DE112018006377T5 - Verschmelzen spärlich besetzter kernels zur approximation eines vollen kernels eines neuronalen faltungsnetzes - Google Patents
Verschmelzen spärlich besetzter kernels zur approximation eines vollen kernels eines neuronalen faltungsnetzes Download PDFInfo
- Publication number
- DE112018006377T5 DE112018006377T5 DE112018006377.1T DE112018006377T DE112018006377T5 DE 112018006377 T5 DE112018006377 T5 DE 112018006377T5 DE 112018006377 T DE112018006377 T DE 112018006377T DE 112018006377 T5 DE112018006377 T5 DE 112018006377T5
- Authority
- DE
- Germany
- Prior art keywords
- kernel
- complementary
- pattern
- computer
- sparse
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/213—Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods
- G06F18/2134—Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods based on separation criteria, e.g. independent component analysis
- G06F18/21345—Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods based on separation criteria, e.g. independent component analysis enforcing sparsity or involving a domain transformation
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/25—Fusion techniques
- G06F18/253—Fusion techniques of extracted features
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0464—Convolutional networks [CNN, ConvNet]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0495—Quantised networks; Sparse networks; Compressed networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/44—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
- G06V10/443—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components by matching or filtering
- G06V10/449—Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters
- G06V10/451—Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters with interaction between the filter responses, e.g. cortical complex cells
- G06V10/454—Integrating the filters into a hierarchical structure, e.g. convolutional neural networks [CNN]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Data Mining & Analysis (AREA)
- Artificial Intelligence (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Computing Systems (AREA)
- Software Systems (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Mathematical Physics (AREA)
- Computational Linguistics (AREA)
- Biophysics (AREA)
- Multimedia (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biodiversity & Conservation Biology (AREA)
- Databases & Information Systems (AREA)
- Medical Informatics (AREA)
- Image Analysis (AREA)
- Complex Calculations (AREA)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/841,480 US10740659B2 (en) | 2017-12-14 | 2017-12-14 | Fusing sparse kernels to approximate a full kernel of a convolutional neural network |
| US15/841,480 | 2017-12-14 | ||
| PCT/IB2018/059993 WO2019116291A1 (en) | 2017-12-14 | 2018-12-13 | Fusing sparse kernels to approximate a full kernel of a convolutional neural network |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| DE112018006377T5 true DE112018006377T5 (de) | 2020-08-20 |
Family
ID=66814568
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| DE112018006377.1T Pending DE112018006377T5 (de) | 2017-12-14 | 2018-12-13 | Verschmelzen spärlich besetzter kernels zur approximation eines vollen kernels eines neuronalen faltungsnetzes |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US10740659B2 (enExample) |
| JP (1) | JP7179850B2 (enExample) |
| CN (1) | CN111344720A (enExample) |
| DE (1) | DE112018006377T5 (enExample) |
| GB (1) | GB2583623A (enExample) |
| WO (1) | WO2019116291A1 (enExample) |
Families Citing this family (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR102548718B1 (ko) * | 2017-06-07 | 2023-06-28 | 삼성전자주식회사 | 전자 장치 및 그 제어 방법 |
| US12393829B2 (en) * | 2019-07-25 | 2025-08-19 | Samsung Electronics Co., Ltd. | Methods and systems with convolutional neural network (CNN) performance |
| US11144290B2 (en) | 2019-09-13 | 2021-10-12 | Huawei Technologies Co., Ltd. | Method and apparatus for enabling autonomous acceleration of dataflow AI applications |
| US12265911B2 (en) * | 2020-02-06 | 2025-04-01 | Google Llc | Neural network layers with a controlled degree of spatial invariance |
| US20210256385A1 (en) * | 2020-02-14 | 2021-08-19 | Northeastern University | Computer-implemented methods and systems for dnn weight pruning for real-time execution on mobile devices |
| US11379951B2 (en) * | 2020-03-25 | 2022-07-05 | Nintendo Co., Ltd. | Systems and methods for machine learned image conversion |
| US11494875B2 (en) | 2020-03-25 | 2022-11-08 | Nintendo Co., Ltd. | Systems and methods for machine learned image conversion |
| CN113344199B (zh) * | 2021-06-17 | 2024-05-03 | 阿波罗智联(北京)科技有限公司 | 用于训练可分离卷积网络的方法、路侧设备及云控平台 |
| US20230004800A1 (en) * | 2021-07-04 | 2023-01-05 | Numenta, Inc. | Complementary sparsity in processing tensors |
| US20250138820A1 (en) * | 2023-10-26 | 2025-05-01 | Etched.ai, Inc. | Model-specific asic compilation using fused kernel replacement |
Family Cites Families (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9424513B2 (en) * | 2011-11-09 | 2016-08-23 | Qualcomm Incorporated | Methods and apparatus for neural component memory transfer of a referenced pattern by including neurons to output a pattern substantially the same as the referenced pattern |
| CN104077612B (zh) * | 2014-07-15 | 2017-09-22 | 中国科学院合肥物质科学研究院 | 一种基于多特征稀疏表示技术的害虫图像识别方法 |
| US9652817B2 (en) | 2015-03-12 | 2017-05-16 | Samsung Electronics Co., Ltd. | Automated compute kernel fusion, resizing, and interleave |
| US9741107B2 (en) * | 2015-06-05 | 2017-08-22 | Sony Corporation | Full reference image quality assessment based on convolutional neural network |
| CN105046193B (zh) * | 2015-06-05 | 2018-07-10 | 上海大学 | 一种基于融合稀疏表示矩阵的人体动作识别方法 |
| US9972063B2 (en) | 2015-07-30 | 2018-05-15 | International Business Machines Corporation | Pipelined approach to fused kernels for optimization of machine learning workloads on graphical processing units |
| US10380479B2 (en) | 2015-10-08 | 2019-08-13 | International Business Machines Corporation | Acceleration of convolutional neural network training using stochastic perforation |
| US9904874B2 (en) | 2015-11-05 | 2018-02-27 | Microsoft Technology Licensing, Llc | Hardware-efficient deep convolutional neural networks |
| CN108701210B (zh) | 2016-02-02 | 2021-08-17 | 北京市商汤科技开发有限公司 | 用于cnn网络适配和对象在线追踪的方法和系统 |
| US10181188B2 (en) * | 2016-02-19 | 2019-01-15 | International Business Machines Corporation | Structure-preserving composite model for skin lesion segmentation |
| US10832136B2 (en) | 2016-05-18 | 2020-11-10 | Nec Corporation | Passive pruning of filters in a convolutional neural network |
| CN107330463B (zh) | 2017-06-29 | 2020-12-08 | 南京信息工程大学 | 基于cnn多特征联合和多核稀疏表示的车型识别方法 |
-
2017
- 2017-12-14 US US15/841,480 patent/US10740659B2/en not_active Expired - Fee Related
-
2018
- 2018-12-13 WO PCT/IB2018/059993 patent/WO2019116291A1/en not_active Ceased
- 2018-12-13 GB GB2010475.8A patent/GB2583623A/en not_active Withdrawn
- 2018-12-13 DE DE112018006377.1T patent/DE112018006377T5/de active Pending
- 2018-12-13 JP JP2020530640A patent/JP7179850B2/ja active Active
- 2018-12-13 CN CN201880072812.3A patent/CN111344720A/zh active Pending
Also Published As
| Publication number | Publication date |
|---|---|
| US20190188526A1 (en) | 2019-06-20 |
| GB2583623A (en) | 2020-11-04 |
| CN111344720A (zh) | 2020-06-26 |
| WO2019116291A1 (en) | 2019-06-20 |
| JP7179850B2 (ja) | 2022-11-29 |
| US10740659B2 (en) | 2020-08-11 |
| JP2021507345A (ja) | 2021-02-22 |
| GB202010475D0 (en) | 2020-08-19 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| DE112018006377T5 (de) | Verschmelzen spärlich besetzter kernels zur approximation eines vollen kernels eines neuronalen faltungsnetzes | |
| DE69217047T2 (de) | Verbesserungen in neuronalnetzen | |
| DE19581638C2 (de) | Rechenvorrichtung mit einem Mikroprozessor, einem neuralen Netz-Koprozessor und einer DMA-Steuervorrichtung | |
| DE112018004693T5 (de) | Verbessern der effizienz eines neuronalen netzes | |
| DE102018111905A1 (de) | Domänenspezifische Sprache zur Erzeugung rekurrenter neuronaler Netzarchitekturen | |
| DE102020002964A1 (de) | Verwenden eines neuronalen Netzwerks mit einer Zwei-Strom Encoder-Architektur zur Erzeugung digitaler Kompositbilder | |
| DE102019130702A1 (de) | Stilbasierte architektur für generative neuronale netzwerke | |
| DE102018126342A1 (de) | Transformieren von faltenden neuronalen netzen zum lernen von visuellen sequenzen | |
| DE102019007196A1 (de) | Identifizieren von Zielobjekten unter Nutzung der skalierungsdiversen Segmentierung dienender neuronaler Netzwerke | |
| DE102020215942A1 (de) | System und verfahren für unüberwachte domänenanpassung mit mischungstraining | |
| DE202016008658U1 (de) | Bildklassifikationsneuronalnetze | |
| DE112021002867T5 (de) | Defektdetektion für eine leiterplattenbaugruppe | |
| DE112019003326T5 (de) | Speichererweiterte neuronale netzwerkarchitekturen eines codierers-decodierers | |
| DE102021107510A1 (de) | Training eines neuronalen netzwerks unter speicherbeschränkung | |
| DE112020003105T5 (de) | Schicht für schicht-debugging von neuronalen netzwerken | |
| DE112019004391T5 (de) | Grossmodellunterstützung für deep learning | |
| DE102021124264A1 (de) | Erzeugung von synthetischen Systemfehlern | |
| DE112019000676T5 (de) | Zentraler scheduler und anweisungszuteiler für einen neuronalen inferenzprozessor | |
| DE102017005964A1 (de) | Techniken zum Auswählen von Objekten in Bildern | |
| DE112021006273T5 (de) | Automatische beschreibung und entnahme von tabellendaten im portable document format unter verwendung von neuronalen graphennetzen | |
| DE102023120640A1 (de) | Gestaltete glyphen vermittels generativer ki | |
| DE112021003003T5 (de) | Kontinuierliches lernen mit querverbindungen | |
| DE112020005732T5 (de) | Erzeugen von trainingsdaten zur objekterkennung | |
| DE112021000308T5 (de) | Graphenfaltungsnetze für video-grounding | |
| DE112021002868T5 (de) | Erzeugung von rich descriptor framework zu text unter verwendung vongraphen und strukturellen neuronalen codierern |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| R012 | Request for examination validly filed | ||
| R084 | Declaration of willingness to licence |