CN111344720A - 融合稀疏内核以近似卷积神经网络的完整内核 - Google Patents
融合稀疏内核以近似卷积神经网络的完整内核 Download PDFInfo
- Publication number
- CN111344720A CN111344720A CN201880072812.3A CN201880072812A CN111344720A CN 111344720 A CN111344720 A CN 111344720A CN 201880072812 A CN201880072812 A CN 201880072812A CN 111344720 A CN111344720 A CN 111344720A
- Authority
- CN
- China
- Prior art keywords
- kernel
- complementary
- sparse
- fusion
- computer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/213—Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods
- G06F18/2134—Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods based on separation criteria, e.g. independent component analysis
- G06F18/21345—Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods based on separation criteria, e.g. independent component analysis enforcing sparsity or involving a domain transformation
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/25—Fusion techniques
- G06F18/253—Fusion techniques of extracted features
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0464—Convolutional networks [CNN, ConvNet]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0495—Quantised networks; Sparse networks; Compressed networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/44—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
- G06V10/443—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components by matching or filtering
- G06V10/449—Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters
- G06V10/451—Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters with interaction between the filter responses, e.g. cortical complex cells
- G06V10/454—Integrating the filters into a hierarchical structure, e.g. convolutional neural networks [CNN]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Data Mining & Analysis (AREA)
- Artificial Intelligence (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Computing Systems (AREA)
- Software Systems (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Mathematical Physics (AREA)
- Computational Linguistics (AREA)
- Biophysics (AREA)
- Multimedia (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biodiversity & Conservation Biology (AREA)
- Databases & Information Systems (AREA)
- Medical Informatics (AREA)
- Image Analysis (AREA)
- Complex Calculations (AREA)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/841,480 US10740659B2 (en) | 2017-12-14 | 2017-12-14 | Fusing sparse kernels to approximate a full kernel of a convolutional neural network |
| US15/841,480 | 2017-12-14 | ||
| PCT/IB2018/059993 WO2019116291A1 (en) | 2017-12-14 | 2018-12-13 | Fusing sparse kernels to approximate a full kernel of a convolutional neural network |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN111344720A true CN111344720A (zh) | 2020-06-26 |
Family
ID=66814568
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201880072812.3A Pending CN111344720A (zh) | 2017-12-14 | 2018-12-13 | 融合稀疏内核以近似卷积神经网络的完整内核 |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US10740659B2 (enExample) |
| JP (1) | JP7179850B2 (enExample) |
| CN (1) | CN111344720A (enExample) |
| DE (1) | DE112018006377T5 (enExample) |
| GB (1) | GB2583623A (enExample) |
| WO (1) | WO2019116291A1 (enExample) |
Families Citing this family (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR102548718B1 (ko) * | 2017-06-07 | 2023-06-28 | 삼성전자주식회사 | 전자 장치 및 그 제어 방법 |
| US12393829B2 (en) * | 2019-07-25 | 2025-08-19 | Samsung Electronics Co., Ltd. | Methods and systems with convolutional neural network (CNN) performance |
| US11144290B2 (en) | 2019-09-13 | 2021-10-12 | Huawei Technologies Co., Ltd. | Method and apparatus for enabling autonomous acceleration of dataflow AI applications |
| US12265911B2 (en) * | 2020-02-06 | 2025-04-01 | Google Llc | Neural network layers with a controlled degree of spatial invariance |
| US20210256385A1 (en) * | 2020-02-14 | 2021-08-19 | Northeastern University | Computer-implemented methods and systems for dnn weight pruning for real-time execution on mobile devices |
| US11379951B2 (en) * | 2020-03-25 | 2022-07-05 | Nintendo Co., Ltd. | Systems and methods for machine learned image conversion |
| US11494875B2 (en) | 2020-03-25 | 2022-11-08 | Nintendo Co., Ltd. | Systems and methods for machine learned image conversion |
| CN113344199B (zh) * | 2021-06-17 | 2024-05-03 | 阿波罗智联(北京)科技有限公司 | 用于训练可分离卷积网络的方法、路侧设备及云控平台 |
| US20230004800A1 (en) * | 2021-07-04 | 2023-01-05 | Numenta, Inc. | Complementary sparsity in processing tensors |
| US20250138820A1 (en) * | 2023-10-26 | 2025-05-01 | Etched.ai, Inc. | Model-specific asic compilation using fused kernel replacement |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104077612A (zh) * | 2014-07-15 | 2014-10-01 | 中国科学院合肥物质科学研究院 | 一种基于多特征稀疏表示技术的害虫图像识别方法 |
| CN105046193A (zh) * | 2015-06-05 | 2015-11-11 | 上海大学 | 一种基于融合稀疏表示矩阵的人体动作识别方法 |
| US20170243345A1 (en) * | 2016-02-19 | 2017-08-24 | International Business Machines Corporation | Structure-preserving composite model for skin lesion segmentation |
Family Cites Families (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9424513B2 (en) * | 2011-11-09 | 2016-08-23 | Qualcomm Incorporated | Methods and apparatus for neural component memory transfer of a referenced pattern by including neurons to output a pattern substantially the same as the referenced pattern |
| US9652817B2 (en) | 2015-03-12 | 2017-05-16 | Samsung Electronics Co., Ltd. | Automated compute kernel fusion, resizing, and interleave |
| US9741107B2 (en) * | 2015-06-05 | 2017-08-22 | Sony Corporation | Full reference image quality assessment based on convolutional neural network |
| US9972063B2 (en) | 2015-07-30 | 2018-05-15 | International Business Machines Corporation | Pipelined approach to fused kernels for optimization of machine learning workloads on graphical processing units |
| US10380479B2 (en) | 2015-10-08 | 2019-08-13 | International Business Machines Corporation | Acceleration of convolutional neural network training using stochastic perforation |
| US9904874B2 (en) | 2015-11-05 | 2018-02-27 | Microsoft Technology Licensing, Llc | Hardware-efficient deep convolutional neural networks |
| CN108701210B (zh) | 2016-02-02 | 2021-08-17 | 北京市商汤科技开发有限公司 | 用于cnn网络适配和对象在线追踪的方法和系统 |
| US10832136B2 (en) | 2016-05-18 | 2020-11-10 | Nec Corporation | Passive pruning of filters in a convolutional neural network |
| CN107330463B (zh) | 2017-06-29 | 2020-12-08 | 南京信息工程大学 | 基于cnn多特征联合和多核稀疏表示的车型识别方法 |
-
2017
- 2017-12-14 US US15/841,480 patent/US10740659B2/en not_active Expired - Fee Related
-
2018
- 2018-12-13 WO PCT/IB2018/059993 patent/WO2019116291A1/en not_active Ceased
- 2018-12-13 GB GB2010475.8A patent/GB2583623A/en not_active Withdrawn
- 2018-12-13 DE DE112018006377.1T patent/DE112018006377T5/de active Pending
- 2018-12-13 JP JP2020530640A patent/JP7179850B2/ja active Active
- 2018-12-13 CN CN201880072812.3A patent/CN111344720A/zh active Pending
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104077612A (zh) * | 2014-07-15 | 2014-10-01 | 中国科学院合肥物质科学研究院 | 一种基于多特征稀疏表示技术的害虫图像识别方法 |
| CN105046193A (zh) * | 2015-06-05 | 2015-11-11 | 上海大学 | 一种基于融合稀疏表示矩阵的人体动作识别方法 |
| US20170243345A1 (en) * | 2016-02-19 | 2017-08-24 | International Business Machines Corporation | Structure-preserving composite model for skin lesion segmentation |
Non-Patent Citations (4)
| Title |
|---|
| CHRISTOPH FEICHTENHOFER 等: "Convolutional Two-Stream Network Fusion for Video Action Recognition", ARXIV * |
| KE-KUN HUANG 等: "Learning Kernel Extended Dictionary for Face Recognition", IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS * |
| LINGFENG WANG 等: "Visual Tracking Via Kernel Sparse Representation With Multikernel Fusion", IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY * |
| XUN YANG 等: "Enhancing Person Re-identification in a Self-trained Subspace", ARXIV * |
Also Published As
| Publication number | Publication date |
|---|---|
| US20190188526A1 (en) | 2019-06-20 |
| GB2583623A (en) | 2020-11-04 |
| WO2019116291A1 (en) | 2019-06-20 |
| JP7179850B2 (ja) | 2022-11-29 |
| US10740659B2 (en) | 2020-08-11 |
| JP2021507345A (ja) | 2021-02-22 |
| DE112018006377T5 (de) | 2020-08-20 |
| GB202010475D0 (en) | 2020-08-19 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN111344720A (zh) | 融合稀疏内核以近似卷积神经网络的完整内核 | |
| US11836610B2 (en) | Concurrent training of functional subnetworks of a neural network | |
| JP7451614B2 (ja) | オンチップの計算ネットワーク | |
| CN110503125B (zh) | 利用感受野中的运动进行动作检测 | |
| US12169782B2 (en) | Dynamic precision scaling at epoch granularity in neural networks | |
| US12061990B2 (en) | Static block scheduling in massively parallel software defined hardware systems | |
| WO2020113355A1 (en) | A content adaptive attention model for neural network-based image and video encoders | |
| TWI515668B (zh) | 用於一狀態機中偵測之方法及系統 | |
| US20190114533A1 (en) | Machine learning runtime library for neural network acceleration | |
| CN112990427A (zh) | 域自适应的神经网络实现的装置和方法 | |
| JP2022510782A (ja) | 機械学習モデルの自動生成 | |
| CN114008635B (zh) | 神经网络逐层调试 | |
| US20200110999A1 (en) | Thermodynamic ram technology stack | |
| US11144291B1 (en) | Loop-oriented neural network compilation | |
| JP7372011B2 (ja) | 深層学習の大規模なモデル・サポート | |
| US20210182670A1 (en) | Method and apparatus with training verification of neural network between different frameworks | |
| WO2023185209A1 (zh) | 模型剪枝 | |
| EP3980943A1 (en) | Automatic machine learning policy network for parametric binary neural networks | |
| US20220044107A1 (en) | Optimized sensor fusion in deep learning accelerator with integrated random access memory | |
| CN111914989A (zh) | 神经网络系统及其学习方法、以及迁移学习方法 | |
| JP7507549B2 (ja) | ニューロモーフィック装置、及びニューロモーフィック装置でマルチビットニューロモーフィック演算を処理する方法 | |
| CN116663640A (zh) | 用于剪枝的方法和设备 | |
| CN117581245A (zh) | 用于机器学习的共享数据的加速处理设备和方法 | |
| US11663465B2 (en) | Method of managing task performance in an artificial neural network, and system executing an artificial neural network | |
| CN116508027A (zh) | 利用振荡神经网络的特征识别 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| RJ01 | Rejection of invention patent application after publication | ||
| RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200626 |