JP7179850B2 - 畳み込みニューラル・ネットワークの完全なカーネルを近似するためのスパース・カーネルの融合 - Google Patents
畳み込みニューラル・ネットワークの完全なカーネルを近似するためのスパース・カーネルの融合 Download PDFInfo
- Publication number
- JP7179850B2 JP7179850B2 JP2020530640A JP2020530640A JP7179850B2 JP 7179850 B2 JP7179850 B2 JP 7179850B2 JP 2020530640 A JP2020530640 A JP 2020530640A JP 2020530640 A JP2020530640 A JP 2020530640A JP 7179850 B2 JP7179850 B2 JP 7179850B2
- Authority
- JP
- Japan
- Prior art keywords
- kernel
- pattern
- sparse
- kernels
- computer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/213—Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods
- G06F18/2134—Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods based on separation criteria, e.g. independent component analysis
- G06F18/21345—Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods based on separation criteria, e.g. independent component analysis enforcing sparsity or involving a domain transformation
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/25—Fusion techniques
- G06F18/253—Fusion techniques of extracted features
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0464—Convolutional networks [CNN, ConvNet]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0495—Quantised networks; Sparse networks; Compressed networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/44—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
- G06V10/443—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components by matching or filtering
- G06V10/449—Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters
- G06V10/451—Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters with interaction between the filter responses, e.g. cortical complex cells
- G06V10/454—Integrating the filters into a hierarchical structure, e.g. convolutional neural networks [CNN]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Data Mining & Analysis (AREA)
- Artificial Intelligence (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Computing Systems (AREA)
- Software Systems (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Mathematical Physics (AREA)
- Computational Linguistics (AREA)
- Biophysics (AREA)
- Multimedia (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biodiversity & Conservation Biology (AREA)
- Databases & Information Systems (AREA)
- Medical Informatics (AREA)
- Image Analysis (AREA)
- Complex Calculations (AREA)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/841,480 US10740659B2 (en) | 2017-12-14 | 2017-12-14 | Fusing sparse kernels to approximate a full kernel of a convolutional neural network |
| US15/841,480 | 2017-12-14 | ||
| PCT/IB2018/059993 WO2019116291A1 (en) | 2017-12-14 | 2018-12-13 | Fusing sparse kernels to approximate a full kernel of a convolutional neural network |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| JP2021507345A JP2021507345A (ja) | 2021-02-22 |
| JP2021507345A5 JP2021507345A5 (enExample) | 2021-07-26 |
| JP7179850B2 true JP7179850B2 (ja) | 2022-11-29 |
Family
ID=66814568
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2020530640A Active JP7179850B2 (ja) | 2017-12-14 | 2018-12-13 | 畳み込みニューラル・ネットワークの完全なカーネルを近似するためのスパース・カーネルの融合 |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US10740659B2 (enExample) |
| JP (1) | JP7179850B2 (enExample) |
| CN (1) | CN111344720A (enExample) |
| DE (1) | DE112018006377T5 (enExample) |
| GB (1) | GB2583623A (enExample) |
| WO (1) | WO2019116291A1 (enExample) |
Families Citing this family (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR102548718B1 (ko) * | 2017-06-07 | 2023-06-28 | 삼성전자주식회사 | 전자 장치 및 그 제어 방법 |
| US12393829B2 (en) * | 2019-07-25 | 2025-08-19 | Samsung Electronics Co., Ltd. | Methods and systems with convolutional neural network (CNN) performance |
| US11144290B2 (en) | 2019-09-13 | 2021-10-12 | Huawei Technologies Co., Ltd. | Method and apparatus for enabling autonomous acceleration of dataflow AI applications |
| US12265911B2 (en) * | 2020-02-06 | 2025-04-01 | Google Llc | Neural network layers with a controlled degree of spatial invariance |
| US20210256385A1 (en) * | 2020-02-14 | 2021-08-19 | Northeastern University | Computer-implemented methods and systems for dnn weight pruning for real-time execution on mobile devices |
| US11379951B2 (en) * | 2020-03-25 | 2022-07-05 | Nintendo Co., Ltd. | Systems and methods for machine learned image conversion |
| US11494875B2 (en) | 2020-03-25 | 2022-11-08 | Nintendo Co., Ltd. | Systems and methods for machine learned image conversion |
| CN113344199B (zh) * | 2021-06-17 | 2024-05-03 | 阿波罗智联(北京)科技有限公司 | 用于训练可分离卷积网络的方法、路侧设备及云控平台 |
| US20230004800A1 (en) * | 2021-07-04 | 2023-01-05 | Numenta, Inc. | Complementary sparsity in processing tensors |
| US20250138820A1 (en) * | 2023-10-26 | 2025-05-01 | Etched.ai, Inc. | Model-specific asic compilation using fused kernel replacement |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2014535118A (ja) | 2011-11-09 | 2014-12-25 | クゥアルコム・インコーポレイテッドQualcomm Incorporated | 無監督ニューラルリプレイ、学習改善、関連付け、およびメモリ転送のための方法および装置:ニューラル構成要素メモリ転送 |
| WO2016197026A1 (en) | 2015-06-05 | 2016-12-08 | Sony Corporation | Full reference image quality assessment based on convolutional neural network |
| US20170103308A1 (en) | 2015-10-08 | 2017-04-13 | International Business Machines Corporation | Acceleration of convolutional neural network training using stochastic perforation |
Family Cites Families (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104077612B (zh) * | 2014-07-15 | 2017-09-22 | 中国科学院合肥物质科学研究院 | 一种基于多特征稀疏表示技术的害虫图像识别方法 |
| US9652817B2 (en) | 2015-03-12 | 2017-05-16 | Samsung Electronics Co., Ltd. | Automated compute kernel fusion, resizing, and interleave |
| CN105046193B (zh) * | 2015-06-05 | 2018-07-10 | 上海大学 | 一种基于融合稀疏表示矩阵的人体动作识别方法 |
| US9972063B2 (en) | 2015-07-30 | 2018-05-15 | International Business Machines Corporation | Pipelined approach to fused kernels for optimization of machine learning workloads on graphical processing units |
| US9904874B2 (en) | 2015-11-05 | 2018-02-27 | Microsoft Technology Licensing, Llc | Hardware-efficient deep convolutional neural networks |
| CN108701210B (zh) | 2016-02-02 | 2021-08-17 | 北京市商汤科技开发有限公司 | 用于cnn网络适配和对象在线追踪的方法和系统 |
| US10181188B2 (en) * | 2016-02-19 | 2019-01-15 | International Business Machines Corporation | Structure-preserving composite model for skin lesion segmentation |
| US10832136B2 (en) | 2016-05-18 | 2020-11-10 | Nec Corporation | Passive pruning of filters in a convolutional neural network |
| CN107330463B (zh) | 2017-06-29 | 2020-12-08 | 南京信息工程大学 | 基于cnn多特征联合和多核稀疏表示的车型识别方法 |
-
2017
- 2017-12-14 US US15/841,480 patent/US10740659B2/en not_active Expired - Fee Related
-
2018
- 2018-12-13 WO PCT/IB2018/059993 patent/WO2019116291A1/en not_active Ceased
- 2018-12-13 GB GB2010475.8A patent/GB2583623A/en not_active Withdrawn
- 2018-12-13 DE DE112018006377.1T patent/DE112018006377T5/de active Pending
- 2018-12-13 JP JP2020530640A patent/JP7179850B2/ja active Active
- 2018-12-13 CN CN201880072812.3A patent/CN111344720A/zh active Pending
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2014535118A (ja) | 2011-11-09 | 2014-12-25 | クゥアルコム・インコーポレイテッドQualcomm Incorporated | 無監督ニューラルリプレイ、学習改善、関連付け、およびメモリ転送のための方法および装置:ニューラル構成要素メモリ転送 |
| WO2016197026A1 (en) | 2015-06-05 | 2016-12-08 | Sony Corporation | Full reference image quality assessment based on convolutional neural network |
| US20170103308A1 (en) | 2015-10-08 | 2017-04-13 | International Business Machines Corporation | Acceleration of convolutional neural network training using stochastic perforation |
Also Published As
| Publication number | Publication date |
|---|---|
| US20190188526A1 (en) | 2019-06-20 |
| GB2583623A (en) | 2020-11-04 |
| CN111344720A (zh) | 2020-06-26 |
| WO2019116291A1 (en) | 2019-06-20 |
| US10740659B2 (en) | 2020-08-11 |
| JP2021507345A (ja) | 2021-02-22 |
| DE112018006377T5 (de) | 2020-08-20 |
| GB202010475D0 (en) | 2020-08-19 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP7179850B2 (ja) | 畳み込みニューラル・ネットワークの完全なカーネルを近似するためのスパース・カーネルの融合 | |
| Li et al. | Cross-modal weighting network for RGB-D salient object detection | |
| EP3612933B1 (en) | Enhancing processing performance of artificial intelligence/machine hardware by data sharing and distribution as well as reuse of data in neuron buffer/line buffer | |
| KR102856911B1 (ko) | 신경망의 기능적 부분망의 동시 훈련 | |
| US12169782B2 (en) | Dynamic precision scaling at epoch granularity in neural networks | |
| JP7513358B2 (ja) | 機械学習モデルを堅牢化するための学習入力のプリプロセッシング | |
| CN108229655A (zh) | 卷积神经网络(cnn)处理方法和设备 | |
| JP2021504837A (ja) | 重み行列への空間的局所性を強化すること、および周波数圧縮をもたらすことを通した、完全接続型/回帰型深層ネットワークの圧縮 | |
| CN107944545A (zh) | 应用于神经网络的计算方法及计算装置 | |
| US11989897B2 (en) | Depth map generation from sparse depth samples in an augmented reality environment | |
| JP7372011B2 (ja) | 深層学習の大規模なモデル・サポート | |
| KR20210014561A (ko) | 다수 컨벌루션 윈도우 중의 이미지 데이터를 추출하는 방법, 장치, 기기 및 컴퓨터 판독 가능한 저장매체 | |
| US10565285B2 (en) | Processor and memory transparent convolutional lowering and auto zero padding for deep neural network implementations | |
| CN111709415A (zh) | 目标检测方法、装置、计算机设备和存储介质 | |
| US10936938B2 (en) | Method for visualizing neural network models | |
| Lu et al. | Enhancing small target traffic sign detection with ML_SAP in YOLOv5s | |
| CN115145391A (zh) | 一种基于ai深度学习的虚拟现实跑步机自适应方法及系统 | |
| US20220036245A1 (en) | EXTRACTING SEQUENCES FROM d-DIMENSIONAL INPUT DATA FOR SEQUENTIAL PROCESSING WITH NEURAL NETWORKS | |
| US12412114B2 (en) | Visualization scheme of noise in a quantum circuit | |
| US20200026963A1 (en) | Reducing computational costs of deep reinforcement learning by gated convolutional neural network | |
| US11562003B2 (en) | Representing search results via a three-dimensional matrix | |
| US12400137B1 (en) | Bidirectional network on a data-flow centric processor | |
| Mi et al. | Semantics recalibration and detail enhancement network for real‐time semantic segmentation | |
| US20240143982A1 (en) | Fused Convolutions for Fast Deep Neural Network | |
| US20250181991A1 (en) | Feature dimensionality reduction for machine learning models |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210518 |
|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210525 |
|
| RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20220502 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220524 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220531 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220818 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20221108 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20221116 |
|
| R150 | Certificate of patent or registration of utility model |
Ref document number: 7179850 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |