60’の肉厚を薄くすると、キャン60’の下端部60b’と弁本体20(の鍔状部材23)との溶接部分K(段差部23a)に充分な接合強度が得られず、脆弱となる。ここで、空気調和機、冷凍機等に使用される流量制御弁10’では、キャン60’内に冷媒が充満することになるが、特に冷媒としてフロン系のものに代えて二酸化炭素(ガス)が使用される場合は、冷媒圧を高く設定する必要があり、そのため、キャン60’内が極めて高圧となるので、前記溶接部分Kの接合強度が小さいと、ガス漏れ等が生じやすくなり、信頼性が低下する。   However, since the rare earth plastic magnet is cheaper than the rare earth sintered magnet but has a small coercive force, it is necessary on the rotor 30 ′ side if the dimensions and the like of the can 60 ′ and the rotor 30 ′ are the same. Torque cannot be obtained. That is, the torque generated on the rotor 30 ′ side is determined by the distance from the yoke 51 to the rotor 30 ′, that is, the distance obtained by adding the gap α ′ between the can 60 ′ and the rotor 30 ′ to the thickness of the can 60 ′. Determined. However, if the gap α ′ is narrowed, the rotor 30 ′ may come into contact with the inner peripheral surface of the can 60 ′. Thus, it is considered to reduce the thickness of the can 60 '. However, if the thickness of the can 60 'is reduced, sufficient bonding strength cannot be obtained at the welded portion K (stepped portion 23a) between the lower end portion 60b' of the can 60 'and the valve body 20 (the flange member 23). , Become vulnerable. Here, in the flow rate control valve 10 ′ used in an air conditioner, a refrigerator, or the like, the can 60 ′ is filled with a refrigerant. In particular, carbon dioxide (gas) instead of a fluorocarbon refrigerant is used as the refrigerant. Is used, it is necessary to set the refrigerant pressure high. For this reason, the inside of the can 60 ′ becomes extremely high pressure. Sex is reduced.

そこで、本願の発明者等は、ロータの材料として希土類プラスチックマグネットを用いても必要とするトルクが得られるとともに、キャンの下端部と弁本体との溶接部分に充分な接合強度を確保することができるようにすべく、下記特許文献2に所載のように、前記ロータとステータとの間の円筒状部分の肉厚を前記キャンの下端部の肉厚より薄くした流量制御弁を提案した(以下、先提案流量制御弁と称す)。   Therefore, the inventors of the present application can obtain the required torque even if a rare earth plastic magnet is used as the material of the rotor, and ensure sufficient bonding strength at the welded portion between the lower end of the can and the valve body. In order to be able to do so, a flow control valve was proposed in which the thickness of the cylindrical portion between the rotor and the stator was made thinner than the thickness of the lower end of the can, as described in Patent Document 2 below ( Hereinafter referred to as the previously proposed flow control valve).

すなわち、図3(A)に示される如くに、先提案流量制御弁では、キャン60の下端部60bの肉厚Ibが他の部分の肉厚Iaより厚くされている。言い換えれば、キャン60の下端部60b以外の部分は、しごき偏肉プレス(絞り)成形により薄くされている。より詳細には、ロータ30側に得られるトルクに関与する部分(ロータ30とステータ50との間の円筒状部分60a)の肉厚Iaが、図3(B)に示される、従来のキャン60’の同一部分の肉厚Ia’より薄くされるとともに、下端部60bの肉厚Ibが、従来のそれ(Ib’)より厚くされている(従来のキャン60’では、Ia’=Ib’)。   That is, as shown in FIG. 3A, in the previously proposed flow control valve, the wall thickness Ib of the lower end portion 60b of the can 60 is thicker than the wall thickness Ia of other portions. In other words, the portion other than the lower end portion 60b of the can 60 is thinned by ironing uneven thickness press (drawing) molding. More specifically, the wall thickness Ia of the portion (cylindrical portion 60a between the rotor 30 and the stator 50) involved in the torque obtained on the rotor 30 side is the conventional can 60 shown in FIG. The wall thickness Ib of the lower end portion 60b is made thinner than that of the conventional portion (Ib ′) (Ia ′ = Ib ′ in the conventional can 60 ′). .

この場合、先提案流量制御弁のキャン60の外径Daと従来のそれ(Da’)とは同じであるが、キャン60の内径Db及びロータ30の外径Eaの方が従来のそれ(Db’、Ea’)より大きく(肉厚が薄い分)されている。したがって、先提案流量制御弁のステータ50のヨーク51からロータ30までの距離(キャン60の肉厚Iaにキャン60とロータ30との間の間隙αを加算した距離)は、従来のそれより短くされている。   In this case, the outer diameter Da of the previously proposed flow control valve can 60 and the conventional one (Da ′) are the same, but the inner diameter Db of the can 60 and the outer diameter Ea of the rotor 30 are those of the conventional one (Db ', Ea') (larger thickness is smaller). Therefore, the distance from the yoke 51 of the stator 50 of the previously proposed flow control valve to the rotor 30 (the distance obtained by adding the gap α between the can 60 and the rotor 30 to the wall thickness Ia of the can 60) is shorter than that of the prior art. Has been.

このように、キャン60の下端部60bの肉厚をロータ30とステータ50との間の部分の肉厚より厚くする、言い換えれば、ロータ側に得られるトルクに関与する部分(ロータとステータとの間の円筒状部分60a)の肉厚を従来のものより薄くすることにより、ステータ50のヨーク51からロータ30までの距離(キャン60の肉厚にキャン60とロータ30との間の間隙αを加算した距離)が短くされ、これにより、ロータの材料として安価な希土類プラスチックマグネットを用いても、必要とするトルクが得られるとともに、キャンの下端部の肉厚が厚くされていることから、キャンの下端部と弁本体との溶接部分に充分な接合強度を確保することができ、冷媒として高圧の二酸化炭素等が用いられる場合でも、ガス漏れ等が生じにくくなり、信頼性が向上する。   In this way, the thickness of the lower end portion 60b of the can 60 is made thicker than the thickness of the portion between the rotor 30 and the stator 50, in other words, the portion related to the torque obtained on the rotor side (the relationship between the rotor and the stator). By reducing the thickness of the cylindrical portion 60a) between the yoke 51 and the rotor 30 of the stator 50 (the thickness α of the can 60, the gap α between the can 60 and the rotor 30 is reduced). Therefore, even if an inexpensive rare earth plastic magnet is used as the rotor material, the required torque can be obtained and the thickness of the lower end of the can is increased. Can secure sufficient joint strength at the welded portion between the lower end of the valve and the valve body, and even when high-pressure carbon dioxide or the like is used as a refrigerant, gas leakage occurs. Kukunari, the reliability is improved.

特開2001−50415号公報JP 2001-50415 A 特開2006−70990号公報JP 2006-70990 A

ところで、前記した先提案流量制御弁で用いられるキャンは、偏肉(薄肉部と厚肉部を形成)するため、その製造に、しごき偏肉プレス(絞り)成形が採用されている。しかしながら、かかるしごき偏肉プレス成形では、製造コスト、特に、成形時間(工数)が多くかかり型費が高くなるという問題があった。また、高しごきによるショックライン、へげ等の成形不良が生じやすいという問題もあり、さらに、寸法加工精度が切削加工に比べてやや低くなる嫌いがある。   By the way, since the can used in the above-described previously proposed flow rate control valve has an uneven thickness (forms a thin part and a thick part), an ironing uneven thickness press (drawing) molding is adopted for its manufacture. However, the ironing uneven thickness press molding has a problem that the manufacturing cost, particularly the molding time (man-hour) is increased and the die cost is increased. In addition, there is a problem that molding defects such as shock lines and heels due to high ironing are likely to occur, and further, the dimensional processing accuracy is slightly lower than that of cutting.

本発明は、このような事情に鑑みてなされたものであって、その目的とするところは、ロータの材料として希土類プラスチックマグネットを用いても、必要とするトルクが得られるとともに、キャンの下端部と弁本体との溶接部分に充分な接合強度を確保することができ、さらに、キャンの製造コストを低く抑えることができるとともに、ショックライン、へげ等の成形不良が生じ難く、かつ、寸法加工精度を高くできる流量制御弁を提供すること、及び、該流量制御弁用キャンの製造方法を提供することにある。   The present invention has been made in view of such circumstances, and the object of the present invention is to obtain the required torque even when a rare earth plastic magnet is used as the material of the rotor, and to lower the lower end of the can. Sufficient joint strength can be secured at the welded part between the valve body and the valve body, the can manufacturing cost can be kept low, and molding defects such as shock lines and baldness are unlikely to occur. An object of the present invention is to provide a flow control valve capable of increasing accuracy and to provide a method for manufacturing the flow control valve can.

前記の目的を達成すべく、本発明に係る流量制御弁は、弁室内の弁座に接離する弁体により冷媒等の流体の通過流量を調整する弁本体と、該弁本体にその下端部が溶接により密封接合されるキャンと、該キャンの内周に所定の間隙をあけて配在されるロータと、該ロータを回転駆動すべく前記キャンに外嵌されたステータと、前記ロータと前記弁体との間に配在され、前記ロータの回転を利用して前記弁体を前記弁座に接離させる駆動機構と、を備え、前記キャンの下端部の肉厚が前記ロータとステータとの間の部分の肉厚より厚くされる。   In order to achieve the above object, a flow control valve according to the present invention includes a valve body that adjusts a flow rate of a fluid such as a refrigerant by a valve body that contacts and separates from a valve seat in a valve chamber, and a lower end portion of the valve body. Can be hermetically sealed by welding, a rotor disposed with a predetermined gap around the inner periphery of the can, a stator externally fitted to the can to rotationally drive the rotor, the rotor, and the rotor And a drive mechanism that is disposed between the valve body and uses the rotation of the rotor to bring the valve body into and out of contact with the valve seat, and the thickness of the lower end of the can is between the rotor and the stator. It is made thicker than the thickness of the part between.

そして、前記キャンは、非磁性の金属板を素材として全体が略同じ肉厚の厚肉絞り一次成形品の状態から、前記ロータとステータとの間の部分の肉厚が前記下端部の肉厚より薄くなるように、前記ロータとステータとの間の部分の外周が切削加工されていることを特徴としている。 Then, the can is made of a non-magnetic metal plate as a raw material, and the thickness of the portion between the rotor and the stator is the thickness of the lower end portion from the state of a thick drawn primary molded product having substantially the same thickness. The outer periphery of the portion between the rotor and the stator is cut so as to be thinner.

好ましい態様では、前記キャンは、天井部を有する円筒状とされ、その天井部と下端部とが略同じ肉厚とされるとともに、それら以外の円筒状部分の外周が切削加工されて前記天井部及び下端部より薄くされる。   In a preferred aspect, the can is formed in a cylindrical shape having a ceiling portion, and the ceiling portion and the lower end portion thereof have substantially the same thickness, and the outer periphery of the other cylindrical portion is cut to process the ceiling portion. And thinner than the lower end.

他の好ましい態様では、前記キャンの厚肉部と薄肉部との境目部分は、段差が生じないように肉厚が連続的に変化せしめられてなる。   In another preferred embodiment, the thickness of the boundary between the thick portion and the thin portion of the can is continuously changed so that no step is generated.

他の好ましい態様では、前記弁本体に段差部が形成され、この段差部に前記キャンの下端部が係合せしめられて付き合わせ溶接により密封接合される。   In another preferred embodiment, a step portion is formed in the valve body, and a lower end portion of the can is engaged with the step portion and sealed and joined by butt welding.

一方、本発明に係る製造方法は、下端部の肉厚がロータとステータとの間の部分の肉厚より厚くされている、天井部を有する円筒状の流量制御弁用キャンの製造するためのものであって、非磁性の金属板を素材として絞り成形により全体が略同じ肉厚の、天井部を有する円筒状の厚肉一次成形品を得、該厚肉一次成形品の状態から、前記ロータとステータとの間の円筒状部分の肉厚を前記下端部の肉厚より薄くすべく、前記ロータとステータとの間の円筒状部分の外周を切削加工するようにされる。 On the other hand, the manufacturing method according to the present invention is for manufacturing a cylindrical flow rate control valve can having a ceiling portion in which the thickness of the lower end portion is thicker than the thickness of the portion between the rotor and the stator. A cylindrical thick primary molded product having a ceiling part, which is substantially the same thickness as a whole by drawing from a non-magnetic metal plate as a raw material, from the state of the thick primary molded product, The outer periphery of the cylindrical portion between the rotor and the stator is cut so that the thickness of the cylindrical portion between the rotor and the stator is thinner than the thickness of the lower end portion.

本発明に係る流量制御弁は、キャンの下端部の肉厚がロータとステータとの間の円筒状部分の肉厚より厚くされる。言い換えれば、ロータ側に得られるトルクに関与する部分(ロータとステータとの間の円筒状部分)の肉厚が従来のものより薄くされて、ステータのヨークからロータまでの距離(キャンの肉厚にキャンとロータとの間の間隙を加算した距離)が短くされる。   In the flow control valve according to the present invention, the thickness of the lower end portion of the can is made thicker than the thickness of the cylindrical portion between the rotor and the stator. In other words, the thickness of the portion (cylindrical portion between the rotor and the stator) involved in the torque obtained on the rotor side is made thinner than the conventional one, and the distance from the stator yoke to the rotor (the thickness of the can) And the distance obtained by adding the gap between the can and the rotor) is shortened.

これにより、ロータの材料として安価な希土類プラスチックマグネットを用いても、必要とするトルクが得られるとともに、キャンの下端部の肉厚が厚くされていることから、キャンの下端部と弁本体との溶接部分に充分な接合強度を確保することができ、冷媒として高圧の二酸化炭素等が用いられる場合でも、ガス漏れ等が生じにくくなり、信頼性が向上する。   As a result, even if an inexpensive rare earth plastic magnet is used as the rotor material, the required torque can be obtained and the thickness of the lower end of the can is increased. Sufficient joint strength can be ensured at the welded portion, and even when high-pressure carbon dioxide or the like is used as a refrigerant, gas leakage or the like is less likely to occur, and reliability is improved.

上記に加え、本発明に係る流量制御弁用キャンは、通常の絞り(プレス)成形により得られた、全体が略同じ肉厚の厚肉絞り一次成形品の状態から、前記ロータとステータとの間の円筒状部分が前記下端部の肉厚より薄くなるように、前記ロータとステータとの間の円筒状部分の外周を切削加工することにより作製されるので、キャンをしごき偏肉プレス成形により作製する場合に比して、成形時間(工数)が短くなるとともに、型費が安く済み、製造コストを低く抑えることができる。加えて、ショックライン、へげ等の成形不良が生じ難く、さらに、ロータとステータとの間の円筒状部分(の外径)が切削加工により形成されることから、寸法加工精度を高くできる等の利点も得られる。   In addition to the above, the flow control valve can according to the present invention can be obtained by performing normal drawing (press) molding from the state of a thick-drawn primary molded product having substantially the same overall thickness between the rotor and the stator. Since the cylindrical part between the rotor and stator is made by cutting the outer periphery of the cylindrical part so that the cylindrical part in between is thinner than the thickness of the lower end part, Compared to the case of manufacturing, the molding time (man-hour) is shortened, the mold cost is low, and the manufacturing cost can be kept low. In addition, molding defects such as shock lines and barbs are unlikely to occur, and the cylindrical portion (the outer diameter) between the rotor and stator is formed by cutting, so that the dimensional processing accuracy can be increased. The advantages are also obtained.

以下、本発明の流量制御弁の実施形態を図面を参照しながら説明する。
図1は、本発明に係る流量制御弁の一実施形態の縦断面図である。なお、図1においては、前述した図4に示される流量制御弁10’の各部に対応する部分には同一の符号が付されている。
Hereinafter, an embodiment of a flow control valve of the present invention will be described with reference to the drawings.
FIG. 1 is a longitudinal sectional view of an embodiment of a flow control valve according to the present invention. In FIG. 1, parts corresponding to the respective parts of the flow control valve 10 ′ shown in FIG. 4 are given the same reference numerals.

図1に示される流量制御弁10は、弁室21、弁座22(弁口22a)、鍔状部材23等を有し、前記弁座22に接離するニードル状の弁体24aにより冷媒の通過流量を調整する弁本体20と、この弁本体20にその下端部40bが溶接により密封接合されるキャン40(後で詳述)と、このキャン40の内周に所定の間隙αをあけて配在されるロータ30と、該ロータ30を回転駆動すべくキャン40に外嵌されたステータ50と、を備えている。   A flow control valve 10 shown in FIG. 1 has a valve chamber 21, a valve seat 22 (valve port 22a), a flange-like member 23 and the like, and a needle-like valve body 24a that contacts and separates from the valve seat 22 to supply refrigerant. A valve body 20 for adjusting the passage flow rate, a can 40 (which will be described in detail later) whose lower end portion 40b is hermetically joined to the valve body 20 by welding, and a predetermined gap α in the inner periphery of the can 40. The rotor 30 is disposed, and a stator 50 that is externally fitted to the can 40 to rotationally drive the rotor 30.

前記弁本体20の弁室21の一側方には、冷媒としての二酸化炭素(ガス)を弁室21に導入するための冷媒導入管61が連結されるとともに、弁室21の下方には、冷媒導出管62が連結されている。   A refrigerant introduction pipe 61 for introducing carbon dioxide (gas) as a refrigerant into the valve chamber 21 is connected to one side of the valve chamber 21 of the valve body 20, and below the valve chamber 21, A refrigerant outlet pipe 62 is connected.

ステータ50は、磁性材からなるヨーク51と、このヨーク51にボビン52を介して巻回される上下のステータコイル53,53と、からなり、ロータ30とステータ50によりステッピングモータが構成される。   The stator 50 includes a yoke 51 made of a magnetic material and upper and lower stator coils 53, 53 wound around the yoke 51 via a bobbin 52. The rotor 30 and the stator 50 constitute a stepping motor.

前記ロータ30の材料として、ここでは、Nd-Fe-B系等の希土類プラスチックマグネットが用いられている。   Here, a rare earth plastic magnet such as Nd—Fe—B is used as the material of the rotor 30.

前記キャン40は、ステンレス等の非磁性の金属板を素材として、後述する如くの方法で、半球状の天井部40cを有する円筒状に形成されるとともに、その下端部(開口端縁部)40bの肉厚が前記ロータ30とステータ50との間の円筒状部分40aの肉厚より厚くされており、その下端部40bが、弁本体20の上部に固着されているステンレス製の鍔状部材23に形成された段差部23aに突き合わせ溶接により密封接合され(溶接部分K)、内部は気密状態に保たれている。   The can 40 is made of a non-magnetic metal plate such as stainless steel as a material and is formed into a cylindrical shape having a hemispherical ceiling portion 40c by a method as described later, and a lower end portion (opening edge portion) 40b thereof. Is made thicker than the thickness of the cylindrical portion 40a between the rotor 30 and the stator 50, and the lower end portion 40b thereof is fixed to the upper portion of the valve body 20 and is made of a stainless steel bowl-like member 23. Are sealed and joined by butt welding (welded portion K), and the inside is kept airtight.

ここで、本実施形態のキャン40は、次のようにして作製される。すなわち、まず、図2(A)に示される如くに、通常の絞り(プレス)成形により、全体が略同じ肉厚(Ia=Ib=Ic)の、天井部40cを有する円筒状の厚肉絞り一次成形品40Fを得、次に、図2(B)に示される如くに、前記厚肉絞り一次成形品40Fの状態から、前記ロータ30とステータ50との間の円筒状部分40aの肉厚Iaを前記下端部40bの肉厚Ibより薄くすべく、前記ロータ30とステータ50との間の円筒状部分40aの外周を切削加工する。これにより、前記ロータ30とステータ50との間の円筒状部分40aの肉厚Iaは、前記下端部40b及び天井部40cの肉厚Ib(=Ic)より薄く(例えば、約半分程度)される。   Here, the can 40 of the present embodiment is manufactured as follows. That is, first, as shown in FIG. 2 (A), a cylindrical thick-walled drawing having a ceiling portion 40c having the same overall thickness (Ia = Ib = Ic) by ordinary drawing (press) molding. A primary molded product 40F is obtained. Next, as shown in FIG. 2B, from the state of the thick-drawn primary molded product 40F, the thickness of the cylindrical portion 40a between the rotor 30 and the stator 50 is obtained. In order to make Ia thinner than the thickness Ib of the lower end portion 40b, the outer periphery of the cylindrical portion 40a between the rotor 30 and the stator 50 is cut. Thereby, the thickness Ia of the cylindrical portion 40a between the rotor 30 and the stator 50 is made thinner (for example, about half) than the thickness Ib (= Ic) of the lower end portion 40b and the ceiling portion 40c. .

この場合、本実施形態のキャン40の外径Da、内径Db、及びロータ30の外径Eaは、前述した図3(A)に示される先提案流量制御弁のキャン60のそれらと同じであり、また、本実施形態のステータ50のヨーク51からロータ30までの距離(キャン40の肉厚Iaにキャン40とロータ30との間の間隙αを加算した距離)も、先提案流量制御弁のそれと同じとされる。   In this case, the outer diameter Da and inner diameter Db of the can 40 of this embodiment and the outer diameter Ea of the rotor 30 are the same as those of the can 60 of the previously proposed flow control valve shown in FIG. In addition, the distance from the yoke 51 of the stator 50 of the present embodiment to the rotor 30 (the distance obtained by adding the gap α between the can 40 and the rotor 30 to the thickness Ia of the can 40) is also the value of the previously proposed flow control valve. It is the same as that.

なお、本実施形態のキャン40の厚肉部と薄肉部との境目部分、すなわち、前記下端部40bと前記ロータ30とステータ50との間の円筒状部分40aとの境目部分40iは、段差が生じないようにRが施されて肉厚が連続的に変化せしめられている。また、天井部40cと前記円筒状部分40aとの境界部分40jも、段差が生じないように肉厚が連続的に変化せしめられている。このように、厚肉部と薄肉部との境目部分40i、40jの肉厚が連続的に変化せしめられていることにより、境目部分40i、40jに対する応力集中が緩和されて、耐圧強度が向上する。   Note that the boundary portion between the thick portion and the thin portion of the can 40 of the present embodiment, that is, the boundary portion 40 i between the lower end portion 40 b and the cylindrical portion 40 a between the rotor 30 and the stator 50 has a step. R is given so as not to occur, and the thickness is continuously changed. In addition, the thickness of the boundary portion 40j between the ceiling portion 40c and the cylindrical portion 40a is continuously changed so that no step is generated. As described above, the thickness of the boundary portions 40i and 40j between the thick portion and the thin portion is continuously changed, so that the stress concentration on the boundary portions 40i and 40j is alleviated and the pressure strength is improved. .

弁体24aは、黄銅製の弁軸24の下端に形成されている。弁体24aを弁座22に接離させる駆動機構は、弁軸24が摺動自在に嵌挿された筒状のガイドブッシュ26と、その外周に配在された下方開口の筒状の弁軸ホルダ32と、から構成されるねじ送り機構とされ、前記ガイドブッシュ26は、弁本体20に設けられた嵌合穴42にその下端部26aが圧入(又は螺合)固定されるとともに、その中央部付近に雄ねじ部25が形成され、前記弁軸ホルダ32は、ガイドブッシュ26の雄ねじ部(固定ねじ部)25に螺合する雌ねじ部(移動ねじ部)31が形成され、また、その天底中央部に弁軸24の上部小径部が挿通せしめられている。弁軸24の上部小径部の上端部は、弁軸ホルダ32の天底上面に乗せられたナット33に圧入固定されている。   The valve body 24a is formed at the lower end of the valve shaft 24 made of brass. The drive mechanism for bringing the valve body 24a into and out of contact with the valve seat 22 includes a cylindrical guide bush 26 into which the valve shaft 24 is slidably inserted, and a cylindrical valve shaft with a lower opening disposed on the outer periphery thereof. The guide bush 26 is press-fitted (or screwed) and fixed to a fitting hole 42 provided in the valve body 20, and the center of the guide bush 26 is fixed to the guide bush 26. A male screw portion 25 is formed in the vicinity of this portion, and the valve shaft holder 32 is formed with a female screw portion (moving screw portion) 31 that is screwed into the male screw portion (fixed screw portion) 25 of the guide bush 26, and its nadir. An upper small diameter portion of the valve shaft 24 is inserted through the central portion. The upper end portion of the upper small diameter portion of the valve shaft 24 is press-fitted and fixed to a nut 33 placed on the top surface of the bottom of the valve shaft holder 32.

また、前記弁軸24は、弁軸ホルダ32の天底と弁軸24の中間段差部との間に縮装された緩衝用のコイルばね34によって常時下方に付勢されている。ガイドブッシュ26の側面には弁室21とキャン40内の均圧を図る均圧孔32aが形成されている。   The valve shaft 24 is always biased downward by a buffering coil spring 34 that is mounted between the top of the valve shaft holder 32 and the intermediate stepped portion of the valve shaft 24. A pressure equalizing hole 32 a for equalizing the pressure in the valve chamber 21 and the can 40 is formed on the side surface of the guide bush 26.

弁軸ホルダ32の天底上には、コイルばねからなる復帰ばね35が設けられている。復帰ばね35は、ガイドブッシュ26の固定ねじ部25と弁軸ホルダ32の移動ねじ部31との螺合が外れたときに、キャン40の内面に当接して固定ねじ部25と移動ねじ部31との螺合を復帰させるように働く。   A return spring 35 made of a coil spring is provided on the top of the valve shaft holder 32. The return spring 35 abuts against the inner surface of the can 40 when the fixed screw portion 25 of the guide bush 26 and the moving screw portion 31 of the valve shaft holder 32 are disengaged, and the fixed spring portion 25 and the moving screw portion 31. It works to restore the screwing.

弁軸ホルダ32とロータ30とは支持リング36を介して結合されており、支持リング36は、本実施形態ではロータ30の成形時にインサートされた黄銅製の金属リングで構成されている。支持リング36に弁軸ホルダ32の上部突部がかしめ固定され、これにより、ロータ30、支持リング36及び弁軸ホルダ32が一体的に連結されている。   The valve shaft holder 32 and the rotor 30 are coupled via a support ring 36, and the support ring 36 is formed of a brass metal ring inserted when the rotor 30 is formed in this embodiment. The upper protrusion of the valve shaft holder 32 is caulked and fixed to the support ring 36, whereby the rotor 30, the support ring 36, and the valve shaft holder 32 are integrally connected.

ガイドブッシュ26には、ストッパ機構の一方を構成する下ストッパ体(固定ストッパ)27が固着され、弁軸ホルダ32にはストッパ機構の他方を構成する上ストッパ体(移動ストッパ)37が固着されている。   A lower stopper body (fixed stopper) 27 constituting one of the stopper mechanisms is fixed to the guide bush 26, and an upper stopper body (moving stopper) 37 constituting the other of the stopper mechanism is fixed to the valve shaft holder 32. Yes.

このような構成とされた流量制御弁10にあっては、ステータコイル53,53に一方向の通電を行って励磁すると、弁本体20に固定されたガイドブッシュ26に対し、ロータ30及び弁軸ホルダ32が一方向に回転せしめられ、ガイドブッシュ26の固定ねじ部25と弁軸ホルダ32の移動ねじ部31とのねじ送りにより、例えば弁軸ホルダ32が下方に移動して弁体24aが弁座22に着座圧接して弁口22aは閉じられる。   In the flow control valve 10 having such a configuration, when the stator coils 53 and 53 are energized in one direction to be excited, the rotor 30 and the valve shaft with respect to the guide bush 26 fixed to the valve main body 20. When the holder 32 is rotated in one direction and the screw feed between the fixing screw portion 25 of the guide bush 26 and the moving screw portion 31 of the valve shaft holder 32, for example, the valve shaft holder 32 is moved downward and the valve body 24a is moved to the valve body 24a. The valve port 22a is closed by being in pressure contact with the seat 22.

弁口22aが閉じられた時点では、上ストッパ体37は未だ下ストッパ体27に当接しておらず、弁体24aが弁口22aを閉じたままロータ30及び弁軸ホルダ32はさらに回転下降する。このときは、弁軸24に対して弁軸ホルダ32が下降するため、緩衝用のコイルばね34が圧縮せしめられることにより弁軸ホルダ32の下降力は吸収される。その後、ロータ30がさらに回転して弁軸ホルダ32が下降すると、上ストッパ体37が下ストッパ体27に衝接し、ステータコイル53,53に対する通電が続行されても弁軸ホルダ32の下降は強制的に停止される。   When the valve port 22a is closed, the upper stopper body 37 is not yet in contact with the lower stopper body 27, and the rotor 30 and the valve shaft holder 32 further rotate and descend while the valve body 24a closes the valve port 22a. . At this time, since the valve shaft holder 32 is lowered with respect to the valve shaft 24, the descent force of the valve shaft holder 32 is absorbed by the compression coil spring 34 being compressed. Thereafter, when the rotor 30 further rotates and the valve shaft holder 32 is lowered, the upper stopper body 37 comes into contact with the lower stopper body 27, and the lowering of the valve shaft holder 32 is forced even if energization to the stator coils 53, 53 is continued. Is stopped.

一方、ステータコイル53,53に他方向の通電を行って励磁すると、弁本体20に固定されたガイドブッシュ26に対し、ロータ30及び弁軸ホルダ32が前記と逆方向に回転せしめられ、ガイドブッシュ26の固定ねじ部25と弁軸ホルダ32の移動ねじ部31とのねじ送りにより、今度は弁軸ホルダ32が上方に移動して弁軸24の下端の弁体24aが弁座22から離れて弁口22aが開かれ、冷媒が弁口22aを通過する。この場合、ロータ30の回転量により弁口22aの実効開口面積、すなわち冷媒の通過流量を調整することができ、ロータ30の回転量はパルス数により制御されるため、冷媒通過流量を高精度に調整することができる。   On the other hand, when the stator coils 53 and 53 are energized by energizing in the other direction, the rotor 30 and the valve shaft holder 32 are rotated in the opposite direction to the guide bush 26 fixed to the valve body 20, and the guide bush. By the screw feed between the fixed screw portion 25 of 26 and the moving screw portion 31 of the valve shaft holder 32, the valve shaft holder 32 is now moved upward, and the valve body 24 a at the lower end of the valve shaft 24 is separated from the valve seat 22. The valve port 22a is opened, and the refrigerant passes through the valve port 22a. In this case, the effective opening area of the valve port 22a, that is, the flow rate of the refrigerant can be adjusted by the rotation amount of the rotor 30, and the rotation amount of the rotor 30 is controlled by the number of pulses. Can be adjusted.

以上の如くの構成とされた本実施形態の流量制御弁10において、キャン40は、次のようにして作製される。すなわち、まず、図2(A)に示される如くに、通常の絞り(プレス)成形により、全体が略同じ肉厚(Ia=Ib=Ic)の、天井部40cを有する円筒状の厚肉絞り一次成形品40Fを得、次に、図2(B)に示される如くに、前記厚肉絞り一次成形品40Fの状態から、前記ロータ30とステータ50との間の円筒状部分40aの肉厚Iaを前記下端部40bの肉厚Ibより薄くすべく、前記ロータ30とステータ50との間の円筒状部分40aの外周を切削加工する。これにより、前記ロータ30とステータ50との間の円筒状部分40aの肉厚Iaは、前記下端部40b及び天井部40cの肉厚Ib(=Ic)より薄く(例えば、約半分程度)される。   In the flow control valve 10 of the present embodiment configured as described above, the can 40 is manufactured as follows. That is, first, as shown in FIG. 2 (A), a cylindrical thick-walled drawing having a ceiling portion 40c having the same overall thickness (Ia = Ib = Ic) by ordinary drawing (press) molding. A primary molded product 40F is obtained. Next, as shown in FIG. 2B, from the state of the thick-drawn primary molded product 40F, the thickness of the cylindrical portion 40a between the rotor 30 and the stator 50 is obtained. In order to make Ia thinner than the thickness Ib of the lower end portion 40b, the outer periphery of the cylindrical portion 40a between the rotor 30 and the stator 50 is cut. Thereby, the thickness Ia of the cylindrical portion 40a between the rotor 30 and the stator 50 is made thinner (for example, about half) than the thickness Ib (= Ic) of the lower end portion 40b and the ceiling portion 40c. .

この場合、本実施形態のキャン40の外径Da、内径Db、及びロータ30の外径Eaは、前述した図3(A)に示される先提案流量制御弁のキャン60のそれらと同じにでき、また、本実施形態のステータ50のヨーク51からロータ30までの距離(キャン40の肉厚Iaにキャン40とロータ30との間の間隙αを加算した距離)も、先提案流量制御弁のそれと同じにできる。   In this case, the outer diameter Da and inner diameter Db of the can 40 of this embodiment and the outer diameter Ea of the rotor 30 can be made the same as those of the can 60 of the previously proposed flow control valve shown in FIG. In addition, the distance from the yoke 51 of the stator 50 of the present embodiment to the rotor 30 (the distance obtained by adding the gap α between the can 40 and the rotor 30 to the thickness Ia of the can 40) is also the value of the previously proposed flow control valve. It can be the same.

なお、本実施形態のキャン40の厚肉部と薄肉部との境目部分、すなわち、前記下端部40bと前記ロータ30とステータ50との間の円筒状部分40aとの境目部分40iは、段差が生じないようにRが施されて肉厚が連続的に変化せしめられている。また、天井部40cと前記円筒状部分40aとの境界部分40jも、段差が生じないように肉厚が連続的に変化せしめられている。このように、厚肉部と薄肉部との境目部分40i、40jの肉厚が連続的に変化せしめられていることにより、境目部分40i、40jに対する応力集中が緩和されて、耐圧強度等が向上する。   Note that the boundary portion between the thick portion and the thin portion of the can 40 of the present embodiment, that is, the boundary portion 40 i between the lower end portion 40 b and the cylindrical portion 40 a between the rotor 30 and the stator 50 has a step. R is given so as not to occur, and the thickness is continuously changed. In addition, the thickness of the boundary portion 40j between the ceiling portion 40c and the cylindrical portion 40a is continuously changed so that no step is generated. As described above, the thickness of the boundary portions 40i and 40j between the thick portion and the thin portion is continuously changed, so that the stress concentration on the boundary portions 40i and 40j is alleviated and the pressure strength and the like are improved. To do.

前記したように、本実施形態の流量制御弁10は、キャン40の下端部40bの肉厚Ibがロータ30とステータ50との間の部分の肉厚Iaより厚くされる。言い換えれば、ロータ側に得られるトルクに関与する部分の肉厚Iaが従来のものより薄くされて、ステータ50のヨーク51からロータ30までの距離(キャン40の円筒状部分40aの肉厚Iaに間隙αを加算した距離)が短くされる。これにより、ロータ30の材料として安価な希土類プラスチックマグネットを用いても、必要とするトルクが得られるとともに、キャン40の下端部40bの肉厚が厚くされていることから、キャン40の下端部40bと弁本体20(鍔状部材23)との溶接部分(K)に充分な接合強度を確保することができ、冷媒として高圧の二酸化炭素等が用いられる場合でも、ガス漏れ等が生じにくくなり、信頼性を向上させることができる。   As described above, in the flow control valve 10 of the present embodiment, the wall thickness Ib of the lower end portion 40 b of the can 40 is thicker than the wall thickness Ia of the portion between the rotor 30 and the stator 50. In other words, the thickness Ia of the portion related to the torque obtained on the rotor side is made thinner than the conventional one, and the distance from the yoke 51 of the stator 50 to the rotor 30 (the thickness Ia of the cylindrical portion 40a of the can 40) is reduced. The distance obtained by adding the gap α is shortened. As a result, even if an inexpensive rare earth plastic magnet is used as the material of the rotor 30, the required torque can be obtained and the lower end portion 40b of the can 40 is thickened. And a sufficient weld strength (K) between the valve body 20 and the valve body 20 (saddle-shaped member 23), and even when high-pressure carbon dioxide or the like is used as a refrigerant, gas leakage is less likely to occur, Reliability can be improved.

上記に加え、本実施形態の流量制御弁用キャン40は、通常の絞り(プレス)成形により得られた、全体が略同じ肉厚(Ia=Ib=Ic)の厚肉絞り一次成形品40Fの状態から、前記ロータ30とステータ50との間の円筒状部分40aが前記下端部40bの肉厚より薄くなるように、前記ロータ30とステータ50との間の円筒状部分40aの外周を切削加工することにより作製されるので、キャンをしごき偏肉プレス成形により作製する場合に比して、成形時間(工数)が短くなるとともに、型費が安く済み、製造コストを低く抑えることができる。加えて、ショックライン、へげ等の成形不良が生じ難く、さらに、ロータ30とステータ50との間の円筒状部分40a(の外径)が切削加工により形成されることから、寸法加工精度を高くできる等の利点も得られる。   In addition to the above, the flow control valve can 40 of the present embodiment is a thick drawn primary molded product 40F, which is obtained by ordinary drawing (press) molding and has the same overall thickness (Ia = Ib = Ic). From the state, the outer periphery of the cylindrical portion 40a between the rotor 30 and the stator 50 is cut so that the cylindrical portion 40a between the rotor 30 and the stator 50 is thinner than the thickness of the lower end portion 40b. Therefore, as compared with the case where the can is manufactured by ironing uneven thickness press molding, the molding time (man-hour) is shortened, the mold cost is low, and the manufacturing cost can be kept low. In addition, molding defects such as shock lines and heels are unlikely to occur, and the cylindrical portion 40a (outer diameter) between the rotor 30 and the stator 50 is formed by cutting. The advantage that it can be increased is also obtained.

本発明に係る流量制御弁の一実施形態を示す縦断面図。The longitudinal cross-sectional view which shows one Embodiment of the flow control valve which concerns on this invention. 図1に示される流量制御弁で用いられているキャンの作製方法及び構造の説明に供される図。The figure which is provided for description of the production method and structure of the can used in the flow control valve shown in FIG. (A)は、先提案流量制御弁のキャン周りを示す拡大図、(B)は、図4に示される従来の流量制御弁のキャン周りを示す拡大図 (A) is an enlarged view showing the periphery of the can of the previously proposed flow control valve, and (B) is an enlarged view showing the periphery of the can of the conventional flow control valve shown in FIG . 従来の流量制御弁の一例を示す縦断面図。The longitudinal cross-sectional view which shows an example of the conventional flow control valve.

符号の説明Explanation of symbols

10 流量制御弁
20 弁本体
21 弁室
22 弁座
23 鍔状部材
23a 段差部
24 弁軸
24a 弁体
25 固定ねじ部(雄ねじ部)
26 ガイドブッシュ
27 下ストッパ
30 ロータ
31 移動ねじ部(雌ねじ部)
32 弁軸ホルダ
33 プッシュナット
34 圧縮コイルバネ
35 復帰ばね
36 支持リング
37 上ストッパ体
40 キャン
40a 円筒状部分
40b 下端部
40c 天井部
50 ステータ
DESCRIPTION OF SYMBOLS 10 Flow control valve 20 Valve main body 21 Valve chamber 22 Valve seat 23 Gutter-like member 23a Step part 24 Valve shaft 24a Valve body 25 Fixing screw part (male screw part)
26 Guide bush 27 Lower stopper 30 Rotor 31 Moving screw part (female screw part)
32 Valve shaft holder 33 Push nut 34 Compression coil spring 35 Return spring 36 Support ring 37 Upper stopper body 40 Can 40a Cylindrical portion 40b Lower end portion 40c Ceiling portion 50 Stator

Claims (5)

弁室内の弁座に接離する弁体により冷媒等の流体の通過流量を調整する弁本体と、
該弁本体にその下端部が溶接により密封接合されるキャンと、
該キャンの内周に所定の間隙をあけて配在されるロータと、
該ロータを回転駆動すべく前記キャンに外嵌されたステータと、
前記ロータと前記弁体との間に配在され、前記ロータの回転を利用して前記弁体を前記弁座に接離させる駆動機構と、を備え、
前記キャンの下端部の肉厚が前記ロータとステータとの間の部分の肉厚より厚くされている流量制御弁であって、
前記キャンは、非磁性の金属板を素材として全体が略同じ肉厚の厚肉絞り一次成形品の状態から、前記ロータとステータとの間の部分の肉厚が前記下端部の肉厚より薄くなるように、前記ロータとステータとの間の部分の外周が切削加工されたものであることを特徴とする流量制御弁。
A valve body that adjusts a flow rate of a fluid such as a refrigerant by a valve body that contacts and separates from a valve seat in the valve chamber;
A can whose lower end is sealed and joined to the valve body by welding;
A rotor disposed with a predetermined gap around the inner periphery of the can;
A stator externally fitted to the can for rotationally driving the rotor;
A drive mechanism that is disposed between the rotor and the valve body, and uses the rotation of the rotor to contact and separate the valve body from the valve seat;
A flow control valve in which the thickness of the lower end of the can is thicker than the thickness of the portion between the rotor and the stator,
The can is made of a non-magnetic metal plate as a raw material in a thick drawn primary molded product with the same overall thickness, and the thickness of the portion between the rotor and the stator is thinner than the thickness of the lower end portion. The flow rate control valve is characterized in that the outer periphery of the portion between the rotor and the stator is cut.
前記キャンは、天井部を有する円筒状とされ、その天井部と下端部とが略同じ肉厚とされるとともに、それら以外の円筒状部分の外周が切削加工されて前記天井部及び下端部より薄くされていることを特徴とする請求項1に記載の流量制御弁。   The can is formed in a cylindrical shape having a ceiling part, and the ceiling part and the lower end part thereof have substantially the same thickness, and the outer periphery of the other cylindrical part is cut and processed from the ceiling part and the lower end part. The flow control valve according to claim 1, wherein the flow control valve is thinned. 前記キャンの厚肉部と薄肉部との境目部分は、段差が生じないように肉厚が連続的に変化せしめられていることを特徴とする請求項1又は2に記載の流量制御弁。   The flow control valve according to claim 1 or 2, wherein a thickness of a boundary portion between the thick portion and the thin portion of the can is continuously changed so that no step is generated. 前記弁本体に段差部が形成され、この段差部に前記キャンの下端部が係合せしめられて付き合わせ溶接により密封接合されていることを特徴とする請求項1から3のいずれかに記載の流量制御弁。   The step part is formed in the said valve main body, The lower end part of the said can is engaged with this step part, and it seal-joins by butt-welding. Flow control valve. 下端部の肉厚がロータとステータとの間の円筒状部分の肉厚より厚くされている、天井部を有する円筒状の流量制御弁用キャンの製造方法であって、
非磁性の金属板を素材として絞り成形により全体が略同じ肉厚の、天井部を有する円筒状の厚肉絞り一次成形品を得、該厚肉絞り一次成形品の状態から、前記ロータとステータとの間の円筒状部分の肉厚を前記下端部の肉厚より薄くすべく、前記ロータとステータとの間の円筒状部分の外周を切削加工することを特徴とする流量制御弁用キャンの製造方法。
A method for manufacturing a cylindrical flow control valve can having a ceiling portion, wherein the thickness of the lower end portion is thicker than the thickness of the cylindrical portion between the rotor and the stator,
By using a non-magnetic metal plate as a raw material , a cylindrical thick-walled primary molded product having a ceiling portion, which has the same overall thickness, is obtained. From the state of the thick-drawn primary molded product, the rotor and stator A cylindrical portion between the rotor and the stator, the outer periphery of the cylindrical portion between the rotor and the stator is cut so that the thickness of the cylindrical portion between the rotor and the stator is thinner. Production method.
JP2006282187A 2006-10-17 2006-10-17 Flow control valve and method for manufacturing the flow control valve can Active JP4963929B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006282187A JP4963929B2 (en) 2006-10-17 2006-10-17 Flow control valve and method for manufacturing the flow control valve can

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006282187A JP4963929B2 (en) 2006-10-17 2006-10-17 Flow control valve and method for manufacturing the flow control valve can

Publications (2)

Publication Number Publication Date
JP2008101633A JP2008101633A (en) 2008-05-01
JP4963929B2 true JP4963929B2 (en) 2012-06-27

Family

ID=39436118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006282187A Active JP4963929B2 (en) 2006-10-17 2006-10-17 Flow control valve and method for manufacturing the flow control valve can

Country Status (1)

Country Link
JP (1) JP4963929B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI594551B (en) 2012-03-29 2017-08-01 荏原製作所股份有限公司 Canned motor and vacuum pump
JP6072467B2 (en) * 2012-08-13 2017-02-01 株式会社荏原製作所 Canned motor, vacuum pump
JP6507068B2 (en) * 2015-08-27 2019-04-24 株式会社不二工機 Motor-operated valve and method of assembling the same
CN108426043B (en) * 2018-05-14 2023-05-09 浙江中宝自控元件有限公司 Plastic electric valve

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10281324A (en) * 1997-04-11 1998-10-23 Fuji Koki Corp Electrically-operated valve
JP3905602B2 (en) * 1997-07-03 2007-04-18 株式会社不二工機 Motorized valve
JP2000297873A (en) * 1999-04-15 2000-10-24 Fuji Koki Corp Motor-operated valve
JP4224187B2 (en) * 1999-06-02 2009-02-12 株式会社不二工機 Motorized valve
JP4676179B2 (en) * 2004-09-01 2011-04-27 株式会社不二工機 Motorized valve
JP2007010015A (en) * 2005-06-29 2007-01-18 Tgk Co Ltd Electric flow rate control valve
JP4795806B2 (en) * 2006-02-07 2011-10-19 株式会社鷺宮製作所 Electric valve and solenoid valve

Also Published As

Publication number Publication date
JP2008101633A (en) 2008-05-01

Similar Documents

Publication Publication Date Title
JP4795806B2 (en) Electric valve and solenoid valve
JP4550528B2 (en) Motorized valve
KR101303536B1 (en) Electric valve
KR101165317B1 (en) Electrically operated valve
JP5726426B2 (en) Three-way electric valve and heat pump device equipped with the valve
CN106168304B (en) Electric valve
JP5726506B2 (en) Electric pilot type control valve
JP5572516B2 (en) Motorized valve
JP4963929B2 (en) Flow control valve and method for manufacturing the flow control valve can
JP2008267464A (en) Motor driven valve
JP2001050415A (en) Electrically driven valve
CN110296223B (en) Electrically driven valve
CN111173981B (en) Flow control valve
JP5693899B2 (en) Motorized valve
JP4676179B2 (en) Motorized valve
KR20070096792A (en) Electric motor valve
US20180266581A1 (en) Linear solenoid valve and method of manufacturing linear solenoid valve
JP4653518B2 (en) Three-way valve
JP5234037B2 (en) solenoid valve
JP2011064270A (en) Hydraulic device with solenoid valve
CN111954776A (en) Electric valve
CN1987167B (en) Electric valve
WO2019148693A1 (en) Electric valve and manufacturing method thereof
WO2021039462A1 (en) Solenoid valve
KR101237731B1 (en) Motorized valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120321

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120327

R150 Certificate of patent or registration of utility model

Ref document number: 4963929

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250