JP7185446B2 - Grinding device and grinding method for workpiece - Google Patents

Grinding device and grinding method for workpiece Download PDF

Info

Publication number
JP7185446B2
JP7185446B2 JP2018162778A JP2018162778A JP7185446B2 JP 7185446 B2 JP7185446 B2 JP 7185446B2 JP 2018162778 A JP2018162778 A JP 2018162778A JP 2018162778 A JP2018162778 A JP 2018162778A JP 7185446 B2 JP7185446 B2 JP 7185446B2
Authority
JP
Japan
Prior art keywords
workpiece
grinding
refractive index
measuring means
thickness measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018162778A
Other languages
Japanese (ja)
Other versions
JP2020032513A (en
Inventor
雄二郎 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Disco Corp
Original Assignee
Disco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Disco Corp filed Critical Disco Corp
Priority to JP2018162778A priority Critical patent/JP7185446B2/en
Publication of JP2020032513A publication Critical patent/JP2020032513A/en
Application granted granted Critical
Publication of JP7185446B2 publication Critical patent/JP7185446B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

本発明は、半導体ウェーハ等の被加工物の研削装置及び研削方法に関する。 The present invention relates to a grinding apparatus and grinding method for workpieces such as semiconductor wafers.

半導体デバイスの製造プロセスでは、デバイスを所望の厚みで得るために、多数のデバイスの集合体である半導体ウェーハの段階で、接触式厚み測定手段又は非接触式厚み測定手段により厚み測定を行いつつ、ウェーハ裏面を研削して薄化することが行われている。 In the manufacturing process of a semiconductor device, in order to obtain a device with a desired thickness, at the stage of a semiconductor wafer, which is an aggregate of many devices, the thickness is measured by contact thickness measurement means or non-contact thickness measurement means, Grinding the back surface of the wafer to thin it is performed.

そして、昨今のデバイスの顕著な薄型化に応じて半導体ウェーハ等の被加工物は一層薄く加工されており、このため、研削における厚みの管理はより高い精度が求められている。 In addition, in response to the remarkable reduction in thickness of devices in recent years, workpieces such as semiconductor wafers are being processed to be thinner, and for this reason, higher accuracy is required for thickness control in grinding.

接触式の厚み測定手段では、被加工物の被加工面(裏面)に接触させるプローブによって該被加工面に傷がつき、その傷が被加工物の抗折強度を低下させる原因になるといった問題がある。特に被加工物の研削後の厚みが比較的薄い場合に、傷の深さの影響が大きいため抗折強度の低下は顕著となる。
対して、被加工物にプローブ等を接触させることなく厚みを測定可能な測定光(レーザ光)を利用した非接触式の厚み測定手段(例えば、特許文献1参照)が、被加工物の抗折強度を低下させない点では有利とされる。
In the contact-type thickness measuring means, there is a problem that the probe that contacts the surface to be processed (back surface) of the workpiece scratches the surface to be processed, and the scratches cause the bending strength of the workpiece to decrease. There is In particular, when the thickness of the workpiece after grinding is relatively thin, the depth of the scratch has a large effect, so the decrease in the bending strength becomes significant.
On the other hand, a non-contact thickness measuring means (see, for example, Patent Document 1) using measurement light (laser light) capable of measuring the thickness without contacting a probe or the like to the workpiece is used to measure the resistance of the workpiece. It is advantageous in that it does not reduce the bending strength.

特開2009-050944号公報JP 2009-050944 A

被加工物の厚みを非接触で測定する方法としては、例えば、被加工物に向けて非接触式の厚み測定手段の照射部から測定光を照射し、照射した測定光が被加工物の上下の界面(上面(裏面)と下面(表面))においてそれぞれ反射した反射光を非接触式の厚み測定手段の受光部が受光した時間差及び入射角から被加工物の厚みを測定するため、厚みを測定するためには被加工物の屈折率を認識する必要がある。 As a non-contact method for measuring the thickness of a workpiece, for example, the workpiece is irradiated with measurement light from an irradiation unit of a non-contact thickness measuring means, and the irradiated measurement light is emitted from above and below the workpiece. In order to measure the thickness of the workpiece from the time difference and the incident angle at which the light receiving part of the non-contact thickness measuring means receives the reflected light reflected at the interface (upper surface (back surface) and lower surface (surface)), the thickness is In order to measure it, it is necessary to know the refractive index of the workpiece.

しかしながら、屈折率は被加工物の材質により異なるため、非接触式厚み測定手段では屈折率が不明な被加工物の厚みを測定することが出来ないという問題がある。
よって、半導体ウェーハ等の被加工物を研削する場合においては、屈折率が不明な被加工物の厚み測定を非接触式の厚み測定手段によって測定できるようにするという課題がある。
However, since the refractive index differs depending on the material of the workpiece, there is a problem that the non-contact thickness measuring means cannot measure the thickness of the workpiece whose refractive index is unknown.
Therefore, in the case of grinding a workpiece such as a semiconductor wafer, there is a problem of making it possible to measure the thickness of the workpiece whose refractive index is unknown by non-contact thickness measuring means.

上記課題を解決するための本発明は、格子状に形成された複数の分割予定ラインで区画された領域にデバイスが形成された表面を有する被加工物の裏面を研削砥石で研削する被加工物の研削装置であって、該被加工物の表面を鉛直方向の回転軸で回転するチャックテーブルの保持面で保持する保持手段と、該保持面と直交する回転軸で回転する研削砥石で該被加工物を研削する研削手段と、該被加工物にプローブを接触させて該被加工物の厚みと該被加工物の研削により除去された量とを測定する接触式厚み測定手段と、測定光を該被加工物に向けて照射し、照射した測定光が該被加工物の裏面で反射した光と該被加工物を透過して表面で反射した光とを受光した時間差から該被加工物の厚みと該被加工物の研削により除去された量とを測定する非接触式厚み測定手段と、該接触式厚み測定手段によって測定した該被加工物の研削による除去量Lと、該非接触式厚み測定手段にて測定した該被加工物の研削による除去量L1と、該非接触式厚み測定手段において、任意に設定された屈折率n1とから、該被加工物の屈折率nをn=L1×n1/Lの計算式により算出し、該非接触式厚み測定手段に設定された該屈折率n1を算出した該屈折率nと置き換える屈折率算出手段と、を備え、屈折率が該屈折率nに置き換えられた該非接触式厚み測定手段で、該被加工物の厚みを測定することを特徴とする被加工物の研削装置である。 In order to solve the above problems, the present invention provides a work piece having a surface on which a device is formed in a region partitioned by a plurality of division lines formed in a grid pattern and whose back surface is ground by a grinding wheel. The grinding apparatus comprises holding means for holding the surface of the workpiece by a holding surface of a chuck table rotating on a vertical rotation axis, and a grinding wheel rotating on a rotation axis orthogonal to the holding surface. Grinding means for grinding a workpiece; contact-type thickness measuring means for measuring the thickness of the workpiece and the amount removed by grinding the workpiece by bringing a probe into contact with the workpiece; and measuring light. toward the work piece, and from the time difference between the light reflected by the back surface of the work piece and the light transmitted through the work piece and reflected by the front surface of the irradiated measurement light, the work piece Non-contact thickness measuring means for measuring the thickness of the workpiece and the amount removed by grinding the workpiece, the amount L removed by grinding the workpiece measured by the contact thickness measuring means, and the non-contact type The refractive index n of the workpiece is calculated from the amount L1 removed by grinding of the workpiece measured by the thickness measuring means and the refractive index n1 arbitrarily set in the non-contact thickness measuring means. =L1×n1/L, and replaces the refractive index n1 set in the non-contact thickness measuring means with the calculated refractive index n, wherein the refractive index is the refractive index A grinding apparatus for a workpiece, characterized in that the thickness of the workpiece is measured by the non-contact thickness measuring means replaced by the ratio n.

また、上記課題を解決するための本発明は、格子状に形成された複数の分割予定ラインで区画された領域にデバイスが形成された表面を有する被加工物の裏面を研削砥石で研削する被加工物の研削方法であって、該被加工物の表面を鉛直方向の回転軸で回転するチャックテーブルの保持面で保持する保持ステップと、該被加工物にプローブを接触させて該被加工物の厚みと該被加工物の研削により除去された量とを測定する接触式厚み測定手段と、測定光を該被加工物に向けて照射し、照射した測定光が該被加工物の裏面で反射した光と該被加工物を透過して表面で反射した光とを受光した時間差から該被加工物の厚みと該被加工物の研削により除去された量とを測定する非接触式厚み測定手段とで測定を行いながら、該保持面と直交する回転軸で回転する研削砥石で該被加工物をチップの仕上がり厚みまで研削する研削ステップと、該接触式厚み測定手段にて測定した該被加工物の除去量Lと、任意の屈折率n1が設定された該非接触式厚み測定手段にて測定した該被加工物の除去量L1と、該非接触式厚み測定手段に任意に設定された該屈折率n1とから、該被加工物の屈折率nをn=L1×n1/Lの計算式により算出し、該非接触式厚み測定手段に任意に設定された該屈折率n1を算出した該屈折率nと置き換える屈折率算出ステップと、を備え、屈折率が該屈折率nに置き換えられた該非接触式厚み測定手段で、該被加工物の厚みを測定することを特徴とする被加工物の研削方法である。 Further, the present invention for solving the above-mentioned problems provides a workpiece for grinding, with a grinding wheel, the back surface of a workpiece having a surface on which a device is formed in a region partitioned by a plurality of division lines formed in a grid pattern. A method of grinding a workpiece, comprising: a holding step of holding the surface of the workpiece with a holding surface of a chuck table that rotates on a vertical rotating shaft; and bringing a probe into contact with the workpiece. and a contact-type thickness measuring means for measuring the thickness of the workpiece and the amount removed by grinding the workpiece, and irradiating the measuring light toward the workpiece, and the irradiated measuring light is emitted at the back surface of the workpiece Non-contact thickness measurement that measures the thickness of the workpiece and the amount removed by grinding the workpiece from the time difference between the reflected light and the light transmitted through the workpiece and reflected on the surface of the workpiece. A grinding step of grinding the workpiece to the finished thickness of the chip with a grinding wheel rotating on a rotating shaft orthogonal to the holding surface while measuring with a means, and the workpiece measured by the contact-type thickness measuring means. A removed amount L of the workpiece, a removed amount L1 of the workpiece measured by the non-contact thickness measuring means set to an arbitrary refractive index n1, and an arbitrary set to the non-contact thickness measuring means. From the refractive index n1, the refractive index n of the workpiece is calculated by the formula n=L1×n1/L, and the refractive index n1 arbitrarily set in the non-contact thickness measuring means is calculated. and a refractive index calculation step replacing the refractive index with the refractive index n, and measuring the thickness of the workpiece with the non-contact thickness measuring means in which the refractive index is replaced with the refractive index n. Grinding method.

本発明に係る被加工物の研削装置は、接触式厚み測定手段によって測定した被加工物の研削による除去量Lと、非接触式厚み測定手段にて測定した被加工物の研削による除去量L1と、非接触式厚み測定手段に任意に設定された屈折率n1とから、被加工物の屈折率nをn=L1×n1/Lの計算式により算出し、非接触式厚み測定手段に設定された屈折率n1を算出した屈折率nと置き換える屈折率算出手段と、を備え、屈折率が屈折率nに置き換えられた非接触式厚み測定手段で、被加工物の厚みを測定することで、屈折率が不明な被加工物の厚み測定も非接触式厚み測定手段によって正しく測定することを可能にする。 In the grinding apparatus for a workpiece according to the present invention, an amount L removed by grinding the workpiece measured by the contact thickness measuring means and an amount L1 removed by grinding the workpiece measured by the non-contact thickness measuring means are measured. and the refractive index n1 arbitrarily set in the non-contact thickness measuring means, the refractive index n of the workpiece is calculated by the formula n=L1×n1/L, and is set in the non-contact thickness measuring means. and a refractive index calculating means for replacing the calculated refractive index n1 with the calculated refractive index n, and measuring the thickness of the workpiece with the non-contact thickness measuring means in which the refractive index is replaced with the refractive index n. , the non-contact thickness measuring means enables correct measurement of the thickness of a workpiece whose refractive index is unknown.

また、本発明に係る被加工物の研削方法は、被加工物にプローブを接触させて被加工物の厚みと被加工物の研削により除去された量とを測定する接触式厚み測定手段と、測定光を被加工物に向けて照射し、照射した測定光が被加工物の裏面で反射した光と被加工物を透過して表面で反射した光とを受光した時間差から被加工物の厚みと被加工物の研削により除去された量とを測定する非接触式厚み測定手段とで測定を行いながら、保持面と直交する回転軸で回転する研削砥石で被加工物をチップの仕上がり厚みまで研削する研削ステップと、接触式厚み測定手段にて測定した被加工物の除去量Lと、任意の屈折率n1が設定された非接触式厚み測定手段にて測定した被加工物の除去量L1と、非接触式厚み測定手段に任意に設定された屈折率n1とから、被加工物の屈折率nをn=L1×n1/Lの計算式により算出し、非接触式厚み測定手段に任意に設定された屈折率n1を算出した屈折率nと置き換える屈折率算出ステップと、を備え、屈折率が屈折率nに置き換えられた非接触式厚み測定手段で、被加工物の厚みを測定することで、屈折率が不明な被加工物の厚み測定も非接触式厚み測定手段によって正しく測定できるようになり、被加工物を所望の厚みまで研削できるようになる。 Further, a method for grinding a workpiece according to the present invention includes contact-type thickness measuring means for measuring the thickness of the workpiece and the amount removed by grinding the workpiece by bringing a probe into contact with the workpiece; A workpiece is irradiated with measurement light, and the thickness of the workpiece is calculated from the time difference between the light reflected from the back surface of the workpiece and the light transmitted through the workpiece and reflected from the front surface of the workpiece. and a non-contact thickness measuring means for measuring the amount removed by grinding the workpiece, while measuring the workpiece with a grinding wheel rotating on a rotating shaft perpendicular to the holding surface, until the finished thickness of the chip. A grinding step of grinding, a removed amount L of the workpiece measured by the contact thickness measuring means, and a removed amount L1 of the workpiece measured by the non-contact thickness measuring means with an arbitrary refractive index n1 set. and the refractive index n1 arbitrarily set in the non-contact thickness measuring means, the refractive index n of the workpiece is calculated by the formula n=L1×n1/L, and the non-contact thickness measuring means arbitrarily and a refractive index calculation step of replacing the refractive index n1 set to Thus, even the thickness of a workpiece whose refractive index is unknown can be accurately measured by the non-contact thickness measuring means, and the workpiece can be ground to a desired thickness.

研削装置の構成要素の一例を示す斜視図である。It is a perspective view which shows an example of the component of a grinding apparatus. 研削装置において被加工物を研削している状態を示す断面図である。It is sectional drawing which shows the state which is grinding the to-be-processed object in a grinding apparatus. 屈折率置き換え前の非接触式厚み測定手段により測定された被加工物の厚み(μm)の時間経過による推移を示すグラフ及び接触式厚み測定手段により測定された被加工物の厚みの時間経過による推移を示すグラフである。Graph showing changes over time in the thickness (μm) of the workpiece measured by the non-contact thickness measuring means before replacing the refractive index and the thickness over time measured by the contact thickness measuring means It is a graph which shows transition. 屈折率置き換え後の非接触式厚み測定手段により測定された被加工物の厚み(μm)の時間経過による推移を示すグラフ及び接触式厚み測定手段により測定された被加工物の厚みの時間経過による推移を示すグラフである。Graph showing changes over time in the thickness (μm) of the workpiece measured by the non-contact thickness measuring means after replacing the refractive index and over time in the thickness of the workpiece measured by the contact thickness measuring means It is a graph which shows transition.

図1に示す被加工物Wは、例えば、シリコン等を母材とする外形が円形状の半導体ウェーハであり、図1において-Z方向側を向いている表面Waは、直交差する複数の分割予定ラインSで格子状に区画されており、格子状に区画された各領域にはIC等のデバイスDがそれぞれ形成されている。表面Waは、例えば、図示しない保護テープが貼着され保護されている。
被加工物Wの裏面Wbは、研削加工が施される被研削面になる。被加工物Wの実際の屈折率(屈折率n)については、事前に把握されていないものとする。なお、被加工物Wはシリコン以外にガリウムヒ素、サファイア、窒化ガリウム又はシリコンカーバイド等で構成されていてもよい。
The workpiece W shown in FIG. 1 is, for example, a semiconductor wafer having a circular outer shape and made of silicon or the like as a base material. It is partitioned in a grid pattern by the planned lines S, and devices D such as ICs are formed in each region partitioned in the grid pattern. The surface Wa is protected by, for example, affixed with a protective tape (not shown).
A back surface Wb of the workpiece W is a ground surface to be ground. It is assumed that the actual refractive index (refractive index n) of the workpiece W is not known in advance. The workpiece W may be made of gallium arsenide, sapphire, gallium nitride, silicon carbide, or the like, other than silicon.

図1に示す研削装置2は、被加工物Wをチャックテーブル30の保持面300aで吸引保持する保持手段3と、被加工物Wを回転する研削砥石441で研削する研削手段4とを少なくとも備えている。
なお、研削装置2が行う研削には、フェルト等の不織布からなる研磨パッドによる被加工物Wの研磨も含む。
The grinding apparatus 2 shown in FIG. 1 includes at least holding means 3 for sucking and holding a workpiece W on a holding surface 300a of a chuck table 30, and grinding means 4 for grinding the workpiece W with a rotating grinding wheel 441. ing.
The grinding performed by the grinding device 2 includes polishing of the workpiece W with a polishing pad made of non-woven fabric such as felt.

保持手段3のチャックテーブル30は、例えば、その外形が円形状であり、ポーラス部材等からなり被加工物Wを吸引保持する保持部300と、保持部300を支持する枠体301とを備える。保持部300は、真空発生装置等の図示しない吸引源に連通しており、図示しない吸引源が吸引することで生み出された吸引力が、保持部300の露出面である保持面300aに伝達されることで、チャックテーブル30は保持面300a上で被加工物Wを吸引保持する。
チャックテーブル30の下方には、軸方向が鉛直方向(Z軸方向)である回転軸321が接続されており、該回転軸321にはモータ320が連結されている。そして、チャックテーブル30は、モータ320及び回転軸321によって鉛直方向の軸心周りに回転可能となっている。
チャックテーブル30は、例えば、図示しないX軸移動手段によってX軸方向に往復移動可能となっている。
The chuck table 30 of the holding means 3 has, for example, a circular outer shape, and is provided with a holding portion 300 made of a porous member or the like for sucking and holding the workpiece W, and a frame 301 supporting the holding portion 300 . The holding portion 300 communicates with a suction source (not shown) such as a vacuum generator, and a suction force generated by suction by the suction source (not shown) is transmitted to a holding surface 300a that is an exposed surface of the holding portion 300. As a result, the chuck table 30 sucks and holds the workpiece W on the holding surface 300a.
A rotating shaft 321 whose axial direction is the vertical direction (Z-axis direction) is connected to the lower portion of the chuck table 30 , and a motor 320 is connected to the rotating shaft 321 . The chuck table 30 is rotatable about a vertical axis by a motor 320 and a rotary shaft 321 .
The chuck table 30 can be reciprocated in the X-axis direction by, for example, X-axis moving means (not shown).

図1に示す研削手段4は、軸方向がチャックテーブル30の保持面300aと直交するZ軸方向である回転軸40(図2参照)と、回転軸40を回転可能に支持するハウジング41と、回転軸40を回転駆動させるモータ42と、回転軸40の下端に取り付けられたマウント43と、マウント43に着脱可能に接続された研削ホイール44とを備える。研削ホイール44は、円環状のホイール基台440と、略直方体形状の外形を備えホイール基台440の下面に複数環状に配設された研削砥石441とを備えている。研削砥石441は、適宜のボンド剤でダイヤモンド砥粒等が固着されて成形されている。
研削手段4は、ボールネジ機構等を備える研削送り手段7によってZ軸方向に上下動可能となっている。
The grinding means 4 shown in FIG. 1 includes a rotary shaft 40 (see FIG. 2) whose axial direction is the Z-axis direction orthogonal to the holding surface 300a of the chuck table 30, a housing 41 that rotatably supports the rotary shaft 40, It comprises a motor 42 for rotationally driving a rotary shaft 40 , a mount 43 attached to the lower end of the rotary shaft 40 , and a grinding wheel 44 detachably connected to the mount 43 . The grinding wheel 44 includes a ring-shaped wheel base 440 and a plurality of ring-shaped grinding wheels 441 having a substantially rectangular parallelepiped outer shape and arranged on the lower surface of the wheel base 440 . The grinding wheel 441 is formed by bonding diamond abrasive grains or the like with an appropriate bonding agent.
The grinding means 4 can be moved up and down in the Z-axis direction by a grinding feeding means 7 having a ball screw mechanism or the like.

研削装置2は、被加工物Wにプローブ50を接触させて被加工物Wの厚みと被加工物Wの研削により除去された量とを測定する接触式厚み測定手段5を備えている。上下方向に昇降可能なプローブ50は、チャックテーブル30の保持面300aの上方に位置し被加工物Wの被測定面である裏面Wbに接触する。プローブ50はアーム部51によって支持されており、アーム部51は、その内部に内蔵したスプリングが生み出す押圧力によって、プローブ50をチャックテーブル30の保持面300aに保持された被加工物Wの裏面Wbに対して適宜の力で押し当てることができる。 The grinding apparatus 2 includes contact-type thickness measuring means 5 for measuring the thickness of the workpiece W and the amount removed by grinding the workpiece W by bringing the probe 50 into contact with the workpiece W. As shown in FIG. The probe 50, which can move up and down, is located above the holding surface 300a of the chuck table 30 and contacts the back surface Wb of the workpiece W, which is the surface to be measured. The probe 50 is supported by an arm portion 51, and the arm portion 51 pushes the probe 50 against the holding surface 300a of the chuck table 30 by pressing force generated by a spring incorporated therein. can be pressed with an appropriate force.

接触式厚み測定手段5は、プローブ50によって被加工物Wの裏面Wbの高さ位置を検出する。また、接触式厚み測定手段5は、予め、保持面300aの高さ位置及び研削前の被加工物Wの厚みを把握しており、それ故、保持面300aで保持された研削前の被加工物Wの裏面Wbの高さ位置を把握している。したがって、接触式厚み測定手段5は、保持面300aで保持された研削前の被加工物Wの裏面Wbの高さ位置と研削加工中に測定した被加工物Wの裏面Wbの高さ位置との差から被加工物Wの研削により除去された量(除去量)を測定して、さらに、研削加工中の被加工物Wの厚みを順次測定できる。 The contact-type thickness measuring means 5 detects the height position of the back surface Wb of the workpiece W using the probe 50 . Further, the contact-type thickness measuring means 5 grasps in advance the height position of the holding surface 300a and the thickness of the workpiece W before grinding. The height position of the back surface Wb of the object W is grasped. Therefore, the contact thickness measuring means 5 measures the height position of the back surface Wb of the workpiece W before grinding held by the holding surface 300a and the height position of the back surface Wb of the workpiece W measured during the grinding process. The amount of the workpiece W removed by grinding (removed amount) can be measured from the difference between , and the thickness of the workpiece W being ground can be measured sequentially.

なお、接触式厚み測定手段5は、チャックテーブル30の保持面300aの高さ測定用の別途のプローブをさらに備え、研削加工中においてプローブ50が検出した被加工物Wの裏面Wbの高さと別途のプローブが検出したチャックテーブル30の保持面300aの高さとの差を被加工物Wの厚みとして測定するものであってもよい。 The contact-type thickness measuring means 5 further includes a separate probe for measuring the height of the holding surface 300a of the chuck table 30. The difference from the height of the holding surface 300a of the chuck table 30 detected by the probe may be measured as the thickness of the workpiece W.

研削装置2は、研削加工中の被加工物Wの厚みと被加工物Wの研削により除去された量とを非接触で測定できる非接触式厚み測定手段6を備えている。
非接触式厚み測定手段6は、例えば、測定光を用いる反射型の変位センサであり、被加工物Wに対して測定光(レーザー光)を照射するための投光部60、測定光を平行光に変換する図示しないコリメータレンズ(投光レンズ)、被加工物Wで反射された反射光を捉える図示しない受光レンズ、及び反射光を検出するためのCCD等からなる受光部61、並びに投光部60、コリメータレンズ、受光レンズ、及び受光部61等が内部に配設され外部光が遮光される筐体62を備えている。なお、非接触式厚み測定手段6の構成は本実施形態に限定されるものではない。
The grinding device 2 includes a non-contact thickness measuring means 6 capable of measuring the thickness of the workpiece W being ground and the amount removed by grinding the workpiece W without contact.
The non-contact thickness measuring means 6 is, for example, a reflective displacement sensor that uses measuring light. A collimator lens (projection lens) (not shown) that converts the light into light, a light receiving lens (not shown) that captures the reflected light reflected by the workpiece W, a light receiving unit 61 including a CCD or the like for detecting the reflected light, and a light projecting lens A housing 62 in which the unit 60, a collimator lens, a light receiving lens, a light receiving unit 61, etc. are arranged and shielded from external light is provided. The configuration of the non-contact thickness measuring means 6 is not limited to this embodiment.

研削装置2は、例えば、装置全体の制御を行う制御手段9を備えている。制御手段9は、制御プログラムに従って演算処理するCPU及びメモリ等の記憶手段を備えており、研削送り手段7、チャックテーブル30を回転させるモータ320、接触式厚み測定手段5、及び非接触式厚み測定手段6等に電気的に接続されている。そして、制御手段9の制御の下で、モータ320及び回転軸321によるチャックテーブル30の回転動作や研削送り手段7による研削手段4のZ軸方向における研削送り動作等が制御される。 The grinding device 2 comprises, for example, control means 9 for controlling the entire device. The control means 9 includes a CPU that performs arithmetic processing according to a control program and storage means such as a memory. It is electrically connected to means 6 and the like. Under the control of the control means 9, the rotary motion of the chuck table 30 by the motor 320 and the rotating shaft 321, the grinding feeding motion of the grinding means 4 in the Z-axis direction by the grinding feeding means 7, and the like are controlled.

以下に、本発明に係る図1、2に示す研削装置2を用いて被加工物Wを研削する場合の各ステップについて説明する。 Each step of grinding a workpiece W using the grinding apparatus 2 shown in FIGS. 1 and 2 according to the present invention will be described below.

(1)保持ステップ
図1に示す被加工物Wが、裏面Wbが上側になるようにチャックテーブル30の保持面300a上に載置される。そして、図示しない吸引源により生み出される吸引力が保持面300aに伝達されることにより、図2に示すように、チャックテーブル30が保持面300a上で被加工物Wの表面Waを吸引保持する。
(1) Holding Step The workpiece W shown in FIG. 1 is placed on the holding surface 300a of the chuck table 30 so that the back surface Wb faces upward. A suction force generated by a suction source (not shown) is transmitted to the holding surface 300a, whereby the chuck table 30 sucks and holds the surface Wa of the workpiece W on the holding surface 300a, as shown in FIG.

(2)屈折率置き換え前の研削ステップ
チャックテーブル30が、図示しないX軸移動手段によって研削手段4の下まで-X方向へ移動されて、研削ホイール44とチャックテーブル30に保持された被加工物Wとの位置合わせがなされる。位置合わせは、例えば、研削砥石441の回転中心が被加工物Wの回転中心に対して所定の距離だけ水平方向にずれ、研削砥石441の回転軌跡が被加工物Wの回転中心を通るように行われる。
(2) Grinding step before refractive index replacement The chuck table 30 is moved in the -X direction to below the grinding means 4 by the X-axis moving means (not shown), and the workpiece is held by the grinding wheel 44 and the chuck table 30. Alignment with W is performed. Alignment is performed, for example, so that the center of rotation of the grinding wheel 441 is displaced from the center of rotation of the workpiece W by a predetermined distance in the horizontal direction, and the locus of rotation of the grinding wheel 441 passes through the center of rotation of the workpiece W. done.

研削ホイール44と被加工物Wとの位置合わせが行われた後、モータ42により回転軸40が回転駆動されるのに伴って、図2に示すように、研削ホイール44が所定の回転速度で回転する。また、研削手段4が研削送り手段7により-Z方向へと送られ、研削砥石441が被加工物Wの裏面Wbに当接することで研削加工が行われる。さらに、研削中は、チャックテーブル30がZ軸方向の軸心周りに回転するのに伴って被加工物Wも回転するので、研削砥石441が被加工物Wの裏面Wbの全面の研削加工を行う。 After the grinding wheel 44 is aligned with the workpiece W, the rotating shaft 40 is rotated by the motor 42, and the grinding wheel 44 rotates at a predetermined rotational speed as shown in FIG. Rotate. Further, the grinding means 4 is fed in the -Z direction by the grinding feeding means 7, and the grinding wheel 441 is brought into contact with the back surface Wb of the workpiece W to perform the grinding process. Furthermore, during grinding, the workpiece W rotates as the chuck table 30 rotates about the axis in the Z-axis direction. conduct.

研削砥石441による被加工物Wの研削が開始されると、回転する被加工物Wの裏面Wbにプローブ50が所定の押圧力で押し付けられ、接触式厚み測定手段5により被加工物Wの研削による除去量と厚みの測定とが開始される。
また、非接触式厚み測定手段6の投光部60が、筐体62の下方に位置付けられた被加工物Wに対して測定光を照射する。測定光は、コリメータレンズで平行な平行光に変換されて、被加工物Wに所定の角度(例えば、略垂直)で入射する。測定光の一部は被加工物Wの上面となる裏面Wbで反射されるとともに、残りの測定光は被加工物W(屈折率n)で屈折して被加工物Wを透過し、被加工物Wの下面となる表面Waで反射される。そして、測定光が被加工物Wの裏面Wbで反射した光と被加工物Wを透過して表面Waで反射した光とを受光レンズが捉えて、さらに受光部61が受光した際の時間差から、非接触式厚み測定手段6は被加工物Wの厚みを測定する。
When the grinding wheel 441 starts grinding the workpiece W, the probe 50 is pressed against the rotating back surface Wb of the workpiece W with a predetermined pressing force, and the contact thickness measuring means 5 grinds the workpiece W. Measurement of removal amount and thickness by is started.
Further, the light projecting section 60 of the non-contact thickness measuring means 6 irradiates the workpiece W positioned below the housing 62 with the measurement light. The measurement light is converted into parallel light by a collimator lens and enters the workpiece W at a predetermined angle (for example, approximately perpendicular). A portion of the measurement light is reflected by the back surface Wb, which is the upper surface of the workpiece W, and the remaining measurement light is refracted by the workpiece W (refractive index n) and passes through the workpiece W to be processed. It is reflected by the surface Wa, which is the lower surface of the object W. Then, the light receiving lens catches the light reflected by the back surface Wb of the workpiece W and the light transmitted through the workpiece W and reflected by the front surface Wa of the workpiece W, and the time difference when the light receiving unit 61 receives the light is , the non-contact thickness measuring means 6 measures the thickness of the workpiece W. As shown in FIG.

非接触式厚み測定手段6は、予め、研削前の被加工物Wの厚みを把握しており、研削中に測定した被加工物Wの厚みと、研削前の被加工物Wの厚みとの差を被加工物Wの研削により除去された量として順次算出・測定する。 The non-contact thickness measuring means 6 grasps the thickness of the workpiece W before grinding in advance, and compares the thickness of the workpiece W measured during grinding with the thickness of the workpiece W before grinding. The difference is sequentially calculated and measured as the amount removed by grinding the workpiece W. FIG.

(3)屈折率算出ステップ
接触式厚み測定手段5によって測定される被加工物Wの研削中の任意の時刻(研削加工開始から加工時間t1経過時)における除去量を、除去量Lとする。接触式厚み測定手段5によって測定された除去量Lは、被加工物Wの加工時間t1経過時における正確な除去量である。そして、図3に示す一点鎖線で示すグラフG1は、接触式厚み測定手段5により測定された被加工物Wの厚み(μm)の時間経過による推移を示すグラフの一例である。
(3) Refractive Index Calculation Step Assume that the removal amount L is the removal amount measured by the contact-type thickness measuring means 5 at an arbitrary time during grinding of the workpiece W (when the machining time t1 has elapsed from the start of the grinding process). The removal amount L measured by the contact-type thickness measuring means 5 is an accurate removal amount after the processing time t1 of the workpiece W has elapsed. A graph G1 indicated by a one-dot chain line in FIG. 3 is an example of a graph showing changes over time in the thickness (μm) of the workpiece W measured by the contact-type thickness measuring means 5 .

また、非接触式厚み測定手段6によって測定される被加工物Wの研削中の該任意の時刻(研削加工開始から加工時間t1経過時)における除去量を、除去量L1とする。なお、非接触式厚み測定手段6は作業者によって任意に予め設定された屈折率n1、即ち、未だ認識していない被加工物Wの実際の屈折率nとは異なる屈折率n1が設定された状態で、被加工物Wの厚みを測定し、測定した厚みから該除去量L1を算出しているため、現時点において、該除去量L1は被加工物Wの正しい除去量とはなっていない。そして、図3に示す実線で示すグラフG2は、非接触式厚み測定手段6により測定された被加工物Wの厚み(μm)の時間経過による推移を示すグラフの一例である。なお、グラフG1及びグラフG2は、本発明の発明者が実際に行った実験から得ることができたグラフである。 The amount of removal measured by the non-contact thickness measuring means 6 during grinding of the workpiece W at an arbitrary time (when the processing time t1 has elapsed from the start of the grinding process) is defined as the amount of removal L1. The non-contact thickness measuring means 6 has a refractive index n1 arbitrarily set in advance by the operator, that is, a refractive index n1 different from the actual refractive index n of the workpiece W that has not yet been recognized. In this state, the thickness of the workpiece W is measured, and the removal amount L1 is calculated from the measured thickness. A graph G2 indicated by a solid line in FIG. 3 is an example of a graph showing changes in the thickness (μm) of the workpiece W measured by the non-contact thickness measuring means 6 over time. Graphs G1 and G2 are graphs obtained from experiments actually conducted by the inventors of the present invention.

ここで、被加工物Wを所望の厚みまで研削するために予め制御手段9に設定される研削手段4の加工条件設定の送り速度を速度Vとした場合に、任意の屈折率n1が設定された非接触式厚み測定手段6では、
非接触式厚み測定手段6による計算上の研削手段4の送り速度V1=V/n1・・・(式1)
が成立する。
そして、除去量L1=非接触式厚み測定手段6による計算上の研削手段4の送り速度V1×加工時間t1=(V/n1)×t1・・・(式2)
が成立する。
Here, when the feed speed of the processing condition setting of the grinding means 4 preset in the control means 9 in order to grind the workpiece W to a desired thickness is set as the speed V, an arbitrary refractive index n1 is set. In the non-contact thickness measuring means 6,
Feeding speed of grinding means 4 calculated by non-contact thickness measuring means 6 V1=V/n1 (Formula 1)
holds.
Removal amount L1=feed rate V1 of grinding means 4 calculated by non-contact thickness measuring means 6.times.machining time t1=(V/n1).times.t1 (formula 2)
holds.

一方、例えば非接触式厚み測定手段6に被加工物Wの実際の屈折率nが設定されていると仮定した場合には、非接触式厚み測定手段6では、
非接触式厚み測定手段6による計算上の研削手段4の送り速度V2=V/n・・・・・(式3)
が成立する。
そして、接触式厚み測定手段5により測定された正確な除去量L=速度V2×加工時間t1=(V/n)×t1・・・(式4)
が成立する。
On the other hand, assuming that the actual refractive index n of the workpiece W is set in the non-contact thickness measuring means 6, for example, the non-contact thickness measuring means 6:
Feeding speed of grinding means 4 calculated by non-contact thickness measuring means 6 V2=V/n (Formula 3)
holds.
Accurate removal amount L measured by contact-type thickness measuring means 5=Velocity V2×Processing time t1=(V/n)×t1 (Formula 4)
holds.

上記(式3)における被加工物Wの実際の屈折率nは、現時点において非接触式厚み測定手段6に設定されておらず、非接触式厚み測定手段6には作業者によって任意に設定された屈折率n1が設定されている。そこで、図2に示す制御手段9に含まれる屈折率算出手段90が、以下に説明する演算処理を実行する。
即ち、(式2)と(式4)とから、
L1/(V/n1)=L/(V/n)・・・・(式5)
が成立する。そして、式(5)を変形することで、被加工物Wの実際の屈折率nを求める下記式である、
n=(L1×n1)/L・・・・・・(式6)
が導出される。
The actual refractive index n of the workpiece W in the above (Equation 3) is not set in the non-contact thickness measuring means 6 at present, and is arbitrarily set in the non-contact thickness measuring means 6 by the operator. A refractive index n1 is set. Therefore, the refractive index calculation means 90 included in the control means 9 shown in FIG. 2 executes the arithmetic processing described below.
That is, from (Equation 2) and (Equation 4),
L1/(V/n1)=L/(V/n) (Formula 5)
holds. Then, by modifying the formula (5), the following formula for obtaining the actual refractive index n of the workpiece W is
n=(L1×n1)/L (Formula 6)
is derived.

屈折率算出手段90は、上記(式6)を用いて被加工物Wの実際の屈折率nを算出すると、非接触式厚み測定手段6に設定されていた屈折率n1を算出した屈折率nと置き換えて設定する。
屈折率nの具体的な数値の算出の一例を、(式6)及び図3に示すグラフG1及びグラフG2を用いて示す。非接触式厚み測定手段6に設定されている任意の屈折率n1は、例えば、屈折率n1=3.2である。加工時間t1経過時において、グラフG1から読み取れる接触式厚み測定手段5によって測定された被加工物Wの除去量L=18.8171μmであり、加工時間t1経過時において、グラフG2から読み取れる非接触式厚み測定手段6によって測定された被加工物Wの除去量L1=22.78038μmである。
上記各数値を(式6)に代入して被加工物Wの実際の屈折率nを算出すると、
n=(22.78038×3.2)/18.8171=3.873987となる。
そして、屈折率算出手段90は、非接触式厚み測定手段6に任意に設定された屈折率n1=3.2を算出した屈折率n=3.873987と置き換える。
When the refractive index calculation means 90 calculates the actual refractive index n of the workpiece W using the above (formula 6), the refractive index n set instead.
An example of calculation of a specific numerical value of the refractive index n is shown using (Equation 6) and graphs G1 and G2 shown in FIG. An arbitrary refractive index n1 set in the non-contact thickness measuring means 6 is, for example, refractive index n1=3.2. When the machining time t1 has elapsed, the removal amount L of the workpiece W measured by the contact-type thickness measuring means 5, which can be read from the graph G1, is 18.8171 μm. The removed amount L1 of the workpiece W measured by the thickness measuring means 6 is 22.78038 μm.
When calculating the actual refractive index n of the workpiece W by substituting each of the above numerical values into (Equation 6),
n=(22.78038*3.2)/18.8171=3.873987.
Then, the refractive index calculating means 90 replaces the refractive index n1=3.2 arbitrarily set in the non-contact thickness measuring means 6 with the calculated refractive index n=3.873987.

(4)屈折率置き換え後の研削ステップ
屈折率が屈折率n1から実際の被加工物Wの屈折率nに置き換えられた非接触式厚み測定手段6によって、さらに被加工物Wの厚みが正しく測定されつつ、被加工物Wが所望の厚みまで研削される。その後、研削送り手段7が研削手段4を+Z方向に上昇させて、研削砥石441が被加工物Wから離間し被加工物Wに対する研削が終了する。
(4) Grinding step after refractive index replacement The thickness of the workpiece W is accurately measured by the non-contact thickness measuring means 6 in which the refractive index is replaced from the refractive index n1 to the actual refractive index n of the workpiece W. The workpiece W is ground to a desired thickness while being cut. After that, the grinding feed means 7 raises the grinding means 4 in the +Z direction, the grinding wheel 441 is separated from the workpiece W, and the grinding of the workpiece W is completed.

このように、本発明に係る被加工物Wの研削装置2は、接触式厚み測定手段5によって測定した被加工物Wの研削による除去量Lと、非接触式厚み測定手段6にて測定した被加工物Wの研削による除去量L1と、非接触式厚み測定手段6に任意に設定された屈折率n1とから、被加工物Wの屈折率nをn=L1×n1/Lの計算式により算出し、非接触式厚み測定手段6に設定された屈折率n1を算出した屈折率nと置き換える屈折率算出手段90と、を備え、屈折率が屈折率nに置き換えられた非接触式厚み測定手段6で、被加工物Wの厚みを測定することで、屈折率が不明な被加工物Wの厚み測定も非接触式厚み測定手段6によって正しく測定することを可能にする。 As described above, the grinding apparatus 2 for the workpiece W according to the present invention has the amount L removed by grinding the workpiece W measured by the contact thickness measuring means 5 and the amount L removed by grinding the workpiece W measured by the non-contact thickness measuring means 6. From the amount L1 removed by grinding the workpiece W and the refractive index n1 arbitrarily set in the non-contact thickness measuring means 6, the refractive index n of the workpiece W is calculated as follows: n=L1×n1/L and a refractive index calculating means 90 that replaces the refractive index n1 set in the non-contact thickness measuring means 6 with the calculated refractive index n, and the non-contact thickness in which the refractive index is replaced with the refractive index n By measuring the thickness of the workpiece W with the measuring means 6, the non-contact thickness measuring means 6 can accurately measure the thickness of the workpiece W whose refractive index is unknown.

また、本発明に係る被加工物Wの研削方法は、被加工物Wにプローブ50を接触させて被加工物Wの厚みと被加工物Wの研削により除去された量とを測定する接触式厚み測定手段5と、測定光を被加工物Wに向けて照射し、照射した測定光が被加工物Wの裏面Wbで反射した光と被加工物Wを透過して表面Waで反射した光とを受光した時間差から被加工物Wの厚みと被加工物Wの研削により除去された量とを測定する非接触式厚み測定手段6とで測定を行いながら、チャックテーブル30の保持面300aと直交する回転軸40で回転する研削砥石441で被加工物Wをチップの仕上がり厚みまで研削する研削ステップと、接触式厚み測定手段5にて測定した被加工物Wの除去量Lと、任意の屈折率n1が設定された非接触式厚み測定手段6にて測定した被加工物Wの除去量L1と、非接触式厚み測定手段6に任意に設定された屈折率n1とから、被加工物Wの屈折率nをn=L1×n1/Lの計算式により算出し、非接触式厚み測定手段6に任意に設定された屈折率n1を算出した屈折率nと置き換える屈折率算出ステップと、を備え、屈折率が屈折率nに置き換えられた非接触式厚み測定手段6で、被加工物Wの厚みを測定することで、屈折率が不明な被加工物Wの厚み測定も非接触式厚み測定手段6によって正しく測定できるようになり、被加工物Wを所望の厚みまで研削できるようになる。 Further, the grinding method of the workpiece W according to the present invention is a contact type grinding method in which the probe 50 is brought into contact with the workpiece W to measure the thickness of the workpiece W and the amount removed by grinding the workpiece W. A thickness measuring means 5 irradiates the workpiece W with measurement light, and the irradiated measurement light reflects light from the back surface Wb of the workpiece W and light transmitted through the workpiece W and reflected from the front surface Wa. While measuring the thickness of the workpiece W and the amount removed by grinding of the workpiece W from the time difference in receiving the light, the holding surface 300a of the chuck table 30 and the A grinding step of grinding the workpiece W to the finished thickness of the chip with a grinding wheel 441 rotating on an orthogonal rotating shaft 40, a removal amount L of the workpiece W measured by the contact thickness measuring means 5, and an arbitrary From the removed amount L1 of the workpiece W measured by the non-contact thickness measuring means 6 with the refractive index n1 set and the refractive index n1 arbitrarily set in the non-contact thickness measuring means 6, the workpiece a refractive index calculation step of calculating the refractive index n of W by the formula n=L1×n1/L and replacing the refractive index n1 arbitrarily set in the non-contact thickness measuring means 6 with the calculated refractive index n; By measuring the thickness of the workpiece W with the non-contact thickness measuring means 6 in which the refractive index is replaced by the refractive index n, the thickness of the workpiece W whose refractive index is unknown can also be measured in a non-contact manner. The thickness can be measured correctly by the thickness measuring means 6, and the workpiece W can be ground to a desired thickness.

さらに、新たな被加工物Wが、非接触式厚み測定手段6の屈折率が屈折率n(n=3.873987)に置き換えられた状態の研削装置2によって研削される。図4に一点鎖線で示すグラフG4は、接触式厚み測定手段5により測定された被加工物Wの厚み(μm)の時間経過による推移を示すグラフの一例である。また、実線で示すグラフG5は、非接触式厚み測定手段6により測定された被加工物Wの厚み(μm)の時間経過による推移を示すグラフの一例である。なお、グラフG4及びグラフG5は、本発明の発明者が実際に行った実験から得ることができたグラフである。 Further, a new workpiece W is ground by the grinding device 2 in which the refractive index of the non-contact thickness measuring means 6 is replaced with the refractive index n (n=3.873987). A graph G4 indicated by a one-dot chain line in FIG. 4 is an example of a graph showing changes over time in the thickness (μm) of the workpiece W measured by the contact-type thickness measuring means 5 . A graph G5 indicated by a solid line is an example of a graph showing changes in the thickness (μm) of the workpiece W measured by the non-contact thickness measuring means 6 over time. Graphs G4 and G5 are graphs obtained from experiments actually conducted by the inventors of the present invention.

図4に示すように、新たな被加工物Wの研削においては、非接触式厚み測定手段6により測定される被加工物Wの厚みと接触式厚み測定手段5により測定される被加工物Wの厚みとが研削開始から終了まで略合致しており、被加工物Wの厚み測定を非接触式厚み測定手段6によって正しく測定しつつ、被加工物Wを所望の厚みまで研削できた。 As shown in FIG. 4, when grinding a new workpiece W, the thickness of the workpiece W measured by the non-contact thickness measuring means 6 and the thickness of the workpiece W measured by the contact thickness measuring means 5 The thickness of the workpiece W substantially matched from the start to the end of grinding, and while the thickness of the workpiece W was correctly measured by the non-contact thickness measuring means 6, the workpiece W could be ground to the desired thickness.

本発明に係る被加工物の研削方法の各工程は上述の実施形態に限定されず、その技術的思想の範囲内において種々異なる形態にて実施されてよいことは言うまでもない。また、添付図面に図示されている研削装置2の各構成要素についても、これに限定されず、本発明の効果を発揮できる範囲内で適宜変更可能である。 It goes without saying that each step of the method for grinding a workpiece according to the present invention is not limited to the above-described embodiment, and may be implemented in various forms within the scope of the technical idea. Moreover, each component of the grinding apparatus 2 illustrated in the attached drawings is not limited to this, and can be changed as appropriate within the range in which the effects of the present invention can be exhibited.

W:被加工物 Wa:表面 S:分割予定ライン D:デバイス Wb:裏面
2:研削装置
3:保持手段 30:チャックテーブル 300:保持部 300a:保持面 301:枠体 320:モータ 321:回転軸
4:研削手段 40:回転軸 41:ハウジング 42:モータ 43:マウント 44:研削ホイール 440:ホイール基台 441:研削砥石
5:接触式厚み測定手段 50:プローブ 51:アーム部
6:非接触式厚み測定手段 60:投光部 61:受光部 62:筐体
9:制御手段 90:屈折率算出手段
W: work piece Wa: front surface S: line to be divided D: device Wb: back surface 2: grinding device
3: Holding means 30: Chuck table 300: Holding part 300a: Holding surface 301: Frame body 320: Motor 321: Rotating shaft
4: Grinding Means 40: Rotating Axis 41: Housing 42: Motor 43: Mount 44: Grinding Wheel 440: Wheel Base 441: Grinding Wheel 5: Contact Thickness Measuring Means 50: Probe 51: Arm 6: Non-Contact Thickness Measuring Means 60: Light Projecting Part 61: Light Receiving Part 62: Housing 9: Control Means 90: Refractive Index Calculating Means

Claims (2)

格子状に形成された複数の分割予定ラインで区画された領域にデバイスが形成された表面を有する被加工物の裏面を研削砥石で研削する被加工物の研削装置であって、
該被加工物の表面を鉛直方向の回転軸で回転するチャックテーブルの保持面で保持する保持手段と、
該保持面と直交する回転軸で回転する研削砥石で該被加工物を研削する研削手段と、
該被加工物にプローブを接触させて該被加工物の厚みと該被加工物の研削により除去された量とを測定する接触式厚み測定手段と、
測定光を該被加工物に向けて照射し、照射した測定光が該被加工物の裏面で反射した光と該被加工物を透過して表面で反射した光とを受光した時間差から該被加工物の厚みと該被加工物の研削により除去された量とを測定する非接触式厚み測定手段と、
該接触式厚み測定手段によって測定した該被加工物の研削による除去量Lと、該非接触式厚み測定手段にて測定した該被加工物の研削による除去量L1と、該非接触式厚み測定手段において、任意に設定された屈折率n1とから、該被加工物の屈折率nをn=L1×n1/Lの計算式により算出し、該非接触式厚み測定手段に設定された該屈折率n1を算出した該屈折率nと置き換える屈折率算出手段と、を備え、
屈折率が該屈折率nに置き換えられた該非接触式厚み測定手段で、該被加工物の厚みを測定することを特徴とする被加工物の研削装置。
A grinding apparatus for a workpiece that grinds the back surface of the workpiece having a surface on which a device is formed in a region partitioned by a plurality of division lines formed in a grid pattern with a grinding wheel,
holding means for holding the surface of the workpiece with a holding surface of a chuck table that rotates about a vertical rotation axis;
Grinding means for grinding the workpiece with a grinding wheel rotating on a rotating shaft orthogonal to the holding surface;
contact thickness measuring means for measuring the thickness of the workpiece and the amount removed by grinding the workpiece by contacting the probe with the workpiece;
The measurement light is irradiated toward the workpiece, and the measurement light is reflected from the back surface of the workpiece and the light transmitted through the workpiece and reflected from the front surface. non-contact thickness measuring means for measuring the thickness of the workpiece and the amount removed by grinding the workpiece;
The amount L removed by grinding the workpiece measured by the contact-type thickness measuring means, the amount L1 removed by grinding the workpiece measured by the non-contact thickness measuring means, and the non-contact thickness measuring means , from the arbitrarily set refractive index n1, the refractive index n of the workpiece is calculated by the formula n=L1×n1/L, and the refractive index set in the non-contact thickness measuring means and refractive index calculation means for replacing the calculated refractive index n with n1,
A grinding apparatus for a workpiece, wherein the thickness of the workpiece is measured by the non-contact thickness measuring means in which the refractive index is replaced by the refractive index n.
格子状に形成された複数の分割予定ラインで区画された領域にデバイスが形成された表面を有する被加工物の裏面を研削砥石で研削する被加工物の研削方法であって、
該被加工物の表面を鉛直方向の回転軸で回転するチャックテーブルの保持面で保持する保持ステップと、
該被加工物にプローブを接触させて該被加工物の厚みと該被加工物の研削により除去された量とを測定する接触式厚み測定手段と、測定光を該被加工物に向けて照射し、照射した測定光が該被加工物の裏面で反射した光と該被加工物を透過して表面で反射した光とを受光した時間差から該被加工物の厚みと該被加工物の研削により除去された量とを測定する非接触式厚み測定手段とで測定を行いながら、該保持面と直交する回転軸で回転する研削砥石で該被加工物をチップの仕上がり厚みまで研削する研削ステップと、
該接触式厚み測定手段にて測定した該被加工物の除去量Lと、任意の屈折率n1が設定された該非接触式厚み測定手段にて測定した該被加工物の除去量L1と、該非接触式厚み測定手段に任意に設定された該屈折率n1とから、該被加工物の屈折率nをn=L1×n1/Lの計算式により算出し、該非接触式厚み測定手段に任意に設定された該屈折率n1を算出した該屈折率nと置き換える屈折率算出ステップと、を備え、
屈折率が該屈折率nに置き換えられた該非接触式厚み測定手段で、該被加工物の厚みを測定することを特徴とする被加工物の研削方法。
A method of grinding a workpiece having a surface on which a device is formed in a region partitioned by a plurality of division lines formed in a grid pattern, wherein the back surface of the workpiece is ground with a grinding wheel,
a holding step of holding the surface of the workpiece with a holding surface of a chuck table that rotates about a vertical rotating shaft;
Contact thickness measuring means for measuring the thickness of the workpiece and the amount removed by grinding the workpiece by bringing a probe into contact with the workpiece, and irradiating the workpiece with measurement light. Then, the thickness of the workpiece and the grinding of the workpiece are determined from the time difference between the light reflected by the back surface of the workpiece and the light transmitted through the workpiece and reflected by the front surface of the workpiece. A grinding step of grinding the workpiece to the finished thickness of the chip with a grinding wheel rotating on a rotating shaft perpendicular to the holding surface while measuring with a non-contact thickness measuring means that measures the amount removed by When,
A removed amount L1 of the workpiece measured by the contact thickness measuring means, a removed amount L1 of the workpiece measured by the non-contact thickness measuring means having an arbitrary refractive index n1, and the non-contact thickness measuring means. From the refractive index n1 arbitrarily set in the contact thickness measuring means, the refractive index n of the workpiece is calculated by the formula n=L1×n1/L, and the non-contact thickness measuring means arbitrarily a refractive index calculation step of replacing the set refractive index n1 with the calculated refractive index n,
A method of grinding a workpiece, wherein the thickness of the workpiece is measured by the non-contact thickness measuring means in which the refractive index is replaced by the refractive index n.
JP2018162778A 2018-08-31 2018-08-31 Grinding device and grinding method for workpiece Active JP7185446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018162778A JP7185446B2 (en) 2018-08-31 2018-08-31 Grinding device and grinding method for workpiece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018162778A JP7185446B2 (en) 2018-08-31 2018-08-31 Grinding device and grinding method for workpiece

Publications (2)

Publication Number Publication Date
JP2020032513A JP2020032513A (en) 2020-03-05
JP7185446B2 true JP7185446B2 (en) 2022-12-07

Family

ID=69666581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018162778A Active JP7185446B2 (en) 2018-08-31 2018-08-31 Grinding device and grinding method for workpiece

Country Status (1)

Country Link
JP (1) JP7185446B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009050944A (en) 2007-08-24 2009-03-12 Disco Abrasive Syst Ltd Substrate thickness measuring method and substrate processing device
JP2011143488A (en) 2010-01-13 2011-07-28 Disco Abrasive Syst Ltd Thickness detector and grinder
US20110222071A1 (en) 2008-10-01 2011-09-15 Peter Wolters Gmbh Method for measuring the thickness of a discoidal workpiece
US20130102227A1 (en) 2011-10-21 2013-04-25 Strasbaugh Systems and methods of wafer grinding
JP2017140656A (en) 2016-02-08 2017-08-17 株式会社ディスコ Consumption amount detection method of grinding grindstone

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009050944A (en) 2007-08-24 2009-03-12 Disco Abrasive Syst Ltd Substrate thickness measuring method and substrate processing device
US20110222071A1 (en) 2008-10-01 2011-09-15 Peter Wolters Gmbh Method for measuring the thickness of a discoidal workpiece
JP2012504752A (en) 2008-10-01 2012-02-23 ピーター ヴォルターズ ゲーエムベーハー Method for measuring the thickness of a disk-shaped workpiece
JP2011143488A (en) 2010-01-13 2011-07-28 Disco Abrasive Syst Ltd Thickness detector and grinder
US20130102227A1 (en) 2011-10-21 2013-04-25 Strasbaugh Systems and methods of wafer grinding
JP2017140656A (en) 2016-02-08 2017-08-17 株式会社ディスコ Consumption amount detection method of grinding grindstone

Also Published As

Publication number Publication date
JP2020032513A (en) 2020-03-05

Similar Documents

Publication Publication Date Title
TWI728181B (en) Dressing method of grinding grindstone
JP6618822B2 (en) Method for detecting wear amount of grinding wheel
TWI382464B (en) Wafer grinding method and wafer grinding machine
KR20170123247A (en) Method for manufacturing device and grinding apparatus
JP2008264913A (en) Grinding device
JP2008155292A (en) Method and apparatus for machining substrate
JP7127994B2 (en) Dressing board and dressing method
TW202007479A (en) Origin position setting mechanism and origin position setting method for grinding device installing a grinding device with high precision without using a contact sensor
JP2018083266A (en) Griding apparatus and roughness measuring method
JP2017056523A (en) Grinding device
JP7068096B2 (en) Grinding method for workpieces
JP2015116637A (en) Grinding method
JP2009072851A (en) Platelike article grinding method
JP7185446B2 (en) Grinding device and grinding method for workpiece
JP7015139B2 (en) Grinding method and grinding equipment for workpieces
JP2020023048A (en) Wafer griding method and wafer grinding device
JP5654365B2 (en) Grinding equipment
JP2011245571A (en) Machining device
JP2011224697A (en) Method of adjusting polishing pad
JP2019123046A (en) Dressing method
JP7206578B2 (en) WAFER GRINDING METHOD AND WAFER GRINDING APPARATUS
JP2012146868A (en) Processing device
JP2021079518A (en) Processing device and calculation substrate to be used in processing device
JP2023116215A (en) Grinding device and grinding method
JP2010162661A (en) Chamfering method and device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221125

R150 Certificate of patent or registration of utility model

Ref document number: 7185446

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150