JP7188218B2 - Cathode plate for metal electrodeposition - Google Patents

Cathode plate for metal electrodeposition Download PDF

Info

Publication number
JP7188218B2
JP7188218B2 JP2019056291A JP2019056291A JP7188218B2 JP 7188218 B2 JP7188218 B2 JP 7188218B2 JP 2019056291 A JP2019056291 A JP 2019056291A JP 2019056291 A JP2019056291 A JP 2019056291A JP 7188218 B2 JP7188218 B2 JP 7188218B2
Authority
JP
Japan
Prior art keywords
conductive film
cathode plate
nickel
plate
metal plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019056291A
Other languages
Japanese (ja)
Other versions
JP2020158795A (en
Inventor
寛人 渡邉
いつみ 松岡
祐輔 仙波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2019056291A priority Critical patent/JP7188218B2/en
Publication of JP2020158795A publication Critical patent/JP2020158795A/en
Application granted granted Critical
Publication of JP7188218B2 publication Critical patent/JP7188218B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/20Separation of the formed objects from the electrodes with no destruction of said electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/0033D structures, e.g. superposed patterned layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • C25D17/12Shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/16Apparatus for electrolytic coating of small objects in bulk

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

本発明は、金属電着用の陰極板に関する。 The present invention relates to a cathode plate for metal electrodeposition.

従来、ニッケルメッキのアノード原料として供せられる電気ニッケルは、アノード保持具となるチタンバスケット内に入れられ、ニッケルメッキ槽内に吊るされて使用されている。このとき、アノード原料である電気ニッケルとしては、陰極板に電着された板状の電気ニッケルを切断して小片状としたものを使用していた。 Conventionally, electrolytic nickel, which is supplied as an anode raw material for nickel plating, is placed in a titanium basket serving as an anode holder and suspended in a nickel plating tank for use. At this time, as the electrolytic nickel as the raw material for the anode, a plate-like electrolytic nickel electrodeposited on the cathode plate was cut into small pieces to be used.

しかしながら、小片状の電気ニッケルは、角部が鋭いためチタンバスケットへ投入する際の取り扱いが困難であった。又、その小片状の電気ニッケルは、チタンバスケットに投入後に角部がチタンバスケットの網目に引っ掛っていわゆる棚吊りを起こし、チタンバスケット内での充填状態が変化して、メッキむらの発生要因となることがあった。 However, since the small pieces of electrolytic nickel have sharp corners, it is difficult to handle when putting them into the titanium basket. In addition, after the small pieces of electrolytic nickel are thrown into the titanium basket, the corners thereof are caught in the mesh of the titanium basket, causing so-called shelf hanging, which changes the state of filling in the titanium basket and causes uneven plating. It happened to be.

そこで、角部の取れた丸みのある小塊状(ボタン状)の電気ニッケルの使用が提案されている。小塊状の電気ニッケルは、例えば、複数の円形状の導電部を等間隔に配列されている陰極板を用いて、電解によりその導電部にニッケルを析出させた後、導電部から電着したニッケルを剥ぎ取ることにより製造することができる。このような方法によれば、1枚の陰極板から複数の小塊状の電気ニッケルを効率的に製造することができる。 Therefore, it has been proposed to use electrolytic nickel in the form of small lumps (buttons) with rounded corners. Electrolytic nickel in the form of small lumps is obtained, for example, by using a cathode plate in which a plurality of circular conductive portions are arranged at equal intervals, nickel is deposited on the conductive portions by electrolysis, and then nickel is electrodeposited from the conductive portions. can be manufactured by stripping off the According to such a method, it is possible to efficiently produce a plurality of small lumps of electrolytic nickel from a single cathode plate.

は、小塊状の電気ニッケルの製造に用いられる従来の陰極板の一例を示す図である。陰極板11は、平板状の金属板12上に、導電部12aとなる箇所を残して非導電膜13でマスキングが施されており、この陰極板11では、導電部12aが凹部となり、非導電膜13が凸部となっている。このような陰極板11を用いることで、その導電部12aに適度な大きさのニッケルを電着させ、小塊状の電気ニッケルを製造する。 FIG. 5 is a diagram showing an example of a conventional cathode plate used for producing nodular electrolytic nickel. The cathode plate 11 is formed by masking a flat metal plate 12 with a non-conductive film 13 while leaving portions to be the conductive portions 12a. The film 13 is a convex portion. By using such a cathode plate 11, nickel of a suitable size is electrodeposited on the conductive portion 12a to produce electrolytic nickel in the form of small lumps.

陰極板11のように、金属板12上に非導電膜13を形成する方法としては、例えば、図(a)に示すように、平板状の金属板12上に、エポキシ樹脂等の熱硬化性の非導電性樹脂をスクリーン印刷法により塗布して加熱することで所望のパターンを有する非導電膜13を形成する方法がある(特許文献1、2参照)。尚、図(b)は、非導電膜13を形成した陰極板11を用いてニッケル(電気ニッケル)14を導電部12aに電着析出させた状態を示すものである。陰極板11では、ニッケル14が、導電部12aから電着析出しはじめ、厚さ(縦)方向だけではなく平面(横)方向にも成長し、非導電膜13の上部にも盛り上がった状態となる。 As a method for forming the non-conductive film 13 on the metal plate 12 like the cathode plate 11 , for example, as shown in FIG. There is a method of forming a non-conductive film 13 having a desired pattern by applying a non-conductive resin having a specific property by a screen printing method and heating it (see Patent Documents 1 and 2). FIG. 6 (b) shows a state in which nickel (electronic nickel) 14 is electrodeposited on the conductive portion 12a using the cathode plate 11 on which the non-conductive film 13 is formed. On the cathode plate 11 , the nickel 14 begins to be electrodeposited from the conductive portion 12 a, grows not only in the thickness (vertical) direction but also in the plane (horizontal) direction. Become.

又、例えば図(a)に示すように、金属板22上に、感光性の非導電性樹脂を塗布し、露光及び現像により導電部22aに相当する箇所の非導電性樹脂を除去して、所望のパターンを有する非導電膜23を形成する方法も提案されている。尚、図(b)は、非導電膜23を形成した陰極板21を用いてニッケル(電気ニッケル)24を導電部22aに電着析出させた状態を示すものである。陰極板21においても、ニッケル24は、導電部22aから電着析出しはじめ、厚さ方向だけではなく平面方向にも成長していく。 Alternatively, for example, as shown in FIG. 7A, a photosensitive non - conductive resin is applied onto the metal plate 22, and the non-conductive resin is removed from portions corresponding to the conductive portions 22a by exposure and development. , a method of forming a non-conductive film 23 having a desired pattern has also been proposed. FIG. 7 (b) shows a state in which nickel (electronic nickel) 24 is electrodeposited on the conductive portion 22a using the cathode plate 21 on which the non-conductive film 23 is formed. In the cathode plate 21 as well, the nickel 24 begins to be electrodeposited from the conductive portion 22a and grows not only in the thickness direction but also in the planar direction.

更に、導電部となる複数のスタッドが等間隔に複数配列されるように組み込まれた金属の構造体の周囲を射出成形法により絶縁性樹脂で固めることによって、非導電部を構成する陰極板を製造する方法も提案されている(特許文献3参照)。 Furthermore, a cathode plate that constitutes a non-conductive portion is formed by using an injection molding method to solidify the periphery of a metal structure in which a plurality of studs serving as conductive portions are arranged at equal intervals with an insulating resin. A manufacturing method has also been proposed (see Patent Document 3).

特公昭51-036693号公報Japanese Patent Publication No. 51-036693 特開昭52-152832号公報JP-A-52-152832 特公昭56-029960号公報Japanese Patent Publication No. 56-029960

上述したような陰極板を用いて小塊状の電気ニッケルの製造する場合、陰極板に形成される非導電膜(非導電部)の寿命が長いこと、その非導電膜が欠落(劣化)した場合でも容易に整備可能であることが要求される。 When producing small lumps of electrolytic nickel using the cathode plate as described above, the life of the non-conductive film (non-conductive part) formed on the cathode plate is long, and if the non-conductive film is missing (deteriorated) However, it is required to be easily maintainable.

(a)に示したように、金属板12に非導電性樹脂をスクリーン印刷により塗布して非導電膜13を形成した場合、非導電膜13の膜厚は、導電部12aに近づくにしたがって徐々に薄くなる。このような非導電膜13の膜厚の変化は、非導電性樹脂の塗布量、非導電性樹脂の粘性、及び、粘性の温度特性、非導電性樹脂の硬化温度、金属表面の表面粗さや表面自由エネルギー等に依存する。このため、導電部12aとの境界では、非導電膜13の膜厚が極めて薄くなる。 As shown in FIG. 6A, when the non - conductive resin is applied to the metal plate 12 by screen printing to form the non-conductive film 13, the film thickness of the non-conductive film 13 decreases as it approaches the conductive portion 12a. Therefore, it gradually becomes thinner. Changes in the film thickness of the non-conductive film 13 include the coating amount of the non-conductive resin, the viscosity of the non-conductive resin, the temperature characteristics of the viscosity, the curing temperature of the non-conductive resin, and the surface roughness of the metal surface. It depends on the surface free energy and the like. Therefore, the film thickness of the non-conductive film 13 becomes extremely thin at the boundary with the conductive portion 12a.

上述した通り、図、図に示すような従来の陰極板11を用いて小塊状の電気ニッケルを製造すると、ニッケル14は、導電部12aから電着析出しはじめ、縦方向だけでなく横方向にも成長する。このため、徐々に非導電膜13の上にもニッケル14が盛り上がった状態となる。そのため、非導電膜13が薄くなっている導電部12aとの境界近傍の部分においては、電解液の浸透により非導電膜13と金属板12との密着性が低下しやすくなり、ニッケル14の電着時の応力、電気ニッケルの剥ぎ取り時の衝撃等による非導電膜13の欠落が起こりやすくなる。又、一度、非導電膜13の欠落が発生すると、その周辺の非導電膜13が金属板12の表面から浮き上がり、その間隙に更に電解液が侵入しやすくなる。その結果、引き続きニッケルを電着させようとすると、金属板12の表面から浮き上がった非導電膜13の間隙に電解液が潜り込んでニッケル14が電着していく。そして、その間隙に潜り込んで電着したニッケル14を剥ぎ取ろうとすると、ニッケル14が噛み込んでいる非導電膜13を更に欠落させてしまう。 As described above, when the conventional cathode plate 11 as shown in FIGS. 5 and 6 is used to produce small lumps of electrolytic nickel, the nickel 14 begins to be electrodeposited from the conductive portions 12a, and not only in the vertical direction but also in the horizontal direction. grow in both directions. As a result, the nickel 14 gradually rises on the non-conductive film 13 as well. Therefore, in the vicinity of the boundary between the non-conductive film 13 and the conductive portion 12a where the non-conductive film 13 is thin, penetration of the electrolytic solution tends to reduce the adhesion between the non-conductive film 13 and the metal plate 12, and the nickel 14 becomes electrically conductive. The non-conductive film 13 is likely to be chipped off due to the stress at the time of deposition, the impact at the time of stripping off the electrolytic nickel, or the like. Also, once the non-conductive film 13 is chipped off, the non-conductive film 13 around it floats up from the surface of the metal plate 12, making it easier for the electrolyte to enter the gap. As a result, when it is attempted to continue to electrodeposit nickel, the electrolyte penetrates into the gaps of the non-conductive film 13 which is lifted from the surface of the metal plate 12, and nickel 14 is electrodeposited. Then, when an attempt is made to slip into the gap and strip off the electrodeposited nickel 14, the non-conductive film 13 in which the nickel 14 is caught is further removed.

このように、従来の陰極板11においては、連鎖的に非導電膜13の欠落が発生し、欠落部分が広がっていくと隣接する導電部12aから成長したニッケル14同士が連結しやすくなり、所望の形状の電気ニッケルを得ることができず、不良品となる。したがって、非導電膜13の欠落が発生する前に、全ての非導電膜13を剥ぎ取り、再度、非導電膜3を形成して陰極板11を整備する必要が生じる。しかしながら、実際には、数回から多くても10回未満程度のニッケルの電着処理を行った段階で陰極板11の整備を行う必要が生じてしまい、生産性が低下するばかりか整備コストも増大する。 As described above, in the conventional cathode plate 11, the missing portions of the non-conductive film 13 occur in a chain reaction. It is not possible to obtain electrolytic nickel in the shape of , resulting in a defective product. Therefore, it is necessary to strip off all of the non-conductive film 13, form the non-conductive film 3 again, and maintain the cathode plate 11 before the non-conductive film 13 becomes missing. However, in practice, it becomes necessary to maintain the cathode plate 11 after nickel electrodeposition has been performed several times or less than ten times at most, which not only lowers productivity but also increases maintenance costs. increase.

一方、図(a)に示したように、感光性の非導電性樹脂を用いて露光及び現像により非導電膜23を形成した陰極板21では、均一な膜厚に非導電膜23を形成することができる。しかしながら、電着後にニッケル24を剥ぎ取る際に、そのニッケル24が凸部を構成する非導電膜23の段差に引っ掛かり、その非導電膜23に大きな衝撃が加わりやすくなるため、やはり非導電膜23の欠落が発生してしまう。 On the other hand, as shown in FIG. 7 (a), in the cathode plate 21 on which the non-conductive film 23 is formed by exposure and development using a photosensitive non-conductive resin, the non-conductive film 23 is formed to have a uniform thickness. can do. However, when the nickel 24 is stripped off after electrodeposition, the nickel 24 is caught on the steps of the non-conductive film 23 forming the projections, and a large impact is likely to be applied to the non-conductive film 23 . will be missing.

尚、特許文献3のように射出成形により非導電部を構成する方法では、形成される非導電部の寿命は長くなるものの、陰極板それ自体の製造コストが高くなり、非導電部が劣化した場合の陰極板の整備が困難である。 In addition, in the method of forming the non-conductive portion by injection molding as in Patent Document 3, although the life of the formed non-conductive portion is prolonged, the manufacturing cost of the cathode plate itself increases, and the non-conductive portion deteriorates. Maintenance of the cathode plate in the case is difficult.

本発明は、このような従来の事情に鑑み、金属板上の非導電膜が欠落しにくく、繰り返し使用可能な金属電着用の陰極板を提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a negative electrode plate for metal electrodeposition, which can be used repeatedly and in which the non-conductive film on the metal plate is less likely to come off.

本発明者らは、上述した解題を解決するために鋭意検討を重ねた。その結果、金属板に円盤状の突起部を設けて導電部とし、突起部以外の金属表面に非導電膜を設け、更に、上記突起部の周囲にリング状溝部を形成することにより、非導電膜が欠落しにくくなることを見出し、本発明を完成するに至った。 The present inventors have made extensive studies to solve the problems described above. As a result, a disk-shaped projection is provided on the metal plate as a conductive portion, a non-conductive film is provided on the metal surface other than the projection, and a ring-shaped groove is formed around the projection, thereby making the metal plate non-conductive. The inventors have found that the film is less likely to fall off, and have completed the present invention.

(1) 少なくとも一方の表面に複数の円盤状の突起部が配列されている金属板と、前記金属板の表面における前記突起部以外の部分に積層されている非導電膜と、を有し、前記金属板の表面における前記突起部の周囲にはリング状溝部が形成されている、金属電着用の陰極板。 (1) A metal plate having a plurality of disk-shaped protrusions arranged on at least one surface thereof, and a non-conductive film laminated on a portion of the surface of the metal plate other than the protrusions, A cathode plate for metal electrodeposition, wherein a ring-shaped groove is formed around the projection on the surface of the metal plate.

(2) 前記突起部の高さは、50μm以上1000μm以下である、(1)に記載の金属電着用の陰極板。 (2) The cathode plate for metal electrodeposition according to (1), wherein the protrusion has a height of 50 μm or more and 1000 μm or less.

(3) 前記リング状溝部の幅が200μm以上3000μm以下で、深さが200μm以上1000μm以下である、(1)又は(2)に記載の金属電着用の陰極板。 (3) The cathode plate for metal electrodeposition according to (1) or (2), wherein the ring-shaped groove has a width of 200 μm or more and 3000 μm or less and a depth of 200 μm or more and 1000 μm or less.

(4) 前記金属板は、チタン又はステンレス鋼からなる、(1)から(3)のいずれかに記載の金属電着用の陰極板。 (4) The cathode plate for metal electrodeposition according to any one of (1) to (3), wherein the metal plate is made of titanium or stainless steel.

本発明によれば、非導電膜が欠落しにくく、繰り返し使用可能な金属電着用の陰極板及びその製造方法を提供することができる。 According to the present invention, it is possible to provide a negative electrode plate for metal electrodeposition, in which the non-conductive film is less likely to fall off and which can be used repeatedly, and a method for producing the same.

本発明の金属電着用の陰極板の構成を示す平面図である。1 is a plan view showing the configuration of a cathode plate for metal electrodeposition according to the present invention; FIG. 本発明の金属電着用の陰極板の構成を示す要部拡大断面図であり、(a)はニッケル電着前の陰極板の状態を説明する要部拡大断面図であり、(b)はニッケル電着後の陰極板の状態を説明する要部拡大断面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an enlarged cross-sectional view of a main part showing the structure of a cathode plate for metal electrodeposition according to the present invention, wherein (a) is an enlarged cross-sectional view of a main part explaining the state of the cathode plate before nickel electrodeposition, and (b) is a nickel electrodeposition; FIG. 4 is an enlarged cross-sectional view of a main part for explaining the state of the cathode plate after electrodeposition; 図2におけるA部を拡大した要部拡大断面図であり、金属板の突起部及びリング状溝部の側面形状を説明する要部拡大断面図である。FIG. 3 is an enlarged cross-sectional view of a main part enlarging a portion A in FIG. 2, and is an enlarged cross-sectional view of a main part for explaining side shapes of a protrusion and a ring-shaped groove of a metal plate. 本発明の金属電着用の陰極板の製造方法を説明する要部拡大断面図であり、(a)は第1工程を説明する要部拡大断面図であり、(b)は第2工程を説明する要部拡大断面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an enlarged cross-sectional view of a main part for explaining a method of manufacturing a cathode plate for metal electrodeposition according to the present invention, wherein (a) is an enlarged cross-sectional view of a main part for explaining the first step, and (b) is for explaining the second step; FIG. 2 is an enlarged cross-sectional view of a main part. 従来の金属電着用の陰極板の構成を示す平面図である。FIG. 3 is a plan view showing the configuration of a conventional cathode plate for metal electrodeposition. 従来の金属電着用の陰極板の構成を示す要部拡大断面図であり、(a)はニッケル電着前の陰極板の状態を説明する要部拡大断面図であり、(b)はニッケル電着後の陰極板の状態を説明する要部拡大断面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an enlarged cross-sectional view of a main part showing the structure of a conventional cathode plate for metal electrodeposition, wherein (a) is an enlarged cross-sectional view of the main part explaining the state of the cathode plate before nickel electrodeposition, and (b) is a nickel electrodeposition; FIG. 4 is an enlarged cross-sectional view of a main part for explaining the state of the cathode plate after attachment; 従来の金属電着用の陰極板の他の構成を示す要部拡大断面図であり、(a)はニッケル電着前の陰極板の状態を説明する要部拡大断面図であり、(b)はニッケル電着後の陰極板の状態を説明する要部拡大断面図である。FIG. 3 is an enlarged cross-sectional view of a main part showing another configuration of a conventional cathode plate for metal electrodeposition, where (a) is an enlarged cross-sectional view of a main part explaining the state of the cathode plate before nickel electrodeposition, and (b) is an enlarged cross-sectional view of the main part; FIG. 4 is an enlarged cross-sectional view of a main part for explaining the state of a cathode plate after nickel electrodeposition;

以下、本発明の金属電着用の陰極板を、電気ニッケルの製造に使用される金属電着用の陰極板に適用した実施形態について詳細に説明する。尚、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲で適宜変更することができる。 Hereinafter, an embodiment in which the cathode plate for metal electrodeposition of the present invention is applied to a cathode plate for metal electrodeposition used in the production of electrolytic nickel will be described in detail. In addition, the present invention is not limited to the following embodiments, and can be changed as appropriate without changing the gist of the present invention.

<金属電着用の陰極板>
[全体構成]
本発明の製造方法によって製造することができる陰極板1は、図1に示すように、複数の円盤状の突起部2aが配列されている金属板2と、金属板2の表面における突起部2a以外の部分に形成される非導電膜3とを有する。陰極板1は、後述するように、例えばニッケルを含む電解液や陽極を収容する電解槽内に吊下げ部材5により吊下げられて使用され、その表面に所望とする形状のニッケルを電着析出させる。
<Cathode plate for metal electrodeposition>
[overall structure]
The cathode plate 1 that can be manufactured by the manufacturing method of the present invention comprises, as shown in FIG. It has a non-conductive film 3 formed in a portion other than that. As will be described later, the cathode plate 1 is used by being suspended by a suspension member 5 in an electrolytic cell containing, for example, a nickel-containing electrolytic solution or an anode. Let

[金属板]
金属板2は、図1及び図2(a)に示すように、平板状の金属の板であり、複数の円盤状の突起部2a及びリング状溝部2dを有する。
[Metal plate]
As shown in FIGS. 1 and 2(a), the metal plate 2 is a flat metal plate and has a plurality of disk-shaped projections 2a and ring-shaped grooves 2d.

ここで、金属板2の表面における突起部2a及びリング状溝部2d以外の部分を、突起部2a及びリング状溝部2dに対して「平坦部2b」と言う。又、円盤状の突起部の高さXは、金属板2における平坦部2bの表面からの突出高さとする(図3参照)。又、「リング状溝部の深さY」は、金属板2における平坦部2bの表面からの深さとする。(図3参照) Here, the portion of the surface of the metal plate 2 other than the protrusion 2a and the ring-shaped groove 2d is referred to as a "flat portion 2b" with respect to the protrusion 2a and the ring-shaped groove 2d. Also, the height X of the disk-shaped protrusion is the height of protrusion from the surface of the flat portion 2b of the metal plate 2 (see FIG. 3). Also, the "depth Y of the ring-shaped groove" is the depth from the surface of the flat portion 2b of the metal plate 2. As shown in FIG. (See Figure 3)

尚、図2では、金属板2の一方の面に突起部2aを有する例を示しているが、その両方の面に突起部2aを有していてもよい。 Although FIG. 2 shows an example in which one surface of the metal plate 2 has the projections 2a, both surfaces may have the projections 2a.

金属板2の大きさは、特に限定されず、製造する電気ニッケルの所望の大きさや数に応じて適宜設定すればよい。例えば、一辺が100mm以上、2000mm以下の矩形状の大きさとすることができる。又、金属板2の厚みとしては、突起部2aを一方の表面に設ける場合には、例えば、1.5mm以上、5mm以下程度であることが好ましく、突起部2aを両方の表面に設ける場合には、例えば、3mm以上、10mm以下程度であることが好ましい。金属板2の厚みが過小であると、突起部2aと平坦部2bとによって反りが生じやすくなる傾向がある。一方で、金属板2の厚みが過大であると、金属板2の重量が増大して取り扱いが困難になる。 The size of the metal plate 2 is not particularly limited, and may be appropriately set according to the desired size and number of electrolytic nickel to be produced. For example, it can have a rectangular size with one side of 100 mm or more and 2000 mm or less. The thickness of the metal plate 2 is preferably about 1.5 mm or more and 5 mm or less when the protrusions 2a are provided on one surface. is preferably, for example, about 3 mm or more and 10 mm or less. If the thickness of the metal plate 2 is too small, there is a tendency that warping is likely to occur due to the protrusions 2a and the flat portions 2b. On the other hand, if the thickness of the metal plate 2 is too large, the weight of the metal plate 2 increases, making it difficult to handle.

金属板2の材質としては、使用する電解液による腐食が小さく、ニッケル等の電着物とゆるい接着しか形成しない金属であれば特に限定されないが、チタン、ステンレス鋼が好ましく挙げられる。 The material of the metal plate 2 is not particularly limited as long as it is less corroded by the electrolyte used and forms only loose adhesion with electrodeposits such as nickel, but titanium and stainless steel are preferable.

金属板2において、複数の円盤状の突起部2aは、その表面が後述する非導電膜3から露出して導電部としての機能を果たすとともに、非導電膜3が所定の厚みをもって成膜されるべく、隣接する突起部2aによって凹状の段差を形成する。以下、突起部2aのうち、非導電膜3から露出する面を「導電部2c」と言うことがある。導電部2cでは、電解処理によりニッケル4を電着析出する。 In the metal plate 2, the plurality of disk-shaped protrusions 2a are exposed from the non-conductive film 3 described later and function as conductive portions, and the non-conductive film 3 is formed with a predetermined thickness. Therefore, adjacent protrusions 2a form a recessed step. Hereinafter, the surface of the protrusion 2a exposed from the non-conductive film 3 may be referred to as the "conductive portion 2c". In the conductive portion 2c, nickel 4 is electrodeposited by electrolytic treatment.

円盤状の突起部2aの大きさは、所望の電気ニッケルの大きさに応じて適宜設定されればよいが、その直径としては、例えば、5mm以上、30mm以下とすることができる。又、突起部2aの高さXは、50μm以上、1000μm以下であることが好ましく、200μm以上800μm以下であることがより好ましい。突起部2aの高さXが過小であると、金属板2の平坦部2b上に形成される非導電膜3の膜厚が不十分となり、ニッケル4の電着時の応力やその電気ニッケルの剥ぎ取り時の衝撃によって欠落しやすくなる。 The size of the disk-shaped protrusion 2a may be appropriately set according to the desired size of electrolytic nickel, and the diameter thereof may be, for example, 5 mm or more and 30 mm or less. Moreover, the height X of the protrusion 2a is preferably 50 μm or more and 1000 μm or less, and more preferably 200 μm or more and 800 μm or less. If the height X of the protruding portion 2a is too small, the thickness of the non-conductive film 3 formed on the flat portion 2b of the metal plate 2 will be insufficient, resulting in stress during the electrodeposition of the nickel 4 and the electric nickel. It becomes easy to fall off due to the impact at the time of stripping.

一方、突起部2aの高さXが過大であると、例えば、スクリーン印刷で非導電膜を形成するとき、塗布回数が多くなり生産性が低下する。又、突起部2a及びリング状溝部2dの加工時に金属板2の歪が生じやすくなり、金属板2が反りやすくなるため、非導電膜3の形成が困難になる。尚、金属板2の歪による影響を小さくするため、金属板2の厚みを厚くすることも可能であるが、金属板2の重量が増大し取扱いが困難になる。 On the other hand, if the height X of the protrusion 2a is too large, for example, when forming a non-conductive film by screen printing, the number of times of application increases, resulting in a decrease in productivity. In addition, the metal plate 2 is likely to be distorted and warped during processing of the protrusion 2a and the ring-shaped groove 2d, making it difficult to form the non-conductive film 3. FIG. Although it is possible to increase the thickness of the metal plate 2 in order to reduce the influence of distortion of the metal plate 2, the weight of the metal plate 2 increases and handling becomes difficult.

陰極板1を構成する金属板2の突起部2aの周囲に、リング状溝部2dを形成することで非導電膜3と金属板2の接触面積が大きくなることにより、アンカーとしての形状効果が発現し、両者の密着力が向上する。リング状溝部2dの幅Wは、200μm以上3000μm以下であることが好ましく、300μm以上2000μm以下であることがより好ましい。この幅Wが、200μmよりも小さくなると、非導電性膜用の樹脂を塗布する場合に、空気が抜けず溝に樹脂が充填しにくくなる。一方、3000μmより大きくしても、アンカーとしての形状効果のより以上の向上は期待できない。リング状溝部の深さYは、200μm以上1000μm以下であることが好ましい。リング状溝部2dの深さYが過小であると密着力向上の効果が小さくなる。又、その深さは、最大1000μmあれば密着力向上の効果は十分であり、過大であると非導電膜となる樹脂を塗布する際に樹脂の充填が困難となり、又、非導電膜を構成する樹脂の劣化に伴いこれを除去する際に、除去作業が難しくなり、一部の劣化樹脂が残存してしまう不具合が発生しやすい。 Forming a ring-shaped groove 2d around the protrusion 2a of the metal plate 2 constituting the cathode plate 1 increases the contact area between the non-conductive film 3 and the metal plate 2, thereby exhibiting a shape effect as an anchor. and the adhesion between the two is improved. The width W of the ring-shaped groove portion 2d is preferably 200 μm or more and 3000 μm or less, more preferably 300 μm or more and 2000 μm or less. If the width W is smaller than 200 μm, air does not escape when the resin for the non-conductive film is applied, making it difficult to fill the groove with the resin. On the other hand, even if it is larger than 3000 μm, no further improvement in the shape effect as an anchor can be expected. The depth Y of the ring-shaped groove is preferably 200 μm or more and 1000 μm or less. If the depth Y of the ring-shaped groove portion 2d is too small, the effect of improving the adhesion becomes small. Further, if the depth is 1000 μm at maximum, the effect of improving adhesion is sufficient. As the resin deteriorates, it becomes difficult to remove it, and a problem that a part of the deteriorated resin remains tends to occur.

又、金属板2の表面、即ち、金属板2における円盤状の突起部2aの表面には、サンドブラストやエッチングにより細かい凹凸を設けてもよい。これにより、突起部2aに電着したニッケル4が電解処理中に脱落することなく、適度な衝撃で剥ぎ取ることができる。この場合、後述する非導電膜3の膜厚は、金属板2の最大表面粗さRzの2倍以上であることが好ましい。非導電膜3の膜厚が金属板2の最大表面粗さRzの2倍より小さいと、非導電膜3のピンホールや絶縁不良部分の発生が懸念される。 Further, the surface of the metal plate 2, that is, the surface of the disk-shaped protrusion 2a of the metal plate 2 may be provided with fine irregularities by sandblasting or etching. As a result, the nickel 4 electrodeposited on the protruding portion 2a does not come off during the electrolytic treatment, and can be stripped off with a moderate impact. In this case, the film thickness of the non-conductive film 3 to be described later is preferably at least twice the maximum surface roughness Rz of the metal plate 2 . If the film thickness of the non-conductive film 3 is less than twice the maximum surface roughness Rz of the metal plate 2, there is concern that pinholes or insulation defects may occur in the non-conductive film 3 .

[非導電膜]
非導電膜3は、図2に示すように、金属板2の表面において、突起部2a以外の部分である平坦部2b及びリング状溝部2dを被覆して積層される態様で形成される。これにより、金属板2上に複数配列されている突起部2aの表面、即ち、導電部2cが露出された状態となる。そして、このような金属板2の導電部2cにニッケル4が電着析出することにより、そのニッケル4は小塊状の形状に個々に分割されて形成される。
[Non-conductive film]
As shown in FIG. 2, the non-conductive film 3 is formed on the surface of the metal plate 2 so as to cover the flat portion 2b and the ring-shaped groove portion 2d, which are portions other than the projection portion 2a. As a result, the surfaces of the plurality of protrusions 2a arranged on the metal plate 2, that is, the conductive portions 2c are exposed. Then, the nickel 4 is electrodeposited on the conductive portion 2c of the metal plate 2, so that the nickel 4 is individually divided into small blocks.

ここで、陰極板1において、非導電膜3は、隣接する突起部2aによって形成された凹状の段差を有する平坦部2b上に形成されることになるため、所定の厚みをもって形成されることになる。 Here, in the cathode plate 1, since the non-conductive film 3 is formed on the flat portion 2b having a recessed step formed by the adjacent projections 2a, it is formed with a predetermined thickness. Become.

非導電膜3は、隣接する突起部2aによって形成された凹状の段差を有する平坦部2b上に形成される。そのため、非導電膜3は、図に示す従来の非導電膜13のように、端部の膜厚が薄くなりにくく、ニッケル4の電着時の応力や電着後の剥ぎ取り時の衝撃によっても欠落しにくくなる。又、非導電膜3は、図に示す従来の非導電膜23のように、凸状に突出しておらず、その端部が凹状の段差によって保護されている。よって、ニッケル4を陰極板1から剥ぎ取る際にも、ニッケル4が非導電膜3の端部に与える衝撃は小さく、非導電膜3が欠落しにくい。このように、陰極板1においては、非導電膜3が欠落しにくいことから、非導電膜3を交換することなく、繰り返し電着に使用することが可能であり、整備コストの低減、生産性の向上を図ることが可能である。 The non-conductive film 3 is formed on the flat portion 2b having a recessed step formed by the adjacent projections 2a. Therefore, unlike the conventional non-conductive film 13 shown in FIG. It becomes hard to be missing even by. Also, the non-conductive film 3 does not protrude like the conventional non-conductive film 23 shown in FIG. 7 , and its end is protected by a recessed step. Therefore, even when the nickel 4 is peeled off from the cathode plate 1, the impact given by the nickel 4 to the end portion of the non-conductive film 3 is small, and the non-conductive film 3 is less likely to come off. Thus, in the cathode plate 1, since the non-conductive film 3 is less likely to fall off, it is possible to repeatedly use it for electrodeposition without replacing the non-conductive film 3, which reduces maintenance costs and increases productivity. can be improved.

尚、スクリーン印刷法によって、金属板2上の平坦部2b及びリング状溝部2d上に非導電膜3を形成する場合、非導電膜3の材料が突起部2aの表面にも塗布されて導電部2cの表面積が減少し、初期の電流密度が増加することがあるが、電着したニッケル4の特性に不具合が発生しなければ問題ない。又、突起部2aの表面上に付着した非導電膜3は、膜厚が非常に薄いため欠落しやすいが、平坦部2b上に形成される非導電膜3は、膜厚が厚く欠落が抑制されるため問題ない。 Incidentally, when the non-conductive film 3 is formed on the flat portion 2b and the ring-shaped groove portion 2d on the metal plate 2 by screen printing, the material of the non-conductive film 3 is also applied to the surfaces of the projections 2a to form the conductive portions. Although the surface area of 2c may decrease and the initial current density may increase, there is no problem as long as the properties of the electrodeposited nickel 4 do not deteriorate. In addition, the non-conductive film 3 adhering to the surface of the protruding portion 2a is so thin that it is easily chipped off. There is no problem because it is

非導電膜3を形成する非導電性材料は、使用する電解液による腐食が小さい材料からなるものであれば特に限定されない。例えば、成膜が容易であるという観点から、熱硬化樹脂又は光硬化(紫外線硬化等)樹脂により構成することが好ましい。具体的には、エポキシ系樹脂、フェノール系樹脂、ポリアミド系樹脂、ポリイミド系樹脂等の絶縁樹脂が挙げられる。 The non-conductive material forming the non-conductive film 3 is not particularly limited as long as it is made of a material that is less corroded by the electrolyte used. For example, it is preferable to use a thermosetting resin or a photo-curing (ultraviolet-curing, etc.) resin from the viewpoint of easy film formation. Specifically, insulating resins such as epoxy-based resins, phenol-based resins, polyamide-based resins, and polyimide-based resins can be used.

[金属電着用の陰極板を用いた電気ニッケルの製造]
上述した構成からなる陰極板1では、図2(b)に示すように、非導電膜3から露出する突起部2aの表面が導電部2cとなって、ニッケル4を電着析出させる。陰極板1において、ニッケル4は、厚さ方向だけではなく平面方向にも成長するため、非導電膜3の上部に盛り上がった状態になる。このことから、隣接する突起部2aの表面の導電部2cから成長したニッケル4同士が接触する前に電着を終了することが好ましい。
[Production of Electrolytic Nickel Using Cathode Plate for Metal Electrodeposition]
In the cathode plate 1 configured as described above, as shown in FIG. 2(b), the surface of the protrusion 2a exposed from the non-conductive film 3 becomes the conductive portion 2c, and the nickel 4 is electrodeposited. In the cathode plate 1 , the nickel 4 grows not only in the thickness direction but also in the plane direction, so that the non-conductive film 3 is in a raised state. For this reason, it is preferable to finish the electrodeposition before the nickel 4 grown from the conductive portions 2c on the surfaces of the adjacent protrusions 2a come into contact with each other.

そして、ニッケルの電着が終了した後、陰極板1からそのニッケル4を剥ぎ取ることで、1枚の陰極板1より複数の小塊状の電気ニッケルを得ることができる。上述したように、陰極板1では、非導電膜3が欠落しにくいことから、非導電膜3を交換することなく、繰り返し使用することができ、整備コストの低減、生産性の向上を図ることができる。 After the electrodeposition of nickel is finished, the nickel 4 is stripped from the cathode plate 1 , thereby obtaining a plurality of small lumps of electrolytic nickel from one cathode plate 1 . As described above, in the cathode plate 1, since the non-conductive film 3 is less likely to break off, it can be used repeatedly without replacing the non-conductive film 3, thereby reducing maintenance costs and improving productivity. can be done.

尚、陰極板1は、ニッケル4を電着したが、ニッケルに限定されず、銀、金、亜鉛、錫、クロム、コバルト、又はこれらの合金を電着してもよい。 Although the cathode plate 1 is electrodeposited with nickel 4, it is not limited to nickel, and may be electrodeposited with silver, gold, zinc, tin, chromium, cobalt, or alloys thereof.

<金属電着用の陰極板の製造方法>
本発明の金属電着用の陰極板の製造方法は、図4に示すように、金属板2の少なくとも一方の表面に複数の円盤状の突起部2a及びリング状溝部2dを形成する第1工程(図4(a))と、金属板2の表面における突起部2a以外の部分に非導電膜3を形成する第2工程(図4(b))とを有する。
<Manufacturing method of cathode plate for metal electrodeposition>
As shown in FIG. 4, the method of manufacturing a cathode plate for metal electrodeposition according to the present invention comprises a first step ( 4(a)) and a second step (FIG. 4(b)) of forming the non-conductive film 3 on the surface of the metal plate 2 other than the protrusions 2a.

[第1工程]
第1工程では、金属板2の表面に、複数の円盤状の突起部2a及びリング状溝部2dを形成する。例えば、平板状の金属板2に対して、突起部2a以外の部分を削って、高さXとなる突起部2aを残し、平坦部2bと深さYとなるリング状溝部2dとを形成する。加工方法としては、特に制限されず、例えば、ウェットエッチング加工、エンドミル加工、レーザー加工等、或いは、これらの各加工法の組合せにより行うことができる。
[First step]
In the first step, a plurality of disk-shaped protrusions 2a and ring-shaped grooves 2d are formed on the surface of the metal plate 2. As shown in FIG. For example, a flat portion 2b and a ring-shaped groove portion 2d having a depth Y are formed by cutting away portions other than the projection portion 2a from the flat metal plate 2 to leave the projection portion 2a having a height X and a flat portion 2b and a depth Y. . The processing method is not particularly limited, and for example, wet etching processing, end mill processing, laser processing, etc., or a combination of these processing methods can be used.

例えば、平板状のステンレス鋼板をウェットエッチングで加工する場合には、ステンレス鋼板の表面に感光性のエッチングレジストを塗布し、続いて、所望のパターンを描画したフィルムやガラスを通して露光し、エッチングする部分のエッチングレジストを現像処理により除去する。そして、現像処理されたステンレス鋼板をエッチング液(例えば、塩化第二鉄溶液)に付け、エッチングレジストが除去されたステンレス鋼板の一部を除去し、最後にエッチングレジストを剥離することで、所望のパターンに対応した、複数の突起部2aを形成することができる。 For example, when a flat stainless steel plate is processed by wet etching, the surface of the stainless steel plate is coated with a photosensitive etching resist, and then exposed through a film or glass on which a desired pattern is drawn, and the portion to be etched. is removed by development processing. Then, the developed stainless steel plate is immersed in an etchant (for example, a ferric chloride solution), a portion of the stainless steel plate from which the etching resist has been removed is removed, and finally the etching resist is peeled off to obtain a desired surface. A plurality of protrusions 2a can be formed corresponding to the pattern.

そして、突起部2aの形成後、平坦部2bにエンドミル加工やレーザー加工を用いてリング状溝部を形成することができる。又、エンドミル加工のみで円盤状の突起部2a、平坦部2b及びリング状溝部2dを形成することができるが、ステンレス鋼板の縦と横の寸法が厚さに対して過大になると加工歪によってステンレス鋼板が反る場合がある。このような場合、ウェットエッチング加工とエンドミル加工を組合せることが好ましい。 After forming the projecting portion 2a, a ring-shaped groove portion can be formed in the flat portion 2b by end milling or laser processing. Also, the disk-shaped protrusion 2a, the flat portion 2b and the ring-shaped groove 2d can be formed only by end milling. The steel plate may warp. In such a case, it is preferable to combine wet etching and end milling.

尚、突起部2a及びリング状溝部2dは、金属板2の一方の表面のみに形成してもよいし、金属板2の両方の表面に形成してもよい。 The protrusion 2 a and the ring-shaped groove 2 d may be formed only on one surface of the metal plate 2 or may be formed on both surfaces of the metal plate 2 .

[第2工程]
第2工程では、金属板2の表面における突起部2a以外の部分となる平坦部2b及びリング状溝部2dを被覆する態様で、非導電膜3を形成する。非導電膜3の形成方法は特に限定されない。例えば、公知のスクリーン印刷により行うことができる。尚、非導電膜3の材料が熱硬化樹脂又は光硬化樹脂である場合には、必要に応じて熱硬化又は光硬化を行えばよい。
[Second step]
In the second step, the non-conductive film 3 is formed in such a manner as to cover the flat portion 2b and the ring-shaped groove portion 2d, which are portions other than the protruding portion 2a on the surface of the metal plate 2. As shown in FIG. A method for forming the non-conductive film 3 is not particularly limited. For example, it can be carried out by known screen printing. When the material of the non-conductive film 3 is thermosetting resin or photo-curing resin, thermosetting or photo-curing may be performed as necessary.

上記製造方法によれば、上述した簡易な方法で、金属板上の非導電膜が欠落しにくく、繰り返し使用可能な陰極板1を得ることができる。 According to the manufacturing method described above, it is possible to obtain the negative electrode plate 1 that can be used repeatedly without causing the non-conductive film on the metal plate to drop off easily.

以下に、本発明の実施例を示してより具体的に説明する。但し、本発明はこれらの実施例によって何ら限定されない。尚、便宜上、図1乃至図で示した部材と同一の機能をもつ部材には同一符号を付して説明する。尚、以下の実施例及び比較例においては、陰極板の製造方法がそれぞれ異なり、各陰極板の製造方法以外は、同一の条件で電気ニッケルを製造し、同一の方法で評価した。 EXAMPLES The present invention will be described in more detail below with reference to Examples. However, the present invention is by no means limited by these examples. For convenience, members having the same functions as the members shown in FIGS. 1 to 7 are denoted by the same reference numerals. In the following examples and comparative examples, the manufacturing method of the cathode plate was different, and electrolytic nickel was manufactured under the same conditions except for the manufacturing method of each cathode plate, and evaluated by the same method.

<金属電着用の陰極板の作製>
[実施例1]
図1、図2に示すような陰極板1を作製した。具体的には、まず、200mm×100mm×4mmのステンレス鋼製の金属板2に、ウェットエッチングを施し、円盤状の突起部2a(18個)を形成し、エンドミルによって各突起部の周辺に1個のリング状溝部2dを形成した。このとき、円盤状の突起部2aの大きさを、直径14mm、高さX500μmとし、リング状溝部の幅Wを1000μm、深さYを300μmとした。
<Preparation of cathode plate for metal electrodeposition>
[Example 1]
A cathode plate 1 as shown in FIGS. 1 and 2 was produced. Specifically, first, a metal plate 2 made of stainless steel measuring 200 mm × 100 mm × 4 mm is subjected to wet etching to form disk-shaped protrusions 2a (18 pieces), and an end mill is used to form 18 protrusions around each protrusion. A single ring-shaped groove portion 2d was formed. At this time, the disc-shaped projection 2a had a diameter of 14 mm and a height X of 500 μm, and the ring-shaped groove had a width W of 1000 μm and a depth Y of 300 μm.

次に、エポキシ樹脂をベース樹脂とする熱硬化性樹脂(硬化開始温度115℃~120℃)を金属板2の表面における平坦部2b、及び、リング状溝部2d上に塗布し、150℃60分の加熱により硬化させて非導電膜3を形成した。 Next, a thermosetting resin (hardening start temperature: 115° C. to 120° C.) with an epoxy resin as a base resin is applied onto the flat portion 2b and the ring-shaped groove portion 2d on the surface of the metal plate 2, and the temperature is maintained at 150° C. for 60 minutes. was cured by heating to form a non-conductive film 3 .

[実施例2]
金属板2の突起部2aの高さXを1000μmとし、リング状溝部2dの幅を3000μmとしたこと以外は、実施例1と同条件で、陰極板1を作製した。
[Example 2]
A cathode plate 1 was fabricated under the same conditions as in Example 1, except that the height X of the protrusion 2a of the metal plate 2 was 1000 μm and the width of the ring-shaped groove 2d was 3000 μm.

[比較例
比較例では、図5、図6に示すような従来の陰極板11を作製した。具体的には、200mm×100mm×4mmのステンレス鋼製の平板状の金属板12に、直径14mmとなる導電部12a(18個)を残して、スクリーン印刷法により、実施例1で用いたものと同種のエポキシ樹脂を塗布し、150℃60分の加熱により硬化させて非導電膜13を形成し、陰極板11を作製した。尚、この比較例1の陰極板11において、レーザー変位計により、非導電膜13の膜厚を任意の10か所で測定したところ90~110μmの範囲であった。
[Comparative Example 2 ]
In Comparative Example 2 , a conventional cathode plate 11 as shown in FIGS. 5 and 6 was produced. Specifically, the flat metal plate 12 made of stainless steel of 200 mm × 100 mm × 4 mm was screen-printed, leaving 18 conductive portions 12 a having a diameter of 14 mm, which was used in Example 1. Epoxy resin of the same kind as in the above was applied and hardened by heating at 150° C. for 60 minutes to form a non-conductive film 13, and a cathode plate 11 was produced. Incidentally, in the cathode plate 11 of Comparative Example 1, the film thickness of the non-conductive film 13 was measured at arbitrary 10 points with a laser displacement meter and found to be in the range of 90 to 110 μm.

[比較例
金属板2にリング状溝部2dを形成しなかったこと以外は、実施例1と同条件で陰極板1を作製した。
[Comparative Example 1 ]
A cathode plate 1 was produced under the same conditions as in Example 1, except that the metal plate 2 did not have the ring-shaped groove 2d.

<電気ニッケルの製造>
各実施例及び比較例にて作製した、それぞれ製造条件の異なる各陰極板を用いて、電解処理により電気ニッケルを製造した。具体的には、塩化ニッケル電解液を収容した電解槽中に、陰極板と、200mm×100mm×10mmの電気ニッケルからなる陽極板とを、対向させて浸漬した。そして、初期電流密度710A/m、電解時間3日間の条件で、陰極板の表面にニッケルを電着させた。電解後、陰極板上に析出した電気ニッケルを剥ぎ取り、小塊状のメッキ用電気ニッケルを得た。
<Production of electrolytic nickel>
Electrolytic nickel was produced by electrolytic treatment using each cathode plate produced in each example and comparative example, each having different production conditions. Specifically, a cathode plate and an anode plate made of electrolytic nickel of 200 mm×100 mm×10 mm were immersed so as to face each other in an electrolytic bath containing a nickel chloride electrolyte. Then, nickel was electrodeposited on the surface of the cathode plate under conditions of an initial current density of 710 A/m 2 and an electrolysis time of 3 days. After the electrolysis, the electrolytic nickel deposited on the cathode plate was stripped off to obtain small blocks of electrolytic nickel for plating.

<評価>
電解処理に使用した陰極板を、そのまま繰り返し利用できる回数を評価した。非導電膜の欠落が広がると、隣接する突起部、導電部で電着したニッケル同士が連結し、所望の形状の電気ニッケルを得られないことがある。したがって、非導電膜が円盤状の突起部との境界から平坦部方向に1mm以上に亘って欠落した場合には、使用を中止し、その時点までの繰り返し回数を評価した。又、非導電膜が欠落し、導電部の径が1mm以上拡大した場合にも、使用を中止し、この時点までの繰り返し回数を評価した。下記表1に、陰極板の構成とともに評価結果を示す。
<Evaluation>
The number of times the cathode plate used for electrolytic treatment can be used repeatedly was evaluated. If the lack of the non-conductive film spreads, the nickel electrodeposited on the adjacent protrusions and conductive portions may be connected to each other, failing to obtain the desired shape of electrolytic nickel. Therefore, when the non-conductive film was chipped over 1 mm or more in the direction of the flat portion from the boundary with the disc-shaped protrusion, the use was stopped and the number of repetitions up to that point was evaluated. Also, when the non-conductive film was missing and the diameter of the conductive portion expanded by 1 mm or more, the use was stopped, and the number of repetitions up to this point was evaluated. Table 1 below shows the evaluation results together with the structure of the cathode plate.

Figure 0007188218000001
Figure 0007188218000001

表1に示すように、突起部の周囲にリング状溝部を形成した実施例1及び2においては、非導電膜3の欠落が十分に抑制されていて、繰り返し可能な使用回数において、明らかな優位性が発現することが確認された。 As shown in Table 1, in Examples 1 and 2 in which the ring-shaped groove was formed around the protrusion, the lack of the non-conductive film 3 was sufficiently suppressed, and the number of times of repeated use was clearly superior. It was confirmed that sexuality was expressed.

以上より、本願発明の金属電着用の陰極板が、従来の陰極板に対して有利な効果を奏するものであることが、確認された。 From the above, it was confirmed that the cathode plate for metal electrodeposition of the present invention has an advantageous effect as compared with the conventional cathode plate.

1 陰極板
2 金属板
2a 突起部
2b 平坦部
2c 導電部
2d リング状溝部
3 非導電膜
4 ニッケル
REFERENCE SIGNS LIST 1 cathode plate 2 metal plate 2a projection 2b flat portion 2c conductive portion 2d ring-shaped groove 3 non-conductive film 4 nickel

Claims (3)

金属電着用の陰極板の製造方法であって、
前記陰極板は、
少なくとも一方の表面に高さが50μm以上1000μm以下である複数の円盤状の突起部が配列されている金属板と、前記金属板の表面における前記突起部以外の部分に積層されている非導電膜と、を有し、前記金属板の表面における前記突起部の周囲にはリング状溝部が形成されてい
前記金属板の表面に、前記突起部及び前記リング状溝部を形成する、第1工程と、
前記金属板の表面における前記突起部以外の部分である平坦部及び前記リング状溝部を被覆する態様で、前記非導電膜を形成する、第2工程と、
を含んでなり、
前記第1工程においては、前記突起部は、ウェットエッチング加工によって形成し、前記リング状溝部は、エンドミル加工によって形成する、
金属電着用の陰極板の製造方法
A method for manufacturing a cathode plate for metal electrodeposition, comprising:
The cathode plate is
A metal plate having a plurality of disk-shaped projections with a height of 50 μm or more and 1000 μm or less arranged on at least one surface thereof, and a non-conductive film laminated on a portion of the surface of the metal plate other than the projections. and a ring-shaped groove is formed around the protrusion on the surface of the metal plate,
a first step of forming the protrusion and the ring-shaped groove on the surface of the metal plate;
a second step of forming the non-conductive film in such a manner as to cover the flat portion and the ring-shaped groove, which are portions other than the protrusions on the surface of the metal plate;
comprising
In the first step, the protrusion is formed by wet etching, and the ring-shaped groove is formed by end milling.
A method for manufacturing a cathode plate for metal electrodeposition.
前記リング状溝部の幅が200μm以上3000μm以下で、深さが200μm以上1000μm以下である、
請求項1記載の金属電着用の陰極板の製造方法
The ring-shaped groove has a width of 200 μm or more and 3000 μm or less and a depth of 200 μm or more and 1000 μm or less.
The manufacturing method of the cathode plate for metal electrodeposition according to claim 1.
前記金属板は、チタン又はステンレス鋼からなる、
請求項1又は2に記載の金属電着用の陰極板の製造方法
The metal plate is made of titanium or stainless steel,
3. The method for producing a cathode plate for metal electrodeposition according to claim 1 or 2 .
JP2019056291A 2019-03-25 2019-03-25 Cathode plate for metal electrodeposition Active JP7188218B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019056291A JP7188218B2 (en) 2019-03-25 2019-03-25 Cathode plate for metal electrodeposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019056291A JP7188218B2 (en) 2019-03-25 2019-03-25 Cathode plate for metal electrodeposition

Publications (2)

Publication Number Publication Date
JP2020158795A JP2020158795A (en) 2020-10-01
JP7188218B2 true JP7188218B2 (en) 2022-12-13

Family

ID=72642028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019056291A Active JP7188218B2 (en) 2019-03-25 2019-03-25 Cathode plate for metal electrodeposition

Country Status (1)

Country Link
JP (1) JP7188218B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018012864A (en) 2016-07-21 2018-01-25 住友金属鉱山株式会社 Cathode plate for metal electro-deposition and manufacturing method thereof
JP2018199857A (en) 2017-05-29 2018-12-20 住友金属鉱山株式会社 Cathode plate for metal electrodeposition and production method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4040915A (en) * 1976-06-15 1977-08-09 The International Nickel Company, Inc. Method for producing regular electronickel or S nickel rounds from electroplating baths giving highly stressed deposits
AU516584B2 (en) * 1977-06-01 1981-06-11 Bicc Limited Fabrication of copper

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018012864A (en) 2016-07-21 2018-01-25 住友金属鉱山株式会社 Cathode plate for metal electro-deposition and manufacturing method thereof
JP2018199857A (en) 2017-05-29 2018-12-20 住友金属鉱山株式会社 Cathode plate for metal electrodeposition and production method thereof

Also Published As

Publication number Publication date
JP2020158795A (en) 2020-10-01

Similar Documents

Publication Publication Date Title
JP6500937B2 (en) Negative electrode plate for metal electrodeposition and method of manufacturing the same
WO2018016362A1 (en) Metal electrodeposition cathode plate and production method therefor
JP6638589B2 (en) Cathode plate for metal electrodeposition and method for producing the same
GB1573449A (en) Reusable electrolysis cathode
US3726770A (en) Electrodeposition process for producing perforated foils with raised portions at the edges of the holes
JP7188218B2 (en) Cathode plate for metal electrodeposition
JP7188219B2 (en) Cathode plate for metal electrodeposition
JP7238524B2 (en) Cathode plate for metal electrodeposition
JP7188216B2 (en) Manufacturing method of cathode plate for metal electrodeposition
JP7188217B2 (en) Manufacturing method of cathode plate for metal electrodeposition
KR20180089068A (en) Method and workpiece of electroforming.
US2225734A (en) Electrolytic method of making screens
JP6737035B2 (en) Metal electrodeposited cathode plate and method for producing the same
EP1871925B1 (en) Method for electroforming a studded plate
JP6737036B2 (en) Metal electrodeposited cathode plate and method for producing the same
US2225733A (en) Process for the electrolytic production of metal screens
JP2019108592A (en) Button-type electrolytic nickel mother board for production and production method thereof, and button-type electrolytic nickel production method using the same
JP6760191B2 (en) Manufacturing method of specially shaped electrodeposition
JP2001355091A (en) Electrolytic copper foil manufacturing device
KR20190005432A (en) Method and workpiece of electroforming
WO2002000966A1 (en) Electroforming die, method of manufacturing the same, application thereof and electroformed products
US2231678A (en) Matrix for electroforming foraminous sheets
KR20180123786A (en) Method of inducing vertical groth in electroforming
KR20060054858A (en) Method for manufacturing the thin film by electro-forming
KR20190001261A (en) Method of inducing vertical groth in electroforming

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221114

R150 Certificate of patent or registration of utility model

Ref document number: 7188218

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150