JP7183628B2 - トレイ、半導体基板の製造方法、半導体装置の製造方法および半導体製造装置 - Google Patents

トレイ、半導体基板の製造方法、半導体装置の製造方法および半導体製造装置 Download PDF

Info

Publication number
JP7183628B2
JP7183628B2 JP2018159794A JP2018159794A JP7183628B2 JP 7183628 B2 JP7183628 B2 JP 7183628B2 JP 2018159794 A JP2018159794 A JP 2018159794A JP 2018159794 A JP2018159794 A JP 2018159794A JP 7183628 B2 JP7183628 B2 JP 7183628B2
Authority
JP
Japan
Prior art keywords
silicon carbide
tray
counterbore
carbide substrate
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018159794A
Other languages
English (en)
Other versions
JP2020033208A (ja
Inventor
泰之 河田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2018159794A priority Critical patent/JP7183628B2/ja
Publication of JP2020033208A publication Critical patent/JP2020033208A/ja
Application granted granted Critical
Publication of JP7183628B2 publication Critical patent/JP7183628B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

この発明は、トレイ、半導体基板の製造方法、半導体装置の製造方法および半導体製造装置に関する。
従来、炭化珪素(SiC)基板上に、炭化珪素からなる半導体膜をエピタキシャル成長させることにより半導体基板を製造する製造方法が知られている。このような製造方法において、例えば、炭化珪素基板上に炭化珪素からなる半導体膜をエピタキシャル成長させる反応容器の内側に設置されるトレイの形状を、炭化珪素基板を収納する窪みの底面が、中央から端部にいくほど低くなる形状にする製造方法が提案されている(例えば、下記特許文献1参照。)。
特開2017-109900号公報
しかしながら、上述した従来技術では、エピタキシャル成長中における半導体基板の温度分布の均一化を図ることができないという問題がある。このため、半導体基板の反りが大きくなったり、エピタキシャル層中における転位の発生が増加したりするという問題がある。
図16は、従来の製造方法に用いるトレイに炭化珪素基板を載置した状態の一例を示す断面図である。図16に示すトレイ161は、従来の製造方法において、CVD(Chemical Vapor Deposition:化学気相成長)装置へ搬送する炭化珪素基板162を載置するための容器である。
トレイ161には、炭化珪素基板162を載置するためのザグリ161aが形成されている。ザグリ161aは、載置される炭化珪素基板162の直径および厚さに合わせて形成される。ザグリ161aに炭化珪素基板162を載置した場合に炭化珪素基板162の裏面と対向するザグリ161aの底面は、通常は図16に示すように平坦に形成される。
一方で、エピタキシャル成長前の炭化珪素基板162は、メーカやロットにもよるが、裏面(C面)側に凸になるように反っている場合が多い。炭化珪素基板162が裏面側に凸になるように反るとは、例えばザグリ161aの底面から炭化珪素基板162の裏面の端部が離れるように炭化珪素基板162が反ることである。このエピタキシャル成長前の反りは比較的小さいため、炭化珪素基板162の裏面のうち比較的多くの部分がザグリ161aの底面と接触している。
図17は、従来の製造方法により炭化珪素基板上にエピタキシャル層を形成した状態の一例を示す断面図である。図17において、図16に示した部分と同様の部分については同一の符号を付して説明を省略する。図17に示す半導体基板170は、トレイ161に載置した炭化珪素基板162(図16参照)のおもて面に、CVD装置を用いてエピタキシャル成長によるエピタキシャル層171を形成したものである。
エピタキシャル成長は例えば1600[℃]程度の高温で行われるため、エピタキシャル成長が進むと、図17に示すように、半導体基板170は、おもて面側に凸になるように反る。半導体基板170がおもて面側に凸になるように反るとは、例えばザグリ161aの底面から半導体基板170の裏面の中央部分が離れるように半導体基板170が反ることである。この反りは、一般的に、エピタキシャル層171が厚い程大きい。この反りにより、半導体基板170の裏面の一部(端部)しかトレイ161と接触しなくなり、半導体基板170面内の温度分布の偏りが大きくなる。
半導体基板170面内の温度分布の偏りが大きくなると、半導体基板170のおもて面側に凸になる反りがさらに大きくなる。半導体基板170の反りが大きくなると、半導体基板170を用いた半導体装置の製造において、半導体基板170の反りが原因のトラブルが発生する。
例えば、炭化珪素デバイスを作製するには、半導体微細加工のための各種のプロセス装置に半導体基板170を搬送して設置する。このとき、半導体基板170の反りが大きいと、各微細加工プロセスでのパターンの寸法誤差が大きくなったり、そもそも反りが大きいことにより半導体基板170をプロセス装置に搬送できなかったりするといったトラブルが起こる。
図18は、従来の製造方法により製造した半導体基板に発生する転位の一例を示す上面図である。図18に示す転位180~189は、従来のトレイ161を用いた製造方法により製造した半導体基板170のエピタキシャル層171を、放射光トポグラフィにより測定することにより観測されたものである。
転位180~189は、線状の結晶欠陥(界面転位)である。半導体基板170面内の温度分布の偏りが大きくなると、上述のトラブルとは別に、エピタキシャル層171内に生じる応力により、エピタキシャル層171に多くの転位180~189が発生する。このため、半導体基板170自体の質が低下し、半導体基板170を用いた半導体装置の良品率が低下する。
また、ザグリ161aの底面が平坦なトレイ161を用いると、CVD装置を用いたエピタキシャル成長中に、トレイ161に載置した炭化珪素基板162(半導体基板170)がトレイ161のザグリ161aから外れる虞もある。
また、上述の特許文献1のように、トレイの形状を、窪みの底面が中央から端部にいくほど低くなる形状にする構成においても、エピタキシャル成長中において半導体基板170がおもて面側に凸になるように反ることを回避することはできない。このため、エピタキシャル成長中において、半導体基板170の一部しかトレイ161と接触しなくなり、半導体基板170面内の温度分布の偏りが大きくなるという問題がある。
この発明は、上述した従来技術による問題点を解消するため、エピタキシャル成長中における半導体基板の温度分布の均一化を図ることができるトレイ、半導体基板の製造方法、半導体装置の製造方法および半導体製造装置を提供することを目的とする。
上述した課題を解決し、本発明の目的を達成するため、この発明にかかるトレイは、炭化珪素基板の主面に炭化珪素エピタキシャル膜をエピタキシャル成長させる際に前記炭化珪素基板が載置されるトレイであって、前記炭化珪素基板が載置されるザグリを有し、前記ザグリの底面のうち、前記底面の中央の領域を囲む環状の領域における高さが、前記中央の領域から離れるほど線形に低くなり、前記ザグリの底面のうちの前記中央の領域は、中心から離れるほど高くなる湾曲した曲面であることを特徴とする。
また、この発明にかかるトレイは、上述した発明において、前記炭化珪素基板は、前記ザグリに、前記炭化珪素基板の第1主面を前記ザグリの底面と対向させて載置され、前記炭化珪素基板における前記第1主面の反対の第2主面に前記炭化珪素エピタキシャル膜をエピタキシャル成長させる反応容器に搬送されることを特徴とする。
また、この発明にかかるトレイは、上述した発明において、前記ザグリにおける最も浅い部分の深さは、前記炭化珪素エピタキシャル膜がエピタキシャル成長する前の前記炭化珪素基板の厚さと、前記炭化珪素エピタキシャル膜がエピタキシャル成長する前の前記炭化珪素基板の反り量と、の合計以上であることを特徴とする。
また、この発明にかかるトレイは、上述した発明において、前記ザグリの底面のうちの前記中央の領域は、前記炭化珪素エピタキシャル膜がエピタキシャル成長する前の前記炭化珪素基板の反り量に応じた深さおよび曲率を有する曲面であることを特徴とする。
また、この発明にかかるトレイは、上述した発明において、前記ザグリの底面のうちの前記中央の領域は、5[μm]以上100[μm]以下の深さを有する曲面であることを特徴とする。
また、この発明にかかるトレイは、上述した発明において、前記ザグリの底面のうちの前記中央の領域は、前記ザグリの内径の0.3倍以上0.7倍以下の直径を有する円形状の領域であることを特徴とする。
また、この発明にかかるトレイは、上述した発明において、前記ザグリの底面のうちの前記環状の領域における傾斜角度は、前記炭化珪素エピタキシャル膜がエピタキシャル成長した前記炭化珪素基板の反り量に応じた傾斜角度であることを特徴とする。
また、この発明にかかるトレイは、上述した発明において、前記ザグリの底面のうちの前記環状の領域における傾斜角度は、で0.3度以上3度以下であることを特徴とする。
また、この発明にかかるトレイは、上述した発明において、炭素により形成されることを特徴とする。
また、この発明にかかるトレイは、上述した発明において、少なくとも前記ザグリの内部は高融点材料でコーティングされていることを特徴とする。
また、この発明にかかる半導体基板の製造方法は、第1工程において、炭化珪素基板が載置されるザグリを有するトレイを用いて、前記ザグリに、前記炭化珪素基板を、前記炭化珪素基板の第1主面を前記ザグリの底面と対向させて載置することを特徴とする。前記トレイは、前記ザグリの底面のうち、前記底面の中央の領域を囲む環状の領域における高さが、前記中央の領域から離れるほど線形に低くなり、前記ザグリの底面のうちの前記中央の領域は、中心から離れるほど高くなる湾曲した曲面であることを特徴とする。また、第2工程において、前記第1工程によって前記ザグリに、前記炭化珪素基板を、前記炭化珪素基板の第1主面を前記ザグリの底面と対向させて載置した前記トレイを反応容器に搬送して設置し、前記反応容器の内部で、前記炭化珪素基板における前記第1主面の反対の第2主面に炭化珪素エピタキシャル膜をエピタキシャル成長させることを特徴とする。
また、この発明にかかる半導体装置の製造方法は、第1工程において、炭化珪素基板が載置されるザグリを有するトレイを用いて、前記ザグリに、前記炭化珪素基板を、前記炭化珪素基板の第1主面を前記ザグリの底面と対向させて載置することを特徴とする。また、前記トレイは、前記ザグリの底面のうち、前記底面の中央の領域を囲む環状の領域における高さが、前記中央の領域から離れるほど線形に低くなり、前記ザグリの底面のうちの前記中央の領域は、中心から離れるほど高くなる湾曲した曲面であることを特徴とする。また、第2工程において、前記第1工程によって前記ザグリに、前記炭化珪素基板を載置した前記トレイを反応容器に搬送して設置し、前記反応容器の内部で、前記炭化珪素基板における前記第1主面の反対の第2主面に炭化珪素エピタキシャル膜をエピタキシャル成長させて半導体基板を作製することを特徴とする。また、第3工程において、前記第2工程によって作製した前記半導体基板に所定の素子構造を形成することを特徴とする。
また、この発明にかかる半導体製造装置は、炭化珪素基板が載置されるザグリを有するトレイと、前記トレイが設置される反応容器と、前記反応容器の内部で、前記炭化珪素基板に炭化珪素エピタキシャル膜をエピタキシャル成長させる成長手段と、を備えることを特徴とする。また、前記トレイは、前記ザグリの底面のうち、前記底面の中央の領域を囲む環状の領域における高さが、前記中央の領域から離れるほど線形に低くなり、前記ザグリの底面のうちの前記中央の領域は、中心から離れるほど高くなる湾曲した曲面であることを特徴とする。また、前記成長手段は、前記炭化珪素基板の第1主面を前記ザグリの底面と対向させて前記トレイの前記ザグリに載置された前記炭化珪素基板における前記第1主面の反対の第2主面に炭化珪素エピタキシャル膜をエピタキシャル成長させることを特徴とする。
エピタキシャル成長中において、半導体基板は、主に中央部分が曲がることにより第2主面側に凸になるように反り、このとき半導体基板の外側部分は曲がりにくい。したがって、上述した発明によれば、エピタキシャル成長中において、第2主面側に凸になるように反った半導体基板の第1主面の外側部分が、トレイの底面のうち、中央の領域から離れるほど線形に低くなる環状の領域に接する。これにより、半導体基板とトレイとの間の接触量を増やし、半導体基板の温度分布を均一化することができる。このため、半導体基板の反りが大きくなることを抑制することができる。また、半導体基板のエピタキシャル層に発生する転位を抑制することができる。
本発明にかかるトレイ、半導体基板の製造方法、半導体装置の製造方法および半導体製造装置によれば、エピタキシャル成長中における半導体基板の温度分布を均一化し、半導体基板の反りが大きくなることや、半導体基板のエピタキシャル層に発生する転位を抑制することができるという効果を奏する。
図1は、実施の形態1にかかる半導体基板の製造方法に用いるトレイの構造の一例を示す図である。 図2は、実施の形態1にかかる半導体基板の製造方法に用いるトレイに炭化珪素基板を載置した状態の一例を示す断面図である。 図3は、実施の形態1にかかる半導体基板の製造方法により炭化珪素基板上にエピタキシャル層を形成した状態の一例を示す断面図である。 図4は、実施の形態1にかかる半導体基板の製造方法における半導体基板の反りの一例を示す断面図である。 図5は、実施の形態1にかかる半導体基板の製造方法の一例を示すフローチャートである。 図6は、実施の形態1にかかる製造方法に用いられるトレイの側壁部および凹形状部の径の一例を説明する断面図である。 図7は、実施の形態1にかかる製造方法に用いられるトレイのザグリの深さの一例を説明する断面図である。 図8は、実施の形態1にかかる製造方法に用いられるトレイの凹形状部の深さの一例を説明する断面図である。 図9は、実施の形態1にかかる製造方法に用いられるトレイの斜面部の角度の一例を説明する断面図である。 図10は、実施の形態1にかかる製造方法に用いられるトレイの構造の他の一例を示す断面図である。 図11は、実施の形態1にかかる製造方法に用いられるトレイの構造のさらに他の一例を示す断面図である。 図12は、実施の形態1にかかる製造方法に用いられ複数のザグリ部を有するトレイの構造の一例を示す上面図である。 図13は、実施の形態2にかかる半導体基板の製造方法に用いるトレイの構造の一例を示す図である。 図14は、実施の形態2にかかる半導体基板の製造方法に用いるトレイに炭化珪素基板を載置した状態の一例を示す断面図である。 図15は、実施の形態2にかかる半導体基板の製造方法により炭化珪素基板上にエピタキシャル層を形成した状態の一例を示す断面図である。 図16は、従来の製造方法に用いるトレイに炭化珪素基板を載置した状態の一例を示す断面図である。 図17は、従来の製造方法により炭化珪素基板上にエピタキシャル層を形成した状態の一例を示す断面図である。 図18は、従来の製造方法により製造した半導体基板に発生する転位の一例を示す上面図である。
以下に添付図面を参照して、この発明にかかるトレイ、半導体基板の製造方法、半導体装置の製造方法および半導体製造装置の好適な実施の形態を詳細に説明する。
(実施の形態1)
実施の形態1にかかる半導体基板の製造方法を説明する。この製造方法によって製造される半導体基板は、炭化珪素基板のおもて面(Si面:第2主面)に炭化珪素エピタキシャル膜をエピタキシャル成長させることにより、炭化珪素基板のおもて面に炭化珪素のエピタキシャル層が形成された基板である。
まず、炭化珪素基板を載置するためのザグリ(窪み)を有するトレイであって、炭化珪素基板が載置された状態でエピタキシャル成長の反応容器に搬送して設置されるトレイを用意する。このトレイは、炭化珪素基板を載置するためのザグリの底面のうち、中央の領域を囲む環状の領域における高さが、その中央の領域から離れるほど線形に低くなるトレイである。このトレイの構造の具体例については後述する(例えば図1参照)。
つぎに、用意したトレイのザグリに、炭化珪素(SiC)基板を、炭化珪素基板の裏面(C面:第1主面)がザグリの底面に対向するように載置する(第1工程)。そして、ザグリに炭化珪素基板を載置したトレイを反応容器に搬送して設置し、反応容器の内部で炭化珪素基板のおもて面に炭化珪素エピタキシャル膜をエピタキシャル成長させる(第2工程)。これにより、炭化珪素基板のおもて面に炭化珪素のエピタキシャル層が形成された半導体基板を製造することができる。実施の形態1にかかる半導体基板の製造方法の具体例については後述する(例えば図5参照)。
実施の形態1にかかる半導体製造装置を説明する。この半導体製造装置は、上述のトレイと、上述のトレイが設置される反応容器と、上述のトレイを反応容器に搬送して設置する搬送手段と、反応容器の内部で炭化珪素基板のおもて面に炭化珪素エピタキシャル膜をエピタキシャル成長させる成長手段と、を備える。
この半導体製造装置は、例えばCVD(Chemical Vapor Deposition:化学気相成長)装置である。CVD装置は、化学気相成長を行うための反応容器を有する装置である。CVD装置の反応容器には、炭化珪素基板を載置した上述のトレイが設置される。また、CVD装置は、反応容器の内部で炭化珪素基板のおもて面に炭化珪素エピタキシャル膜をエピタキシャル成長させる成長手段を備える。この成長手段には、例えば、反応容器内の圧力や温度を調整する手段や、反応容器内に各種のガスを導入する手段等が含まれる。
図1は、実施の形態1にかかる半導体基板の製造方法に用いるトレイの構造の一例を示す図である。図1に示すトレイ10は、実施の形態1にかかる半導体基板の製造方法においてCVD装置の反応容器へ搬送する炭化珪素基板を載置するための容器である。例えば、トレイ10は、CVD装置の反応容器内のサセプタ(加熱手段)上に設置される。図1における上面構造1および断面構造2は、それぞれトレイ10の上面(平面)および断面の各構造を示している。
ここで、トレイ10の高さ方向(断面構造2の縦方向)をZ軸方向とする。また、Z軸方向と直交し、かつ互いに直交する各方向をそれぞれX軸方向およびY軸方向とする。断面構造2は、XZ平面と平行でありトレイ10の中心を通る断面の構造を示しているが、Z軸方向と平行でありトレイ10の中心を通る各断面(例えばYZ平面と平行な断面)の構造も、断面構造2に示す断面の構造と同様である。
上面構造1に示すように、トレイ10は、トレイ10の上面側(Z軸のプラス方向)からみて、Z軸方向を中心とする円形状である。また、上面構造1および断面構造2に示すように、トレイ10は、基部11と、側壁部12と、斜面部13と、凹形状部14と、を有する。基部11は、炭化珪素基板を載置したトレイ10をCVD装置の反応容器に搬送して設置する際にトレイ10の底部となる部分、すなわちトレイ10のうちのCVD装置内の底面に接する部分である。側壁部12、斜面部13および凹形状部14は、基部11上に形成されている。
側壁部12は、上面構造1に示すように、トレイ10の上面側からみて、Z軸方向を中心とし、斜面部13を囲む円環形状(ドーナツ形状)である。また、側壁部12は、断面構造2に示すように上面(Z軸のプラス方向側の面)がトレイ10(基部11)の底面と平行になっている。
斜面部13は、上面構造1に示すように、トレイ10の上面側からみて、Z軸方向を中心とし、凹形状部14を囲む円環形状である。また、側壁部12は、断面構造2に示すように、上面がトレイ10(基部11)の底面に対して斜めになっている。具体的には、斜面部13の形状は、例えばXY平面上において凹形状部14の中心(トレイ10の中心)から離れるほど、上面の高さが線形に(直線的に)低くなる形状である。高さが低いとは、トレイ10(基部11)の底面との間の距離が短いことである。
凹形状部14は、上面構造1に示すように、トレイ10の上面側からみて、Z軸方向を中心とする円形状である。また、凹形状部14は、断面構造2に示すように、上面が湾曲した曲面である。具体的には、凹形状部14の上面は、XY平面上の凹形状部14の中心(トレイ10の中心)が最も低く、XY平面上の凹形状部14中心から離れるほど高くなる形状である。また、凹形状部14の上面は、後述の炭化珪素基板の反りに合わせた一定の曲率を有する曲面になっている。
ここで、側壁部12は、斜面部13および凹形状部14よりも上面が高くなっている。ザグリ15は、側壁部12を側面とし、凹形状部14および斜面部13を底面とするザグリである。このザグリ15に炭化珪素基板を載置可能である。
このように、図1に示したトレイ10においては、炭化珪素基板が載置されるザグリ15の底面のうち、凹形状部14の上面(中央の領域)を囲む斜面部13の上面(環状の領域)における高さが、中央の領域から離れるほど線形に低くなっている。また、図1に示したトレイ10においては、ザグリ15の底面のうち、中央の領域(凹形状部14の上面)の高さが中心から離れるほど高くなる湾曲した曲面になっている。すなわち、図1に示したトレイ10は、斜面部13および凹形状部14の各上面を底面とすることにより、複数の形状が複合された底面を含むザグリ15を有する。
また、トレイ10は、CVD装置による処理に耐えられるように、例えば炭素(C)等の融点が高い材料により形成される。また、トレイ10のうち少なくともSiCエピ膜が堆積する可能性のある部分には、融点が高い材料(高融点材料)によるコーティングが行われてもよい。このコーティングに用いられる高融点材料には、例えば炭化タンタル(TaC)や炭化珪素を用いることができる。これにより、トレイ10と炭化珪素基板との間の接触性を向上させることができる。
図2は、実施の形態1にかかる半導体基板の製造方法に用いるトレイに炭化珪素基板を載置した状態の一例を示す断面図である。図2において、図1に示した部分と同様の部分については同一の符号を付して説明を省略する。図2に示す炭化珪素基板20は、例えば4H-SiC(炭化珪素の四層周期六方晶)を半導体材料として用いた4H-SiC基板である。また、炭化珪素基板20は、例えば直径が4インチ程度、板厚(厚さ)が400[μm]程度の円板形状の基板である。
炭化珪素基板20は、上述のように円板形状であるが、図2に示すように、裏面側に凸になるように反っている場合がある。炭化珪素基板20が裏面側に凸になるように反るとは、例えばザグリ15の底面から炭化珪素基板20の裏面の端部が離れるように炭化珪素基板20が反ることである。この炭化珪素基板20の反りは、例えば、炭化珪素基板20に対する研磨等により、炭化珪素基板20のおもて面と裏面において応力の差が生じることにより発生する。具体的には、炭化珪素基板20のおもて面には砥粒の細かい砥石での丁寧な研磨が行われ、炭化珪素基板20の裏面には炭化珪素基板20を薄くするための砥粒の粗い砥石での研磨が行われる。このおもて面に対する研磨と裏面に対する研磨の違いにより、おもて面と裏面において応力の差が生じる。この炭化珪素基板20に生じる反り量(SORI)は、例えば最大で30[μm]程度である。
ここで、基板の反り量(SORI)について説明する。例えば、基板の各点から最小二乗法によって計算される平面を最小二乗平面とする。また、最小二乗平面と、基板のおもて面上の最高点と、の間の距離をd1とする。また、最小二乗平面と、基板のおもて面上の最低点と、の間の距離をd2とする。このとき、基板の反り量(SORI)は、例えばこの距離d1,d2の合計値(d1+d2)により定義することができる。
トレイ10の凹形状部14は、上述のように上面が湾曲した曲面になっている。そして、この凹形状部14の上面の曲率は、炭化珪素基板20のうち曲がった部分(例えば図4参照)の曲率に近くなるように設定される。したがって、反った炭化珪素基板20を、裏面が下になるようにザグリ15に載置すると、図2に示すように凹形状部14の上面に炭化珪素基板20の裏面が接しやすくなり、この接している部分を介して、トレイ10の熱が炭化珪素基板20に伝わる。
図2に示す例では、凹形状部14の上面の全体にわたり、炭化珪素基板20の中央部分の裏面が接している。炭化珪素基板20の中央部分とは、XY平面上で、炭化珪素基板20の中心を含む円形状の部分である。ただし、炭化珪素基板20の反りにはばらつきがあるため、凹形状部14の上面の全体にわたって炭化珪素基板20の裏面が接する状態にならなくてもよい。例えば、凹形状部14の上面の面積の50%以上において炭化珪素基板20の裏面が接する状態が好ましい。
図3は、実施の形態1にかかる半導体基板の製造方法により炭化珪素基板上にエピタキシャル層を形成した状態の一例を示す断面図である。図3において、図2に示した部分と同様の部分については同一の符号を付して説明を省略する。図3に示す半導体基板30は、トレイ10に載置した炭化珪素基板20(図2参照)のおもて面に、CVD装置を用いてエピタキシャル成長によるエピタキシャル層31を形成したものである。
CVD装置による化学蒸着においては、炭化珪素基板20(半導体基板30)が高温になる。このため、CVD装置により形成された半導体基板30には、おもて面側が凸になる反り、すなわち図2に示した炭化珪素基板20の反りとは反対方向の反りが生じる。半導体基板30がおもて面側に凸になるように反るとは、例えばザグリ15の底面から半導体基板30の裏面の中央部分が離れるように半導体基板30が反ることである。この反りの原理について説明する。エピタキシャル成長において、炭化珪素基板20のおもて面に形成されるエピタキシャル膜であるエピタキシャル層31の中央付近には横方向(炭化珪素基板20の主面に平行な方向)の圧縮応力(外側に向かう力)がかかり、エピタキシャル層31の端部付近には横方向の若干の引張応力(中心側に向かう力)がかかる。それにより、半導体基板30に、おもて面側が凸になる反りが生じる。
例えば、エピタキシャル成長前に、図2に示したように炭化珪素基板20が裏面側に凸になるように反っていた場合、エピタキシャル成長中に、その反りが徐々に小さくなって反りがなくなる。そして、さらにエピタキシャル成長が進むと、半導体基板30においておもて面側に凸になるような反りが生じ、その反りが徐々に大きくなり、最終的に、例えば図3に示したような状態となる。
これに対して、トレイ10の斜面部13は、上述のように、中心から離れるほど上面が線形に低くなる形状になっている。そして、この斜面部13の上面の角度(傾斜)は、図3に示すように裏面側に凸になるように反った半導体基板30の外側部分と同じ角度になるように設定される。半導体基板30の外側部分とは、XY平面上で、半導体基板30のうち中央部分を除く環状の部分である。したがって、半導体基板30においておもて面側に凸になる反りが発生すると、斜面部13の上面に半導体基板30の裏面が接しやすくなり、この接している部分を介して、トレイ10の熱が半導体基板30に伝わる。
図3に示す例では、斜面部13の上面と、半導体基板30の外側部分の裏面と、の角度が一致している。ただし、半導体基板30の反りにはばらつきがあるため、斜面部13の上面と、半導体基板30の外周部の裏面と、の角度が完全に一致していなくてもよい。
また、半導体基板30においておもて面側に凸になるような反りが生じる前にエピタキシャル成長が終わった場合は、半導体基板30は、反りがない状態、または裏面側に凸になる反りが残った状態になる。この場合においても、エピタキシャル成長中に、凹形状部14の上面に半導体基板30の裏面が接しやすくなっているため、この接している部分を介して、トレイ10の熱が半導体基板30に伝わる。
図2,図3に示したように、炭化珪素基板20が裏面側に凸になるように反っているエピタキシャル成長前の時点では、トレイ10における凹形状部14が炭化珪素基板20の中央部分に接しやすくすることができる(図2参照)。そして、エピタキシャル成長により半導体基板30がおもて面側に凸になるように反ると、トレイ10における斜面部13が半導体基板30の外側部分に接しやすくすることができる(図3参照)。
したがって、エピタキシャル成長中の半導体基板30とトレイ10との間の接触量を増やすことができる。エピタキシャル成長中の半導体基板30とトレイ10との間の接触量とは、例えば、エピタキシャル成長中における、半導体基板30とトレイ10との間の接触面積を時間積分した量である。
エピタキシャル成長中の半導体基板30とトレイ10との間の接触量を増やすことにより、エピタキシャル成長中において、半導体基板30の温度変化を少なくし、それによって半導体基板30面内の温度分布を均一にすることができる。なお、半導体基板30に用いられる炭化珪素は熱伝導性がよいため、エピタキシャル成長中に半導体基板30の半分程度がトレイ10に接触していれば、半導体基板30の面内の温度分布を十分に均一化することができる。
エピタキシャル成長中の半導体基板30面内の温度分布を均一にすることにより、半導体基板30のおもて面側に凸になる反りが大きくなることを抑制することができる。例えば、半導体基板30が図3に示した状態よりも大きく反ることを抑制することができる。
半導体基板30の反りが大きくなることを抑制することで、半導体基板30を用いた半導体装置の製造において、半導体基板30の反りが原因の上述のトラブルを回避することができる。これにより、半導体基板30を用いた半導体装置の製造歩留まりを向上させることができる。あるいは、半導体基板30を用いた半導体装置の特性の信頼性を向上させることができる。
また、エピタキシャル成長中の半導体基板30面内の温度分布を均一にすることにより、この温度分布により生じるエピタキシャル層31内の応力が原因で半導体基板30のエピタキシャル層31に発生する転位等も抑制することができる。このため、半導体基板30自体の品質を向上させることができる。したがって、半導体基板30を用いた半導体装置の良品率を向上させることができる。
図4は、実施の形態1にかかる半導体基板の製造方法における半導体基板の反りの一例を示す断面図である。例えば図2に示したように、エピタキシャル成長前の炭化珪素基板20は、裏面側が凸になるように反った状態、または反りがない状態である。また、炭化珪素基板20のおもて面上にエピタキシャル成長によりエピタキシャル層31を形成して得られた半導体基板30は、図4(または図3)に示すように、おもて面側が凸になるように反った状態になる。
このとき、図4に示すように、曲がるのは主に半導体基板30のうちの中央部分41であり、半導体基板30のうちの中央部分41の周辺の外側部分42は、Z軸方向と平行な断面においてはほぼ平面になる。このため、トレイ10の斜面部13は、エピタキシャル成長により反った半導体基板30の外側部分42の裏面と接触しやすいように、Z軸方向と平行な断面において、斜めの平面状に形成されている。
図5は、実施の形態1にかかる半導体基板の製造方法の一例を示すフローチャートである。実施の形態1にかかる半導体基板の製造方法は、例えば図5に示す各ステップにより実現される。
まず、炭化珪素基板20の洗浄を行う(ステップS51)。ステップS51における洗浄には、例えば有機洗浄やRCA洗浄が用いられる。このとき、炭化珪素基板20においては、例えば図2に示したような裏面側に凸の反りが発生していてもよいし、反りが発生していなくてもよい。
つぎに、炭化珪素基板20を上述のトレイ10のザグリ15に載置する(ステップS52(第1工程))。このとき、炭化珪素基板20の裏面がザグリ15の底面に対向するように炭化珪素基板20を載置する。ステップS52により、例えば図2に示した状態になる。
つぎに、ステップS52によりザグリ15に炭化珪素基板20を載置したトレイ10をCVD装置の反応容器に搬送して設置し、炭化珪素基板20のおもて面において、炭化珪素エピタキシャル膜をエピタキシャル成長させる(ステップS53(第2工程))。これにより、炭化珪素基板20のおもて面に炭化珪素のエピタキシャル層31が積層される。ステップS53により、例えば図3に示した状態になる。
ステップS53のエピタキシャル成長は、例えば、各種のガスを反応容器内に導入し、反応容器内の珪素原子および炭素原子を炭化珪素基板20と同じ結晶構造で炭化珪素基板20上に堆積することにより行われる。このとき、反応容器内には、例えば原料ガス、エッチングガス、ドーピングガスおよびキャリアガスが導入される。原料ガスとしては、例えば水素化ケイ素(SiH4)およびプロパン(C38)が用いられる。エッチングガスとしては、例えば塩酸(HCl)が用いられる。ドーピングガスとしては、例えば窒素(N2)が用いられる。キャリアガスとしては、例えば30[slm]程度の水素(H2)ガスが用いられる。
このとき、例えば、水素化ケイ素の流量は54[sccm]、プロパンの流量は21[sccm]、窒素の流量は1.0[sccm]、塩酸の流量は162[sccm]とすることができる。窒素のガス量は、狙いのドーピング濃度になるように調整する。また塩酸の流量は0[sccm]以上270[sccm]以下の間の任意の値に変更してもよい。なお、塩酸の流量を極端に多くすると、炭化珪素エピタキシャル膜の成長速度が落ちる。一般的に、ハライドエピタキシャル膜の場合、塩酸の流量は、水素化ケイ素の流量の3倍程度が適量となる。
また、ステップS53のエピタキシャル成長は、例えば、炭化珪素基板20を設置した反応容器内を、20[Torr]程度の圧力にし、1600[℃]程度の温度にし、5時間30分程度の時間をかけて行われる。
ステップS53によってエピタキシャル成長する炭化珪素エピタキシャル膜は、例えば4H-SiC材料を用いたn型のエピタキシャル膜である。また、ステップS53によって形成される炭化珪素エピタキシャル膜は、4H-SiC材料を用いたp型のエピタキシャル膜であってもよい。この場合に、ステップS53は、上述のドーピングガスとしては、例えばトリメチルアルミニウム(C618Al2)が用いられる。
ステップS53によってエピタキシャル成長した炭化珪素エピタキシャル膜(エピタキシャル層31)の厚さは、例えば260[μm]程度である。ただし、エピタキシャル層31の厚さは、260[μm]程度に限らず、例えば半導体基板30を用いて製造する半導体装置の目標耐圧等に応じて決定される。耐圧とは、素子が誤動作や破壊を起こさない限界の電圧である。
つぎに、ステップS53によりおもて面に炭化珪素のエピタキシャル層31が積層された炭化珪素基板20、すなわち半導体基板30をCVD装置から出し(ステップS54)、一連の半導体基板30の製造方法を終了する。このとき、炭化珪素基板20においては、例えば図3に示したようなおもて側に凸の反りが発生している。図5に示す各ステップにより半導体基板30を製造することができる。
図6は、実施の形態1にかかる製造方法に用いられるトレイの側壁部および凹形状部の径の一例を説明する断面図である。図6に示すザグリ内径D1は、Z軸方向からみたトレイ10のザグリ15の内径、すなわち側壁部12の内径(あるいは斜面部13の外径)である。ザグリ内径D1は、トレイ10に載置される炭化珪素基板20の直径より大きくなるように決定される。例えば炭化珪素基板20の直径が4インチ程度であるとすると、ザグリ内径D1は4インチよりも大きい内径に決定される。
図6に示す直径D2は、Z軸方向からみた凹形状部14の直径である。すなわち、ザグリ内径D1は斜面部13の内径に相当する。直径D2は、図4に示した半導体基板30における中央部分41と外側部分42との経の比率に応じて、例えばザグリ内径D1の0.3倍以上0.7倍以下程度の範囲内の直径に決定される。
また、直径D2は、ザグリ15に載置される炭化珪素基板20の直径より小さい直径に決定される。これにより、ザグリ15に載置される炭化珪素基板20の外側部分42が、斜面部13上に位置するようにすることができる。
一例としては、直径D2は直径50[mm]程度とすることができる。この場合に、エピタキシャル成長後の半導体基板30は、半導体基板30の中心から半径25[mm]の領域より外側の領域が斜面部13に接触する。
図7は、実施の形態1にかかる製造方法に用いられるトレイのザグリの深さの一例を説明する断面図である。図7に示すザグリ深さD3は、側壁部12の上面と、凹形状部14と斜面部13との間の境界部分と、の間の高低差、すなわちトレイ10のザグリ15の最も浅い部分の深さである。ザグリ深さD3は、例えば、エピタキシャル成長前の炭化珪素基板20の厚さと、エピタキシャル成長前の炭化珪素基板20の反り量(SORI)と、の合計以上の深さに決定される。
例えばエピタキシャル成長前の炭化珪素基板20の厚さが350[μm]以上400[μm]以下程度(上述の例では400[μm])であり、エピタキシャル成長前の炭化珪素基板20の反り量が100[μm]以上110[μm]以下程度であるとする。この場合に、ザグリ深さD3は、例えば510[μm]以上の深さ、一例としては800[μm]程度の深さに決定される。
これにより、炭化珪素基板20がエピタキシャル成長前に反っていても(図2参照)、炭化珪素基板20の端部がトレイ10の表面(側壁部12の上面)より上部に出ないようにすることができる。すなわち、炭化珪素基板20の端部がザグリ15に十分沈んだ状態にすることができる。したがって、炭化珪素基板20の反り量や反りの向きが変化するエピタキシャル成長中に、トレイ10の自転や公転を行っても炭化珪素基板20の位置ズレ(ザグリ15から外れてしまうこと)を防止することができる。
図7に示すザグリ深さD4は、側壁部12の上面と、斜面部13の上面のうちの最も低い部分と、の間の高低差、すなわちトレイ10のザグリの最も深い部分(ザグリの外側部分)の深さである。ザグリ深さD4は、ザグリ深さD3より深い。一例としては、ザグリ深さD3が800[μm]程度である場合に、ザグリ深さD4は、900[μm]程度とすることができる。
図8は、実施の形態1にかかる製造方法に用いられるトレイの凹形状部の深さの一例を説明する断面図である。図8に示す凹形状部深さD5は、凹形状部14のうち最も高い外周部と、凹形状部14のうち最も低い中心と、の間の高低差、すなわち凹形状部14の深さである。凹形状部深さD5は、例えば5[μm]以上100[μm]以下の範囲内の深さに決定される。一例としては、凹形状部14の上面は、凹形状部深さD5が10[μm]程度になるように、一定の曲率で湾曲した形状とすることができる。これは、例えば新品の炭化珪素基板20の一般的な反り量に合わせて決定される。
図9は、実施の形態1にかかる製造方法に用いられるトレイの斜面部の角度の一例を説明する断面図である。図9に示す傾斜角度θは、斜面部13の上面と、トレイ10の底面の方向(すなわち水平方向)と、の間の角度である。傾斜角度θは、想定されるエピタキシャル成長後の半導体基板30の反り量に応じて決定され、例えば0.3度以上3度以下の範囲の角度に決定される。
一例としては、傾斜角度は1度程度とすることができる。ただし、炭化珪素基板20のメーカやロット等によって半導体基板30の反り量が異なるため、傾斜角度θは、半導体基板30において見込まれる反り量に応じて適宜調整する。すなわち、半導体基板30の反り量が少なければ傾斜角度θを小さくし、半導体基板30の反り量が多ければ傾斜角度θを大きくする。
図10は、実施の形態1にかかる製造方法に用いられるトレイの構造の他の一例を示す断面図である。図10において、図1に示した部分と同様の部分については同一の符号を付して説明を省略する。図10に示すように、斜面部13と凹形状部14との間の境界部分の上面は、角にならないように、例えば基部11とは反対側に凸の曲面となるように形成されてもよい。または、斜面部13と凹形状部14との間の境界部分の上面は、基部11と平行(すなわち水平)の平面になるように形成されてもよい。
これにより、例えば、裏面側に凸になるように反った炭化珪素基板20(図2参照)が、おもて面側に凸になるように反った半導体基板30(図3参照)になる過程において、半導体基板30とトレイ10との間の接触量を増やすことができる。
図11は、実施の形態1にかかる製造方法に用いられるトレイの構造のさらに他の一例を示す断面図である。図11において、図1,図4に示した部分と同様の部分については同一の符号を付して説明を省略する。図11に示すように、半導体基板30の反りの形状によっては、斜面部13の上面の傾斜角度(図9に示した傾斜角度θ)は、斜面部13の中心から離れるにつれ2段階で変化してもよい。
例えば、図11に示す半導体基板30は、中央部分41のうち比較的中心から遠い部分41bの反りが、中央部分41のうち比較的中心に近い部分41aの反りより大きくなっている。これに対して、図11に示すトレイ10においては、斜面部13の上面のうち比較的中心に近い部分の傾斜角度は比較的小さく、斜面部13の上面のうち比較的中心から遠い部分の傾斜角度は比較的大きくなっている。これにより、エピタキシャル成長中における、半導体基板30とトレイ10との間の接触量を増やすことができる。また、斜面部13の上面の傾斜角度は、斜面部13の中心から離れるにつれ3段階以上で変化してもよい。また、図11に示した構成において、図10に示した構成と同様に、斜面部13と凹形状部14の間の境界部分の上面が角にならないように形成されてもよい。
図12は、実施の形態1にかかる製造方法に用いられ複数のザグリ部を有するトレイの構造の一例を示す上面図である。例えば、大型のCVD装置を用いて複数の半導体基板30をまとめて製造する場合は、図12に示すトレイ120を用いてもよい。トレイ120は、基部121と、ザグリ部10a~10hと、を有する。また、トレイ120は、例えば、トレイ10と同様に炭素等の融点が高い材料により形成される。また、トレイ120には、トレイ10と同様に融点が高い材料によるコーティングが行われてもよい。
基部121は、炭化珪素基板を載せたトレイ10をCVD装置の反応容器に搬送して設置する際にトレイ120の底部となる部分、すなわちトレイ120のうちのCVD装置内の底面に接する部分である。また、基部121は、Z軸方向を中心とする円板形状である。ザグリ部10a~10hは、基部121上に形成されている。
ザグリ部10a~10hのそれぞれは、上述のトレイ10における側壁部12、斜面部13および凹形状部14(図1,図10,図11参照)と同様の形状である。すなわち、ザグリ部10a~10hのそれぞれは、上述のトレイ10の基部11を基部121に代えたものである。
図12に示すトレイ120によれば、ザグリ部10a~10hに8個の炭化珪素基板20を積載した状態で大型のCVD装置の反応容器に搬送して設置し、8個の半導体基板30をまとめて製造することができる。ただし、基部121の形状、基部121上に設けるザグリ部の数や配置等は、図12に示した例に限らず、CVD装置の大きさ等に応じて決定することができる。
実施の形態1にかかる半導体装置の製造方法を説明する。この製造方法によって製造される半導体装置は、上述の半導体基板30を用いて製造される半導体装置である。上述の実施の形態1にかかる半導体基板の製造方法(第1工程および第2工程)により作製した半導体基板に、一般的な方法により所定の素子構造を形成する(第3工程)。これにより、上述の半導体基板30を用いた半導体装置を製造することができる。
上述の半導体基板30を用いた半導体装置は、例えば、炭化珪素を用いたダイオード、MOSFET(Metal-Oxide-Semiconductor Field-Effect-Transistor:絶縁ゲート型電界効果トランジスタ)、IGBT(Insulated Gate Bipolar Transistor:絶縁ゲート型バイポーラトランジスタ)などである。
以上、説明したように、実施の形態1によれば、トレイ10に炭化珪素基板20を載置し、炭化珪素基板20のおもて面に形成された炭化珪素エピタキシャル膜をエピタキシャル成長させることができる。このトレイ10は、ザグリ15の底面のうち、中央の領域(凹形状部14の上面)を囲む環状の領域(斜面部13の上面)における高さが、中央の領域から離れるほど線形に低くなる形状である。
ここで、図4において説明したように、エピタキシャル成長中において、半導体基板30は、主に中央部分41が曲がることによりおもて面側に凸になるように反り、このとき半導体基板30の外側部分42は曲がりにくい。したがって、実施の形態1によれば、エピタキシャル成長中において、おもて面側に凸になるように反った半導体基板30の外側部分42が、トレイ10の底面のうち、中央の領域から離れるほど線形に低くなる環状の領域に接する。
これにより、エピタキシャル成長中において、おもて面側に凸になるように反る半導体基板30とトレイ10との間の接触量を増やし、半導体基板30面内の温度分布を均一化することができる。このため、半導体基板30の反りが大きくなることを抑制することができる。したがって、例えば、半導体基板30の大きな反りが原因のトラブルを回避し、半導体基板30を用いた半導体装置の製造歩留まりの向上や、半導体基板30を用いた半導体装置の特性の信頼性の向上を図ることができる。
また、エピタキシャル成長中の半導体基板30面内の温度分布を均一化することにより、この温度分布により生じるエピタキシャル層31内の応力が原因で半導体基板30のエピタキシャル層31に発生する転位等も抑制することができる。このため、半導体基板30自体の品質を向上させることができる。したがって、例えば半導体基板30を用いた半導体装置の良品率を向上させることができる。
また、実施の形態1によれば、トレイ10のザグリ15の底面における中央の領域(凹形状部14の上面)が、中心から離れるほど高くなる湾曲した曲面である。これにより、エピタキシャル成長前、またはエピタキシャル成長の早い段階において、裏面側に凸になるように反る炭化珪素基板20(半導体基板30)とトレイ10との間の接触量を増やし、半導体基板30面内の温度分布を均一化することができる。
(実施の形態2)
つぎに、実施の形態2にかかる半導体基板の製造方法に用いるトレイ10の構造について説明する。実施の形態2にかかる半導体基板の製造方法に用いるトレイ10が、実施の形態1にかかる半導体基板の製造方法に用いるトレイ10と異なる点は、上述の凹形状部14に対応する部分の上面を平坦にした点である。
図13は、実施の形態2にかかる半導体基板の製造方法に用いるトレイの構造の一例を示す図である。図13において、図1に示した部分と同様の部分については同一の符号を付して説明を省略する。図13に示すように、実施の形態2にかかるトレイ10は、上述の凹形状部14に代えて平坦形状部16を有する。
平坦形状部16は、上面構造1に示すように、凹形状部14と同様にトレイ10の上面側からみて円形状である。また、平坦形状部16は、断面構造2に示すように、トレイ10の上面の高さがXY平面上で一定な形状である。すなわち、平坦形状部16の上面は、水平(トレイ10の底面と平行)であり平坦になっている。
図14は、実施の形態2にかかる半導体基板の製造方法に用いるトレイに炭化珪素基板を載置した状態の一例を示す断面図である。図14において、図2に示した部分と同様の部分については同一の符号を付して説明を省略する。実施の形態2にかかるトレイ10の平坦形状部16の上面は、上述のように平坦になっている。したがって、裏面側に凸になるように反っている炭化珪素基板20をトレイ10のザグリ15に載置すると、炭化珪素基板20の裏面のうち中央部付近のみが平坦形状部16の上面に接する。
ただし、例えば炭化珪素基板20の反りが比較的少ない場合には、炭化珪素基板20から半導体基板30を製造する際の早い段階で炭化珪素基板20の反りがなくなり、その後に炭化珪素基板20はおもて面側に凸になるように反る。このため、凹形状部14に代えて平坦形状部16を設けることによる、半導体基板30の製造時におけるトレイ10と半導体基板30との間の接触量に対する影響は少ない。
また、反っていない炭化珪素基板20をトレイ10のザグリに載置する場合は、平坦形状部16の上面の全面にわたって炭化珪素基板20の裏面が接する。このため、凹形状部14に代えて平坦形状部16を設けることによる、半導体基板30の製造時におけるトレイ10と半導体基板30との間の接触量に対する影響はない。
図15は、実施の形態2にかかる半導体基板の製造方法により炭化珪素基板上にエピタキシャル層を形成した状態の一例を示す断面図である。図15において、図3,図14に示した部分と同様の部分については同一の符号を付して説明を省略する。実施の形態2にかかるトレイ10においては、実施の形態1にかかるトレイ10と同様に、トレイ10の斜面部13は、中心から離れるほど上面が低くなる形状になっている。
そして、この斜面部13の上面の角度は、図15に示すように裏面側に凸になるように反った半導体基板30の外側部分と同じ角度になるように設定される。したがって、半導体基板30において裏面側に凸になる反りが発生すると、斜面部13の上面に半導体基板30の裏面が接しやすくなる。
また、実施の形態2にかかる製造方法において、図10に示した構成と同様に、斜面部13と平坦形状部16との間の境界部分の上面が角にならないように形成されてもよい。また、実施の形態2にかかる製造方法において、図11に示した構成と同様に、斜面部13の上面の傾斜角度が、斜面部13の中心から離れるにつれ複数段階で変化するようにしてもよい。また、実施の形態2にかかる製造方法におけるトレイ10の形状を、図12に示したトレイ120のザグリ部10a~10hに適用してもよい。
以上、説明したように、実施の形態2によれば、実施の形態1と同様の効果を得ることができる。
以上において本発明は種々変更可能であり、上述した各実施の形態において、例えば各部の寸法等は要求される仕様等に応じて種々設定される。例えば、CVD装置の反応容器内のサセプタ(加熱手段)上にトレイ10が設置される方法について説明したが、トレイ10自体に加熱手段を設けてもよい。
以上のように、本発明にかかるトレイ、半導体基板の製造方法、半導体装置の製造方法および半導体製造装置は、炭化珪素基板のおもて面に形成された炭化珪素エピタキシャル膜をエピタキシャル成長させる製造方法に有用である。
1 上面構造
2 断面構造
10,120 トレイ
10a~10h ザグリ部
11,121 基部
12 側壁部
13 斜面部
14 凹形状部
15 ザグリ
16 平坦形状部
20 炭化珪素基板
30 半導体基板
31 エピタキシャル層
41 中央部分
42 外側部分

Claims (13)

  1. 炭化珪素基板の主面に炭化珪素エピタキシャル膜をエピタキシャル成長させる際に前記炭化珪素基板が載置されるトレイであって、
    前記炭化珪素基板が載置されるザグリを有し、
    前記ザグリの底面のうち、前記底面の中央の領域を囲む環状の領域における高さが、前記中央の領域から離れるほど線形に低くな
    前記ザグリの底面のうちの前記中央の領域は、中心から離れるほど高くなる湾曲した曲面であることを特徴とするトレイ。
  2. 前記炭化珪素基板は、前記ザグリに、前記炭化珪素基板の第1主面を前記ザグリの底面と対向させて載置され、
    前記炭化珪素基板における前記第1主面の反対の第2主面に前記炭化珪素エピタキシャル膜をエピタキシャル成長させる反応容器に搬送される、
    ことを特徴とする請求項1に記載のトレイ。
  3. 前記ザグリにおける最も浅い部分の深さは、前記炭化珪素エピタキシャル膜がエピタキシャル成長する前の前記炭化珪素基板の厚さと、前記炭化珪素エピタキシャル膜がエピタキシャル成長する前の前記炭化珪素基板の反り量と、の合計以上であることを特徴とする請求項1または2に記載のトレイ。
  4. 前記ザグリの底面のうちの前記中央の領域は、前記炭化珪素エピタキシャル膜がエピタキシャル成長する前の前記炭化珪素基板の反り量に応じた深さおよび曲率を有する曲面であることを特徴とする請求項1~3のいずれか一つに記載のトレイ。
  5. 前記ザグリの底面のうちの前記中央の領域は、5[μm]以上100[μm]以下の深さを有する曲面であることを特徴とする請求項1~4のいずれか一つに記載のトレイ。
  6. 前記ザグリの底面のうちの前記中央の領域は、前記ザグリの内径の0.3倍以上0.7倍以下の直径を有する円形状の領域であることを特徴とする請求項1~5のいずれか一つに記載のトレイ。
  7. 前記ザグリの底面のうちの前記環状の領域における傾斜角度は、前記炭化珪素エピタキシャル膜がエピタキシャル成長した前記炭化珪素基板の反り量に応じた傾斜角度であることを特徴とする請求項1~6のいずれか一つに記載のトレイ。
  8. 前記ザグリの底面のうちの前記環状の領域における傾斜角度は、0.3度以上3度以下であることを特徴とする請求項7に記載のトレイ。
  9. 炭素により形成されることを特徴とする請求項1~8のいずれか一つに記載のトレイ。
  10. 前記ザグリの内部は高融点材料でコーティングされていることを特徴とする請求項1~9のいずれか一つに記載のトレイ。
  11. 炭化珪素基板が載置されるザグリを有するトレイであって、前記ザグリの底面のうち、前記底面の中央の領域を囲む環状の領域における高さが、前記中央の領域から離れるほど直線形に低くなり、前記ザグリの底面のうちの前記中央の領域は、中心から離れるほど高くなる湾曲した曲面であるトレイを用いて、前記ザグリに、前記炭化珪素基板を、前記炭化珪素基板の第1主面を前記ザグリの底面と対向させて載置する第1工程と、
    前記第1工程によって前記ザグリに前記炭化珪素基板を載置した前記トレイを反応容器に搬送して設置し、前記反応容器の内部で、前記炭化珪素基板における前記第1主面の反対の第2主面に炭化珪素エピタキシャル膜をエピタキシャル成長させる第2工程と、
    を含むことを特徴とする半導体基板の製造方法。
  12. 炭化珪素基板が載置されるザグリを有するトレイであって、前記ザグリの底面のうち、前記底面の中央の領域を囲む環状の領域における高さが、前記中央の領域から離れるほど直線形に低くなり、前記ザグリの底面のうちの前記中央の領域は、中心から離れるほど高くなる湾曲した曲面であるトレイを用いて、前記ザグリに、前記炭化珪素基板を、前記炭化珪素基板の第1主面を前記ザグリの底面と対向させて載置する第1工程と、
    前記第1工程によって前記ザグリに前記炭化珪素基板を載置した前記トレイを反応容器に搬送して設置し、前記反応容器の内部で、前記炭化珪素基板における前記第1主面の反対の第2主面に炭化珪素エピタキシャル膜をエピタキシャル成長させて半導体基板を作製する第2工程と、
    前記第2工程によって作製した前記半導体基板に所定の素子構造を形成する第3工程と、
    を含むことを特徴とする半導体装置の製造方法。
  13. 炭化珪素基板が載置されるザグリを有するトレイであって、前記ザグリの底面のうち、前記底面の中央の領域を囲む環状の領域における高さが、前記中央の領域から離れるほど直線形に低くなり、前記ザグリの底面のうちの前記中央の領域は、中心から離れるほど高くなる湾曲した曲面であるトレイと、
    前記トレイが設置される反応容器と、
    前記反応容器の内部で、前記炭化珪素基板の第1主面を前記ザグリの底面と対向させて前記トレイの前記ザグリに載置された前記炭化珪素基板における前記第1主面の反対の第2主面に炭化珪素エピタキシャル膜をエピタキシャル成長させる成長手段と、
    を備えることを特徴とする半導体製造装置。
JP2018159794A 2018-08-28 2018-08-28 トレイ、半導体基板の製造方法、半導体装置の製造方法および半導体製造装置 Active JP7183628B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018159794A JP7183628B2 (ja) 2018-08-28 2018-08-28 トレイ、半導体基板の製造方法、半導体装置の製造方法および半導体製造装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018159794A JP7183628B2 (ja) 2018-08-28 2018-08-28 トレイ、半導体基板の製造方法、半導体装置の製造方法および半導体製造装置

Publications (2)

Publication Number Publication Date
JP2020033208A JP2020033208A (ja) 2020-03-05
JP7183628B2 true JP7183628B2 (ja) 2022-12-06

Family

ID=69667002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018159794A Active JP7183628B2 (ja) 2018-08-28 2018-08-28 トレイ、半導体基板の製造方法、半導体装置の製造方法および半導体製造装置

Country Status (1)

Country Link
JP (1) JP7183628B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7440295B2 (ja) 2020-02-28 2024-02-28 株式会社ブリヂストン 摩耗状態予測方法、摩耗状態予測装置、及び摩耗状態予測プログラム
CN114752920B (zh) * 2022-02-24 2023-12-22 华灿光电(浙江)有限公司 提高外延片质量的外延托盘及其使用方法
JP7217828B1 (ja) 2022-06-02 2023-02-03 昭和電工株式会社 SiC単結晶基板

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012222284A (ja) 2011-04-13 2012-11-12 Ibiden Co Ltd エピタキシャル成長用サセプタ、これを用いたエピタキシャル成長装置およびこれを用いたエピタキシャル成長方法
JP2017109900A (ja) 2015-12-16 2017-06-22 富士電機株式会社 エピタキシャル成長装置、エピタキシャル成長方法及び半導体素子の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012222284A (ja) 2011-04-13 2012-11-12 Ibiden Co Ltd エピタキシャル成長用サセプタ、これを用いたエピタキシャル成長装置およびこれを用いたエピタキシャル成長方法
JP2017109900A (ja) 2015-12-16 2017-06-22 富士電機株式会社 エピタキシャル成長装置、エピタキシャル成長方法及び半導体素子の製造方法

Also Published As

Publication number Publication date
JP2020033208A (ja) 2020-03-05

Similar Documents

Publication Publication Date Title
KR102417931B1 (ko) 기판 지지 장치 및 이를 포함하는 기판 처리 장치
US8021968B2 (en) Susceptor and method for manufacturing silicon epitaxial wafer
KR101086973B1 (ko) 서셉터, 반도체 제조 장치 및 반도체 제조 방법
US9487862B2 (en) Semiconductor growing apparatus
JP7183628B2 (ja) トレイ、半導体基板の製造方法、半導体装置の製造方法および半導体製造装置
US9418833B2 (en) Synthetic diamond coated compound semiconductor substrates
US8268708B2 (en) Epitaxially coated silicon wafer and method for producing epitaxially coated silicon wafers
KR101516164B1 (ko) 에피텍셜 성장용 서셉터
US20170175262A1 (en) Epitaxial growth apparatus, epitaxial growth method, and manufacturing method of semiconductor element
KR20090027146A (ko) 서셉터, 반도체 제조 장치 및 반도체 제조 방법
JP5161748B2 (ja) 気相成長用サセプタ及び気相成長装置並びにエピタキシャルウェーハの製造方法
CN112201568A (zh) 一种用于硅片的外延生长的方法和设备
JP5029340B2 (ja) エピタキシャル成長方法
US20210010158A1 (en) Silicon carbide epitaxial growth device and method of manufacturing silicon carbide epitaxial wafer
JP7233361B2 (ja) サセプタ、エピタキシャル基板の製造方法、及びエピタキシャル基板
JP7151664B2 (ja) エピタキシャルウェーハの製造方法
JP2006186105A (ja) エピタキシャル成長装置およびそれに用いるサセプター
EP3305940A1 (en) Susceptor
KR102622605B1 (ko) 서셉터 및 반도체 제조장치
CN113279055B (zh) 一种外延基座
CN217418861U (zh) 一种外延石墨基座
JP7296914B2 (ja) サテライトおよび炭化珪素半導体装置の製造方法
US20210095374A1 (en) CVD Reactor Single Substrate Carrier and Rotating Tube for Stable Rotation
JP2010141068A (ja) エピタキシャルウェーハの製造方法
JP2022146219A (ja) サセプタ、エピタキシャル成長装置、エピタキシャルウェハの製造方法、および半導体装置の製造方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20190524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190528

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221107

R150 Certificate of patent or registration of utility model

Ref document number: 7183628

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150