JP7182031B2 - 二重三相巻線永久磁石同期形電動機の駆動システム - Google Patents

二重三相巻線永久磁石同期形電動機の駆動システム Download PDF

Info

Publication number
JP7182031B2
JP7182031B2 JP2017167885A JP2017167885A JP7182031B2 JP 7182031 B2 JP7182031 B2 JP 7182031B2 JP 2017167885 A JP2017167885 A JP 2017167885A JP 2017167885 A JP2017167885 A JP 2017167885A JP 7182031 B2 JP7182031 B2 JP 7182031B2
Authority
JP
Japan
Prior art keywords
axis
current
phase
winding
synchronous motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017167885A
Other languages
English (en)
Other versions
JP2019037111A (ja
Inventor
新二 新中
Original Assignee
有限会社シー・アンド・エス国際研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社シー・アンド・エス国際研究所 filed Critical 有限会社シー・アンド・エス国際研究所
Priority to JP2017167885A priority Critical patent/JP7182031B2/ja
Publication of JP2019037111A publication Critical patent/JP2019037111A/ja
Application granted granted Critical
Publication of JP7182031B2 publication Critical patent/JP7182031B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Description

本発明は、永久磁石を有する回転子と2個の三相巻線(第1三相巻線と第2三相巻線)を有する固定子とからなる二重三相巻線永久磁石同期形電動機と、2個の三相巻線に三相電流を同時に供給できる電力変換装置とを少なくとも備える二重三相巻線永久磁石同期形電動機の駆動システムに関する。以降の説明では、簡単のため、「巻線」を「三相巻線」と同義で使用する。上記の二重三相巻線永久磁石同期形電動機を、簡単のため、二重同期電動機と略称する。さらには、同様の理由で、同駆動システムを二重同期電動機駆動システムと略称する。発明の二重同期電動機駆動システムの用途は、バッテリ電気自動車、燃料電池電気自動車、ハイブリッド電気自動車等の主駆動、広範囲にわたり効率駆動を求められる家電製品等の用途、あるいは対故障性、機能安全性を要求される用途である。
本発明では、二重同期電動機において三相巻線が施された部分を「固定子」と呼称する。本発明における「固定子」は、「電機子」と同義である。固定子に施される三相巻線には、Y形とΔ形が存在する。当業者には周知のように、三相端子から評価した場合、Y形巻線による特性とΔ形巻線による特性は互いに等価変換される。説明の簡明性を確保すべく、本明細書における技術説明は、Y形結線を想定して行なう。等価変換の存在より明白なように、これにより、本発明の一般性を失うことなない。
本発明では、2次元平面を極座標的に捉え、角度、空間的位置、空間的位相の3用語を同義で使用する。これらの単位は「ラジアン(rad)」または「度(degree)」である。本発明における角度、空間的位置、空間的位相の正方向は、左周り(反時計周り)、右周り(時計周り)のいずれに定義してもよい。ただし、本明細書では、説明の簡明性を維持すべく、角度、空間的位置、空間的位相の正方向は左周り(反時計周り)と定義し、本発明を説明する。これにより、本発明の一般性を失うことはない。
本発明では、二重同期電動機に交流電力を供給する装置を、電力変換装置と呼称する。電力変換装置の主要機器である電力変換器としては、インバータ、マトリックスコンバータなどが実用化されている。単一・六相用、2個・三相用、6個・単相用の電力変換器等が、本発明の電力変換装置を構成しうる。
当業者は周知の通り、回転子速度には電気速度と機械速度が存在するが、両速度の間には1対1の厳密な関係が存在し、電気速度から機械速度、機械速度から電気速度への一意の変換が可能である。本発明では、当業者間の周知性を考慮し、説明の明瞭性が失われない限り、回転子速度は電気速度を意味するものとして、これを使用する。
本発明の二重同期電動機駆動システムが駆動対象とする二重同期電動機に関する先行発明としては、例えば、特許文献1~2、非特許文献1~6がある。既報の二重同期電動機は、固定子の二重三相巻線の配置の観点から、三相単純同期電動機(非特許文献1~2)、六相同期電動機(特許文献2、非特許文献3~4)、三相逆同期電動機(非特許文献5~6)の3種に概略ながら大別される。
非特許文献1、2を参考に、従前の二重同期電動機(三相単純同期電動機)の概要を、極対数NpをNp=1とした場合を例に、図1に示した。1は二重同期電動機(回転子、固定子を含む)を、11は二重同期電動機の回転子を、121は二重同期電動機の固定子の第1巻線を、122は二重同期電動機の固定子の第2巻線を、各々示している。同図では、固定子の第1巻線と第2巻線との区別の明瞭化を図るべく、第1巻線は実線で、第2巻線は破線で表示している。また、第2巻線が、巻線配置上第1巻線と重なるため、描画上の重複を回避すべく、第2巻線を意図的に右にシフトして描画している。
二重同期電動機の固定子巻線配置の第2例(六相同期電動機の例)として、特許文献2、非特許文献3~4を参考に、極対数NpをNp=1とした場合を例に、図2に、回転子とともに概略的に示した(巻線抵抗の描画は省略)。引き線番号1、11、121、122の意味は、図1と同一である。ただし、第2巻線の配置を第1巻線に対して、1極対数を基準とした空間において、空間的にθ12=π/6[rad]シフトしている点が図1の例と異なっている。
二重同期電動機の固定子巻線配置の第3例(三相逆同期電動機の例)として、非特許文献5~6を参考に、極対数NpをNp=2とした場合の例を図3に、回転子とともに概略的に示した(巻線抵抗の描画は省略)。引き線番号1、11、121、122の意味は、図1と同一である。
図1~図3に例示した二重同期電動機においては、第1巻線と第2巻線は必ずしも同一特性をもつように構成される必要はない。両巻線は、特許文献1~2及び非特許文献1~5に示されているように同一特性をもつように構成することも、また、非特許文献6に示されているように互いに異なる特性をもつように構成することも可能である。
図1~図3に例示した二重同期電動機においては、第1巻線の中性点と第2巻線の中性点は、不接続となっている。本発明が対象とする二重同期電動機においては、一般には、第1巻線の中性点と第2巻線の中性点は、不接続、接続のいずれも可能である。
続いて、二重同期電動機駆動システムすなわち二重同期電動機を対象した駆動システムに関する従前技術を紹介する。本願発明は、二重同期電動機駆動システムの主要構成装置の1つである電流制御装置に関するものである。この点を踏まえ、二重同期電動機駆動システムのための電流制御装置に関する従前技術を紹介する。図7は、非特許文献1~2で提案された二重同期電動機駆動システムのための電流制御装置を引用したものである(特許文献1にも同一発明者による実質同一の電流制御装置が示されている)。なお、非特許文献1~2は、二重同期電動機として図1の三相単純同期電動機を対象とし、このときの二重同期電動機は非突極としている。
図7の左側に記載された3つのブロック「第1群電流制御系」、「第2群電流制御系」、「非干渉化部」が本願明細書の用語「電流制御装置」に該当する。同図の「第1群電流制御系」は、第1巻線用のフィードバック電流制御器を意味し、この出力信号(図7では「電圧指令-1」と記載)をv11*で表現している。同様に、同図の「第2群電流制御系」は、第2巻線用のフィードバック電流制御器を意味し、この出力信号(図7では「電圧指令-2」と記載)をv22*で表現している。
電力変換器へ引き渡される第1巻線用、第2巻線用の最終的電圧指令値は、各々、v1*、v2*と表現されており、これらは、「第1群電流制御系」、「第2群電流制御系」の出力信号の和として、次式のように生成れている。
Figure 0007182031000001
なお、簡略図である図7においては、インバータ等の電力変換装置は省略され記載されていない。
(1)式より明白なように、従前の電流制御装置は、各巻線用のフィードバック制御器の出力信号(電圧指令値)を一定の線形関係で相互に加重して、各巻線用の最終電圧指令値を合成するものである。この種の平均化処理は、第1巻線と第2巻線が同一の電気的特性を有し、かつ両巻線の電流値を同一に制御する場合に限り、意味をもつ。当然のことながら、第1巻線と第2巻線の特性が異なる、あるいは、第1巻線と第2巻線の電流値を異なる値に制御する場合には、従前法は適用できない。二重同期電動機を対象に、厳密な数学的解析を行なうことなく構築された従前の電流制御装置は、安定性確保上、PI(比例+積分)形の電流制御器は利用できず、比例制御器のみが利用されている(非特許文献2参照)。このため、電流応答は電流指令値に対してオフセットをもつことになる。さらには、速応性も芳しくなく、達成可能な速応性は、標準的電動機を対象とした電流制御系の速応性の50%以下のようである。
佐竹彰・水野滋基:「多重巻線電動機の制御装置」、特開第2001-341135号(2001-11-6) 伴在慶一郎・大林和良:「自動車用電動駆動装置」、特開第2000-41392号(1998-7-23)
佐竹彰・加藤覚・今中晶:「多重巻線永久磁石モータのモデル化と非干渉制御方式」、電気学会産業応用部門大会講演論文集、I、pp.199-202(2005) S.Satake,Y.Okamoto,and S.Kato:"Design of Coupling Cancellatlion control for a Double Winding PMSM",IEEJ Journal of Industry Application,Vol.6,No.1,pp.29-35(2017) 今井隆文・大澤文明・山田靖・稲熊幸雄:「EV・HEV電気駆動系の規格化の可能性について(多相モータの電流リプル抑制)」、電気学会全国大会講演論文集、4、pp.361-362(2016) 森辰也・古川晃:「二重三相PMSM駆動1シャント電流検出ダブルインバータにおけるトルクリップルを低減するパルスパターン」、電気学会産業応用部門大会講演論文集、III、pp.159-164(2016) 新中新二:「180度空間位相差の逆二重三相巻線をもつ三相永久磁石同期モータ(二重巻線配置、動的数学モデル、ベクトルシミュレータ)」、平成28年電気学会産業応用部門大会講演論文集、III、pp.285-290(2016) 新中新二:「180度空間位相差の逆二重三相巻線をもつ三相永久磁石同期モータ(二重巻線配置、動的数学モデル、ベクトルシミュレータ)」、電気学会論文誌D,Vol.137,No.2,pp.75-86(2017)
本発明は上記背景の下になされたものである。本発明の目的は、「二重同期電動機が、第1巻線と第2巻線の間に強い磁気的結合を有し、かつ異なる巻線特性をもつ場合にも、あるいは第1巻線と第2巻線へ通流すべき電流の値が異なる場合にも適用できる。さらには、二重同期電動機のフィードバック電流制御のための電流制御器として、指令値と応答値の間のオフセット除去が可能なPI形電流制御器が使用できる。また、二重同期電動機の電流制御系に対して高い安定性と速応性を同時に付与できる。」と言った機能・性能をもつ二重同期電動機駆動システムのための新たな電流制御装置を提供することにある。
以降の説明の平易化を図るべく、先ず、座標系を説明する。図4を考える。図4には、αβ固定座標系、dq同期座標系を示している。αβ固定座標系は固定子に対応した座標系であり、一般に、α軸は、固定子第1巻線のu相巻線の中心に取られる(固定子第2巻線のu相巻線の中心にとっても本質的相違はない)。dq同期座標系は回転座標系の1つであり、特に、d軸が回転子磁束と同期した座標系となっている。すなわち、dq同期座標系においては、d軸の位相は回転子磁束の位相と同一である。dq同期座標系の速度は、回転子速度ωnと瞬時瞬時において同一である。α軸から見たd軸の位相をθαで表現している。
上記目的を達成するために、請求項1の発明は、を備える永久磁石同期形電動機駆動システムであって、該回転子永久磁石のN極の位相をd軸の位相とし、d軸に対してπ/2[rad]の位相進みにq軸をもつ2軸直交座標系をdq同期座標系とするとき、該永久磁石同期形電動機に、抵抗、d軸自己インダクタンス、q軸自己インダクタンスの少なくとも1つに関し、第1三相巻線と第2三相巻線とで異なる値を持もたせ、2個の三相巻線に流れる該固定子電流を、d軸高速時定数、d軸低速時定数、q軸高速時定数、q軸低速時定数により各々動特性的に特徴づけられるd軸高速モード電流、d軸低速モード電流、q軸高速モード電流、q軸低速モード電流にモード分割し、あるいは2個の三相巻線に流れる該固定子電流に対しモード分割と数学的に等価な処理を行ない、該固定子電流をフィードバック制御するように該電流制御装置を構成したことを特徴とする。
請求項2の発明は、請求項1記載の永久磁石同期形電動機駆動システムであって、2個の三相巻線に流れる該固定子電流をフィードバック制御するための電流指令値とともに、該固定子電流に対し該モード分割あるいは該モード分割と数学的に等価な処理を行なうようにしたことを特徴とする。
本発明の効果を説明する。図1~図3に示した3種の二重同期電動機は、明らかに異なった巻線配置を有するが、dq同期座標系の上では、これらの数学モデル(回路方程式)は、共通して次式で記述される(非特許文献6参照)。
Figure 0007182031000002
本発明では、脚符1、2で、各々第1巻線、第2巻線への帰属を表現している。また、同様に、脚符d、qで、各々d軸、q軸への帰属を表現をしている。数学モデルにおける記号sは微分演算子d/dtを意味している。Iは2×2単位行列である。第1三相巻線の抵抗、d軸自己インダクタンス、q軸自己インダクタンスを各々R1、L1d、L1qで、第2三相巻線の抵抗、d軸自己インダクタンス、q軸自己インダクタンスを各々R2、L2d、L2qで、第1三相巻線と第2三相巻線の間のd軸相互インダクタンス、q軸相互インダクタンスを各々Md、Mqで、表現している。なお、以降の説明では、誤認の恐れがない限り、自己インダクタンスを、簡単に、インダクタンスと呼称する。dq同期座標系上で定義された2×1ベクトルv1、i1、Φ1は、それぞれ固定子第1巻線の電圧、電流、回転子磁束強度を意味している。同様に、2×1ベクトルv2、i2、Φ2は、それぞれ固定子第1巻線の電圧、電流、回転子磁束強度を意味している。ωnは回転子の電気速度である。
本発明が対象とする二重同期電動機においては、2個の三相巻線に起因した電動機パラメータ(巻線抵抗、インダクタンスなど)は、同一の場合もあれば、異なる場合もある。本発明は、巻線に起因した電動機パラメータの同異には依存しない。
(2)式の回路方程式は、電気速度ωnに着目し、電気速度ωnを有しない項と有する項とに、形式的に分離して表現することができる。これは、次式となる。
Figure 0007182031000003
Figure 0007182031000004
Figure 0007182031000005
ここで、dq同期座標系上の2×1ベクトル物理量として、新たに、以下を定義する。
Figure 0007182031000006
(5)式の定義を、第1、第2巻線の物理量に着目した(3b)式、(4b)式に適用し、d軸、q軸物理量の観点より整理すると、次式を得る。
Figure 0007182031000007
Figure 0007182031000008
(6)、(7)式に限っては、d軸信号(電圧、電流)とq軸信号(電圧、電流)とのdq軸間干渉はない。
以降の説明の簡明性を確保すべく、以下に、新パラメータの定義を行なっておく。
Figure 0007182031000009
Figure 0007182031000010
Figure 0007182031000011
なお、(10)に用いた脚符f、sは、各々高速モード、低速モードの関係を示している。以降では、同様の意図で、脚符f、sを使用する。(10)式のTdf、Tds、Tqf、Tqsは、各々、(2)式の二重同期電動機の数学モデルにおけるd軸高速時定数、d軸低速時定数、q軸高速時定数、q軸低速時定数を意味している。当然のことながら、二重同期電動機の数学モデルが(2)式と異なれば、d軸高速時定数Tdf、d軸低速時定数Tds、q軸高速時定数Tqf、q軸低速時定数Tqsは、(10)式とは異なるものとなる。この場合でも、本願発明の本質は変わらない。
(6)式と(7)式は、脚符d、qの違いを除けば、同一の関係を表現している。この同一性を考慮し、以降では、発明の効果を(6)式を用いて説明する。d軸モード分割行列の1例として、次の2×2行列Tdを考える。
Figure 0007182031000012
d軸モード分割行列Tdの逆行列Td-1を、(6)式の両辺に左側から作用させると、次の関係を得る。
Figure 0007182031000013
または
Figure 0007182031000014
d軸電流にd軸モード分割行列Tdの逆行列Td-1を作用せて得たidf、idsが、各々d軸高速モード電流、d軸低速モード電流を示している((12b)式、(13b)式参照)。(12a)式あるいは(13a)式は、「d軸電流に関して、(1)d軸高速時定数Tdf、d軸低速時定数Tdsで各々動特性的に特徴づけられるd軸高速モード電流idf、d軸低速モード電流idsが存在する、(2)d軸高速モード電流、d軸低速モード電流の特性は関連時定数で定められる1次遅れ特性である、(3)しかも、d軸高速モード電流、d軸低速モード電流は、互いに非干渉の関係にある」ことを示している。同様なことが、q軸電流に関しても主張される。上記のモード電流に関する特性解析においては、二重同期電動機の第1巻線と第2巻線との間の磁気的結合の度合いを示す漏れインダクタンスに関し、如何なる制約も付与していない。また、第1巻線と第2巻線におけえる抵抗、インダクタンスの同一性の制約も付与していない。さらには、第1巻線と第2巻線に流れる電流値の同一性の制約も付与していない。この点を特に指摘しておく。
請求項1の発明は、上記特性解析の結果に基づくものである。すなわち、請求項1の発明によれば、d軸高速時定数Tdf、d軸低速時定数Tds、q軸高速時定数Tqf、q軸低速時定数Tqsで各々動特性的に特徴づけられるd軸高速モード電流、d軸低速モード電流、q軸高速モード電流、q軸低速モード電流からなる固定子電流のモード電流別フィードバック電流制御が可能なフィードバック形電流制御器を用いることができる。この結果、二重同期電動機が、第1巻線と第2巻線の間に強い磁気的結合を有する(すなわち、漏れインダクタンスが小さい)場合にも、かつ異なる巻線特性をもつ場合にも、あるいは第1巻線と第2巻線へ通流すべき電流値が異なる場合にも、適切に電流制御が行なえると言う効果が得られる。さらには、二重同期電動機のフィードバック電流制御のための電流制御器として、オフセットの除去が可能なPI形電流制御器が使用できると言う効果も得られる。加えて、二重同期電動機の電流制御系に対して高い安定性と速応性を同時に付与できると言う効果も得られる。
(11)式に対応したq軸モード分割行列の2×2行列Tqは次式で与えられる。
Figure 0007182031000015
また、(12)式、(13)式に対応した、q軸の高速モード電流iqf、低速モード電流iqsの関係式は各々次の(15)式、(16)式となる。
Figure 0007182031000016
Figure 0007182031000017
Figure 0007182031000018
続いて、請求項2の発明の効果を説明する。電流制御器への入力信号は、電流指令値と電流応答値の差である電流偏差である。電流応答値(制御量としての固定子電流)をモード分割する場合には、電流指令値に対しても電流応答値モード分割に対応した電流指令値の分割が必要である。請求項2の発明によれば、電流指令値とともに、電流応答値のモード分割あるいはモード分割と数学的に等価な処理を行なうことができるようになる。より具体的には、電流偏差の状態で、電流応答値のモード分割あるいはモード分割と数学的に等価な処理を行なうことができるようになる。、これにより、モード分割あるいはこれと数学的に等価な処理の演算量を半減できる(電流応答値、電流指令値に対して個別に実施する場合に比較し)と言う効果を得ることができる。ひいては、「請求項1の発明の効果」を高められるという効果が得られる。
「二重三相巻線永久磁石同期形電動機の巻線配置例(三相単純同期電動機)を示す図」 「二重三相巻線永久磁石同期形電動機の巻線配置例(六相同期電動機)を示す図」 「二重三相巻線永久磁石同期形電動機の巻線配置例(三相逆同期電動機)を示す図」 「2種の2軸直交座標系の関係を示す図」 「本発明による4入力4出力電流制御器を用いた二重同期電動機駆動システムの構成例を示す図」 「本発明による4入力4出力電流制御器の構成例を示す図」 「従前の電流制御装置の基本構成を示す図」
以下、図面を用いて、本発明の好適な態様を具体的に説明する。
二重同期電動機に対して請求項1~2の全発明を用いた二重同期電動機駆動システムの実施例を図5に示した。駆動システムは大きくは、二重同期電動機(回転子、固定子を含む)1、電力変換装置2(破線ブロック表示)、電流制御装置3(破線ブロック表示)から構成されている。電力変換装置の内部構成、電流制御装置の内部構成は、第1巻線用と第2巻線用は基本的に同一である。この点を踏まえ、基本的に第1巻線用を中心にこれらを説明し、第1巻線用と第2巻線用で相違がある場合に限り、個別に説明する。
電力変換装置は、第1、第2巻線用の電力変換器21、電流検出器22から構成されている。電流制御装置3は、大きくは、第1、第2巻線の固定子電流、固定子電圧指令値の変換を担う信号変換部32(破線ブロック表示)と、4入力4出力電流制御器33から構成されている(以下、4入力4出力を4×4と略記、また同様な略記を他にも使用)。補助的には、信号変換部32で使用する回転子位相を検出するための位相検出器311、4×4電流制御器33で使用する回転子速度を検出するための速度検出器312が含まれる。位相検出器311、速度検出器312は、両巻線の電流制御等で共有されている。信号変換部32では、第1、第2巻線の電流制御が独立的に遂行できるように、各巻線に対して、3相2相変換器321a、2相3相変換器321b、ベクトル回転器322a、322bが構成されている。
なお、第2巻線用の3相2相変換器(2×3行列)、2相3相変換器(3×2行列)に関しては、二重同期電動機の巻線配置の違いに応じて、若干の変更が必要である。すなわち、図5におけるSR(・)に関しては、三相単純同期電動機(図1参照)、三相逆同期電動機(図3参照)の場合には下の(17a)式を用い、六相同期電動機(図2参照)の場合には下の(17b)式を用いることになる。
Figure 0007182031000019
同図では、簡明のため、複数のスカラ信号を1つのベクトル信号として捉え、複数のスカラ信号線を1本の太い信号線で表現している。なお、同図における電圧、電流のベクトル信号の脚符r、s、tは、各々、dq同期座標系上の信号、αβ固定座標系上の信号、uvw座標系上の信号(三相信号)であることを示している。また頭符「*」は、関連信号の指令値(電流指令値、電圧指令値)を意味している。
電流制御装置3を構成する信号変換部32は、従前のものと基本的に同一である。本機器は当業者には周知であるので、これ以上の説明は省略する。本発明の核心は、電流制御装置3を構成する4×4電流制御器33にある。以降は、図5の4×4電流制御器33に関し説明する。なお、図5、図6に示す実施例では、請求項2の発明に従い、電流指令値とともに電流応答値をモード分割することを想定している。このため、まず、第1巻線用の電流偏差、第2巻線用の電流偏差を生成し、これら電流偏差を4×4制御器へ引渡すようにしている。
図5における4×4電流制御器33の詳細構成を図6に示した。4×4電流制御器33は、大きくは、配列変換器Ioすなわち330、2×2d軸電流制御器331d、2×2q軸電流制御器331q、速度比例形非干渉化器332から構成されている。配列変換器Ioは、次の4×4直交行列として定義されている。
Figure 0007182031000020
配列変換器Ioを4×1ベクトルに作用させると、同ベクトルの第2要素と第3要素の配列が交互に差し替えられる。
図6の最初の第1処理過程では、配列変換器を用いた次の処理が遂行される。
Figure 0007182031000021
2×1ベクトルi1、i2の定義は、(2c)式の通りであり、各々第1、第2巻線の電流を意味している。また、2×1ベクトルid、iqの定義は、(5)式の通りであり、各々d軸、q軸の電流を意味している。頭符「*」は、対応信号の指令値を意味している。
2×2d軸電流制御器331d、2×2q軸電流制御器331qは、各々d軸、q軸の電流偏差を受け取り以下の処理を遂行している。
Figure 0007182031000022
Figure 0007182031000023
(20)式が2×2d軸電流制御器Gd(s)331dによるd軸側処理を、(21)式が2×2q軸電流制御器Gq(s)331qによるq軸側処理を遂行している。q軸側処理は、d軸側処理と原理的に同一であるので、以下では、d軸側処理を中心に説明する。
(20a)に示された処理は、右側から処理が進められる(図6参照)。d軸電流偏差に作用するd軸モード分割行列の逆行列Td-1の働きは、(12b)式の第1式に示した処理と同様であり、2×1ベクトルとしてのd軸電流偏差をd軸高速モード電流偏差、d軸低速モード電流偏差へ変換することである。本実施例では、請求項2の発明に従い、第1巻線のd軸電流と第2巻線のd軸電流を、第1巻線のd軸電流指令値と第2巻線のd軸電流指令値とともに、モード分割処理を行なっている。
d軸高速モード電流偏差、d軸低速モード電流偏差に作用するGdfs(s)は、2×2行列のd軸モード電流制御器である。(12a)式、(13a)式が示すように、d軸高速モード電流、d軸低速モード電流は互いに非干渉の関係にあるので、2×2d軸モード電流制御器Gdfs(s)は、対角要素のみの制御器となる。すなわち、
Figure 0007182031000024
上式におけるGdf(s)、Gds(s)はd軸高速モード電流、d軸低速モード電流を制御するためのモード電流制御器であり、スカラである。スカラ電流制御器としては、(12a)式、(13a)式より理解されるように、当業者が周知のPI制御器を無修正で利用できる。
2×2d軸モード電流制御器Gdfs(s)の出力信号(d軸高速モード電圧指令値、d軸低速モード電圧指令値)は、原理式たる(12b)式、(13b)式の第2式に基づき、第1巻線のd軸電圧指令値、第2巻線の電圧指令値へ変換される(図6参照)。(20a)式および図6では、第1、第2巻線の本電圧指令値を2×1ベクトルとして、「vd*」として表現している。
2×2q軸電流制御器331qによるq軸側処理は、上に説明した2×2d軸電流制御器331dによるd軸側処理と同様である。(22)式のd軸モード電流制御器に対応したq軸モード電流制御器は、同じく対角の次式となる。
Figure 0007182031000025
第1、第2巻線のd軸電圧指令値「vd*」、第1、第2巻線のq軸電圧指令値「vq*」が得られたならば、4×4配列変換器Ioを用いて、巻線単位の電圧指令値(すなわち、第1巻線のd軸、q軸電圧指令値、第2巻線のd軸、q軸電圧指令値)「v1*」、「v2*」へ配置変換を行なっている。さらには、(3a)式、(4a)式に準拠して、電気速度に比例
Figure 0007182031000026
v2*を生成している。以上の処理は、図6の通りであるが、これら処理は数式を用い以下のように表現することもできる。
Figure 0007182031000027
Figure 0007182031000028
Figure 0007182031000029
が可能である。この点を考慮し、図6では、非干渉化信号による加算処理を破線で示している。
以上の説明よりすでに明らかなように、図6の実施例は、請求項1の発明に直接的に従い、「2個の三相巻線に流れる該固定子電流を、d軸高速時定数、d軸低速時定数、q軸高速時定数、q軸低速時定数で各々動特性的に特徴づけられるd軸高速モード電流、d軸低速モード電流、q軸高速モード電流、q軸低速モード電流にモード分割し、固定子電流をフィードバック制御するように4×4電流制御器を、ひいては電流制御装置を構成した」ものとなっている。
2×2d軸電流制御器Gd(s)331d、2×2q軸電流制御器Gq(s)331qは、各々、(20b)式、(21b)式に定義した通りである。これら2×2d軸電流制御器、2×2q軸電流制御器は、実施例1のように、順次の行列・ベクトル演算を通じて個別的に遂行することも、代わって、一体的に遂行することもできる。一体遂行には、例えば、モード分割行列、この逆行列、2×2モード電流制御器を伴う演算を以下のように一体化すればよい。
Figure 0007182031000030
Figure 0007182031000031
(25)式、(26)式の右辺における4種のスカラ制御器は、d軸、q軸の高速、低速モード電流を制御するためのスカラのモード電流制御器である((22)式、(23)式参照)。モード電流制御器の存在は、モード分割と数学的に等価な処理を行なうことを意味している。
また、4×4電流制御器の入力端側の配列変換器Ioとモード分割行列の逆行列Td-1、Tq-1を一体化することも可能である。本一体化は、以下のように記述される。
Figure 0007182031000032
また、4×4電流制御器の出力端側の配列変換器Ioとモード分割行列Td、Tqを一体化することも可能である。本一体化は、以下のように記述される。
Figure 0007182031000033
Figure 0007182031000034
による処理の直後に加算するようにした((24)式参照)。これに代わって、出力端側の配列変換器Ioによる処理の直前に加算するようにした。この変更は、以下のように記述される。
Figure 0007182031000035
請求項1の発明における「モード分割と数学的に等価な処理」とは、実施例2~5に示したような処理を含んでいると同時に、実施例2~5の例に限定されるものではない。この点を指摘しておく。
本発明は、バッテリ電気自動車、燃料電池電気自動車、ハイブリッド電気自動車の主駆動電動機、家電用高速電動機などに代表される広範囲にわたり効率駆動を要求される用途での二重同期電動機、対故障性、機能安全性を要求される用途での二重同期電動機の駆動システムに好適である。
1 二重同期電動機
11 二重同期電動機の回転子
121 二重同期電動機の固定子の第1巻線
122 二重同期電動機の固定子の第2巻線
2 電力変換装置
21 電力変換器
22 電流検出器
3 電流制御装置
311 位相検出器
312 速度検出器
32 信号変換部
321a 三相二相変換器
321b 二相三相変換器
322a ベクトル回転器
322b ベクトル回転器
33 4×4電流制御器
330 配列変換器
331d 2×2d軸電流制御器
331q 2×2q軸電流制御器
332 速度比例形非干渉化器

Claims (2)

  1. 永久磁石を有する回転子と第1三相巻線及び第2三相巻線の2個の三相巻線を有する固定子とからなる永久磁石同期形電動機と、
    2個の三相巻線に固定子電流を同時に供給できる電力変換装置と、
    電力変換装置を介して、2個の三相巻線に流れる固定子電流をフィードバック制御する電流制御装置と
    を備える永久磁石同期形電動機駆動システムであって、
    該回転子の永久磁石のN極の位相をd軸の位相とし、d軸に対してπ/2[rad]の位相進みにq軸をもつ2軸直交座標系をdq同期座標系とするとき、
    該永久磁石同期形電動機に、抵抗、d軸自己インダクタンス、q軸自己インダクタンスの少なくとも1つに関し、第1三相巻線と第2三相巻線とで異なる値を持もたせ、
    2個の三相巻線に流れる該固定子電流を、d軸高速時定数、d軸低速時定数、q軸高速時定数、q軸低速時定数により各々動特性的に特徴づけられるd軸高速モード電流、d軸低速モード電流、q軸高速モード電流、q軸低速モード電流にモード分割し、あるいは2個の三相巻線に流れる該固定子電流に対しモード分割と数学的に等価な処理であり行列演算の一体化処理、加算の順序変更に相当する処理を行ない、該固定子電流をフィードバック制御するように該電流制御装置を構成した
    ことを特徴とする永久磁石同期形電動機駆動システム。
  2. 2個の三相巻線に流れる該固定子電流をフィードバック制御するための電流指令値とともに、該固定子電流に対し該モード分割あるいは該モード分割と数学的に等価な処理であり行列演算の一体化処理、加算の順序変更に相当する処理を行なうようにしたことを特徴とする請求項1記載の永久磁石同期形電動機駆動システム。
JP2017167885A 2017-08-15 2017-08-15 二重三相巻線永久磁石同期形電動機の駆動システム Active JP7182031B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017167885A JP7182031B2 (ja) 2017-08-15 2017-08-15 二重三相巻線永久磁石同期形電動機の駆動システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017167885A JP7182031B2 (ja) 2017-08-15 2017-08-15 二重三相巻線永久磁石同期形電動機の駆動システム

Publications (2)

Publication Number Publication Date
JP2019037111A JP2019037111A (ja) 2019-03-07
JP7182031B2 true JP7182031B2 (ja) 2022-12-02

Family

ID=65637991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017167885A Active JP7182031B2 (ja) 2017-08-15 2017-08-15 二重三相巻線永久磁石同期形電動機の駆動システム

Country Status (1)

Country Link
JP (1) JP7182031B2 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000041392A (ja) 1998-07-23 2000-02-08 Denso Corp 自動車用電動駆動装置
JP2003153585A (ja) 2001-11-06 2003-05-23 Mitsubishi Electric Corp 多重巻線電動機の制御装置
JP2013187967A (ja) 2012-03-07 2013-09-19 Mitsubishi Electric Corp 多重巻線モータの駆動装置
JP2014138494A (ja) 2013-01-17 2014-07-28 Denso Corp 多重巻線回転機の制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000041392A (ja) 1998-07-23 2000-02-08 Denso Corp 自動車用電動駆動装置
JP2003153585A (ja) 2001-11-06 2003-05-23 Mitsubishi Electric Corp 多重巻線電動機の制御装置
JP2013187967A (ja) 2012-03-07 2013-09-19 Mitsubishi Electric Corp 多重巻線モータの駆動装置
JP2014138494A (ja) 2013-01-17 2014-07-28 Denso Corp 多重巻線回転機の制御装置
US20140312809A1 (en) 2013-01-17 2014-10-23 Denso Corporation Apparatus for controlling a multi-winding rotary machine

Also Published As

Publication number Publication date
JP2019037111A (ja) 2019-03-07

Similar Documents

Publication Publication Date Title
Subotic et al. Overview of fast on‐board integrated battery chargers for electric vehicles based on multiphase machines and power electronics
JP5725047B2 (ja) 多重巻線回転機の制御装置
Bai Electric drive system with BLDC motor
Kundrotas et al. Model of multiphase induction motor
JP6806983B2 (ja) 二重三相巻線永久磁石同期形電動機の駆動システム
Magill et al. A dynamic pole-phase modulation induction machine model
Lu et al. Fault‐tolerant predictive current control with two‐vector modulation for six‐phase permanent magnet synchronous machine drives
Aher et al. Modeling and simulation of five phase induction motor using matlab/simulink
JP6488923B2 (ja) モータ制御装置
JP6893293B2 (ja) 二重三相巻線永久磁石同期形電動機の駆動システム
Atiq et al. Experimental verification of winding switching technique to enhance maximum speed operation of surface mounted permanent magnet machines
WO2019102539A1 (ja) 回転電機制御装置及び電動車両
JP7182031B2 (ja) 二重三相巻線永久磁石同期形電動機の駆動システム
Hadef et al. Vector controlled permanent magnet synchronous motor (PMSM) drive with stator turn fault
JP6944628B2 (ja) 二重三相巻線永久磁石同期形電動機の駆動システム
Tabasian et al. Indirect field‐oriented control of star‐connected three‐phase induction machine drives against single‐phase open‐circuit fault
US11038456B2 (en) Control apparatus for pole-changing rotating electric machine
Kellner et al. Research into the possibility of improving the efficiency and torque ripple of a drive with a five-phase induction motor by changing the control in a fault state
JP6971439B2 (ja) 二重三相巻線永久磁石同期形電動機の数学モデルと同モデルに立脚した模擬・特性解析・制御装置
JP6834073B2 (ja) 多重交流電動機駆動システム
Sreethumol et al. Speed control of BLDC motor drive under DTC scheme using OC with modified integrator
Zhang et al. Control of dual three-phase permanent magnet synchronous motor under open phase fault conditions
Fan et al. Equivalent Inductance-based Flux Observer for Tri-Three-phase PMSM Sensorless Control
Imecs et al. Stator-field-oriented control of the variable-excited synchronous motor: numerical simulation
Njajra et al. A PMDRM decoupling vector control strategy for EVT drive in hybrid vehicles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220908

R150 Certificate of patent or registration of utility model

Ref document number: 7182031

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150