JP7187759B2 - Measuring machine management device and method - Google Patents

Measuring machine management device and method Download PDF

Info

Publication number
JP7187759B2
JP7187759B2 JP2018064821A JP2018064821A JP7187759B2 JP 7187759 B2 JP7187759 B2 JP 7187759B2 JP 2018064821 A JP2018064821 A JP 2018064821A JP 2018064821 A JP2018064821 A JP 2018064821A JP 7187759 B2 JP7187759 B2 JP 7187759B2
Authority
JP
Japan
Prior art keywords
measuring
measuring machine
amount
estimated
work
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018064821A
Other languages
Japanese (ja)
Other versions
JP2019175279A (en
Inventor
謙太郎 仲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Seimitsu Co Ltd
Original Assignee
Tokyo Seimitsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Seimitsu Co Ltd filed Critical Tokyo Seimitsu Co Ltd
Priority to JP2018064821A priority Critical patent/JP7187759B2/en
Publication of JP2019175279A publication Critical patent/JP2019175279A/en
Application granted granted Critical
Publication of JP7187759B2 publication Critical patent/JP7187759B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Description

本発明は測定機管理装置及び方法に係り、特に複数の測定機の稼働状況を管理するための測定機管理装置及び方法に関する。 The present invention relates to a measuring machine management device and method, and more particularly to a measuring machine management device and method for managing the operating status of a plurality of measuring machines.

三次元測定機(CMM:Coordinate Measuring Machine)には、スタイラスの先端部に測定子を備えており、この測定子を被測定物に接触させることにより、被測定物の形状(輪郭)及び寸法等の測定を行うことが可能なものがある。このような三次元測定機では、測定子と被測定物とを三次元の各軸方向に沿って相対移動させるために、軸方向ごとに独立した駆動部を有している。 A three-dimensional measuring machine (CMM: Coordinate Measuring Machine) has a probe at the tip of a stylus. It is possible to measure the Such a three-dimensional measuring machine has an independent driving unit for each axial direction in order to relatively move the probe and the object to be measured along each three-dimensional axial direction.

特許文献1には、ビームを支持するビーム支持体をY軸方向に駆動するためのY軸駆動部と、ビームに支持されたコラムをビームに沿ってX軸方向に駆動するためのX軸駆動部と、接触式のプローブが装着されたスピンドルをコラムに沿ってZ軸方向に駆動するためのZ軸駆動部とを備える三次元測定機が開示されている。 Patent document 1 discloses a Y-axis driving unit for driving a beam supporter that supports a beam in the Y-axis direction, and an X-axis driving unit for driving a column supported by the beam in the X-axis direction along the beam. and a Z-axis drive for driving a spindle with a contact probe mounted thereon along the column in the Z-axis direction.

特開2002-328018号公報Japanese Patent Application Laid-Open No. 2002-328018

三次元の各軸方向について独立した駆動部を有する測定機では、駆動部ごとに稼働実績が異なる。そして、稼働量(例えば、駆動距離、駆動速度の累積値、駆動方向の切り替え回数等)が大きい駆動部ほど、誤差及び故障が生じやすくなる。三次元測定機の駆動部には、高いアラインメント精度が要求されるため、誤差及び故障に対してメンテナンスを実施して誤差の校正を行う必要がある。 In a measuring machine having independent driving units for each three-dimensional axial direction, each driving unit has a different operating record. In addition, errors and failures are more likely to occur in a drive unit with a larger amount of operation (for example, a drive distance, a cumulative value of drive speed, the number of times the drive direction is switched, etc.). Since the drive unit of the three-dimensional measuring machine requires high alignment accuracy, it is necessary to carry out maintenance and calibrate the errors and failures.

このような駆動部のメンテナンスを実施して誤差の校正を行うためには、校正作業に習熟したオペレータを確保する必要があり、かつ、多大な時間を要する。このため、測定機の駆動部について、誤差及び故障の発生頻度を低くして、メンテナンスの頻度を低くすることが望まれる。 In order to carry out such maintenance of the drive unit and calibrate the error, it is necessary to secure an operator skilled in the calibration work, and it takes a lot of time. For this reason, it is desirable to reduce the frequency of errors and failures in the drive unit of the measuring machine, and to reduce the frequency of maintenance.

本発明はこのような事情に鑑みてなされたもので、測定機等の駆動部について、誤差及び故障の発生頻度を低くして、メンテナンスの頻度を低くすることが可能な測定機管理装置及び方法を提供することを目的とする。 SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and is a measuring machine management apparatus and method capable of reducing the frequency of occurrence of errors and failures in the driving part of a measuring machine and the like, thereby reducing the frequency of maintenance. intended to provide

上記課題を解決するために、本発明の第1の態様に係る測定機管理装置は、複数の駆動軸をそれぞれ有する複数台の測定機の駆動軸ごとの稼働実績を取得する稼働実績取得部と、測定機を使用して測定作業を行った場合における測定機の駆動軸ごとの推定稼働量を計算する推定稼働量計算部と、稼働実績及び推定稼働量に基づいて、測定機の駆動軸ごとに、測定作業を行った場合における測定機の駆動軸ごとの平均稼働量を計算する平均稼働量計算部と、測定機の駆動軸ごとの稼働実績、推定稼働量及び平均稼働量に基づいて、測定機ごとの稼働実績及び測定機の駆動軸ごとの稼働実績が均等になるように、複数台の測定機の中から測定作業を割り当てる測定機を選択する選択部とを備える。 In order to solve the above-described problems, a measuring machine management apparatus according to a first aspect of the present invention includes an operation result acquisition unit that acquires operation results for each drive axis of a plurality of measuring machines each having a plurality of drive axes. , an estimated working amount calculation unit that calculates the estimated working amount for each drive axis of the measuring machine when performing measurement work using the measuring machine, 2, based on the average operation amount calculation unit that calculates the average operation amount for each drive axis of the measuring machine when performing the measurement work, and the operation performance, estimated operation amount and average operation amount for each drive axis of the measuring machine, a selection unit that selects a measuring machine to which a measuring task is to be assigned from among the plurality of measuring machines so that the operating results of each measuring machine and the operating results of each driving shaft of the measuring machine are even.

第1の態様によれば、三次元測定機の駆動部について、誤差及び故障の発生頻度を低くして、メンテナンスの頻度を低くすることが可能になる。これにより、三次元測定機の駆動部の精度を維持しながら、三次元測定機のメンテナンスに要するコストを削減することが可能になる。 According to the first aspect, it is possible to reduce the frequency of occurrence of errors and failures in the drive unit of the three-dimensional measuring machine, thereby reducing the frequency of maintenance. This makes it possible to reduce the cost required for maintenance of the three-dimensional measuring machine while maintaining the accuracy of the driving section of the three-dimensional measuring machine.

本発明の第2の態様に係る測定機管理装置は、第1の態様において、選択部が、複数台の測定機の稼働実績に推定稼働量を加味した値と平均稼働量との差分絶対値の和が最小となるように、測定作業を割り当てる測定機を選択するようにしたものである。 According to a second aspect of the present invention, there is provided a measuring-instrument management apparatus according to the first aspect, wherein the selection unit includes an absolute difference value between a value obtained by adding an estimated operation amount to the operation results of the plurality of measuring apparatuses and an average operation amount. The measuring machine to which the measuring work is assigned is selected so that the sum of .

第2の態様によれば、測定機の稼働実績に推定稼働量を加味した値と平均稼働量との差分絶対値の和が最小となるようにすることにより、複数台の測定機を均等に稼働させることが可能になる。 According to the second aspect, by minimizing the sum of the absolute difference between the value obtained by adding the estimated working amount to the operating results of the measuring machines and the average working amount, the plurality of measuring machines are evenly distributed. it becomes possible to operate.

本発明の第3の態様に係る測定機管理装置は、第1又は第2の態様において、複数の測定機の駆動軸について、メンテナンスが必要になるまでの上限稼働量を取得する上限稼働量取得部を更に備え、選択部は、稼働実績、推定稼働量及び上限稼働量に基づいて、測定作業を割り当てる測定機を選択するようにしたものである。 A measuring machine management apparatus according to a third aspect of the present invention is, in the first or second aspect, the upper limit operation amount acquisition for acquiring the upper limit operation amount until maintenance is required for the drive shafts of the plurality of measuring machines. and the selection unit selects the measuring machine to which the measurement work is to be assigned based on the operation record, the estimated operation amount, and the upper limit operation amount.

本発明の第4の態様に係る測定機管理装置は、第3の態様において、選択部が、稼働実績と推定稼働量の和を上限稼働量で除算した値の分散が最小となるように、測定作業を割り当てる測定機を選択するようにしたものである。 In the measuring instrument management apparatus according to a fourth aspect of the present invention, in the third aspect, the selection unit divides the sum of the operation record and the estimated operation amount by the upper limit operation amount so that the variance of the value is minimized. It is designed to select the measuring machine to which the measuring work is assigned.

第3及び第4の態様によれば、メンテナンスが必要になるまでの上限稼働量を用いることにより、メンテナンスの頻度を低くすることが可能になる。 According to the third and fourth aspects, it is possible to reduce the frequency of maintenance by using the upper limit operation amount until maintenance is required.

本発明の第5の態様に係る測定機管理装置は、第1から第4の態様のいずれかにおいて、推定稼働量計算部が、測定機における被測定物の配置を変えて測定作業を行った場合における推定稼働量を計算し、平均稼働量計算部が、測定機における被測定物の配置を変えて測定作業を行った場合における平均稼働量を計算し、選択部は、複数台の測定機の駆動軸ごとの稼働実績、推定稼働量及び平均稼働量に基づいて、測定作業を割り当てる測定機を選択するようにしたものである。 According to a fifth aspect of the present invention, there is provided a measuring machine management device according to any one of the first to fourth aspects, wherein the estimated working amount calculation unit performs the measurement work while changing the arrangement of the object to be measured on the measuring machine. The average operation amount calculation unit calculates the average operation amount when the measurement work is performed by changing the arrangement of the object to be measured in the measuring machine, and the selection unit calculates the The measuring machine to which the measurement work is to be assigned is selected based on the actual operating results, estimated operating amount, and average operating amount for each drive shaft.

第5の態様によれば、被測定物の配置を変えることにより、メンテナンスの頻度をより低くすることが可能になる。 According to the fifth aspect, by changing the arrangement of the object to be measured, it is possible to reduce the frequency of maintenance.

本発明の第6の態様に係る測定機管理方法は、複数の駆動軸をそれぞれ有する複数台の測定機の駆動軸ごとの稼働実績を取得し、測定機を使用して測定作業を行った場合における測定機の駆動軸ごとの推定稼働量を計算し、稼働実績及び推定稼働量に基づいて、測定機の駆動軸ごとに、測定作業を行った場合における測定機の駆動軸ごとの平均稼働量を計算し、測定機の駆動軸ごとの稼働実績、推定稼働量及び平均稼働量に基づいて、測定機ごとの稼働実績及び測定機の駆動軸ごとの稼働実績が均等になるように、複数台の測定機の中から測定作業を割り当てる測定機を選択する。 A measuring machine management method according to a sixth aspect of the present invention acquires the operation results for each drive axis of a plurality of measuring machines each having a plurality of drive axes, and performs measurement work using the measuring machines. Calculate the estimated operation amount for each drive axis of the measuring machine in the above, and based on the actual operation results and estimated operation amount, average operation amount for each drive axis of the measuring machine when performing measurement work for each drive axis of the measuring machine is calculated, and based on the operation results, estimated operation amount, and average operation amount for each drive axis of the measuring machine, multiple units are selected so that the operation results for each measuring machine and the operation results for each drive axis of the measuring machine are equal. Select the measuring machine to which the measuring work is assigned from among the measuring machines in the

本発明によれば、測定機の駆動部について、誤差及び故障の発生頻度を低くして、メンテナンスの頻度を低くすることが可能になる。これにより、測定機の駆動部の精度を維持しながら、測定機のメンテナンスに要するコストを削減することが可能になる。 Advantageous Effects of Invention According to the present invention, it is possible to reduce the frequency of errors and failures in the drive section of the measuring machine, and to reduce the frequency of maintenance. As a result, it is possible to reduce the cost required for maintenance of the measuring machine while maintaining the accuracy of the drive unit of the measuring machine.

図1は、本発明の一実施形態に係る測定機管理装置を含む測定機管理システムを示すブロック図である。FIG. 1 is a block diagram showing a measuring-machine management system including a measuring-machine management device according to one embodiment of the present invention. 図2は、本発明の一実施形態に係る測定機管理システムの動作を示すフローチャートである。FIG. 2 is a flow chart showing the operation of the measuring-instrument management system according to one embodiment of the present invention. 図3は、本発明の一実施形態に係る測定機管理装置(測定機稼働管理サーバ)を示すブロック図である。FIG. 3 is a block diagram showing a measuring-machine management device (measuring-machine operation management server) according to one embodiment of the present invention. 図4は、本発明の一実施形態に係る三次元測定機を示す斜視図である。FIG. 4 is a perspective view showing a three-dimensional measuring machine according to one embodiment of the present invention. 図5は、本発明の一実施形態に係る三次元測定機を示すブロック図である。FIG. 5 is a block diagram showing a three-dimensional measuring machine according to one embodiment of the present invention. 図6は、本発明の第1の実施形態に係る測定機管理方法を示すフローチャートである。FIG. 6 is a flow chart showing a measuring machine management method according to the first embodiment of the present invention. 図7は、本発明の第2の実施形態に係る測定機管理方法を示すフローチャートである。FIG. 7 is a flow chart showing a measuring machine management method according to the second embodiment of the present invention. 図8は、本発明の第3の実施形態に係る測定機管理方法を示すフローチャートである。FIG. 8 is a flow chart showing a measuring machine management method according to the third embodiment of the present invention.

以下、添付図面に従って本発明に係る測定機管理装置及び方法の実施の形態について説明する。 DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a measuring machine management device and method according to the present invention will be described below with reference to the accompanying drawings.

[測定機管理システム]
図1は、本発明の一実施形態に係る測定機管理装置を含む測定機管理システムを示すブロック図である。図2は、本発明の一実施形態に係る測定機管理システムの動作を示すフローチャートである。
[Measuring machine management system]
FIG. 1 is a block diagram showing a measuring-machine management system including a measuring-machine management device according to one embodiment of the present invention. FIG. 2 is a flow chart showing the operation of the measuring-instrument management system according to one embodiment of the present invention.

本実施形態に係る測定機管理システム1は、複数台の測定機(三次元測定機)10の稼働実績に基づいて作業を割り当てる測定機10を選択し、各測定機10の稼働実績を調整する。測定機管理システム1によれば、各測定機10の駆動部の稼働実績が均等になるように調整することにより、メンテナンスの頻度を抑制することが可能になる。 The measuring machine management system 1 according to the present embodiment selects a measuring machine 10 to which work is assigned based on the operation records of a plurality of measuring machines (coordinate measuring machines) 10, and adjusts the operation records of each measuring machine 10. . According to the measuring machine management system 1 , it is possible to reduce the frequency of maintenance by adjusting the operation results of the driving units of the measuring machines 10 so as to be uniform.

図1に示すように、測定機管理システム1は、測定機管理装置(測定機稼働管理サーバ)100と、ワーク運搬装置200とを備える。 As shown in FIG. 1 , the measuring-machine management system 1 includes a measuring-machine management device (measuring-machine operation management server) 100 and a workpiece transport device 200 .

測定機10は、被測定物(ワーク)の三次元形状の測定を行う装置である。測定機10の構成については、図4及び図5を参照して後述する。 The measuring machine 10 is a device that measures the three-dimensional shape of an object (work) to be measured. The configuration of the measuring instrument 10 will be described later with reference to FIGS. 4 and 5. FIG.

測定機10において、ワークの測定が実行されると(ステップS10)、測定機10から測定機管理装置100に対して、測定機10の各駆動部の稼働実績が測定機管理装置100に送信される(ステップS12)。 When the measurement of the workpiece is executed in the measuring machine 10 (step S10), the operation record of each driving unit of the measuring machine 10 is transmitted from the measuring machine 10 to the measuring machine management device 100. (step S12).

測定機管理装置100は、複数台の測定機10から稼働実績に関するデータを取得して集計する(ステップS14)。 The measuring-machine management device 100 acquires and aggregates data relating to operation results from a plurality of measuring machines 10 (step S14).

ワーク運搬装置200は、測定対象のワークが新たに供給され、測定の開始指示の入力を受け付けると、測定機管理装置100に対して、測定対象のワークに関するワーク情報を送信するとともに、測定に使用すべき測定機10の問い合わせを行う(ステップS16)。ここで、ワーク情報は、ワークの測定を行った場合の測定機10における駆動軸ごとの推定稼働量に関する情報を含んでいる。 When a new workpiece to be measured is supplied and an input of an instruction to start measurement is received, the workpiece transporting device 200 transmits workpiece information related to the workpiece to be measured to the measuring machine management device 100, and uses the workpiece for measurement. An inquiry is made about the measuring instrument 10 to be measured (step S16). Here, the work information includes information on the estimated operating amount for each drive shaft in the measuring machine 10 when the work is measured.

測定機管理装置100は、ワーク運搬装置200からの問い合わせに応じて、各測定機10の稼働実績に基づいて測定機10の選択を行う(ステップS18)。そして、測定機管理装置100は、測定機10の選択結果をワーク運搬装置200に送信する(ステップS20)。 The measuring machine management device 100 selects the measuring machine 10 based on the operation record of each measuring machine 10 in response to the inquiry from the work transporting device 200 (step S18). Then, the measuring machine management device 100 transmits the selection result of the measuring machine 10 to the work transporting device 200 (step S20).

ワーク運搬装置200は、測定機管理装置100によって選択された測定機10にワークを運搬して設置する(ステップS22)。そして、ワークが設置された測定機10において、測定が実行され(ステップS24)、稼働実績の送信が行われる。なお、図2では、ステップS24以降の処理については、ステップS10からS14と同様であるため図示を省略する。 The work transporting device 200 transports and installs the work on the measuring machine 10 selected by the measuring machine managing device 100 (step S22). Then, the measuring machine 10 on which the workpiece is installed performs measurement (step S24) and transmits the operation record. In FIG. 2, the processing after step S24 is omitted because it is the same as steps S10 to S14.

[測定機管理装置(測定機稼働管理サーバ)]
図3は、本発明の一実施形態に係る測定機管理装置(測定機稼働管理サーバ)を示すブロック図である。
[Measuring machine management device (measuring machine operation management server)]
FIG. 3 is a block diagram showing a measuring-machine management device (measuring-machine operation management server) according to one embodiment of the present invention.

本実施形態に係る測定機管理装置100は、複数台の測定機10の稼働状況に基づいて、新たにワークの測定を実行する場合に、測定を実行する測定機10を選択して、ワーク運搬装置200に指示する。図3に示すように、本実施形態に係る測定機管理装置100は、処理部102、操作部104、記憶部106、表示部108及び通信インターフェース(通信I/F)110を備える。 The measuring machine management apparatus 100 according to the present embodiment selects the measuring machine 10 to be used for measurement when measuring a new workpiece based on the operating status of a plurality of measuring machines 10, and transports the workpiece. The device 200 is instructed. As shown in FIG. 3 , the measuring-apparatus management apparatus 100 according to this embodiment includes a processing section 102 , an operation section 104 , a storage section 106 , a display section 108 and a communication interface (communication I/F) 110 .

処理部102は、測定機管理装置100の各部の動作を制御するCPU(Central Processing Unit)を含んでいる。処理部102は、操作部104を介してオペレータからの操作入力を受け付け、この操作入力に応じた制御信号を、測定機管理装置100の各部に送信して各部の動作を制御する。処理部102は、通信I/F110を介して、測定機10及びワーク運搬装置200に制御信号及びデータを送信することが可能となっている。処理部102は、推定稼働量計算部、平均稼働量計算部及び選択部として機能する。 The processing section 102 includes a CPU (Central Processing Unit) that controls the operation of each section of the measuring-machine management apparatus 100 . The processing unit 102 receives an operation input from the operator via the operation unit 104, and transmits a control signal corresponding to the operation input to each unit of the measuring-instrument management apparatus 100 to control the operation of each unit. The processing unit 102 is capable of transmitting control signals and data to the measuring instrument 10 and the workpiece transporting device 200 via the communication I/F 110 . The processing unit 102 functions as an estimated working amount calculating unit, an average working amount calculating unit, and a selecting unit.

操作部104は、オペレータからの操作入力を受け付ける操作部材を含んでいる。この操作部材としては、例えば、文字入力のためのキーボード、ポインティングデバイス、マウス等を用いることができる。 The operation unit 104 includes operation members that receive operation inputs from the operator. For example, a keyboard, pointing device, mouse or the like for inputting characters can be used as the operating member.

通信I/F110は、測定機10及びワーク運搬装置200との間で通信を行うための手段であり、測定機10及びワーク運搬装置200との間で送受信するデータの変換処理を行う。通信I/F110は、測定機10に送信されるデジタルの指令をアナログ信号に変換するためのD/A(digital-to-analog)変換器と、測定機10から測定機管理装置100に送られる稼働状況等のデータをデジタルデータに変換するためのA/D(analog-to-digital)変換器とを含んでいてもよい。通信I/F110は、各測定機10から稼働実績情報(pX、pY及びpZ)を取得する稼働実績取得部として機能する。通信I/F110は、各測定機10から、新たな測定作業(測定ジョブ)を実行した場合に要する駆動軸(以下、軸という。)ごとの上限稼働量(mX、mY及びmZ)に関する上限稼働量情報を取得する上限稼働量取得部として機能する。 The communication I/F 110 is means for performing communication between the measuring machine 10 and the work transporting device 200 and performs conversion processing of data transmitted and received between the measuring machine 10 and the work transporting device 200 . The communication I/F 110 includes a D/A (digital-to-analog) converter for converting digital commands sent to the measuring instrument 10 into analog signals, and signals sent from the measuring instrument 10 to the measuring instrument management apparatus 100. An A/D (analog-to-digital) converter for converting data such as operating conditions into digital data may also be included. The communication I/F 110 functions as an operation result acquisition unit that acquires operation result information (pX, pY and pZ) from each measuring instrument 10 . The communication I/F 110 sets the upper limit operation amount (mX, mY, and mZ) for each drive axis (hereinafter referred to as axis) required when executing a new measurement job (measurement job) from each measuring machine 10. It functions as an upper limit operation amount acquisition unit that acquires amount information.

なお、稼働状況情報及び上限稼働量情報は、測定機10とは別のデータベースに格納されるようにしてもよい。 Note that the operating status information and the upper limit operating amount information may be stored in a database separate from that of the measuring instrument 10 .

記憶部106は、処理部102による演算に使用されるプログラム、及び測定機10から取得した稼働状況等のデータを記憶する。記憶部106としては、例えば、例えば、HDD(Hard Disk Drive)等の磁気ディスクを含む装置、eMMC(embedded Multi Media Card)、SSD(Solid State Drive)等のフラッシュメモリを含む装置等を用いることができる。図3には、記憶部106に記憶されるプログラムの例として、稼働管理プログラムが図示されており、記憶部106に記憶されるデータの例として、稼働状況が図示されている。稼働管理プログラムは、処理部102が図6から図8の測定機10の選択処理を行うために使用するプログラムである。 The storage unit 106 stores programs used in calculations by the processing unit 102 and data such as operating conditions acquired from the measuring instrument 10 . As the storage unit 106, for example, a device including a magnetic disk such as a HDD (Hard Disk Drive), a device including a flash memory such as an eMMC (embedded Multi Media Card), an SSD (Solid State Drive), or the like can be used. can. FIG. 3 shows an operation management program as an example of a program stored in the storage unit 106, and an operation status as an example of data stored in the storage unit 106. As shown in FIG. The operation management program is a program used by the processing unit 102 to select the measuring instrument 10 shown in FIGS. 6 to 8 .

表示部108は、文字情報、画像、GUI(Graphical User Interface)等を表示するための装置である。表示部108としては、例えば、液晶ディスプレイを用いることができる。表示部108には、測定機10から取得した稼働状況等のデータを表示させることができる。 The display unit 108 is a device for displaying character information, images, GUI (Graphical User Interface), and the like. As the display unit 108, for example, a liquid crystal display can be used. The display unit 108 can display data such as the operating status acquired from the measuring instrument 10 .

[三次元測定機]
図4及び図5は、それぞれ、本発明の一実施形態に係る三次元測定機を示す斜視図及びブロック図である。
[CMM]
4 and 5 are a perspective view and a block diagram, respectively, showing a three-dimensional measuring machine according to one embodiment of the present invention.

図4に示すように、本実施形態に係る測定機10は、基台20と、基台20上に設けられた定盤18とを含んでいる。定盤18の表面は、XY平面に平行な平面状に形成されている。ワークは、ワーク運搬装置200によって定盤の表面に搬送される。そして、ワークは、定盤18の表面に固定される。ワークを定盤18の表面に固定するための手段としては、例えば、クランプ機構を用いることができる。 As shown in FIG. 4 , the measuring instrument 10 according to this embodiment includes a base 20 and a surface plate 18 provided on the base 20 . The surface of the platen 18 is formed in a planar shape parallel to the XY plane. The work is transported to the surface of the surface plate by the work transport device 200 . Then, the work is fixed on the surface of the surface plate 18 . As means for fixing the workpiece to the surface of the surface plate 18, for example, a clamping mechanism can be used.

定盤18には、定盤18の表面から図中上側(+Z方向)に伸びる一対のコラム(支柱)16が取り付けられている。コラム16の上端部(+Z側の端部)には、ビーム(梁)14が架け渡されている。一対のコラム16は、定盤18上をY方向に同期して移動可能となっており、ビーム14は、X方向に平行な状態で、Y方向に移動可能となっている。なお、一対のコラム16は、定盤18の下面側で接続されていてもよい。 A pair of columns (struts) 16 extending upward (+Z direction) in the drawing from the surface of the surface plate 18 is attached to the surface plate 18 . A beam 14 spans over the upper end of the column 16 (the end on the +Z side). The pair of columns 16 are synchronously movable on the surface plate 18 in the Y direction, and the beam 14 is movable in the Y direction while being parallel to the X direction. Note that the pair of columns 16 may be connected on the lower surface side of the surface plate 18 .

ビーム14には、Z方向に伸びるヘッド12が取り付けられている。ヘッド12は、ビーム14の長さ方向(X方向)に沿って移動可能となっている。 A head 12 extending in the Z direction is attached to the beam 14 . The head 12 is movable along the length direction (X direction) of the beam 14 .

ヘッド12の下端部(-Z側の端部)には、プローブ22が図中上下方向(Z方向)に移動可能に取り付けられている。 A probe 22 is attached to the lower end (-Z side end) of the head 12 so as to be movable in the vertical direction (Z direction) in the figure.

プローブ22は、剛性が高い軸状の部材(スタイラス24)を含んでいる。このスタイラス24の材料としては、例えば、超硬質合金、チタン、ステンレス、セラミック、カーボンファイバー等を使用することができる。 The probe 22 includes a highly rigid shaft-shaped member (stylus 24). As the material of the stylus 24, for example, super hard alloy, titanium, stainless steel, ceramics, carbon fiber, etc. can be used.

プローブ22のスタイラス24の先端部には、測定子26が設けられている。測定子26は、硬度が高く、耐摩耗性に優れた球状の部材である。測定子26の材料としては、例えば、ルビー、窒化珪素、ジルコニア、セラミック等を使用することができる。測定子26の直径(以下、スタイラス径という。)は一例で4.0mmである。 A probe 26 is provided at the tip of the stylus 24 of the probe 22 . The probe 26 is a spherical member having high hardness and excellent wear resistance. Ruby, silicon nitride, zirconia, ceramic, or the like can be used as the material of the probe 26, for example. The diameter of the stylus 26 (hereinafter referred to as stylus diameter) is, for example, 4.0 mm.

ワークの測定を行う場合には、コラム16、ヘッド12及びプローブ22をXYZ方向に移動させて測定子26をワークに接触させる。そして、測定子26をワークの外形に沿って走査させながら、測定子26の変位量等を測定する。この変位量の測定値等のデータは測定機管理装置100に送信される。測定機管理装置100は、汎用測定プログラムを使用してこのデータを処理することにより、ワークの形状(輪郭)及び寸法等を求めることが可能となっている。 When measuring a workpiece, the column 16, head 12 and probe 22 are moved in the XYZ directions to bring the stylus 26 into contact with the workpiece. Then, the amount of displacement of the probe 26 and the like are measured while scanning the probe 26 along the contour of the workpiece. Data such as the measured value of the displacement amount is transmitted to the measuring instrument management apparatus 100 . The measuring machine management device 100 can obtain the shape (contour), dimensions, etc. of the workpiece by processing this data using a general-purpose measuring program.

図5に示すように、本実施形態に係る測定機10は、プロセッサ50、操作部52、メモリ54及び通信インターフェース(通信I/F)56を備える。 As shown in FIG. 5 , the measuring instrument 10 according to this embodiment includes a processor 50 , an operation section 52 , a memory 54 and a communication interface (communication I/F) 56 .

プロセッサ50は、測定機10の各部の動作を制御するCPU(Central Processing Unit)を含んでいる。プロセッサ50は、操作部52を介してオペレータからの操作入力を受け付け、この操作入力に応じた制御信号を、測定機10の各部に送信して各部の動作を制御する。プロセッサ50は、通信I/F56を介して、測定機管理装置100及びワーク運搬装置200に制御信号及びデータを送信することが可能となっている。 The processor 50 includes a CPU (Central Processing Unit) that controls the operation of each section of the measuring instrument 10 . The processor 50 receives operation inputs from the operator via the operation unit 52, and transmits control signals according to the operation inputs to each unit of the measuring instrument 10 to control the operation of each unit. The processor 50 can transmit control signals and data to the measuring-instrument management device 100 and the work transport device 200 via the communication I/F 56 .

操作部52は、オペレータからの操作入力を受け付ける操作部材を含んでいる。 The operation unit 52 includes operation members that receive operation inputs from the operator.

メモリ54は、プロセッサ50による演算に使用されるプログラム、及び各駆動部(X軸駆動部58X、Y軸駆動部58Y及びZ軸駆動部58Z)の稼働状況等のデータを記憶する。 The memory 54 stores programs used for calculations by the processor 50 and data such as operating conditions of the drive units (the X-axis drive unit 58X, the Y-axis drive unit 58Y and the Z-axis drive unit 58Z).

通信I/F56は、測定機管理装置100及びワーク運搬装置200との間で通信を行うための手段であり、測定機管理装置100及びワーク運搬装置200との間で送受信するデータの変換処理を行う。 The communication I/F 56 is means for performing communication between the measuring-instrument management apparatus 100 and the work transporting apparatus 200, and converts data transmitted and received between the measuring-instrument management apparatus 100 and the work transporting apparatus 200. conduct.

図5に示すように、測定機10は、X軸駆動部58X、Y軸駆動部58Y及びZ軸駆動部58Zを備える。Y軸駆動部58Yは、コラム16を定盤18に対して移動させるための駆動手段であり、例えば、モータを含んでいる。X軸駆動部58Xは、ヘッド12をビーム14に沿ってX方向に移動させるための駆動手段であり、例えば、モータを含んでいる。Z軸駆動部58Zは、プローブ22をZ方向に移動させるための駆動手段であり、例えば、モータを含んでいる。 As shown in FIG. 5, the measuring instrument 10 includes an X-axis drive section 58X, a Y-axis drive section 58Y and a Z-axis drive section 58Z. The Y-axis driving section 58Y is driving means for moving the column 16 with respect to the surface plate 18, and includes, for example, a motor. The X-axis driving section 58X is driving means for moving the head 12 in the X direction along the beam 14, and includes, for example, a motor. The Z-axis driving section 58Z is driving means for moving the probe 22 in the Z direction, and includes, for example, a motor.

さらに、測定機10は、プローブ22、コラム16及びヘッド12の移動量をそれぞれ測定するためのX軸スケール60X,Y軸スケール60Y及びZ軸スケール60Zを備える。X軸スケール60X,Y軸スケール60Y及びZ軸スケール60Zとしては、例えば、リニアエンコーダを用いることができる。 Furthermore, the measuring machine 10 includes an X-axis scale 60X, a Y-axis scale 60Y and a Z-axis scale 60Z for measuring the amounts of movement of the probe 22, the column 16 and the head 12, respectively. Linear encoders, for example, can be used as the X-axis scale 60X, the Y-axis scale 60Y, and the Z-axis scale 60Z.

[測定機管理方法]
(第1の実施形態)
次に、本発明の第1の実施形態に係る測定機管理方法について、図6を参照して説明する。以下、i台目の測定機100を測定機iと記載し、測定機100の台数をnとする。
[Measuring machine management method]
(First embodiment)
Next, a measuring instrument management method according to the first embodiment of the present invention will be described with reference to FIG. Hereinafter, the i-th measuring machine 100 will be referred to as measuring machine i, and the number of measuring machines 100 will be n.

本実施形態では、処理部102は、ワーク運搬装置200から新たにワークの測定についての問い合わせを受けると、ワーク配置jを変えた場合の、測定機iの各駆動部の推定稼働量を用いて分散s(i,j)(式(1)参照)を求める。次に、処理部102は、各測定機100において、分散s(i,j)が最小となるワーク配置jを選択し、そのワーク配置jに対して、パラメータdi(式(2)参照)を計算する。そして、処理部102は、パラメータdiが最小となる測定機iを選択し、選択した測定機i及びワーク配置jにより測定を実行させるべく、測定機i及びワーク運搬装置200に指示を送る。 In this embodiment, when receiving a new inquiry about workpiece measurement from the workpiece transporting device 200, the processing unit 102 uses the estimated operation amount of each driving unit of the measuring machine i when the workpiece layout j is changed. Find the variance s(i,j) (see equation (1)). Next, the processing unit 102 selects the work placement j that minimizes the variance s(i,j) in each measuring machine 100, and sets the parameter di (see formula (2)) to the work placement j. calculate. Then, the processing unit 102 selects the measuring machine i that minimizes the parameter di, and sends an instruction to the measuring machine i and the workpiece transport device 200 to perform measurement with the selected measuring machine i and workpiece placement j.

まず、処理部102は、測定機i(i=1)において(ステップS30)、ワーク配置j(j=1)を選択した場合(ステップS32)のワークの推定稼働量の分散s(i,j)を計算する(ステップS34)。そして、処理部102は、j=j+1として(ステップS38)、分散s(i,j)の計算をすべてのワーク配置分(j=1,…,6)繰り返す(ステップS34からS38)。 First, the processing unit 102 calculates the variance s(i,j ) is calculated (step S34). Then, the processing unit 102 sets j=j+1 (step S38) and repeats the calculation of the variance s(i,j) for all the work placements (j=1, . . . , 6) (steps S34 to S38).

測定機iのX軸駆動部58X、Y軸駆動部58Y及びZ軸駆動部58Zの稼働量実績をそれぞれpX、pY及びpZとし、新たに問い合わせを受けたワークの測定を行った場合の推定稼働量をそれぞれX'、Y'及びZ'とする。そして、測定機iのX軸駆動部58X、Y軸駆動部58Y及びZ軸駆動部58Zのメンテナンスが必要になるまでの基準となる稼働量をそれぞれmX、mY及びmZとする。なお、上限稼働量mX、mY及びmZは、測定機iの機種ごと、経過年数又は各軸の稼働実績によって異なっていてもよいし(例えば、耐久性の低い機種、若しくは経過年数又は稼働実績が大きいほど、上限稼働量mX、mY及びmZを小さくしてもよい。)、オペレータが任意に指定可能としてもよい。この場合、分散s(i,j)の計算は、下記のように行うことができる。 Estimated operation when the actual operation amounts of the X-axis drive unit 58X, Y-axis drive unit 58Y, and Z-axis drive unit 58Z of the measuring machine i are set to pX, pY, and pZ, respectively, and measurements are performed for a workpiece that has received a new inquiry. Let the quantities be X', Y' and Z' respectively. Then, let mX, mY, and mZ be the reference working amounts until maintenance of the X-axis drive section 58X, Y-axis drive section 58Y, and Z-axis drive section 58Z of the measuring machine i becomes necessary, respectively. The upper limit operation amount mX, mY, and mZ may differ depending on the model of the measuring instrument i, the age, or the operation record of each axis (for example, the model with low durability, or the number of years or operation record, The upper operating amounts mX, mY, and mZ may be made smaller as they are larger.) may be arbitrarily designated by the operator. In this case, the calculation of the variance s(i,j) can be done as follows.

処理部102は、ワーク運搬装置200から、ワーク配置jごとに新たな測定作業(測定ジョブ)を実行した場合に要する軸ごとの推定稼働量に関する推定稼働量情報を計算する。ワーク配置1(j=1)は、推定稼働量(Xj, Yj, Zj)=(X’, Y’, Z’)となる配置である。 The processing unit 102 calculates estimated working amount information related to the estimated working amount required for each axis when a new measurement job (measurement job) is executed for each work placement j from the work transporting device 200 . Work placement 1 (j=1) is a placement where the estimated working amount (Xj, Yj, Zj)=(X', Y', Z').

パラメータs(i,1)X、s(i,1)Y及びs(i,1)Zは、各軸の稼働量実績と新たな測定ジョブを行った場合の推定稼働量の和を上限稼働量で割り算することにより求められるパラメータであり、各軸についてメンテナンスを実施する必要性を示すパラメータである。s(i,1)X、s(i,1)Y及びs(i,1)Zは、下記の式により求められる。 Parameters s(i,1)X, s(i,1)Y, and s(i,1)Z are the sum of the actual operating amount of each axis and the estimated operating amount when a new measurement job is performed. It is a parameter obtained by dividing by an amount, and is a parameter that indicates the necessity of performing maintenance on each axis. s(i,1)X, s(i,1)Y and s(i,1)Z are obtained by the following formulas.

s(i,1)X = (pX+X’)/mX
s(i,1)Y = (pY+Y’)/mY
s(i,1)Z = (pZ+Z’)/mZ
パラメータs(i,1)X、s(i,1)Y及びs(i,1)Zの平均値s(i,1)ave及び分散s(i,1)は、下記の式により求められる。
s(i,1)X = (pX+X')/mX
s(i,1)Y = (pY+Y')/mY
s(i,1)Z = (pZ+Z')/mZ
The average value s(i,1) ave and the variance s(i,1) of the parameters s(i,1)X, s(i,1)Y and s(i,1)Z are obtained by the following formula .

s(i,1)ave = {s(i,1)X+s(i,1)Y+s(i,1)Z}/3
s(i,1) = [{s(i,1)X-s(i,1)ave}2+{s(i,1)Y-s(i,1)ave}2+{s(i,1)Z-s(i,1)ave}2]/3
ワーク配置2から6(j=2,…,6)はそれぞれ推定稼働量(Xj, Yj, Zj)が下記のようになる配置である。
・ワーク配置2(j=2):(Xj, Yj, Zj)=(X’, Z’, Y’)
・ワーク配置3(j=3):(Xj, Yj, Zj)=(Y’, X’, Z’)
・ワーク配置4(j=4):(Xj, Yj, Zj)=(Y’, Z’, X’)
・ワーク配置5(j=5):(Xj, Yj, Zj)=(Z’, X’, Y’)
・ワーク配置6(j=6):(Xj, Yj, Zj)=(Z’ ,Y’, X’)
ワーク配置2から6(j=2,…,6)の場合のパラメータs(i,j)X、s(i,j)Y及びs(i,j)Zはそれぞれ下記の式により求められる。パラメータs(i,j)X、s(i,j)Y及びs(i,j)Zは、パラメータs(i,1)X、s(i,1)Y及びs(i,1)Zと同様、各軸についてメンテナンスを実施する必要性を示すパラメータである。
・ワーク配置2(j=2)
s(i,2)X = (pX+X’)/mX
s(i,2)Y = (pY+Z’)/mY
s(i,2)Z = (pZ+Y’)/mZ
・ワーク配置3(j=3)
s(i,3)X = (pX+Y’)/mX
s(i,3)Y = (pY+X’)/mY
s(i,3)Z = (pZ+Z’)/mZ
・ワーク配置4(j=4)
s(i,4)X = (pX+Y’)/mX
s(i,4)Y = (pY+Z’)/mY
s(i,4)Z = (pZ+X’)/mZ
・ワーク配置5(j=5)
s(i,5)X = (pX+Z’)/mX
s(i,5)Y = (pY+X’)/mY
s(i,5)Z = (pZ+Y’)/mZ
・ワーク配置6(j=6)
s(i,6)X = (pX+Z’)/mX
s(i,6)Y = (pY+Y’)/mY
s(i,6)Z = (pZ+X’)/mZ
各ワーク配置jにおけるパラメータの平均値s(i,j)ave及び分散s(i,j)は、下記の式により求められる。
s(i,1) ave = {s(i,1)X+s(i,1)Y+s(i,1)Z}/3
s(i,1) = [{s(i,1)Xs(i,1) ave } 2 +{s(i,1)Ys(i,1) ave } 2 +{s(i,1)Zs (i,1) ave } 2 ]/3
Work placements 2 to 6 (j=2, .
・Work placement 2 (j = 2): (Xj, Yj, Zj) = (X', Z', Y')
・Work placement 3 (j = 3): (Xj, Yj, Zj) = (Y', X', Z')
・Work placement 4 (j = 4): (Xj, Yj, Zj) = (Y', Z', X')
・Work placement 5 (j = 5): (Xj, Yj, Zj) = (Z', X', Y')
・Work placement 6 (j = 6): (Xj, Yj, Zj) = (Z', Y', X')
Parameters s(i,j)X, s(i,j)Y and s(i,j)Z for work placements 2 to 6 (j=2, . . . , 6) are obtained by the following equations. The parameters s(i,j)X, s(i,j)Y and s(i,j)Z are the parameters s(i,1)X, s(i,1)Y and s(i,1)Z is a parameter that indicates the necessity of performing maintenance on each axis.
・Work placement 2 (j=2)
s(i,2)X = (pX+X')/mX
s(i,2)Y = (pY+Z')/mY
s(i,2)Z = (pZ+Y')/mZ
・Work placement 3 (j=3)
s(i,3)X = (pX+Y')/mX
s(i,3)Y = (pY+X')/mY
s(i,3)Z = (pZ+Z')/mZ
・Work placement 4 (j=4)
s(i,4)X = (pX+Y')/mX
s(i,4)Y = (pY+Z')/mY
s(i,4)Z = (pZ+X')/mZ
・Work placement 5 (j=5)
s(i,5)X = (pX+Z')/mX
s(i,5)Y = (pY+X')/mY
s(i,5)Z = (pZ+Y')/mZ
・Work placement 6 (j=6)
s(i,6)X = (pX+Z')/mX
s(i,6)Y = (pY+Y')/mY
s(i,6)Z = (pZ+X')/mZ
The average value s(i,j) ave and variance s(i,j) of the parameters at each work placement j are obtained by the following equations.

s(i,j)ave = {s(i,j)X+s(i,j)Y+s(i,j)Z}/3
s(i,j) = [{s(i,j)X-s(i,j)ave}2+{s(i,j)Y-s(i,j)ave}2+{s(i,j)Z-s(i,j)ave}2]/3…(1)
この分散s(i,j)は、測定機iについて、ワーク配置jで測定を行った後に、各軸に対応する駆動部の上限稼働量に対する稼働量の割合のばらつきが大きいほど、値が大きくなる性質を有するパラメータである。そして、分散s(i,j)が小さいほど、測定機iの各軸に対応する駆動部が均等に使用されていると推定される。
s(i,j) ave = {s(i,j)X+s(i,j)Y+s(i,j)Z}/3
s(i,j) = [{s(i,j)Xs(i,j) ave } 2 +{s(i,j)Ys(i,j) ave } 2 +{s(i,j)Zs (i,j) ave } 2 ]/3 (1)
This variance s(i,j) increases as the variation in the ratio of the operating amount to the upper operating amount of the drive unit corresponding to each axis increases after the measurement is performed with the workpiece arrangement j for the measuring machine i. It is a parameter having the property of It is estimated that the smaller the variance s(i,j), the more evenly the drive units corresponding to the axes of the measuring machine i are used.

すべてのワーク配置j(j=1,…,6)について、分散s(i,j)の計算が終了すると(ステップS36のYes)、処理部102は、分散s(i,j)が最小となるワーク配置jを選択する(ステップS40)。そして、処理部102は、選択したワーク配置jについて、差異diを計算する(ステップS42)。 When the calculation of the variances s(i,j) is completed for all work placements j (j=1, . . . , 6) (Yes in step S36), the processing unit work placement j is selected (step S40). Then, the processing unit 102 calculates the difference di for the selected workpiece placement j (step S42).

新たな測定ジョブを行う前の測定機iの各軸の稼働量を(Xi, Yi, Zi)とする。ワーク配置jで新たな測定ジョブを行った場合の推定稼働量は(Xj, Yj, Zj)であるから、新たな測定ジョブを行った後のすべての測定機iの各軸の平均稼働量aX、aY及びaZは下記の式により求められる。 Let (Xi, Yi, Zi) be the operation amount of each axis of the measuring machine i before a new measurement job is performed. Since the estimated operation amount when a new measurement job is performed with work placement j is (Xj, Yj, Zj), the average operation amount for each axis of all measuring machines i after a new measurement job is aX , aY and aZ are obtained by the following equations.

X軸平均稼働量:aX = (X1+X2+...+Xn + Xj)/n
Y軸平均稼働量:aY = (Y1+Y2+...+Yn + Yj)/n
Z軸平均稼働量:aZ = (Z1+Z2+...+Zn + Zj)/n
測定機1において、ワーク配置jで測定を行ったときの差異d1は、下記の式により求められる。
X-axis average operation amount: aX = (X1+X2+...+Xn + Xj)/n
Y-axis average operation amount: aY = (Y1+Y2+...+Yn + Yj)/n
Z-axis average operation amount: aZ = (Z1+Z2+...+Zn + Zj)/n
In the measuring machine 1, the difference d1 when the measurement is performed at the work placement j is obtained by the following formula.

d1X = |(X1+Xj)-aX| + |X2-aX| + ... + |Xn-aX|
d1Y = |(Y1+Yj)-aY| + |Y2-aY| + ... + |Yn-aY|
d1Z = |(Z1+Zj)-aZ| + |Z2-aZ| + ... + |Zn-aZ|
d1 = d1X + d1Y + d1Z
処理部102は、すべての測定機iにおいて、分散s(i,j)が最小となるワーク配置jを求める(ステップS40)。そして、処理部102は、各測定機iについて求めたワーク配置jについて、下記の式により差異diを求める(ステップS42)。処理部102は、i=i+1として(ステップS46)、すべての測定機iについて差異diの計算を繰り返す(ステップS32からS46)。
d1X = |(X1+Xj)-aX| + |X2-aX| + ... + |Xn-aX|
d1Y = |(Y1+Yj)-aY| + |Y2-aY| + ... + |Yn-aY|
d1Z = |(Z1+Zj)-aZ| + |Z2-aZ| + ... + |Zn-aZ|
d1 = d1X + d1Y + d1Z
The processing unit 102 obtains the workpiece placement j that minimizes the variance s(i,j) for all measuring machines i (step S40). Then, the processing unit 102 obtains the difference di from the following formula for the work placement j obtained for each measuring machine i (step S42). The processing unit 102 sets i=i+1 (step S46) and repeats calculation of the difference di for all measuring instruments i (steps S32 to S46).

diX = |X1-aX| + ... + |(Xi+Xj)-aX| + ... + |Xn-aX|
diY = |Y1-aY| + ... + |(Yi+Yj)-aY| + ... + |Yn-aY|
diZ = |Z1-aZ| + ... + |(Zi+Zj)-aZ| + ... + |Zn-aZ|
di = diX + diY + diZ …(2)
この差異diは、測定機iについて、稼働量と平均稼働量との差分絶対値が大きいほど、値が大きくなる性質を有するパラメータである。差異diが小さいほど、測定機iが均等に使用されていると推定される。
diX = |X1-aX| + ... + |(Xi+Xj)-aX| + ... + |Xn-aX|
diY = |Y1-aY| + ... + |(Yi+Yj)-aY| + ... + |Yn-aY|
diZ = |Z1-aZ| + ... + |(Zi+Zj)-aZ| + ... + |Zn-aZ|
di = diX + diY + diZ (2)
This difference di is a parameter that has the property of increasing in value as the absolute value of the difference between the operating amount and the average operating amount of the measuring machine i increases. It is estimated that the smaller the difference di, the more evenly the measuring device i is used.

なお、差異diとして、測定ジョブの実行後の稼働量と、平均稼働量との差分絶対値の和を計算したが、本発明はこれに限定されない。例えば、差分絶対値の和の代わりに、二乗和を用いてもよい。 As the difference di, the sum of the absolute difference between the operation amount after execution of the measurement job and the average operation amount is calculated, but the present invention is not limited to this. For example, the sum of squares may be used instead of the sum of absolute difference values.

処理部102は、すべての測定機i(i=1,…,n)について差異diの計算が終了すると(ステップS44のYes)、差異diが最小となる測定機iを選択し(ステップS48)、選択した測定機i及びワーク配置jにより測定を行うように、ワーク運搬装置200及び測定機iに指令する(ステップS50)。 When processing unit 102 finishes calculating differences di for all measuring machines i (i=1, . , instructs the workpiece transport device 200 and the measuring machine i to perform measurement by the selected measuring machine i and workpiece placement j (step S50).

本実施形態によれば、複数台の測定機iがある場合に、各測定機iを均等に使用することができるので、特定の測定機iにジョブが集中してメンテナンスの頻度が高くなることを防止することができる。さらに、本実施形態によれば、メンテナンスが必要になるまでの稼働量に基づいてワーク配置jを選択することにより、メンテナンスの頻度を抑制することが可能になる。 According to this embodiment, when there are a plurality of measuring machines i, each measuring machine i can be used equally. Therefore, jobs are concentrated on a specific measuring machine i, which increases the frequency of maintenance. can be prevented. Furthermore, according to the present embodiment, it is possible to reduce the frequency of maintenance by selecting the workpiece placement j based on the amount of operation until maintenance becomes necessary.

(第2の実施形態)
次に、本発明の第2の実施形態に係る測定機管理方法について、図7を参照して説明する。
(Second embodiment)
Next, a measuring instrument management method according to a second embodiment of the present invention will be described with reference to FIG.

本実施形態では、各測定機i及び各ワーク配置jについて、差異d(i,j)を算出し、差異d(i,j)が最小となる測定機iとワーク配置jを選択することにより、ワーク配置jを考慮しつつ、測定機iを均等に使用するようにするものである。 In this embodiment, the difference d(i,j) is calculated for each measuring machine i and each work arrangement j, and the measuring machine i and work arrangement j that minimize the difference d(i,j) are selected. , work arrangement j, the measuring machine i is used equally.

まず、処理部102は、測定機i(i=1)において(ステップS60)、ワーク配置j(j=1)を選択した場合(ステップS62)の差異d(i,j)を計算する(ステップS64)。そして、処理部102は、j=j+1として(ステップS68)、差異d(i,j)の計算をすべてのワーク配置分(j=1,…,6)繰り返す(ステップS64からS68)。次に、処理部102は、i=i+1として(ステップS72)、すべての測定機iについて差異d(i,j)の計算を繰り返す(ステップS62からS72)。 First, the processing unit 102 calculates the difference d(i,j) when workpiece placement j (j=1) is selected (step S62) in the measuring machine i (i=1) (step S60) (step S64). Then, the processing unit 102 sets j=j+1 (step S68), and repeats the calculation of the difference d(i,j) for all work placements (j=1, . . . , 6) (steps S64 to S68). Next, the processing unit 102 sets i=i+1 (step S72) and repeats the calculation of the difference d(i,j) for all measuring instruments i (steps S62 to S72).

測定機iにおいて、ワーク配置jで測定を行った場合の差異d(i,j)は、下記のようにして求めることができる。 The difference d(i,j) when the measurement is performed with the workpiece layout j in the measuring machine i can be obtained as follows.

まず、第1の実施形態と同様に、ワーク配置jを下記の通り定義する。
・ワーク配置1(j=1):(Xj, Yj, Zj)=(X’, Y’, Z’)
・ワーク配置2(j=2):(Xj, Yj, Zj)=(X’, Z’, Y’)
・ワーク配置3(j=3):(Xj, Yj, Zj)=(Y’, X’, Z’)
・ワーク配置4(j=4):(Xj, Yj, Zj)=(Y’, Z’, X’)
・ワーク配置5(j=5):(Xj, Yj, Zj)=(Z’, X’, Y’)
・ワーク配置6(j=6):(Xj, Yj, Zj)=(Z’ ,Y’, X’)
次に、ワーク配置jごとに、各軸の平均稼働量aX、aY及びaZを下記の式により計算する。
First, similarly to the first embodiment, work placement j is defined as follows.
・Work placement 1 (j = 1): (Xj, Yj, Zj) = (X', Y', Z')
・Work placement 2 (j = 2): (Xj, Yj, Zj) = (X', Z', Y')
・Work placement 3 (j = 3): (Xj, Yj, Zj) = (Y', X', Z')
・Work placement 4 (j = 4): (Xj, Yj, Zj) = (Y', Z', X')
・Work placement 5 (j = 5): (Xj, Yj, Zj) = (Z', X', Y')
・Work placement 6 (j = 6): (Xj, Yj, Zj) = (Z', Y', X')
Next, for each workpiece arrangement j, the average working amounts aX, aY and aZ of each axis are calculated by the following formulas.

X軸平均稼働量:aX = (X1+X2+...+Xn + Xj)/n
Y軸平均稼働量:aY = (Y1+Y2+...+Yn + Yj)/n
Z軸平均稼働量:aZ = (Z1+Z2+...+Zn + Zj)/n
次に、ワーク配置jごとに計算した各軸の平均稼働量aX、aY及びaZを用いて、各軸の差異d(i,j)X、d(i,j)Y及びd(i,j)Zを計算し、差異d(i,j)を計算する。この計算をワーク配置jごと、測定機iごとに繰り返すことにより、d(i,j)(i=1,…,n、j=1,…,6)が求められる。
X-axis average operation amount: aX = (X1+X2+...+Xn + Xj)/n
Y-axis average operation amount: aY = (Y1+Y2+...+Yn + Yj)/n
Z-axis average operation amount: aZ = (Z1+Z2+...+Zn + Zj)/n
Next, using the average operating amount aX, aY and aZ of each axis calculated for each workpiece arrangement j, the differences d(i,j)X, d(i,j)Y and d(i,j )Z and compute the difference d(i,j). By repeating this calculation for each work placement j and each measuring machine i, d(i,j) (i=1, . . . , n, j=1, . . . , 6) is obtained.

d(i,j)X = |X1-aX| + ... + |(Xi+Xj)-aX| + ... + |Xn-aX|
d(i,j)Y = |Y1-aY| + ... + |(Yi+Yj)-aY| + ... + |Yn-aY|
d(i,j)Z = |Z1-aZ| + ... + |(Zi+Zj)-aZ| + ... + |Zn-aZ|
d(i,j) = d(i,j)X + d(i,j)Y + d(i,j)Z
この差異d(i,j)は、特定の測定機iについて、稼働量と平均稼働量との差分絶対値が大きいほど、値が大きくなり、かつ、特定の軸に対応する駆動部の稼働量が大きくなると、値が大きくなる性質を有するパラメータである。そして、差異d(i,j)が小さいほど、測定機iの各軸に対応する駆動部が均等に使用されていると推定される。
d(i,j)X = |X1-aX| + ... + |(Xi+Xj)-aX| + ... + |Xn-aX|
d(i,j)Y = |Y1-aY| + ... + |(Yi+Yj)-aY| + ... + |Yn-aY|
d(i,j)Z = |Z1-aZ| + ... + |(Zi+Zj)-aZ| + ... + |Zn-aZ|
d(i,j) = d(i,j)X + d(i,j)Y + d(i,j)Z
This difference d(i,j) increases as the absolute value of the difference between the operating amount and the average operating amount for a specific measuring machine i increases. It is a parameter that has the property that its value increases as . It is estimated that the smaller the difference d(i,j) is, the more evenly the drive units corresponding to the axes of the measuring machine i are used.

すべての測定機i(i=1,…,n)について、差異d(i,j)の計算が終了すると(ステップS70のYes)、処理部102は、差異d(i,j)が最小となる測定機i及びワーク配置jを選択する(ステップS74)。そして、処理部102は、選択した測定機i及びワーク配置jにより測定を行うように、ワーク運搬装置200及び測定機iに指令する(ステップS76)。 When the calculation of the difference d(i,j) is completed for all measuring instruments i (i=1, . . . , n) (Yes in step S70), the processing unit A different measuring machine i and workpiece layout j are selected (step S74). Then, the processing unit 102 instructs the work transporting device 200 and the measuring machine i to perform measurement with the selected measuring machine i and work arrangement j (step S76).

本実施形態によれば、複数台の測定機iがある場合に、各測定機iの駆動部を均等に使用することができるので、特定の測定機iにジョブが集中してメンテナンスの頻度が高くなることを防止することができる。 According to this embodiment, when there are a plurality of measuring machines i, the drive units of each measuring machine i can be used equally. You can prevent it from getting too high.

(第3の実施形態)
次に、本発明の第3の実施形態に係る測定機管理方法について、図8を参照して説明する。
(Third embodiment)
Next, a measuring instrument management method according to a third embodiment of the present invention will be described with reference to FIG.

本実施形態では、各測定機i及び各ワーク配置jについて、分散s(i,j)を算出し、分散s(i,j)が最小となる測定機iとワーク配置jを選択することにより、ワーク配置jを考慮しつつ、測定機iを均等に使用するようにするものである。 In this embodiment, the variance s(i,j) is calculated for each measuring machine i and each work placement j, and the measuring machine i and work placement j that minimize the variance s(i,j) are selected. , work arrangement j, the measuring machine i is used equally.

まず、処理部102は、測定機i(i=1)において(ステップS80)、ワーク配置j(j=1)を選択した場合(ステップS82)の分散s(i,j)を計算する(ステップS84)。そして、処理部102は、j=j+1として(ステップS88)、分散s(i,j)の計算をすべてのワーク配置分(j=1,…,6)繰り返す(ステップS84からS88)。次に、処理部102は、i=i+1として(ステップS92)、すべての測定機iについて分散s(i,j)の計算を繰り返す(ステップS82からS92)。 First, the processing unit 102 calculates the variance s(i,j) in the case of selecting the work arrangement j (j=1) in the measuring machine i (i=1) (step S80) (step S82) (step S84). Then, the processing unit 102 sets j=j+1 (step S88) and repeats the calculation of the variance s(i,j) for all the work placements (j=1, . . . , 6) (steps S84 to S88). Next, the processing unit 102 sets i=i+1 (step S92) and repeats the calculation of variance s(i,j) for all measuring instruments i (steps S82 to S92).

測定機iにおいて、ワーク配置jで測定を行った場合の分散s(i,j)は、下記のようにして求めることができる。 Variance s(i,j) when measurement is performed with work placement j in measuring machine i can be obtained as follows.

まず、ワーク配置jを、第1及び第2の実施形態と同様に定義する。次に、パラメータs(i,j)X、s(i,j)Y及びs(i,j)Zを下記の式により求める。パラメータs(i,j)X、s(i,j)Y及びs(i,j)Zは、各軸の稼働量実績と新たな測定ジョブを行った場合の推定稼働量の和を上限稼働量で割り算することにより求められるパラメータであり、各軸についてメンテナンスを実施する必要性を示すパラメータである。 First, work placement j is defined in the same way as in the first and second embodiments. Next, parameters s(i,j)X, s(i,j)Y and s(i,j)Z are obtained by the following equations. Parameters s(i,j)X, s(i,j)Y and s(i,j)Z are the sum of the actual operating amount of each axis and the estimated operating amount when a new measurement job is performed. It is a parameter obtained by dividing by an amount, and is a parameter that indicates the necessity of performing maintenance on each axis.

s(i,j)X = (pX+Xj)/mX
s(i,j)Y = (pY+Yj)/mY
s(i,j)Z = (pZ+Zj)/mZ
次に、各ワーク配置jにおけるパラメータの平均値s(i,j)ave及び分散s(i,j)を下記の式により求める。
s(i,j)X = (pX+Xj)/mX
s(i,j)Y = (pY+Yj)/mY
s(i,j)Z = (pZ+Zj)/mZ
Next, the average value s(i,j) ave and the variance s(i,j) of the parameters for each work placement j are obtained from the following equations.

s(i,j)ave = {s(i,j)X+s(i,j)Y+s(i,j)Z}/3
s(i,j) = [{s(i,j)X-s(i,j)ave}2+{s(i,j)Y-s(i,j)ave}2+{s(i,j)Z-s(i,j)ave}2]/3
この分散s(i,j)は、測定機iについて、ワーク配置jで測定を行った後に、各軸に対応する駆動部の上限稼働量に対する稼働量の割合のばらつきが大きいほど、値が大きくなる性質を有するパラメータである。そして、分散s(i,j)が小さいほど、測定機iの各軸に対応する駆動部が均等に使用されていると推定される。
s(i,j) ave = {s(i,j)X+s(i,j)Y+s(i,j)Z}/3
s(i,j) = [{s(i,j)Xs(i,j) ave } 2 +{s(i,j)Ys(i,j) ave } 2 +{s(i,j)Zs (i,j) ave } 2 ]/3
This variance s(i,j) increases as the variation in the ratio of the operating amount to the upper operating amount of the drive unit corresponding to each axis increases after the measurement is performed with the workpiece arrangement j for the measuring machine i. It is a parameter having the property of It is estimated that the smaller the variance s(i,j), the more evenly the drive units corresponding to the axes of the measuring machine i are used.

すべての測定機i(i=1,…,n)について、分散s(i,j)の計算が終了すると(ステップS90のYes)、処理部102は、分散s(i,j)が最小となる測定機i及びワーク配置jを選択する(ステップS94)。そして、処理部102は、選択した測定機i及びワーク配置jにより測定を行うように、ワーク運搬装置200及び測定機iに指令する(ステップS96)。 When the calculation of the variances s(i,j) is completed for all measuring instruments i (i=1, . . . , n) (Yes in step S90), the processing unit 102 A different measuring machine i and workpiece layout j are selected (step S94). Then, the processing unit 102 instructs the work transporting device 200 and the measuring machine i to perform measurement with the selected measuring machine i and work arrangement j (step S96).

本実施形態によれば、複数台の測定機iがある場合に、メンテナンスが必要になるまでの稼働量に基づいてワーク配置jを選択することにより、メンテナンスの頻度を抑制することが可能になる。 According to this embodiment, when there are a plurality of measuring machines i, it is possible to reduce the frequency of maintenance by selecting the work placement j based on the amount of operation until maintenance becomes necessary. .

なお、第1から第3の実施形態では、ワーク配置jについても選択可能にしたが、例えば、ワーク配置は固定であってもよい。また、例えば、ワークの形状によって、特定のワーク配置での測定が困難な場合には、ワーク配置1から6のうちの一部のみについて、分散s(i,j)又は差異d(i,j)を計算するようにしてもよい。 In the first to third embodiments, the work placement j is also selectable, but the work placement may be fixed, for example. In addition, for example, when it is difficult to measure with a specific work arrangement due to the shape of the work, the variance s(i, j) or the difference d(i, j ) may be calculated.

1…測定機管理システム、10…測定機、12…ヘッド、14…ビーム(梁)、16…コラム(支柱)、18…定盤、20…基台、22…プローブ、24…スタイラス、26…測定子、50…プロセッサ、52…操作部、54…メモリ、56…通信インターフェース(通信I/F)、58X…X軸駆動部、58Y…Y軸駆動部、58Z…Z軸駆動部、60X…X軸スケール、60Y…Y軸スケール、60Z…Z軸スケール、100…測定機管理装置、102…処理部、104…操作部、106…記憶部、108…表示部、110…通信インターフェース(通信I/F)、200…ワーク運搬装置 DESCRIPTION OF SYMBOLS 1... Measuring machine management system 10... Measuring machine, 12... Head, 14... Beam (beam), 16... Column (post), 18... Surface plate, 20... Base, 22... Probe, 24... Stylus, 26... Probe 50 Processor 52 Operation unit 54 Memory 56 Communication interface (communication I/F) 58X X-axis drive unit 58Y Y-axis drive unit 58Z Z-axis drive unit 60X X-axis scale 60Y Y-axis scale 60Z Z-axis scale 100 Measuring instrument management device 102 Processing unit 104 Operation unit 106 Storage unit 108 Display unit 110 Communication interface (communication I /F), 200 ... work carrier

Claims (7)

複数の駆動軸をそれぞれ有する複数台の測定機の前記駆動軸ごとの稼働実績を取得する稼働実績取得部と、
前記測定機を使用して測定作業を行った場合における前記測定機の前記駆動軸ごとの推定稼働量を計算する推定稼働量計算部と、
前記稼働実績及び前記推定稼働量に基づいて、前記測定機の前記駆動軸ごとに、前記測定作業を行った場合における前記測定機の前記駆動軸ごとの平均稼働量を計算する平均稼働量計算部と、
前記測定機の前記駆動軸ごとの前記稼働実績、前記推定稼働量及び前記平均稼働量に基づいて、前記測定機ごとの稼働実績及び前記測定機の駆動軸ごとの稼働実績が均等になるように、前記複数台の測定機の中から前記測定作業を割り当てる測定機を選択する選択部と、
を備える測定機管理装置。
an operation result acquisition unit that acquires an operation result for each drive axis of a plurality of measuring machines each having a plurality of drive axes;
an estimated working amount calculation unit that calculates an estimated working amount for each drive shaft of the measuring machine when the measuring work is performed using the measuring machine;
Average operation amount calculation unit for calculating an average operation amount for each drive axis of the measuring machine when the measurement work is performed for each drive axis of the measuring machine, based on the actual operation record and the estimated operation amount. When,
Based on the operation result, the estimated operation amount, and the average operation amount for each drive axis of the measuring machine, the operation result for each measuring machine and the operation result for each drive axis of the measuring machine are equalized. a selection unit that selects a measuring machine to which the measuring work is to be assigned from among the plurality of measuring machines;
measuring machine management device.
前記推定稼働量計算部は、前記測定機における被測定物の配置ごとに前記推定稼働量を計算する、請求項1に記載の測定機管理装置。 2. The measuring machine management apparatus according to claim 1, wherein said estimated working amount calculation unit calculates said estimated working amount for each arrangement of an object to be measured on said measuring machine. 前記選択部は、前記複数台の測定機の前記稼働実績に前記推定稼働量を加味した値と前記平均稼働量との差分絶対値の和が最小となるように、前記測定作業を割り当てる測定機を選択する、請求項1又は2に記載の測定機管理装置。 The selecting unit allocates the measuring work such that the sum of the absolute difference between the estimated operation amount added to the operation results of the plurality of measuring machines and the average operation amount is minimized. 3. The measuring-machine management device according to claim 1 or 2, which selects . 前記複数台の測定機の前記駆動軸について、メンテナンスが必要になるまでの上限稼働量を取得する上限稼働量取得部を更に備え、
前記選択部は、前記稼働実績、前記推定稼働量及び前記上限稼働量に基づいて、前記測定作業を割り当てる測定機を選択する、請求項1から3のいずれか1項に記載の測定機管理装置。
further comprising an upper limit operation amount acquisition unit that acquires an upper limit operation amount until maintenance is required for the drive shafts of the plurality of measuring instruments;
4. The measuring instrument management apparatus according to any one of claims 1 to 3, wherein the selection unit selects a measuring instrument to which the measurement work is to be assigned based on the operation record, the estimated operation amount, and the upper limit operation amount. .
前記選択部は、前記稼働実績と前記推定稼働量の和を前記上限稼働量で除算した値の分散が最小となるように、前記測定作業を割り当てる測定機を選択する、請求項4に記載の測定機管理装置。 5. The measuring machine according to claim 4, wherein the selection unit selects the measuring machine to which the measurement work is to be assigned so that the variance of a value obtained by dividing the sum of the operation record and the estimated operation amount by the upper limit operation amount is minimized. Measuring machine management device. 前記推定稼働量計算部は、前記測定機における被測定物の配置を変えて前記測定作業を行った場合における前記推定稼働量を計算し、
前記平均稼働量計算部は、前記測定機における被測定物の配置を変えて前記測定作業を行った場合における前記平均稼働量を計算し、
前記選択部は、前記複数台の測定機の前記駆動軸ごとの前記稼働実績、前記推定稼働量及び前記平均稼働量に基づいて、前記測定作業を割り当てる測定機を選択する、請求項1から5のいずれか1項に記載の測定機管理装置。
The estimated working amount calculation unit calculates the estimated working amount when the measurement work is performed by changing the arrangement of the object to be measured in the measuring machine,
The average operation amount calculation unit calculates the average operation amount when the measurement work is performed by changing the arrangement of the object to be measured in the measuring machine,
6. The selecting unit selects a measuring machine to which the measuring work is to be assigned based on the operation record, the estimated working amount, and the average working amount for each of the drive shafts of the plurality of measuring machines. The measuring machine management device according to any one of Claims 1 to 3.
複数の駆動軸をそれぞれ有する複数台の測定機の前記駆動軸ごとの稼働実績を取得し、
前記測定機を使用して測定作業を行った場合における前記測定機の前記駆動軸ごとの推定稼働量を計算し、
前記稼働実績及び前記推定稼働量に基づいて、前記測定機の前記駆動軸ごとに、前記測定作業を行った場合における前記測定機の前記駆動軸ごとの平均稼働量を計算し、
前記測定機の前記駆動軸ごとの前記稼働実績、前記推定稼働量及び前記平均稼働量に基づいて、前記測定機ごとの稼働実績及び前記測定機の駆動軸ごとの稼働実績が均等になるように、前記複数台の測定機の中から前記測定作業を割り当てる測定機を選択する、測定機管理方法。
Acquiring operation results for each drive shaft of a plurality of measuring machines each having a plurality of drive shafts,
calculating an estimated operating amount for each drive shaft of the measuring machine when performing a measuring operation using the measuring machine;
calculating an average operation amount for each drive axis of the measuring machine when the measurement work is performed for each drive axis of the measuring machine based on the actual operation record and the estimated operation amount;
Based on the operation result, the estimated operation amount, and the average operation amount for each drive axis of the measuring machine, the operation result for each measuring machine and the operation result for each drive axis of the measuring machine are equalized. , a measuring machine management method of selecting a measuring machine to which the measuring work is assigned from among the plurality of measuring machines.
JP2018064821A 2018-03-29 2018-03-29 Measuring machine management device and method Active JP7187759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018064821A JP7187759B2 (en) 2018-03-29 2018-03-29 Measuring machine management device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018064821A JP7187759B2 (en) 2018-03-29 2018-03-29 Measuring machine management device and method

Publications (2)

Publication Number Publication Date
JP2019175279A JP2019175279A (en) 2019-10-10
JP7187759B2 true JP7187759B2 (en) 2022-12-13

Family

ID=68168985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018064821A Active JP7187759B2 (en) 2018-03-29 2018-03-29 Measuring machine management device and method

Country Status (1)

Country Link
JP (1) JP7187759B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022265037A1 (en) * 2021-06-16 2022-12-22 ダイキン工業株式会社 Control device and control system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008046808A (en) 2006-08-14 2008-02-28 Nippon Telegr & Teleph Corp <Ntt> Assignment method and device for operation process headcount
JP2009015740A (en) 2007-07-09 2009-01-22 Hitachi Ltd Manufacturing instruction system and manufacturing instruction method
JP2012078214A (en) 2010-10-01 2012-04-19 Mitsutoyo Corp Measuring apparatus
JP5449499B1 (en) 2012-10-26 2014-03-19 日本電信電話株式会社 Demand supply matching method and program
JP2014123272A (en) 2012-12-21 2014-07-03 Fujitsu Ltd Simulation method, program, and information processing method
JP2015108878A (en) 2013-12-03 2015-06-11 日本電気株式会社 Allocation determination device, control method, and program
JP2015210728A (en) 2014-04-28 2015-11-24 株式会社東芝 Plant control apparatus, plant control program, and plant control method
JP2017102554A (en) 2015-11-30 2017-06-08 ファナック株式会社 Cell control device for predicting failure of manufacturing machine and production system
WO2017152981A1 (en) 2016-03-10 2017-09-14 Siemens Aktiengesellschaft Method and device for allocating assemblies to placement lines
US20170308057A1 (en) 2014-10-31 2017-10-26 Cloudbased Industry 4.0 Technologies Ag Computer-implemented method for part analytics of a workpiece machined by at least one cnc machine

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008046808A (en) 2006-08-14 2008-02-28 Nippon Telegr & Teleph Corp <Ntt> Assignment method and device for operation process headcount
JP2009015740A (en) 2007-07-09 2009-01-22 Hitachi Ltd Manufacturing instruction system and manufacturing instruction method
JP2012078214A (en) 2010-10-01 2012-04-19 Mitsutoyo Corp Measuring apparatus
JP5449499B1 (en) 2012-10-26 2014-03-19 日本電信電話株式会社 Demand supply matching method and program
JP2014123272A (en) 2012-12-21 2014-07-03 Fujitsu Ltd Simulation method, program, and information processing method
JP2015108878A (en) 2013-12-03 2015-06-11 日本電気株式会社 Allocation determination device, control method, and program
JP2015210728A (en) 2014-04-28 2015-11-24 株式会社東芝 Plant control apparatus, plant control program, and plant control method
US20170308057A1 (en) 2014-10-31 2017-10-26 Cloudbased Industry 4.0 Technologies Ag Computer-implemented method for part analytics of a workpiece machined by at least one cnc machine
JP2017102554A (en) 2015-11-30 2017-06-08 ファナック株式会社 Cell control device for predicting failure of manufacturing machine and production system
WO2017152981A1 (en) 2016-03-10 2017-09-14 Siemens Aktiengesellschaft Method and device for allocating assemblies to placement lines

Also Published As

Publication number Publication date
JP2019175279A (en) 2019-10-10

Similar Documents

Publication Publication Date Title
JP5221004B2 (en) Measuring device, surface texture measuring method, and surface texture measuring program
JP5539865B2 (en) Scan head calibration apparatus and method
JP5400056B2 (en) Method for calibrating a coordinate measuring machine
JP6622216B2 (en) Calibration of measuring probe
JP4275632B2 (en) Calibration method for parallel mechanism mechanism, calibration verification method, calibration verification program, data collection method, and correction data collection method for spatial position correction
TWI424164B (en) Differential calibration
US9091522B2 (en) Shape measuring machine and method of correcting shape measurement error
US9719779B2 (en) Form measuring machine and form measuring method
JP3827548B2 (en) Scanning probe calibration method and calibration program
EP1818647B1 (en) Form measuring instrument, form measuring method and form measuring program
US20100250178A1 (en) Corrected ball diameter calculating method and form measuring instrument
JP2002059340A (en) Positional error evaluating method of moving device, and moving accuracy improving method based on result of evaluation
JP2012211891A (en) Calibration method of surface quality measuring machine
JP2003500675A (en) Movement control by measuring equipment
US10508895B2 (en) Method for single-point scanning of a workpiece and coordinate measuring machine
JP2019512095A (en) Method and apparatus for calibrating a scanning probe
JP2020089924A (en) Cutting system, processing error measuring method, and processing error measuring device
JP7158582B2 (en) Adjustment amount estimation device, adjustment amount estimation method, adjustment amount estimation program, and machine tool assembly method
JP3827549B2 (en) Probe calibration method and calibration program
JP7187759B2 (en) Measuring machine management device and method
TWI510760B (en) System and method for compensating probe of 3d coordinate measurement machine and measuring space error of the probe
JP7137059B2 (en) Abnormality detection method and three-dimensional measuring machine
US11549794B2 (en) Control method of shape measuring apparatus
Burdekin et al. Computer aided calibration of the geometric errors of multi-axis coordinate measuring machines
Nikam Coordinate Measuring Machine (CMM)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221113

R150 Certificate of patent or registration of utility model

Ref document number: 7187759

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150