JP7179311B2 - LAMINATED ELECTROLYTE MEMBRANE, METHOD FOR MANUFACTURING SAME ELECTROLYTE MEMBRANE, AND FUEL CELL - Google Patents

LAMINATED ELECTROLYTE MEMBRANE, METHOD FOR MANUFACTURING SAME ELECTROLYTE MEMBRANE, AND FUEL CELL Download PDF

Info

Publication number
JP7179311B2
JP7179311B2 JP2018142406A JP2018142406A JP7179311B2 JP 7179311 B2 JP7179311 B2 JP 7179311B2 JP 2018142406 A JP2018142406 A JP 2018142406A JP 2018142406 A JP2018142406 A JP 2018142406A JP 7179311 B2 JP7179311 B2 JP 7179311B2
Authority
JP
Japan
Prior art keywords
electrolyte membrane
proton
laminated
conducting polymer
synthetic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018142406A
Other languages
Japanese (ja)
Other versions
JP2020021549A (en
Inventor
和哉 山崎
仁 石本
祐助 高田
済徳 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2018142406A priority Critical patent/JP7179311B2/en
Publication of JP2020021549A publication Critical patent/JP2020021549A/en
Application granted granted Critical
Publication of JP7179311B2 publication Critical patent/JP7179311B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本開示は、燃料電池の電解質層として用いられるプロトン伝導性を有する電解質膜に関する。 TECHNICAL FIELD The present disclosure relates to an electrolyte membrane having proton conductivity used as an electrolyte layer of a fuel cell.

燃料電池は、燃料と酸化剤との電気化学反応により発電し、水を生成するクリーンな発電装置である。燃料電池は、例えば、プロトン伝導性を有する電解質膜と、電解質膜を挟むように配置された2つの触媒層と、各触媒層をそれぞれ介して電解質膜を挟むように配置された2つのガス拡散層と、各ガス拡散層をそれぞれ介して電解質膜を挟むように配置された2つのセパレータとを備える。プロトン伝導性を有する電解質膜としては、多くの高分子電解質膜が提案されている(非特許文献1~3)。 A fuel cell is a clean power generation device that generates electricity through an electrochemical reaction between a fuel and an oxidant to produce water. A fuel cell comprises, for example, an electrolyte membrane having proton conductivity, two catalyst layers arranged to sandwich the electrolyte membrane, and two gas diffusion layers arranged to sandwich the electrolyte membrane with each catalyst layer interposed therebetween. and two separators arranged to sandwich an electrolyte membrane with each gas diffusion layer interposed therebetween. Many polymer electrolyte membranes have been proposed as electrolyte membranes having proton conductivity (Non-Patent Documents 1 to 3).

Applied Energy, 88, 981-1007 (2011)Applied Energy, 88, 981-1007 (2011) J. Hydro. Eng., 38, 4901-4934 (2013)J. Hydro. Eng., 38, 4901-4934 (2013) J. ECS., 164, F387-F399 (2017)J. ECS., 164, F387-F399 (2017)

プロトン伝導性を有する電解質膜は、プロトン輸送とガス遮断の役割を担っている。プロトン伝導性を向上させる観点からは、電解質膜を薄膜化することが有効である。一方、電解質膜が薄くなると、電解質膜の機械的強度が低下し、ガス遮断性も低下する。すなわち、従来の高分子電解質膜は薄膜化に限界がある。 A proton-conducting electrolyte membrane plays a role of proton transport and gas barrier. From the viewpoint of improving proton conductivity, it is effective to make the electrolyte membrane thinner. On the other hand, when the electrolyte membrane becomes thin, the mechanical strength of the electrolyte membrane decreases, and the gas barrier properties also decrease. That is, conventional polymer electrolyte membranes have limitations in thinning.

本開示の一側面は、第1プロトン伝導性高分子と合成樹脂とを含む第1電解質膜と、第2プロトン伝導性高分子を含み、前記第1電解質膜と一体化された第2電解質膜と、を備え、前記合成樹脂は、縮合性樹脂である、積層電解質膜に関する。 One aspect of the present disclosure is a first electrolyte membrane that includes a first proton-conducting polymer and a synthetic resin, and a second electrolyte membrane that includes a second proton-conducting polymer and is integrated with the first electrolyte membrane. and wherein the synthetic resin is a condensable resin.

本開示の別の側面は、第1プロトン伝導性高分子と合成樹脂とを含む第1電解質膜と、第2プロトン伝導性高分子を含み、前記第1電解質膜と一体化された第2電解質膜と、を備え、前記合成樹脂は、ポリビニルアセタール樹脂、ポリイミド、フェノールホルムアルデヒド樹脂、メラミンホルムアルデヒド樹脂、尿素樹脂およびポリアミドよりなる群から選択される少なくとも1種である、積層電解質膜に関する。 Another aspect of the present disclosure is a first electrolyte membrane that includes a first proton-conducting polymer and a synthetic resin, and a second electrolyte that includes a second proton-conducting polymer and is integrated with the first electrolyte membrane. a membrane, wherein the synthetic resin is at least one selected from the group consisting of polyvinyl acetal resin, polyimide, phenol formaldehyde resin, melamine formaldehyde resin, urea resin and polyamide.

本開示の更に別の面は、上記積層電解質膜と、前記積層電解質膜を両側から挟む一対の触媒層と、を備える燃料電池に関する。 Yet another aspect of the present disclosure relates to a fuel cell comprising the laminated electrolyte membrane and a pair of catalyst layers sandwiching the laminated electrolyte membrane from both sides.

本開示によれば、薄く、かつ機械的強度とガス遮断性に優れた積層電解質膜を得ることができる。 According to the present disclosure, it is possible to obtain a laminated electrolyte membrane that is thin and has excellent mechanical strength and gas barrier properties.

従来の電解質膜(a)と、本開示の一実施形態に係る積層電解質膜(b)とを対比して示す概念図である。FIG. 2 is a conceptual diagram showing a comparison between a conventional electrolyte membrane (a) and a laminated electrolyte membrane (b) according to an embodiment of the present disclosure; 本開示の一実施形態に係る燃料電池の単セルの構造を示す断面模式図である。1 is a cross-sectional schematic diagram showing the structure of a single cell of a fuel cell according to an embodiment of the present disclosure; FIG.

本開示の実施形態に係る積層電解質膜は、第1プロトン伝導性高分子と合成樹脂とを含む第1電解質膜と、第2プロトン伝導性高分子を含み、第1電解質膜と一体化された第2電解質膜とを備える。ここで、積層電解質膜は、以下の条件A~Cから選ばれる少なくとも1つの条件を満たす。 A laminated electrolyte membrane according to an embodiment of the present disclosure includes a first electrolyte membrane containing a first proton-conducting polymer and a synthetic resin, and a second proton-conducting polymer integrated with the first electrolyte membrane. and a second electrolyte membrane. Here, the laminated electrolyte membrane satisfies at least one condition selected from conditions A to C below.

条件Aは、合成樹脂が縮合性樹脂であるという条件である。縮合性樹脂とは、その前駆体が重縮合することにより得られる樹脂である。合成樹脂(縮合性樹脂)の前駆体は、例えば溶液中で、縮合または開環して合成樹脂を生成する。ここでは、合成樹脂の前駆体は、例えば、第1プロトン伝導性高分子を含む溶液に溶解し、かつ溶液中で縮合または開環して合成樹脂を生成し得るものであればよい。このような合成樹脂は、液相中で第1プロトン伝導性高分子と十分に混じり合い、複合化されるため、第1プロトン伝導性高分子を分子レベルで補強し得る。合成樹脂は、架橋構造を有してもよい。 Condition A is a condition that the synthetic resin is a condensable resin. A condensable resin is a resin obtained by polycondensation of its precursor. Synthetic resin (condensable resin) precursors are condensed or ring-opened, for example, in a solution to produce a synthetic resin. Here, the precursor of the synthetic resin may be, for example, one that can be dissolved in the solution containing the first proton-conducting polymer and condensed or ring-opened in the solution to form a synthetic resin. Since such a synthetic resin is sufficiently mixed with the first proton-conducting polymer in the liquid phase to form a composite, it can reinforce the first proton-conducting polymer at the molecular level. The synthetic resin may have a crosslinked structure.

条件Bは、合成樹脂が、ポリビニルアセタール樹脂、ポリイミド、フェノールホルムアルデヒド樹脂、メラミンホルムアルデヒド樹脂、尿素樹脂およびポリアミドよりなる群から選択される少なくとも1種であるという条件である。これらの合成樹脂は、通常、条件Aも同時に満たし得る。中でもポリビニルアセタール樹脂、フェノールホルムアルデヒド樹脂、メラミンホルムアルデヒド樹脂および尿素樹脂は、架橋構造を形成し得るため、第1電解質膜の機械的強度を高めやすい。ポリビニルアセタール樹脂は、アセタール化されたポリビニルアルコールであり、例えばホルマール化されたポリビニルアルコール(いわゆるビニロン(vinylon))であってもよい。 Condition B is that the synthetic resin is at least one selected from the group consisting of polyvinyl acetal resin, polyimide, phenol formaldehyde resin, melamine formaldehyde resin, urea resin and polyamide. These synthetic resins can usually satisfy condition A at the same time. Among them, polyvinyl acetal resin, phenol-formaldehyde resin, melamine-formaldehyde resin, and urea resin can form a crosslinked structure, so that the mechanical strength of the first electrolyte membrane can be easily increased. Polyvinyl acetal resins are acetalized polyvinyl alcohols, and may for example be formalized polyvinyl alcohols (so-called vinylon).

条件Cは、第1電解質膜の引張強度が、第2電解質膜の引張強度よりも大きいという条件である。引張強度は、JIS K7161(2014)に準拠して測定される。第1および第2電解質膜の引張強度の測定方法は、特に限定されないが、電解質膜の厚さ方向に直交する方向についての引張強度で比較すればよい。例えば、積層電解質膜から第1または第2電解質膜を剥がして、それぞれの引張強度を測定し、引張強度で比較してもよい。また、積層電解質膜全体の引張強度(Nt)と、積層電解質膜と同じ厚さを有し、全体が第2プロトン伝導性高分子からなる膜の引張強度(N2)とを比較してもよい。Nt>N2であれば条件Cが満たされている。第1電解質膜の引張強度(n1)と、第2電解質膜の引張強度(n2)とが、1.1≦n1/n2を満たすことが好ましい。 Condition C is a condition that the tensile strength of the first electrolyte membrane is greater than the tensile strength of the second electrolyte membrane. Tensile strength is measured according to JIS K7161 (2014). A method for measuring the tensile strength of the first and second electrolyte membranes is not particularly limited, but the tensile strength in the direction orthogonal to the thickness direction of the electrolyte membranes may be compared. For example, the first or second electrolyte membrane may be peeled off from the laminated electrolyte membrane, the respective tensile strengths may be measured, and the tensile strengths may be compared. Further, the tensile strength (Nt) of the entire laminated electrolyte membrane may be compared with the tensile strength (N2) of a membrane having the same thickness as the laminated electrolyte membrane and entirely composed of the second proton-conducting polymer. . Condition C is satisfied if Nt>N2. It is preferable that the tensile strength (n1) of the first electrolyte membrane and the tensile strength (n2) of the second electrolyte membrane satisfy 1.1≦n1/n2.

プロトン伝導性高分子とは、通常は分子内に複数の酸基を有する高分子である。プロトン伝導性高分子内でのプロトン移動は、例えば、スルホン酸基、リン酸基等を介して行われる。第1プロトン伝導性高分子と第2プロトン伝導性高分子とは、同じプロトン伝導性高分子であってもよく、互いに異なるプロトン伝導性高分子であってもよい。 A proton-conducting polymer is generally a polymer having a plurality of acid groups in its molecule. Proton transfer within the proton-conducting polymer is carried out, for example, via sulfonic acid groups, phosphoric acid groups, and the like. The first proton-conducting polymer and the second proton-conducting polymer may be the same proton-conducting polymer or different proton-conducting polymers.

以下、スルホン酸基を有するプロトン伝導性高分子について記述する。
スルホン酸基を有するプロトン伝導性高分子は、少なくとも2000g/mol以下のEW(Equivalent Weight)値を有する。ここで、EW値とは、スルホン酸基1モル当たりの乾燥状態の高分子のグラム数を表す。例えば、乾燥状態の高分子Wg中にnモルのスルホン酸基が含まれる場合、EW値はW/n比で示される。よって、EW値が小さいほど、スルホン酸基が多く、プロトン伝導性が大きくなる傾向がある。
A proton-conducting polymer having a sulfonic acid group is described below.
A proton-conducting polymer having a sulfonic acid group has an EW (Equivalent Weight) value of at least 2000 g/mol or less. Here, the EW value represents the number of grams of polymer in a dry state per mole of sulfonic acid groups. For example, when the polymer Wg in a dry state contains n moles of sulfonic acid groups, the EW value is indicated by the W/n ratio. Therefore, the smaller the EW value, the larger the number of sulfonic acid groups and the greater the proton conductivity.

EW値は、スルホン酸基の当量(イオン交換容量)から求められる。イオン交換容量(IEC)は、所定の濃度のNaOH溶液を用いてプロトン伝導性高分子試料の滴定を行い、pHが7になるまで中和するのに要するNaOH溶液の量([A]ml)と、そのNaOH溶液の濃度([B]g/ml)から以下の計算式によって求められる。 The EW value is obtained from the equivalent weight of sulfonic acid groups (ion exchange capacity). Ion exchange capacity (IEC) is the amount of NaOH solution ([A] ml) required to titrate a proton-conducting polymer sample with a given concentration of NaOH solution and neutralize it to pH 7. and the concentration of the NaOH solution ([B] g/ml) by the following formula.

イオン交換容量(IEC)(meq/g)=[A]×[B]/試料重量(g) Ion exchange capacity (IEC) (meq/g) = [A] x [B]/sample weight (g)

合成樹脂とは、第1および第2プロトン伝導性高分子以外の人工的もしくは工業的に合成された樹脂である。合成樹脂は、多少のプロトン伝導性を有してもよいが、機械的強度を維持する観点から、合成樹脂のEW値は、少なくとも2000g/molを超えればよい。 A synthetic resin is an artificially or industrially synthesized resin other than the first and second proton-conducting polymers. The synthetic resin may have some proton conductivity, but from the viewpoint of maintaining mechanical strength, the EW value of the synthetic resin should be at least 2000 g/mol.

第1電解質膜における合成樹脂の含有量は、第1電解質膜の機械的強度を十分に大きい値にし得る観点から、例えば、1質量%以上、好ましくは5質量%以上であればよい。一方、第1電解質膜におけるプロトン伝導度を十分に確保する観点から、合成樹脂の含有量は、例えば、60質量%以下であればよい。 The content of the synthetic resin in the first electrolyte membrane may be, for example, 1% by mass or more, preferably 5% by mass or more, from the viewpoint of making the mechanical strength of the first electrolyte membrane sufficiently large. On the other hand, from the viewpoint of ensuring sufficient proton conductivity in the first electrolyte membrane, the content of the synthetic resin may be, for example, 60% by mass or less.

第2電解質膜は、通常、合成樹脂を含まないが、微量の合成樹脂を含んでもよい。そのため、合成樹脂の含有量は第2電解質膜<第1電解質膜の関係性が成り立つ。また、十分なガス遮断性と柔軟性を確保する観点から、第2電解質膜中の99質量%超が第2プロトン伝導性高分子であればよい。この場合、第2電解質膜は、実質的に合成樹脂を含まないといえる。ただし、プロトン伝導性の観点からは、第2電解質膜は合成樹脂を含まないのが好ましい。なお、第1電解質膜と第2電解質膜との境界近傍においては、第1電解質膜から拡散した合成樹脂が第2電解質膜に存在してもよい。 The second electrolyte membrane usually does not contain synthetic resin, but may contain a small amount of synthetic resin. Therefore, the content of the synthetic resin satisfies the relationship of second electrolyte membrane<first electrolyte membrane. From the viewpoint of ensuring sufficient gas barrier properties and flexibility, more than 99 mass % of the second electrolyte membrane should be the second proton-conducting polymer. In this case, it can be said that the second electrolyte membrane does not substantially contain a synthetic resin. However, from the viewpoint of proton conductivity, the second electrolyte membrane preferably does not contain a synthetic resin. In the vicinity of the boundary between the first electrolyte membrane and the second electrolyte membrane, the synthetic resin diffused from the first electrolyte membrane may exist in the second electrolyte membrane.

積層電解質膜は、第1電解質膜を両側から挟む一対の第2電解質膜を具備することが好ましい。この場合、積層電解質膜は、少なくとも1層の第1電解質膜と、少なくとも2層の第2電解質膜とを具備する。このようなサンドイッチ構造によれば、ガス遮断性を更に高めることができる。また、触媒層と第2電解質膜とを接触させる場合、積層電解質膜と触媒層との界面抵抗を抑制しやすくなる。 The laminated electrolyte membrane preferably comprises a pair of second electrolyte membranes sandwiching the first electrolyte membrane from both sides. In this case, the laminated electrolyte membrane comprises at least one first electrolyte membrane and at least two second electrolyte membranes. Such a sandwich structure can further enhance gas barrier properties. Further, when the catalyst layer and the second electrolyte membrane are brought into contact with each other, it becomes easier to suppress the interfacial resistance between the laminated electrolyte membrane and the catalyst layer.

図1(a)は、従来の電解質膜1aの概念図である。従来の電解質膜1aは、実質的に合成樹脂を含まず、プロトン伝導性高分子のみで形成されている。従来の電解質膜1aは、薄膜化すると、機械的強度を維持できず、生産性が低下し、ガス遮断性も低下する。繊維状の補強材(例えばポリテトラフルオロエチレン(PTFE)繊維)を従来の電解質膜1aに添加すれば、電解質膜1aを薄くすることは可能である。しかし、繊維の太さよりも薄い電解質膜1aを得ることは不可能である。また、このような繊維状の補強材は、一般に高価である。更に、従来の電解質膜1aは、含水等により膨潤が生じやすい。 FIG. 1(a) is a conceptual diagram of a conventional electrolyte membrane 1a. A conventional electrolyte membrane 1a does not substantially contain a synthetic resin and is formed only of a proton-conducting polymer. When the conventional electrolyte membrane 1a is thinned, it cannot maintain its mechanical strength, resulting in a decrease in productivity and a decrease in gas barrier properties. By adding a fibrous reinforcing material (eg, polytetrafluoroethylene (PTFE) fiber) to the conventional electrolyte membrane 1a, it is possible to make the electrolyte membrane 1a thinner. However, it is impossible to obtain an electrolyte membrane 1a thinner than the thickness of the fiber. Also, such fibrous reinforcing materials are generally expensive. Furthermore, the conventional electrolyte membrane 1a is likely to swell due to water content or the like.

機械的強度およびガス遮断性に優れ、かつ薄い電解質膜を得る観点からは、合成樹脂を含み、かつ十分に薄い電解質膜(第1電解質膜)と、実質的に合成樹脂を含まず、十分に薄い電解質膜(第2電解質膜)とを積層することが有効である。合成樹脂は、第1電解質膜の補強材として機能する。よって、第1電解質膜は、第2電解質膜よりも機械的強度が優れるため、薄膜化が容易である。ただし、合成樹脂を含む第1電解質膜には、クラック、ピンホール等の欠陥が発生しやすく、単独では、高度なガス遮断性の確保が困難となり得る。一方、第2電解質膜を第1電解質膜に積層すると、第2電解質膜が非常に薄い場合でも、ガス遮断性が大きく向上する。 From the viewpoint of obtaining a thin electrolyte membrane that is excellent in mechanical strength and gas impermeability, an electrolyte membrane (first electrolyte membrane) that includes a synthetic resin and is sufficiently thin and an electrolyte membrane that does not substantially contain a synthetic resin and is sufficiently thin It is effective to laminate a thin electrolyte membrane (second electrolyte membrane). The synthetic resin functions as a reinforcing material for the first electrolyte membrane. Therefore, since the first electrolyte membrane is superior in mechanical strength to the second electrolyte membrane, it can be easily made thin. However, defects such as cracks and pinholes are likely to occur in the first electrolyte membrane containing a synthetic resin, and it may be difficult to ensure a high level of gas barrier property alone. On the other hand, when the second electrolyte membrane is laminated on the first electrolyte membrane, the gas barrier properties are greatly improved even when the second electrolyte membrane is very thin.

図1(b)は、本開示の一実施形態に係る積層電解質膜1の概念図である。図示例の積層電解質膜1は、第1電解質膜11と、第1電解質膜11を両側から挟む一対の第2電解質膜12を具備する。これにより、仮に第1電解質膜11にクラック、ピンホール等の欠陥が生成しても、欠陥の影響が低減され、ガス遮断性が大きく損なわれることがなくなり、含水等による膨潤も抑制される。また、第1電解質膜11の寄与による機械的強度の向上により、積層電解質膜1の生産性も向上する。この場合、機械的強度を維持したまま、積層電解質膜1の厚さを非常に小さくすることができる。また、合成樹脂は、補強材に比べて安価である。 FIG. 1(b) is a conceptual diagram of a laminated electrolyte membrane 1 according to an embodiment of the present disclosure. The laminated electrolyte membrane 1 of the illustrated example includes a first electrolyte membrane 11 and a pair of second electrolyte membranes 12 sandwiching the first electrolyte membrane 11 from both sides. As a result, even if defects such as cracks and pinholes are generated in the first electrolyte membrane 11, the effects of the defects are reduced, the gas barrier property is not greatly impaired, and swelling due to water absorption is suppressed. Moreover, the productivity of the laminated electrolyte membrane 1 is also improved due to the improvement in mechanical strength due to the contribution of the first electrolyte membrane 11 . In this case, the thickness of the laminated electrolyte membrane 1 can be made very small while maintaining the mechanical strength. In addition, synthetic resins are less expensive than reinforcing materials.

第1プロトン伝導性高分子および第2プロトン伝導性高分子の少なくとも一方には、フッ素系高分子および炭化水素系高分子よりなる群から選択される少なくとも1種を用い得る。フッ素系高分子および炭化水素系高分子は、いずれも優れたプロトン伝導性を有する。 At least one selected from the group consisting of fluorine-based polymers and hydrocarbon-based polymers can be used for at least one of the first proton-conducting polymer and the second proton-conducting polymer. Both fluorine-based polymers and hydrocarbon-based polymers have excellent proton conductivity.

プロトン伝導性高分子のうち、フッ素系高分子は、フルオロハイドロカーボンスルホン酸、パーフルオロカーボンスルホン酸などであり得る。パーフルオロカーボンスルホン酸は、例えば、テトラフルオロエチレン骨格とスルホン酸基を有するパーフルオロ側鎖とを有する。このようなパーフルオロカーボンスルホン酸として、例えばテトラフルオロエチレンとパーフルオロビニルモノマーとの非架橋共重合体が挙げられる。パーフルオロビニルモノマーは、例えばビニルエーテルであればよく、中でも(2-スルホエトキシ)プロピルビニルエーテルが好ましい。第1プロトン伝導性高分子がフッ素系高分子である場合、第2プロトン伝導性高分子もフッ素系高分子であることが好ましい。パーフルオロカーボンスルホン酸は、例えば下記の一般式(A): Among proton-conducting polymers, fluorine-based polymers can be fluorohydrocarbonsulfonic acids, perfluorocarbonsulfonic acids, and the like. Perfluorocarbon sulfonic acid has, for example, a tetrafluoroethylene skeleton and a perfluoro side chain having a sulfonic acid group. Examples of such perfluorocarbon sulfonic acids include non-crosslinked copolymers of tetrafluoroethylene and perfluorovinyl monomers. The perfluorovinyl monomer may be, for example, a vinyl ether, preferably (2-sulfoethoxy)propyl vinyl ether. When the first proton-conducting polymer is a fluoropolymer, the second proton-conducting polymer is also preferably a fluoropolymer. Perfluorocarbon sulfonic acids are, for example, the following general formula (A):

Figure 0007179311000001
Figure 0007179311000001

で示される。ここで、x、y、mおよびnは、それぞれ、例えばx=1.5~14、y=500~1500、m=0~3およびn=1~5であり得る。 is indicated by Here, x, y, m and n can be, for example, x=1.5-14, y=500-1500, m=0-3 and n=1-5, respectively.

プロトン伝導性高分子のうち、炭化水素系高分子は、例えば、ベンゼン環のような芳香環が直鎖状に結合した骨格を具備する。芳香環の少なくとも一部は、スルホン酸基、スルホアルキル基等によりスルホン化されている。具体的には、炭化水素系高分子は、例えば、ポリフェニルスルホン骨格、ポリエーテルエーテルケトン骨格、ポリイミド骨格、ポリエーテルスルホン骨格、ポリエーテルイミド骨格、ポリスルホン骨格、ポリスチレン骨格、ポリアリーレンエーテルスルホンケトン骨格などを有し、骨格に含まれる芳香環がスルホン化された構造を有する。第1プロトン伝導性高分子が炭化水素系高分子である場合、第2プロトン伝導性高分子も炭化水素系高分子であることが好ましい。 Among proton-conducting polymers, hydrocarbon-based polymers have, for example, a skeleton in which aromatic rings such as benzene rings are linked in a straight chain. At least part of the aromatic ring is sulfonated with a sulfonic acid group, a sulfoalkyl group, or the like. Specifically, the hydrocarbon-based polymer includes, for example, a polyphenylsulfone skeleton, a polyetheretherketone skeleton, a polyimide skeleton, a polyethersulfone skeleton, a polyetherimide skeleton, a polysulfone skeleton, a polystyrene skeleton, and a polyaryleneethersulfoneketone skeleton. etc., and has a structure in which the aromatic ring contained in the skeleton is sulfonated. When the first proton-conducting polymer is a hydrocarbon-based polymer, the second proton-conducting polymer is also preferably a hydrocarbon-based polymer.

第1プロトン伝導性高分子と第2プロトン伝導性高分子とは、同種の骨格を有してもよい。例えば、第1プロトン伝導性高分子がテトラフルオロエチレン骨格を有する場合、第2プロトン伝導性高分子もテトラフルオロエチレン骨格を有することが好ましい。また、第1プロトン伝導性高分子が、例えば、ポリフェニルスルホン骨格、ポリエーテルエーテルケトン骨格、ポリイミド骨格、ポリエーテルスルホン骨格、ポリエーテルイミド骨格、ポリスルホン骨格、ポリスチレン骨格またはポリアリーレンエーテルスルホンケトン骨格を有する場合、第2プロトン伝導性高分子も、それぞれ対応する骨格を有することが好ましい。このように同種の骨格を採用することで、外力、熱膨張等に起因する各電解質膜の寸法変化が同程度になるため、第1電解質膜と第2電解質膜との間の剥離が生じにくい。また、積層電解質膜の挙動が均一になるため、積層電解質膜の耐久性の低下およびプロトン伝導性の低下が抑制される。 The first proton-conducting polymer and the second proton-conducting polymer may have the same skeleton. For example, when the first proton-conducting polymer has a tetrafluoroethylene skeleton, the second proton-conducting polymer preferably also has a tetrafluoroethylene skeleton. Further, the first proton-conducting polymer has, for example, a polyphenylsulfone skeleton, a polyetheretherketone skeleton, a polyimide skeleton, a polyethersulfone skeleton, a polyetherimide skeleton, a polysulfone skeleton, a polystyrene skeleton, or a polyaryleneethersulfoneketone skeleton. If so, the second proton-conducting polymer preferably also has a corresponding skeleton. By adopting the same type of skeleton in this way, the dimensional changes of the electrolyte membranes due to external forces, thermal expansion, etc. are made to the same degree, so that separation between the first electrolyte membrane and the second electrolyte membrane is less likely to occur. . Moreover, since the behavior of the laminated electrolyte membrane becomes uniform, deterioration in the durability and proton conductivity of the laminated electrolyte membrane is suppressed.

第2電解質膜のEW値(EW2)は、第1電解質膜のEW値(EW1)より小さくてもよい。このとき、第2電解質膜は、触媒層と接触させることが好ましい。例えば、積層電解質膜が、第1電解質膜を両側から挟む一対の第2電解質膜を具備する三層構造の場合、一対の第2電解質膜がそれぞれアノードおよびカソードの触媒層と接触する。EW値が小さく、相対的に多くのスルホン酸基を有する第2電解質膜が触媒層と接触すると、より多くのプロトン移動経路を確保でき、プロトン供給律速を抑制できる。なお、より多くのプロトン移動経路が確保される場合、発電の局所的集中が防げられるので、触媒および電解質膜の劣化が抑制されやすい。 The EW value (EW2) of the second electrolyte membrane may be smaller than the EW value (EW1) of the first electrolyte membrane. At this time, the second electrolyte membrane is preferably brought into contact with the catalyst layer. For example, when the laminated electrolyte membrane has a three-layer structure comprising a pair of second electrolyte membranes sandwiching the first electrolyte membrane from both sides, the pair of second electrolyte membranes are in contact with the anode and cathode catalyst layers, respectively. When the second electrolyte membrane having a small EW value and a relatively large number of sulfonic acid groups is in contact with the catalyst layer, it is possible to secure more proton transfer paths and suppress rate-limiting of proton supply. Note that when more proton transfer paths are secured, local concentration of power generation is prevented, so deterioration of the catalyst and the electrolyte membrane is likely to be suppressed.

EW値が小さくなる(スルホン酸基が多くなる)と、親水性が増加するため、プロトン伝導性高分子による膜形成が困難になり、電解質膜の機械的強度が低下する傾向がある。これに対し、積層電解質膜の場合、第1電解質膜によって機械的強度が確保されるため、第2電解質膜のEW値を十分に小さくすることが可能である。換言すれば、EW値が小さく、機械的強度の小さい第2電解質膜を用いる場合でも、積層電解質膜の全体的な機械的強度を高く維持し得る。 As the EW value decreases (the number of sulfonic acid groups increases), the hydrophilicity increases, making it difficult to form a membrane with the proton-conducting polymer, and the mechanical strength of the electrolyte membrane tends to decrease. In contrast, in the case of the laminated electrolyte membrane, the mechanical strength is ensured by the first electrolyte membrane, so the EW value of the second electrolyte membrane can be made sufficiently small. In other words, even when a second electrolyte membrane having a small EW value and low mechanical strength is used, the overall mechanical strength of the laminated electrolyte membrane can be maintained high.

第2電解質膜のEW値(EW2)の第1電解質膜のEW値(EW1)に対する比:EW2/EW1は、例えば0.2≦EW2/EW1<1を満たし、より好ましくは0.5≦EW2/EW1≦0.9を満たす。また、EW1は、例えば400g/mol<EW1≦2000g/molを満たし、EW2は、例えば400g/mol≦EW1≦1500g/mol満たす。 The ratio of the EW value (EW2) of the second electrolyte membrane to the EW value (EW1) of the first electrolyte membrane: EW2/EW1 satisfies, for example, 0.2≦EW2/EW1<1, more preferably 0.5≦EW2 /EW1≤0.9. EW1 satisfies, for example, 400 g/mol<EW1≦2000 g/mol, and EW2 satisfies, for example, 400 g/mol≦EW1≦1500 g/mol.

積層電解質膜の厚さは、例えば15μm以下とすることができ、10μm以下にまで小さくすることもできる。その際、補強材等を使用しなくても十分な機械的強度を維持できる。一方、合成樹脂を含まない従来の電解質膜の場合、補強材等を使用しなければ厚さを15μm以下にすると、機械的強度を維持することが困難である。 The thickness of the laminated electrolyte membrane can be, for example, 15 μm or less, and can be reduced to 10 μm or less. At that time, sufficient mechanical strength can be maintained without using a reinforcing material or the like. On the other hand, in the case of conventional electrolyte membranes that do not contain synthetic resin, it is difficult to maintain mechanical strength if the thickness is reduced to 15 μm or less unless reinforcing materials are used.

第1電解質膜は、機械的強度を更に高める観点から繊維状の補強材を含んでもよいが、繊維状の補強材を使用すると、第1電解質膜の厚さT1が繊維の太さに規制され得る。よって、第1電解質膜は、繊維状の補強材を含まないことが好ましい。 The first electrolyte membrane may contain a fibrous reinforcing material from the viewpoint of further increasing the mechanical strength. obtain. Therefore, it is preferable that the first electrolyte membrane does not contain a fibrous reinforcing material.

積層電解質膜が、第1電解質膜を両側から挟む一対の第2電解質膜を具備する三層構造の場合、第1電解質膜の厚さ(T1)は、第2電解質膜の厚さ(T2)よりも大きくてもよい。ここで、T2は、一対の第2電解質膜のそれぞれの厚さである。よって、三層構造の積層電解質膜の厚さ(T)は、T=T1+2×T2の式で導かれる。T1≧T2とすることで、積層電解質膜の全体の厚さTを小さくしつつ、機械的強度を効率的に高め得る。T2に対するT1の比:T1/T2は、例えば1.0≦T1/T2≦300を満たし、より好ましくは1.5≦T1/T2≦100を満たす。 When the laminated electrolyte membrane has a three-layer structure comprising a pair of second electrolyte membranes sandwiching the first electrolyte membrane from both sides, the thickness (T1) of the first electrolyte membrane is equal to the thickness (T2) of the second electrolyte membrane. may be greater than Here, T2 is the thickness of each of the pair of second electrolyte membranes. Therefore, the thickness (T) of the laminated electrolyte membrane having a three-layer structure is derived from the equation T=T1+2×T2. By setting T1≧T2, it is possible to efficiently increase the mechanical strength while reducing the thickness T of the entire laminated electrolyte membrane. The ratio of T1 to T2: T1/T2 satisfies, for example, 1.0≦T1/T2≦300, more preferably 1.5≦T1/T2≦100.

なお、T1は、例えば1μm≦T1≦150μmを満たし、T2は、例えば0.5μm≦T2≦50μmを満たす。例えば、積層電解質膜のプロトン伝導性を向上させたい場合、積層電解質膜の厚さTは15μm以下とするのが好ましい。プロトンの移動距離が短くなり、プロトン抵抗が小さくなるからである。一方、積層電解質膜のガスバリア性を重要視する場合、積層電解質膜の厚さTは15μm以下に限定されず、15μmを超える厚さとしてもよい。 T1 satisfies, for example, 1 μm≦T1≦150 μm, and T2 satisfies, for example, 0.5 μm≦T2≦50 μm. For example, when it is desired to improve the proton conductivity of the laminated electrolyte membrane, the thickness T of the laminated electrolyte membrane is preferably 15 μm or less. This is because the distance traveled by protons is shortened and the proton resistance is reduced. On the other hand, when emphasizing the gas barrier property of the laminated electrolyte membrane, the thickness T of the laminated electrolyte membrane is not limited to 15 μm or less, and may exceed 15 μm.

次に、本開示の実施形態に係る燃料電池は、上記積層電解質膜と、積層電解質膜を両側から挟む一対の触媒層とを備える。触媒層は、第3プロトン伝導性高分子を含んでもよい。第3プロトン伝導性高分子にも、フッ素系高分子および炭化水素系高分子よりなる群から選択される少なくとも1種を用い得る。 Next, a fuel cell according to an embodiment of the present disclosure includes the laminated electrolyte membrane and a pair of catalyst layers sandwiching the laminated electrolyte membrane from both sides. The catalyst layer may contain a third proton-conducting polymer. At least one selected from the group consisting of fluorine-based polymers and hydrocarbon-based polymers can also be used as the third proton-conducting polymer.

第3プロトン伝導性高分子は、第1プロトン伝導性高分子および第2プロトン伝導性高分子の少なくとも一方と同じプロトン伝導性高分子であってもよく、第1プロトン伝導性高分子とも第2プロトン伝導性高分子とも異なるプロトン伝導性高分子であってもよい。 The third proton-conducting polymer may be the same proton-conducting polymer as at least one of the first proton-conducting polymer and the second proton-conducting polymer. A proton-conducting polymer different from the proton-conducting polymer may also be used.

積層電解質膜が、第1電解質膜を両側から挟む一対の第2電解質膜を具備する三層構造の場合、第3プロトン伝導性高分子の骨格は、第2プロトン伝導性高分子の骨格と同種であることが好ましい。例えば、第2プロトン伝導性高分子がテトラフルオロエチレン骨格を有する場合、第3プロトン伝導性高分子もテトラフルオロエチレン骨格を有することが好ましい。触媒層に含まれる第3プロトン伝導性高分子と触媒層と接触する第2電解質膜の第2プロトン伝導性高分子とが同種の骨格を有することで、触媒層と積層電解質膜との界面抵抗を低減できる。 When the laminated electrolyte membrane has a three-layer structure comprising a pair of second electrolyte membranes sandwiching the first electrolyte membrane from both sides, the skeleton of the third proton-conducting polymer is the same as that of the second proton-conducting polymer. is preferably For example, when the second proton-conducting polymer has a tetrafluoroethylene skeleton, the third proton-conducting polymer preferably also has a tetrafluoroethylene skeleton. Since the third proton-conducting polymer contained in the catalyst layer and the second proton-conducting polymer of the second electrolyte membrane in contact with the catalyst layer have the same skeleton, the interfacial resistance between the catalyst layer and the laminated electrolyte membrane is reduced. can be reduced.

以下、第1電解質膜を両側から挟む一対の第2電解質膜を具備する三層構造の積層電解質膜の製造方法について、例示的に説明する。 Hereinafter, a method for manufacturing a laminated electrolyte membrane having a three-layer structure including a pair of second electrolyte membranes sandwiching a first electrolyte membrane from both sides will be exemplified.

[1]第1電解質膜の製造
まず、第1プロトン伝導性高分子と、合成樹脂もしくは合成樹脂の前駆体とを含む混合溶液を調製する。混合溶液は、どのような方法で調製してもよい。例えば、第1プロトン伝導性高分子を含む第1溶液と、合成樹脂もしくは合成樹脂の前駆体を含む第2溶液とを調製し、第1溶液と第2溶液とを混合して調製してもよい。混合溶液、第1溶液または第2溶液の溶媒は、いずれも特に限定されないが、取り扱いを容易にする観点から、少なくとも水を含むことが好ましい。第1電解質膜の厚さは、例えば、混合溶液中の第1プロトン伝導性高分子の濃度や合成樹脂もしくはその前駆体の濃度により制御し得る。
[1] Manufacture of First Electrolyte Membrane First, a mixed solution containing a first proton-conducting polymer and a synthetic resin or a precursor of a synthetic resin is prepared. The mixed solution may be prepared by any method. For example, a first solution containing a first proton-conducting polymer and a second solution containing a synthetic resin or a precursor of a synthetic resin may be prepared, and the first solution and the second solution may be mixed to prepare. good. The solvent for the mixed solution, the first solution, or the second solution is not particularly limited, but preferably contains at least water from the viewpoint of facilitating handling. The thickness of the first electrolyte membrane can be controlled by, for example, the concentration of the first proton-conducting polymer and the concentration of the synthetic resin or its precursor in the mixed solution.

以下、代表的な合成樹脂の例について、第1電解質膜の製造方法を更に説明する。以下の合成樹脂は、いずれも溶液中において前駆体が縮合して生成し、または開環を経て生成し得る縮合性樹脂である。 Hereinafter, the method for manufacturing the first electrolyte membrane will be further described with respect to examples of typical synthetic resins. All of the following synthetic resins are condensable resins that can be produced by condensing precursors in a solution or through ring-opening.

(1)ポリビニルアセタール樹脂(ここではビニロン)を用いる場合
まず、第1プロトン伝導性高分子を含む第1溶液を調製する。第1プロトン伝導性高分子としては、例えばパーフルオロカーボンスルホン酸もしくはナフィオン(Nafion(登録商標))を用い得る。第1溶液の溶媒には、アルコールと水との混合溶媒を用い得る。アルコールとしては、例えばプロパノールを用い得る。
(1) When using a polyvinyl acetal resin (here, vinylon) First, a first solution containing a first proton-conducting polymer is prepared. Perfluorocarbon sulfonic acid or Nafion (Nafion (registered trademark)), for example, can be used as the first proton-conducting polymer. A mixed solvent of alcohol and water can be used as the solvent for the first solution. As alcohol, for example propanol can be used.

また、ビニロンの前駆体であるポリビニルアルコール(PVA)を含む第2溶液を調製する。第2溶液の溶媒には、例えば水を用い得る。 Also, a second solution containing polyvinyl alcohol (PVA), which is a precursor of vinylon, is prepared. Water, for example, can be used as the solvent for the second solution.

次に、第1溶液と第2溶液とを混合し、得られた混合溶液を平滑な表面を有する基板上にキャストし、乾燥させて中間膜を形成する。中間膜は、第1プロトン伝導性高分子とPVAとの複合物である。その後、ホルムアルデヒドを含む酸性水溶液に中間膜を浸すことで、PVAがホルマール化(アセタール化)され、架橋構造を有するビニロンが生成する。ホルマール化反応は、脱水縮合反応の一種である。その結果、合成樹脂であるビニロンと第1プロトン伝導性高分子とが複合化された第1電解質膜が得られる。ビニロンは、架橋構造を含むため、機械的強度に優れている。 Next, the first solution and the second solution are mixed, and the obtained mixed solution is cast on a substrate having a smooth surface and dried to form an intermediate film. The intermediate membrane is a composite of the first proton-conducting polymer and PVA. After that, by immersing the intermediate film in an acidic aqueous solution containing formaldehyde, the PVA is formalized (acetalized) to produce vinylon having a crosslinked structure. A formalization reaction is a kind of dehydration condensation reaction. As a result, a first electrolyte membrane is obtained in which vinylon, which is a synthetic resin, and the first proton-conducting polymer are combined. Since vinylon contains a crosslinked structure, it has excellent mechanical strength.

(2)ポリイミドを用いる場合
ポリアミド酸を含む第2溶液を調製し、上記と同様の第1溶液と混合して混合溶液を調製する。ポリアミド酸は、合成樹脂であるポリイミドの前駆体であり、一般的には芳香族ジアミンと芳香族テトラカルボン酸二無水物とを原料に合成される。その後、混合溶液から中間膜を形成し、加熱もしくはイミド化剤を用いて中間膜に含まれるポリアミド酸をイミド化すればよい。これにより、合成樹脂であるポリイミドと第1プロトン伝導性高分子とが複合化された第1電解質膜が得られる。イミド化反応は、ポリアミド酸の脱水縮合反応である。
(2) When polyimide is used A second solution containing polyamic acid is prepared and mixed with the same first solution as above to prepare a mixed solution. Polyamic acid is a precursor of polyimide, which is a synthetic resin, and is generally synthesized using an aromatic diamine and an aromatic tetracarboxylic dianhydride as raw materials. After that, an intermediate film is formed from the mixed solution, and polyamic acid contained in the intermediate film is imidized by heating or using an imidizing agent. As a result, a first electrolyte membrane is obtained in which the polyimide, which is a synthetic resin, and the first proton-conducting polymer are combined. The imidization reaction is a dehydration condensation reaction of polyamic acid.

(3)フェノールホルムアルデヒド樹脂を用いる場合
フェノール化合物を含む第2溶液を調製し、上記と同様の第1溶液と混合して混合溶液を調製する。その後、混合溶液から中間膜を形成し、ホルムアルデヒドを含む酸性水溶液またはアルカリ性水溶液に中間膜を浸すことで、フェノール化合物へのホルムアルデヒドの付加反応(メチロール化)と縮合反応とが進行する。その結果、合成樹脂であるフェノールホルムアルデヒド樹脂と第1プロトン伝導性高分子とが複合化された第1電解質膜が得られる。フェノール樹脂は、三次元的な架橋構造を有する。
(3) When using phenol-formaldehyde resin A second solution containing a phenol compound is prepared and mixed with the same first solution as above to prepare a mixed solution. After that, an intermediate film is formed from the mixed solution, and the intermediate film is immersed in an acidic or alkaline aqueous solution containing formaldehyde, whereby the addition reaction (methylolation) and condensation reaction of formaldehyde to the phenol compound proceed. As a result, a first electrolyte membrane is obtained in which the phenol-formaldehyde resin, which is a synthetic resin, and the first proton-conducting polymer are combined. Phenolic resin has a three-dimensional crosslinked structure.

(4)メラミンホルムアルデヒド樹脂を用いる場合
メラミン化合物を含む第2溶液を調製し、上記と同様の第1溶液と混合して混合溶液を調製する。その後、混合溶液から中間膜を形成し、ホルムアルデヒドを含むアルカリ性水溶液に中間膜を浸すことで、メラミン化合物へのホルムアルデヒドの付加反応(メチロール化)が進行する。その後、中間膜を加熱することで、メチロールメラミンが重縮合反応(メチレン化)して網目状に架橋し、メラミンホルムアルデヒド樹脂が生成する。その結果、合成樹脂であるメラミンホルムアルデヒド樹脂と第1プロトン伝導性高分子とが複合化された第1電解質膜が得られる。
(4) When using melamine formaldehyde resin A second solution containing a melamine compound is prepared and mixed with the same first solution as above to prepare a mixed solution. After that, an intermediate film is formed from the mixed solution, and the intermediate film is immersed in an alkaline aqueous solution containing formaldehyde, whereby the addition reaction (methylolation) of formaldehyde to the melamine compound proceeds. After that, by heating the intermediate film, methylolmelamine undergoes a polycondensation reaction (methylenation) and crosslinks in a network to form a melamine-formaldehyde resin. As a result, a first electrolyte membrane is obtained in which the melamine-formaldehyde resin, which is a synthetic resin, and the first proton-conducting polymer are combined.

(5)尿素樹脂を用いる場合
尿素化合物を含む第2溶液を調製し、上記と同様の第1溶液と混合して混合溶液を調製する。その後、混合溶液から中間膜を形成し、ホルムアルデヒドを含む酸性水溶液またはアルカリ性水溶液に中間膜を浸すことで、尿素化合物へのホルムアルデヒドの付加反応(メチロール化)と重縮合反応(メチレン化)とが進行する。その結果、合成樹脂である尿素樹脂と第1プロトン伝導性高分子とが複合化された第1電解質膜が得られる。
(5) When Urea Resin is Used A second solution containing a urea compound is prepared and mixed with the same first solution as above to prepare a mixed solution. After that, an intermediate film is formed from the mixed solution, and the intermediate film is immersed in an acidic or alkaline aqueous solution containing formaldehyde, whereby the addition reaction of formaldehyde to the urea compound (methylolation) and the polycondensation reaction (methylenation) proceed. do. As a result, a first electrolyte membrane is obtained in which the urea resin, which is a synthetic resin, and the first proton-conducting polymer are combined.

(6)ポリアミドを用いる場合
ポリアミド前駆体を含む第2溶液を調製し、上記と同様の第1溶液と混合して混合溶液を調製する。その後、混合溶液から中間膜を形成し、加熱重合すればポリアミドが生成する。その結果、合成樹脂であるポリアミドと第1プロトン伝導性高分子とが複合化された第1電解質膜が得られる。ポリアミド前駆体としは、水溶性のカプロラクタム、水溶性のAH塩などを用い得る。カプロラクタムは環状化合物であり、開環により重合体を生成する。AH塩とは、ジカルボン酸とジアミンとの当量混合物である。ジカルボン酸には、アジピン酸、セバシン酸等を用い得る。ジアミンには、ジアミノブタン、ヘキサメチレンジアミン等を用い得る。
(6) When Polyamide is Used A second solution containing a polyamide precursor is prepared and mixed with the same first solution as above to prepare a mixed solution. After that, an intermediate film is formed from the mixed solution, and polyamide is produced by heating and polymerizing. As a result, a first electrolyte membrane is obtained in which the polyamide, which is a synthetic resin, and the first proton-conducting polymer are combined. Water-soluble caprolactam, water-soluble AH salt, and the like can be used as the polyamide precursor. Caprolactam is a cyclic compound and forms a polymer upon ring opening. An AH salt is an equivalent mixture of a dicarboxylic acid and a diamine. Dicarboxylic acids such as adipic acid and sebacic acid can be used. Diaminobutane, hexamethylenediamine and the like can be used as the diamine.

[2]第2電解質膜の製造
次に、第1電解質膜の少なくとも一方の面に第2電解質膜を形成し、第1電解質膜と第2電解質膜とを一体化させる。例えば、第2プロトン伝導性高分子を含む第3溶液を調製し、第3溶液を第1電解質膜の少なくとも一方の面にキャストし、乾燥させて、積層電解質膜を形成すればよい。第2プロトン伝導性高分子にも、例えばパーフルオロカーボンスルホン酸を用い得る。第2溶液の溶媒にも、アルコールと水との混合溶媒を用い得る。第2電解質膜の厚さは、例えば、第3溶液中の第2プロトン伝導性高分子の濃度により制御し得る。なお、先に第2電解質膜を形成し、これに積層するように第1電解質膜を形成してもよい。また、中間膜と第2電解質膜との積層膜を形成した後、中間膜を合成樹脂に変化させてもよい。
[2] Manufacture of Second Electrolyte Membrane Next, a second electrolyte membrane is formed on at least one surface of the first electrolyte membrane, and the first electrolyte membrane and the second electrolyte membrane are integrated. For example, a third solution containing the second proton-conducting polymer may be prepared, cast on at least one surface of the first electrolyte membrane, and dried to form a laminated electrolyte membrane. Perfluorocarbonsulfonic acid, for example, can also be used for the second proton-conducting polymer. A mixed solvent of alcohol and water can also be used as the solvent for the second solution. The thickness of the second electrolyte membrane can be controlled, for example, by the concentration of the second proton-conducting polymer in the third solution. Alternatively, the second electrolyte membrane may be formed first, and then the first electrolyte membrane may be formed so as to be laminated thereon. Moreover, after forming a laminated film of the intermediate film and the second electrolyte film, the intermediate film may be changed to a synthetic resin.

以下、本実施形態に係る燃料電池について、例示的に説明する。
燃料電池は、上記積層電解質膜と、積層電解質膜を両側から挟む一対の触媒層とを具備する。一対の触媒層の積層電解質膜とは反対側の主面には、それぞれガス拡散層が配されてもよい。
The fuel cell according to this embodiment will be exemplified below.
A fuel cell comprises the laminated electrolyte membrane and a pair of catalyst layers sandwiching the laminated electrolyte membrane from both sides. A gas diffusion layer may be disposed on each main surface of the pair of catalyst layers opposite to the laminated electrolyte membrane.

図2は、本開示の実施形態に係る燃料電池(単セル)10の構造を示す断面模式図である。通常は、複数の単セル10が積層されてスタックを形成しているが、ここでは1つの単セル10を単独で示す。 FIG. 2 is a cross-sectional schematic diagram showing the structure of a fuel cell (single cell) 10 according to an embodiment of the present disclosure. Usually, a plurality of single cells 10 are stacked to form a stack, but one single cell 10 is shown alone here.

単セル10は、膜電極接合体(MEA)5と、膜電極接合体5を挟むように配置されたアノード側セパレータ6Aおよびカソード側セパレータ6Bとを備える。膜電極接合体5は、積層電解質膜1と、積層電解質膜1の一方の面側に順に配置されたアノード触媒層2Aおよびアノードガス拡散層3Aと、積層電解質膜1の他方の面側に順に配置されたカソード触媒層2Bおよびカソードガス拡散層3Bと、積層電解質膜1の周縁部を挟持する一対のシール部材4とを具備する。アノード側セパレータ6Aのアノードガス拡散層3A側の面には、燃料ガス流路7Aが形成されている。カソード側セパレータ6Bのカソードガス拡散層3B側の面には、酸化剤ガス流路7Bが形成されている。 The unit cell 10 includes a membrane electrode assembly (MEA) 5, and an anode-side separator 6A and a cathode-side separator 6B arranged so as to sandwich the membrane electrode assembly 5 therebetween. The membrane electrode assembly 5 includes a laminated electrolyte membrane 1, an anode catalyst layer 2A and an anode gas diffusion layer 3A arranged in order on one side of the laminated electrolyte membrane 1, and an anode catalyst layer 2A and an anode gas diffusion layer 3A arranged in order on one side of the laminated electrolyte membrane 1, and in order on the other side of the laminated electrolyte membrane 1. It comprises a cathode catalyst layer 2B and a cathode gas diffusion layer 3B which are arranged, and a pair of sealing members 4 which sandwich the peripheral portion of the laminated electrolyte membrane 1. As shown in FIG. A fuel gas channel 7A is formed on the surface of the anode-side separator 6A on the anode gas diffusion layer 3A side. An oxidant gas channel 7B is formed on the surface of the cathode-side separator 6B on the cathode gas diffusion layer 3B side.

各触媒層は、例えば、炭素材料、炭素材料に担持された触媒粒子および第3プロトン伝導性高分子を含む。炭素材料には、導電性を有する材料、例えばカーボンブラック、カーボンナノファイバなどを用い得る。触媒粒子には、白金、コバルト、ルテニウム等の貴金属を用い得る。 Each catalyst layer includes, for example, a carbon material, catalyst particles supported on the carbon material, and a third proton-conducting polymer. Materials having conductivity, such as carbon black and carbon nanofiber, can be used as the carbon material. Noble metals such as platinum, cobalt, and ruthenium may be used for the catalyst particles.

各ガス拡散層は、例えば、導電性を有する撥水層とこれを支持する基材層とを含む。撥水層は、例えば、導電剤と撥水剤とを含む。導電剤としては、カーボンブラックなどが挙げられる。撥水剤としては、ポリテトラフルオロエチレンなどのフッ素樹脂が挙げられる基材層には、カーボンペーパー、カーボンクロスなどが用いられる。また、基材層を有さないガス拡散層を用いてもよい。このようなガス拡散層は、導電剤、フッ素樹脂等を含む混合物をシート状に成形すれば得ることができる。 Each gas diffusion layer includes, for example, a conductive water-repellent layer and a substrate layer that supports it. The water-repellent layer contains, for example, a conductive agent and a water-repellent agent. Examples of conductive agents include carbon black. Examples of water repellents include fluorine resins such as polytetrafluoroethylene. Carbon paper, carbon cloth, and the like are used for the base material layer. Alternatively, a gas diffusion layer without a substrate layer may be used. Such a gas diffusion layer can be obtained by molding a mixture containing a conductive agent, a fluororesin, etc. into a sheet.

各セパレータの材質としては、例えば、炭素材料、金属材料などを用い得る。図2に示すように、各セパレータの一方の面には、複数の凹部または凸部によりガス流路を形成し得る。 As a material for each separator, for example, a carbon material, a metal material, or the like can be used. As shown in FIG. 2, one surface of each separator may have a plurality of recesses or protrusions to form gas flow paths.

以下、本開示を実施例に基づいて、更に詳細に説明する。ただし、本開示は以下の実施例に限定されるものではない。 Hereinafter, the present disclosure will be described in more detail based on examples. However, the present disclosure is not limited to the following examples.

[実施例1]
(1)積層電解質膜の作製
第1溶液として、5質量%Nafion(登録商標)溶液(DE520、1-propanol/2-propanol/HO、EW値1000g/mol、和光純薬(株)製)を使用した。
[Example 1]
(1) Preparation of laminated electrolyte membrane As the first solution, 5% by mass Nafion (registered trademark) solution (DE520, 1-propanol/2-propanol/H 2 O, EW value 1000 g/mol, manufactured by Wako Pure Chemical Industries, Ltd. )It was used.

第2溶液として、ポリビニルアルコール(PVA)水溶液(PVA含有量3.5質量%)を調製した。 As a second solution, a polyvinyl alcohol (PVA) aqueous solution (PVA content: 3.5% by mass) was prepared.

第1溶液と第2溶液とを質量比が95:5になるように混合し、混合液を得た。 The first solution and the second solution were mixed in a mass ratio of 95:5 to obtain a mixed solution.

第3溶液としては、第1溶液と同じものを用いた。 As the third solution, the same solution as the first solution was used.

まず、第3溶液をガラス基板上に膜厚約2μmになるようにキャストし、12時間以上室温で乾燥し、第2電解質膜を形成した。次に、第2電解質膜上に第1溶液と第2溶液の混合液を膜厚約6μmになるようにキャストし、12時間以上室温で乾燥し、中間膜を形成した。最後に、中間膜上に第3溶液を膜厚約2μmになるようにキャストし、12時間以上乾燥し、三層構造の積層膜を形成した。 First, the third solution was cast on a glass substrate to a thickness of about 2 μm and dried at room temperature for 12 hours or more to form a second electrolyte membrane. Next, a mixed solution of the first solution and the second solution was cast on the second electrolyte membrane so as to have a film thickness of about 6 μm and dried at room temperature for 12 hours or longer to form an intermediate membrane. Finally, the third solution was cast on the intermediate film so as to have a film thickness of about 2 μm and dried for 12 hours or more to form a laminated film having a three-layer structure.

次に、積層膜を60℃で3時間、その後、180℃で3時間、熱処理した。その後、HSO、NaSOおよびHCHOを用いて、PVAのホルマール化反応を行い、ビニロン化した。 Next, the laminated film was heat-treated at 60° C. for 3 hours and then at 180° C. for 3 hours. After that, using H 2 SO 4 , Na 2 SO 4 and HCHO, PVA was subjected to a formalization reaction to be vinylonized.

その後、沸騰水で2時間、80℃の1MのH水溶液で2時間、80℃の1MのHSO水溶液で2時間、更に沸騰水で2時間の活性化を行い、厚さ10μmの三層構造の積層電解質膜を完成化した。 After that, it is activated with boiling water for 2 hours, 1 M H 2 O 2 aqueous solution at 80° C. for 2 hours, 1 M H 2 SO 4 aqueous solution at 80° C. for 2 hours, and further boiling water for 2 hours to increase the thickness. A laminated electrolyte membrane with a three-layer structure of 10 μm was completed.

(2)触媒層の作製
カーボンブラック100質量部と、これに担持された触媒粒子(Pt)30質量部とを、適量の水に分散させ、得られた分散液に適量のエタノールを加えた後、パーフルオロカーボンスルホン酸(Nafion(登録商標)、EW値1100g/mol)40質量部を更に添加し、触媒層用の触媒分散液を調製した。
(2) Preparation of catalyst layer 100 parts by mass of carbon black and 30 parts by mass of catalyst particles (Pt) supported thereon are dispersed in an appropriate amount of water, and an appropriate amount of ethanol is added to the resulting dispersion. , and 40 parts by mass of perfluorocarbon sulfonic acid (Nafion (registered trademark), EW value 1100 g/mol) were further added to prepare a catalyst dispersion for the catalyst layer.

次に、2枚のPETシートの平滑面に、スクリーン印刷法を用いて触媒分散液を均一な厚さで塗布し、乾燥して、アノード触媒層およびカソード触媒層(厚さ10μm)をそれぞれ形成した。 Next, the smooth surfaces of the two PET sheets were coated with the catalyst dispersion to a uniform thickness using a screen printing method and dried to form an anode catalyst layer and a cathode catalyst layer (thickness 10 μm), respectively. did.

<単セルの作製>
積層電解質膜の両面に得られた触媒層をそれぞれ転写して、積層電解質膜の一方の面にアノード触媒層を、他方の面にカソード触媒層を形成した。次に、カーボンブラックとポリテトラフルオロエチレンを主成分とする撥水層およびカーボンペーパーを具備する一対のガス拡散層を準備し、各触媒層に接合してアノードおよびカソードを形成した。次に、アノードおよびカソードを囲むように枠状シール部材を配置し、MEAを形成した。次に、燃料ガス流路を有するアノード側セパレータと、酸化剤ガス流路を有するカソード側セパレータとでMEAを挟持し、単セルA1を完成させた。
<Fabrication of single cell>
The obtained catalyst layers were transferred to both surfaces of the laminated electrolyte membrane to form an anode catalyst layer on one side and a cathode catalyst layer on the other side of the laminated electrolyte membrane. Next, a water-repellent layer containing carbon black and polytetrafluoroethylene as main components and a pair of gas diffusion layers comprising carbon paper were prepared and bonded to each catalyst layer to form an anode and a cathode. Next, a frame-shaped sealing member was arranged so as to surround the anode and cathode to form an MEA. Next, the MEA was sandwiched between an anode-side separator having a fuel gas channel and a cathode-side separator having an oxidant gas channel to complete a single cell A1.

<評価>
アノードに露点65℃の水蒸気で加湿された水素ガスを75%の利用率となるように供給し、カソードに露点65℃の水蒸気で加湿された酸素ガスを55%の利用率となるように供給した。セル温度は80℃に設定した。そして、負荷制御装置を用いてアノードおよびカソードの電極面積に対する電流密度を0~約3.0A/cmの間で変化させ、単セルA1のIV特性と最大出力密度とインピーダンス(抵抗)を測定した。
<Evaluation>
Hydrogen gas humidified with water vapor having a dew point of 65° C. was supplied to the anode at a utilization rate of 75%, and oxygen gas humidified with water vapor having a dew point of 65° C. was supplied to the cathode at a utilization rate of 55%. did. The cell temperature was set at 80°C. Then, using a load control device, the current density with respect to the electrode area of the anode and cathode is changed between 0 and about 3.0 A/cm 2 , and the IV characteristics, maximum output density and impedance (resistance) of the single cell A1 are measured. did.

[実施例2]
第1溶液に用いるパーフルオロカーボンスルホン酸として、Nafionの代わりに、6質量%Aquivion(登録商標)溶液(D83-06A、1-propanol/2-propanol/HO、EW値830g/mol、Solvay社製)を用いたこと以外、実施例1と同様にした。そして、実施例1と同様に、厚さ約10μmの三層構造の積層電解質膜を作製し、燃料電池の単セルA2を組み立て、評価した。
[Example 2]
As the perfluorocarbon sulfonic acid used in the first solution, instead of Nafion, 6% by mass Aquivion (registered trademark) solution (D83-06A, 1-propanol/2-propanol/H 2 O, EW value 830 g / mol, Solvay The procedure was the same as in Example 1, except that Then, in the same manner as in Example 1, a laminated electrolyte membrane having a three-layer structure with a thickness of about 10 μm was produced, and a single cell A2 of a fuel cell was assembled and evaluated.

[比較例1]
積層電解質膜の代わりに、厚さ50μmの市販のパーフルオロカーボンスルホン酸膜(NRE212(登録商標)、EW値1100g/mol、デュポン社製)を電解質膜として用いたこと以外、実施例1と同様に、燃料電池の単セルB1を組み立て、評価した。
[Comparative Example 1]
In the same manner as in Example 1, except that a commercially available perfluorocarbon sulfonic acid membrane (NRE212 (registered trademark), EW value 1100 g/mol, manufactured by DuPont) having a thickness of 50 μm was used as the electrolyte membrane instead of the laminated electrolyte membrane. , a single cell B1 of a fuel cell was assembled and evaluated.

単セルB1の最大出力密度と抵抗値をそれぞれ1としたときの、単セルA1およびA2の最大出力密度と抵抗値の相対値(倍数)を表3に示す。 Table 3 shows relative values (multiples) of the maximum output density and the resistance value of the single cells A1 and A2 when the maximum output density and the resistance value of the single cell B1 are set to 1, respectively.

Figure 0007179311000002
Figure 0007179311000002

表3によれば、単セルA1、A2の抵抗が単セルB1に比べて大幅に減少しており、電解質膜の厚さの影響が大きいことが理解できる。このような電解質膜の低抵抗化により、最大出力密度も大幅に改善している。また、第1電解質膜のEW値がより低い単セルA2の場合、高電流密度領域でも抵抗が上昇しにくく、高い起電力を維持できることが理解できる。 According to Table 3, the resistances of the single cells A1 and A2 are significantly lower than that of the single cell B1, and it can be understood that the thickness of the electrolyte membrane has a large effect. By reducing the resistance of the electrolyte membrane in this manner, the maximum power density is also greatly improved. In addition, it can be understood that in the case of the single cell A2 in which the EW value of the first electrolyte membrane is lower, the resistance is less likely to increase even in the high current density region, and a high electromotive force can be maintained.

本開示に係る積層電解質膜は、例えば、自動車、携帯電子機器、アウトドアレジャー用電源、非常用バックアップ電源等に使用される燃料電池に使用する材料として適している。特に、高電流密度で効果が得られ易いため、高出力用途の燃料電池に最適である。 The laminated electrolyte membrane according to the present disclosure is suitable, for example, as a material for fuel cells used in automobiles, portable electronic devices, outdoor leisure power sources, emergency backup power sources, and the like. In particular, it is most suitable for fuel cells for high-output applications because it is easy to obtain the effect at a high current density.

1:積層電解質膜、1a:従来の電解質膜、2A:アノード触媒層、2B:カソード触媒層、3A:アノードガス拡散層、3B:カソードガス拡散層、4:シール部材、5:膜電極接合体(MEA)、6A:アノード側セパレータ、6B:カソード側セパレータ、7A:燃料ガス流路、7B:酸化剤ガス流路、11:第1電解質膜、12:第2電解質膜、10:燃料電池(単セル)

1: laminated electrolyte membrane, 1a: conventional electrolyte membrane, 2A: anode catalyst layer, 2B: cathode catalyst layer, 3A: anode gas diffusion layer, 3B: cathode gas diffusion layer, 4: sealing member, 5: membrane electrode assembly (MEA), 6A: anode-side separator, 6B: cathode-side separator, 7A: fuel gas channel, 7B: oxidant gas channel, 11: first electrolyte membrane, 12: second electrolyte membrane, 10: fuel cell ( single cell)

Claims (11)

第1プロトン伝導性高分子と合成樹脂とが複合化されている第1電解質膜と、
第2プロトン伝導性高分子を含み、前記第1電解質膜と一体化された第2電解質膜と、を備え、
前記合成樹脂は、ポリビニルアセタール樹脂、フェノールホルムアルデヒド樹脂、メラミンホルムアルデヒド樹脂、及び尿素樹脂よりなる群から選択される少なくとも1種である、積層電解質膜。
a first electrolyte membrane comprising a composite of a first proton-conducting polymer and a synthetic resin;
a second electrolyte membrane that includes a second proton-conducting polymer and is integrated with the first electrolyte membrane;
The laminated electrolyte membrane , wherein the synthetic resin is at least one selected from the group consisting of polyvinyl acetal resin, phenol-formaldehyde resin, melamine-formaldehyde resin, and urea resin .
前記第1プロトン伝導性高分子および前記第2プロトン伝導性高分子の少なくとも一方は、フッ素系高分子および炭化水素系高分子よりなる群から選択される少なくとも1種である、請求項1に記載の積層電解質膜。 2. The method according to claim 1 , wherein at least one of the first proton-conducting polymer and the second proton-conducting polymer is at least one selected from the group consisting of fluorine-based polymers and hydrocarbon-based polymers. laminated electrolyte membrane. 前記第1電解質膜を両側から挟む一対の前記第2電解質膜を具備する、請求項1又は2に記載の積層電解質膜。 3. The laminated electrolyte membrane according to claim 1, comprising a pair of said second electrolyte membranes sandwiching said first electrolyte membrane from both sides. 前記第1電解質膜の厚さは、前記第2電解質膜の厚さよりも大きい、請求項に記載の積層電解質膜。 4. The laminated electrolyte membrane according to claim 3 , wherein the thickness of said first electrolyte membrane is greater than the thickness of said second electrolyte membrane. 前記積層電解質膜の厚さは、15μm以下である、請求項1~のいずれか1項に記載の積層電解質膜。 The laminated electrolyte membrane according to any one of claims 1 to 4 , wherein the thickness of the laminated electrolyte membrane is 15 µm or less. 前記第1電解質膜は、繊維状の補強材を含まない、請求項1~のいずれか1項に記載の積層電解質膜。 The laminated electrolyte membrane according to any one of claims 1 to 5 , wherein the first electrolyte membrane does not contain a fibrous reinforcing material. 前記第1プロトン伝導性高分子と前記第2プロトン伝導性高分子とは、同種の骨格を有している、請求項1~のいずれか1項に記載の積層電解質膜。 7. The laminated electrolyte membrane according to claim 1, wherein said first proton-conducting polymer and said second proton-conducting polymer have the same skeleton. 前記第1電解質膜における前記合成樹脂の含有量は、1質量%以上、60質量%以下である、請求項1~のいずれか1項に記載の積層電解質膜。 The laminated electrolyte membrane according to any one of claims 1 to 7 , wherein the content of said synthetic resin in said first electrolyte membrane is 1% by mass or more and 60% by mass or less. 請求項1~のいずれか1項に記載の積層電解質膜と、
前記積層電解質膜を両側から挟む一対の触媒層と、
を備える燃料電池。
A laminated electrolyte membrane according to any one of claims 1 to 8 ;
a pair of catalyst layers sandwiching the laminated electrolyte membrane from both sides;
fuel cell.
前記触媒層は、第3プロトン伝導性高分子を含み、
前記第3プロトン伝導性高分子の骨格は、前記第2プロトン伝導性高分子の骨格と同種である、請求項に記載の燃料電池。
The catalyst layer contains a third proton-conducting polymer,
10. The fuel cell according to claim 9 , wherein the skeleton of said third proton-conducting polymer is the same as the skeleton of said second proton-conducting polymer.
請求項1~8のいずれか1項に記載の積層電解質膜の製造方法であって、 A method for producing a laminated electrolyte membrane according to any one of claims 1 to 8,
前記第1プロトン伝導性高分子と、前記合成樹脂の前駆体とを含む溶液中で、前記前駆体を重合させて、前記第1電解質膜を形成することと、 forming the first electrolyte membrane by polymerizing the precursor in a solution containing the first proton-conducting polymer and the precursor of the synthetic resin;
前記第1電解質膜の少なくとも一方の面に、前記第2電解質膜を形成し、前記第1電解質膜と前記第2電解質膜とを一体化させることとを含む、積層電解質膜の製造方法。 A method of manufacturing a laminated electrolyte membrane, comprising forming the second electrolyte membrane on at least one surface of the first electrolyte membrane, and integrating the first electrolyte membrane and the second electrolyte membrane.
JP2018142406A 2018-07-30 2018-07-30 LAMINATED ELECTROLYTE MEMBRANE, METHOD FOR MANUFACTURING SAME ELECTROLYTE MEMBRANE, AND FUEL CELL Active JP7179311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018142406A JP7179311B2 (en) 2018-07-30 2018-07-30 LAMINATED ELECTROLYTE MEMBRANE, METHOD FOR MANUFACTURING SAME ELECTROLYTE MEMBRANE, AND FUEL CELL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018142406A JP7179311B2 (en) 2018-07-30 2018-07-30 LAMINATED ELECTROLYTE MEMBRANE, METHOD FOR MANUFACTURING SAME ELECTROLYTE MEMBRANE, AND FUEL CELL

Publications (2)

Publication Number Publication Date
JP2020021549A JP2020021549A (en) 2020-02-06
JP7179311B2 true JP7179311B2 (en) 2022-11-29

Family

ID=69589864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018142406A Active JP7179311B2 (en) 2018-07-30 2018-07-30 LAMINATED ELECTROLYTE MEMBRANE, METHOD FOR MANUFACTURING SAME ELECTROLYTE MEMBRANE, AND FUEL CELL

Country Status (1)

Country Link
JP (1) JP7179311B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005209465A (en) 2004-01-22 2005-08-04 Ube Ind Ltd Method of manufacturing polyelectrolyte film, polyelectrolyte film, film-electrode connector for fuel cell and fuel cell
JP2005336475A (en) 2004-04-30 2005-12-08 Asahi Kasei Chemicals Corp Composite proton exchange membrane
JP2006155924A (en) 2004-11-25 2006-06-15 Asahi Kasei Chemicals Corp Polymer electrolyte laminated membrane
JP2008234844A (en) 2007-03-16 2008-10-02 Toyobo Co Ltd Polymer electrolyte membrane, its use, and forming method of polymer electrolyte membrane
JP2009295572A (en) 2008-05-08 2009-12-17 Nitto Denko Corp Electrolyte film for solid polymer type fuel cell and method for producing same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0676838A (en) * 1992-06-25 1994-03-18 Aqueous Res:Kk Ion exchange membrane fuel cell and its manufacture

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005209465A (en) 2004-01-22 2005-08-04 Ube Ind Ltd Method of manufacturing polyelectrolyte film, polyelectrolyte film, film-electrode connector for fuel cell and fuel cell
JP2005336475A (en) 2004-04-30 2005-12-08 Asahi Kasei Chemicals Corp Composite proton exchange membrane
JP2006155924A (en) 2004-11-25 2006-06-15 Asahi Kasei Chemicals Corp Polymer electrolyte laminated membrane
JP2008234844A (en) 2007-03-16 2008-10-02 Toyobo Co Ltd Polymer electrolyte membrane, its use, and forming method of polymer electrolyte membrane
JP2009295572A (en) 2008-05-08 2009-12-17 Nitto Denko Corp Electrolyte film for solid polymer type fuel cell and method for producing same

Also Published As

Publication number Publication date
JP2020021549A (en) 2020-02-06

Similar Documents

Publication Publication Date Title
JP4327732B2 (en) Solid polymer fuel cell and manufacturing method thereof
US10854904B2 (en) Polymer electrolyte membrane, a method for fabricating the same, and a membrane-electrode assembly including the same
Oshiba et al. Thin pore-filling membrane with highly packed-acid structure for high temperature and low humidity operating polymer electrolyte fuel cells
US8202664B2 (en) Membrane electrode assembly, fuel cell stack and fuel cell system
WO2005000949A1 (en) Polymer electrolyte membrane with high durability and method for producing same
JP2009021230A (en) Membrane-electrode-gas diffusion layer-gasket assembly and manufacturing method thereof, and solid polymer fuel cell
JP5557430B2 (en) PROTON CONDUCTIVE POLYMER ELECTROLYTE MEMBRANE, PROCESS FOR PRODUCING THE SAME, MEMBRANE-ELECTRODE ASSEMBLY USING THE SAME, AND POLYMER ELECTROLYTE FUEL CELL
JP5358261B2 (en) Electrolyte membrane for polymer electrolyte fuel cell and manufacturing method thereof
CN101258188A (en) Polymer electrolyte membrane having an improved dimensional stability
JP2006190627A (en) Solid polyelectrolyte membrane having reinforcement material
KR102563567B1 (en) Polymer electrolyte membrane for fuel cell and manufacturing method thereof
JP2006269266A (en) Compound solid polyelectrolyte membrane having reinforcement material
JP6675320B2 (en) Membrane seal assembly
KR101127343B1 (en) Method of preparing a membrane electrode assembly for fuel cell, Membrane electrode assembly prepared by the same and Fuel cell to which the method is applied
JP7179311B2 (en) LAMINATED ELECTROLYTE MEMBRANE, METHOD FOR MANUFACTURING SAME ELECTROLYTE MEMBRANE, AND FUEL CELL
KR20210083195A (en) Polymer Electrolyte Membrane, Membrane-Electrode Assembly Comprising The Same, and Method for Measuring Durability Thereof
JP2006351491A (en) Proton conductive film reinforcing material and battery using the same
US20140080031A1 (en) Dual Layered ePTFE Polyelectrolyte Membranes
JP2006179298A (en) Solid polymer electrolyte membrane-electrode joining body and polymer electrolyte fuel cell using it
JP6007163B2 (en) Electrolyte membrane / electrode structure
US20230253594A1 (en) Polymer electrolyte membrane and membrane-electrode assembly comprising same
JP4271390B2 (en) Method for producing electrode structure for polymer electrolyte fuel cell and polymer electrolyte fuel cell
KR20240008616A (en) Polymer electrolyte membrane and membrane-electrode assembly comprising the same
JP2009070631A (en) Electrolyte membrane, membrane electrode assembly, and fuel cell using membrane electrode assembly
JP2021190176A (en) Membrane electrode gas diffusion layer assembly for fuel battery cell

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181010

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210716

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210721

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221109

R150 Certificate of patent or registration of utility model

Ref document number: 7179311

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150