JP7179284B2 - stator core structure - Google Patents

stator core structure Download PDF

Info

Publication number
JP7179284B2
JP7179284B2 JP2018206217A JP2018206217A JP7179284B2 JP 7179284 B2 JP7179284 B2 JP 7179284B2 JP 2018206217 A JP2018206217 A JP 2018206217A JP 2018206217 A JP2018206217 A JP 2018206217A JP 7179284 B2 JP7179284 B2 JP 7179284B2
Authority
JP
Japan
Prior art keywords
stator core
protruding
protruding magnetic
magnetic pole
flange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018206217A
Other languages
Japanese (ja)
Other versions
JP2020071159A (en
Inventor
和之 石橋
貴広 佐々木
駿弥 岩澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamagawa Seiki Co Ltd
Original Assignee
Tamagawa Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamagawa Seiki Co Ltd filed Critical Tamagawa Seiki Co Ltd
Priority to JP2018206217A priority Critical patent/JP7179284B2/en
Publication of JP2020071159A publication Critical patent/JP2020071159A/en
Application granted granted Critical
Publication of JP7179284B2 publication Critical patent/JP7179284B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明はステータコア構造に関する。 The present invention relates to stator core structures.

歪みセンサに用いられる従来のステータコア構造としては、例えば以下の特許文献1に記載されたステータコア構造が知られている。すなわち、図5は従来のステータコア構造1を展開した平面図であり、複数のコア2a,2bに検出巻線を巻回した検出コイル3a,3bを輪状のステータコア構造1の周方向Bに複数配置している。そして、図示しない回転軸に異方性を付与するために前記検出コイル3a,3bを軸方向Aに2列に形成して、前記ステータコア構造1全体として検出コイルを多極化している。 As a conventional stator core structure used for strain sensors, for example, a stator core structure described in Patent Document 1 below is known. That is, FIG. 5 is a developed plan view of a conventional stator core structure 1, and a plurality of detection coils 3a, 3b each having a detection winding wound around a plurality of cores 2a, 2b are arranged in the circumferential direction B of the annular stator core structure 1. is doing. In order to impart anisotropy to the rotating shaft (not shown), the detection coils 3a and 3b are arranged in two rows in the axial direction A, so that the stator core structure 1 as a whole has multiple detection coils.

また、歪みセンサに用いられる従来のステータコア構造の他の例としては、例えば未公開の特許出願である特願2018-107624に記載されたステータコア構造が知られている。すなわち、図6は従来の前記ステータコア構造1aの輪状ステータコア2を展開した平面図であり、所定角度間隔毎に内方へ向けて突出する複数の突出磁極4が、軸方向Aに2列に形成されている。前記各突出磁極4には、図示しない巻線が巻回されており、斜方向の磁束Mの変化を検出することで、図示しない回転軸の歪みを検出する。 Further, as another example of conventional stator core structures used in strain sensors, for example, a stator core structure described in Japanese Patent Application No. 2018-107624, which is an unpublished patent application, is known. That is, FIG. 6 is a developed plan view of the annular stator core 2 of the conventional stator core structure 1a, in which a plurality of protruding magnetic poles 4 protruding inward at predetermined angular intervals are formed in two rows in the axial direction A. It is A winding (not shown) is wound around each protruding magnetic pole 4, and by detecting a change in magnetic flux M in an oblique direction, distortion of a rotating shaft (not shown) is detected.

特開2010-145099号公報JP 2010-145099 A

上記のような特許文献1に記載の従来の前記ステータコア構造1では、前記検出コイル3a,3bを前記軸方向Aに2列配置するために前記ステータコア構造1の前記軸方向Aの厚みが大きくなるという問題点があった。また、上記のような特願2018-107624に記載の前記ステータコア構造1aでは、前記突出磁極4を軸方向に2列に形成するために前記輪状ステータコア2の前記軸方向Aの厚みが大きくなり、前記ステータコア構造1aの全体の厚みが大きくなるという問題点があった。 In the conventional stator core structure 1 described in Patent Document 1 as described above, since the detection coils 3a and 3b are arranged in two rows in the axial direction A, the thickness of the stator core structure 1 in the axial direction A is increased. There was a problem. Further, in the stator core structure 1a described in Japanese Patent Application No. 2018-107624 as described above, since the protruding magnetic poles 4 are formed in two rows in the axial direction, the thickness of the annular stator core 2 in the axial direction A is increased, There is a problem that the overall thickness of the stator core structure 1a is increased.

この発明は、このような課題を解決するためになされたものであり、軸方向の厚みを小さくしたステータコア構造を提供することを目的とする。 SUMMARY OF THE INVENTION An object of the present invention is to provide a stator core structure with a reduced thickness in the axial direction.

上記の課題を解決するために、この発明に係るステータコア構造は、輪状ステータコアと、前記輪状ステータコアの内面に、所定角度間隔毎に内方に向けて突出し、巻線が巻回された突出磁極と、前記突出磁極の先端に形成された鍔部とを備えるステータコア構造において、前記鍔部の両側に形成された一対の第1斜部及び第2斜部を有し、前記各鍔部は、前記輪状ステータコアの周方向に沿って隣り合う前記鍔部の戦記第1斜部同士が対向し且つ隣り合う前記鍔部の前記第2斜部同士が対向するように形成され、前記突出磁極と、当該突出磁極の前記周方向の一方に隣り合う前記突出磁極との間に第1磁路が形成され、当該突出磁極と、当該突出磁極の前記周方向の他方に隣り合う前記突出磁極との間に第2磁路が形成されることを特徴とする。 In order to solve the above problems, a stator core structure according to the present invention includes a ring-shaped stator core, and projecting magnetic poles protruding inwardly at predetermined angular intervals on the inner surface of the ring-shaped stator core and having windings wound thereon. , and a flange formed at the tip of the projecting magnetic pole, the flange has a pair of first and second slanted portions formed on both sides of the flange; The first slanted portions of the adjacent flange portions face each other along the circumferential direction of the annular stator core, and the second slanted portions of the adjacent flange portions face each other. A first magnetic path is formed between the protruding magnetic pole and the protruding magnetic pole adjacent in one of the circumferential directions, and between the protruding magnetic pole and the protruding magnetic pole adjacent in the other circumferential direction of the protruding magnetic pole. A second magnetic path is formed.

前記鍔部は前記内方から見て台形であってもよい。
前記鍔部は前記内方から見て三角形であってもよい。
前記突出磁極は前記輪状ステータコアの前記軸方向に沿って複数列形成され、前記軸方向に隣り合う他の列の前記突出磁極前記鍔部の上下が逆になるように形成されていてもよい。
The collar may be trapezoidal when viewed from the inside.
The collar may be triangular when viewed from the inside.
The protruding magnetic poles may be formed in a plurality of rows along the axial direction of the annular stator core, and the flange portions of the protruding magnetic poles of other rows adjacent in the axial direction may be formed upside down. .

本発明に係るステータコア構造は、前記鍔部の両側に形成された一対の第1斜部及び第2斜部を有し、前記各鍔部は、前記輪状ステータコアの周方向に沿って互いに形状が異なるように形成され、前記突出磁極と、当該突出磁極の前記周方向の一方に隣り合う前記突出磁極との間に第1磁路が形成され、当該突出磁極と、当該突出磁極の前記周方向の他方に隣り合う前記突出磁極との間に第2磁路が形成されるため、軸方向の厚みを小さくしたステータコア構造を提供することができる。 The stator core structure according to the present invention has a pair of first slanted portions and second slanted portions formed on both sides of the brim portion, and each of the brim portions has a shape that is different from each other along the circumferential direction of the annular stator core. A first magnetic path is formed between the protruding magnetic pole and the protruding magnetic pole adjacent to the protruding magnetic pole in one of the circumferential directions, and the protruding magnetic pole and the protruding magnetic pole in the circumferential direction are formed differently. Since the second magnetic path is formed between the protruding magnetic poles adjacent to the other, it is possible to provide a stator core structure with a reduced thickness in the axial direction.

本発明の実施の形態1に係るステータコア構造の概略図である。1 is a schematic diagram of a stator core structure according to Embodiment 1 of the present invention; FIG. 図1に記載の突出磁極を内方から見た展開図である。FIG. 2 is a developed view of the projecting magnetic pole shown in FIG. 1 as seen from the inside; 本発明の実施の形態2に係る突出磁極を内方から見た展開図である。FIG. 10 is a developed view of the projecting magnetic pole according to the second embodiment of the present invention, viewed from the inside; 本発明の実施の形態3に係る突出磁極を内方から見た展開図である。FIG. 10 is a developed view of a protruding magnetic pole according to Embodiment 3 of the present invention, viewed from the inside; 従来のステータコア構造の概略図である。1 is a schematic diagram of a conventional stator core structure; FIG. 他の従来のステータコア構造の概略図である。1 is a schematic diagram of another conventional stator core structure; FIG.

実施の形態1.
以下、この発明の実施の形態1を添付図面の図1~図2に基づいて説明する。なお、従来例と同一又は同等部分には同一符号を付して説明する。
図1は、この発明の実施の形態1に係るステータコア構造10を上方から見た平面概略図である。前記ステータコア構造10は、歪みセンサに用いられるステータコア構造であり、輪状ステータコア20を有している。前記輪状ステータコア20は、複数の電磁鋼板を積層して形成されている。前記輪状ステータコア20の内面には、所定角度間隔毎に内方へ向けて突出する複数の突出磁極40が形成されており、前記各突出磁極40の間にスロット50がそれぞれ形成されている。この実施の形態1においては、前記突出磁極40は合計8本形成されている。前記各突出磁極40の先端には、鍔部45が形成されている。また、前記各突出磁極40には、図示しない励磁巻線及び検出巻線が巻回される。なお、励磁巻線間の渡り線及び検出巻線間の渡り線、励磁巻線及び検出巻線に接続される端子部などは、既知の構成であるから説明を省略する。
Embodiment 1.
Embodiment 1 of the present invention will be described below with reference to FIGS. 1 and 2 of the accompanying drawings. Identical or equivalent portions to those of the conventional example are denoted by the same reference numerals.
FIG. 1 is a schematic plan view of a stator core structure 10 according to Embodiment 1 of the present invention, viewed from above. The stator core structure 10 is a stator core structure used for a strain sensor and has an annular stator core 20 . The annular stator core 20 is formed by laminating a plurality of electromagnetic steel sheets. A plurality of inwardly projecting magnetic poles 40 are formed on the inner surface of the annular stator core 20 at predetermined angular intervals, and slots 50 are respectively formed between the projecting magnetic poles 40 . In the first embodiment, a total of eight protruding magnetic poles 40 are formed. A flange portion 45 is formed at the tip of each protruding magnetic pole 40 . An excitation winding and a detection winding (not shown) are wound around each protruding magnetic pole 40 . The connection wires between the excitation windings, the connection wires between the detection windings, the terminals connected to the excitation windings and the detection windings, and the like are known structures, and therefore the description thereof is omitted.

また、前記ステータコア構造10の前記突出磁極40の径方向内側には、前記ステータコア構造10の前記輪状ステータコア20の上下方向である軸方向Aへ延びる回転軸60が設けられている。前記回転軸60は、表面に磁歪材部を有するか又は全てが磁歪材部により形成されていればよい。 A rotating shaft 60 extending in the axial direction A, which is the vertical direction of the ring-shaped stator core 20 of the stator core structure 10 , is provided inside the protruding magnetic poles 40 of the stator core structure 10 in the radial direction. The rotating shaft 60 may have a magnetostrictive material portion on its surface, or may be entirely formed of a magnetostrictive material portion.

図2は、図1に示す前記突出磁極40のうち4本の前記突出磁極40を、前記輪状ステータコア20の内方から、すなわち径方向C(図1参照)に沿って見たとき概略の展開図である。前記突出磁極40の前記鍔部45は前記輪状ステータコア20の内方から見たときの形状が台形であり、前記輪状ステータコア20の周方向Bに沿って延びる狭小部41及び前記狭小部41より幅広な前記周方向Bに沿って延びる幅広部42と、前記鍔部45の両側に形成され、前記狭小部41及び前記幅広部42を接続する一対の第1斜部43及び第2斜部44とを有する。前記幅広部42を下側にしたときに、前記第1斜部43は右側に、前記第2斜部44は左側に位置するように前記鍔部45は形成されている。前記狭小部41及び前記幅広部42は平行であり、前記第1斜部43及び前記第2斜部44は平行ではない。すなわち、前記第1斜部43及び前記第2斜部44は前記軸方向Aに対して平行ではなく斜方向に形成されている。また、前記第1斜部43及び前記第2斜部44は略等しい寸法であるように形成されている。 FIG. 2 is a schematic development of four protruding magnetic poles 40 out of the protruding magnetic poles 40 shown in FIG. 1 when viewed from the inside of the ring-shaped stator core 20, that is, along the radial direction C (see FIG. 1). It is a diagram. The flange portion 45 of the protruding magnetic pole 40 has a trapezoidal shape when viewed from the inside of the ring-shaped stator core 20 , and has a narrow portion 41 extending along the circumferential direction B of the ring-shaped stator core 20 and a wider width than the narrow portion 41 . a wide portion 42 extending along the circumferential direction B; and a pair of first slanted portion 43 and second slanted portion 44 formed on both sides of the flange portion 45 and connecting the narrow portion 41 and the wide portion 42. have The flange portion 45 is formed so that the first slanted portion 43 is positioned on the right side and the second slanted portion 44 is positioned on the left side when the wide portion 42 is positioned downward. The narrow portion 41 and the wide portion 42 are parallel, and the first slanted portion 43 and the second slanted portion 44 are not parallel. That is, the first slanted portion 43 and the second slanted portion 44 are formed not parallel to the axial direction A but obliquely. Also, the first slanted portion 43 and the second slanted portion 44 are formed to have approximately the same dimensions.

前記鍔部45は隣り合う前記鍔部45に対して上下が逆になるように設けられている。例えば、図2において左端の前記鍔部45は上側に前記狭小部41を有し下側に前記幅広部42を有しているのに対して、その右隣の前記鍔部45は上側に前記幅広部42を有し下側に前記狭小部41を有している。また、前記鍔部45の前記第1斜部43には右方向に隣り合う前記鍔部45の前記第1斜部43が対向し、前記鍔部45の前記第2斜部44には、左方向に隣り合う前記鍔部45の前記第2斜部44が対向している。すなわち、前記径方向Cから見たときの形状が台形の前記各鍔部45は、前記輪状ステータコア20の前記周方向Bに沿って互いに形状が異なるように、隣り合う前記鍔部45に対して上下が互い違いに配列されている。 The collar portions 45 are provided so as to be upside down with respect to the adjacent collar portions 45 . For example, in FIG. 2, the leftmost collar portion 45 has the narrow portion 41 on the upper side and the wide portion 42 on the lower side, while the adjacent collar portion 45 on the right side has the narrow portion 41 on the upper side and the wide portion 42 on the lower side. It has a wide portion 42 and the narrow portion 41 on the lower side. The first slanted portion 43 of the flange portion 45 is opposed to the first slanted portion 43 of the brim portion 45 adjacent to the right side, and the second slanted portion 44 of the brim portion 45 has a left The second slanted portions 44 of the collar portions 45 adjacent to each other in the direction face each other. That is, each of the flanges 45 having a trapezoidal shape when viewed in the radial direction C is arranged with respect to the adjacent flanges 45 such that the shapes thereof are different from each other along the circumferential direction B of the annular stator core 20 . The top and bottom are arranged alternately.

前記各突出磁極40に巻回された励磁巻線及び検出巻線により、隣り合う前記各突出磁極40の間に二つの異なる第1磁路a及び第2磁路bが交互に形成される。前記第1磁路aは隣り合う前記各鍔部45の前記第1斜部43同士を通るように形成される。前記第2磁路bは隣り合う前記各鍔部45の前記第2斜部44同士を通るように形成される。前記第1斜部43及び前記第2斜部44は平行ではないため、前記第1磁路a及び前記第2磁路bは異なる向きに形成される。そのため、前記第1磁路a及び前記第2磁路bが前記回転軸60(図1参照)の磁歪材部に2種類の異方性を付与する。 Two different first magnetic paths a and second magnetic paths b are alternately formed between the adjacent protruding magnetic poles 40 by the excitation windings and the detection windings wound around the protruding magnetic poles 40 . The first magnetic path a is formed so as to pass through the first slanted portions 43 of the adjacent flange portions 45 . The second magnetic path b is formed so as to pass through the second inclined portions 44 of the adjacent flange portions 45 . Since the first slanted portion 43 and the second slanted portion 44 are not parallel, the first magnetic path a and the second magnetic path b are formed in different directions. Therefore, the first magnetic path a and the second magnetic path b impart two types of anisotropy to the magnetostrictive material portion of the rotating shaft 60 (see FIG. 1).

図1に示すように前記回転軸60に力が加えられると、前記回転軸60に生じた歪みにより前記回転軸60の磁歪材部の透磁率が変化する。次に、磁歪材部の透磁率の変化により前記第1磁路a及び前記第2磁路b(図2参照)の磁束が変化し、磁束変化により検出巻線のインピーダンスが変化する。このインピーダンスの変化により、検出巻線の出力信号電圧が変化する。前記回転軸60に力が加えられる前後の検出巻線の出力信号電圧の変化を比較することにより、前記回転軸60に生じた歪みの向きと大きさを検出することができる。 As shown in FIG. 1 , when a force is applied to the rotating shaft 60 , the magnetic permeability of the magnetostrictive material portion of the rotating shaft 60 changes due to the strain generated in the rotating shaft 60 . Next, the magnetic fluxes of the first magnetic path a and the second magnetic path b (see FIG. 2) change due to changes in the magnetic permeability of the magnetostrictive material portion, and the impedance of the detection winding changes due to the magnetic flux changes. This change in impedance changes the output signal voltage of the sensing winding. By comparing the change in the output signal voltage of the detection winding before and after the force is applied to the rotating shaft 60, the direction and magnitude of the strain generated in the rotating shaft 60 can be detected.

このように、前記輪状ステータコア20と、前記輪状ステータコア20の内面に、所定角度間隔毎に内方に向けて突出し、巻線が巻回された前記突出磁極40と、前記突出磁極40の先端に形成された鍔部45とを備えるステータコア構造において、前記鍔部45の両側に形成された一対の前記第1斜部43及び前記第2斜部44を有し、前記各鍔部45は、前記輪状ステータコア20の前記周方向Bに沿って互いに形状が異なるように形成され、前記突出磁極40と、当該突出磁極40の前記周方向Bの一方に隣り合う前記突出磁極40との間に前記第1磁路aが形成され、当該突出磁極40と、当該突出磁極40の前記周方向Bの他方に隣り合う前記突出磁極40との間に前記第2磁路bが形成されるため、前記ステータコア構造10に設ける前記突出磁極40が一列のみで十分となり、前記ステータコア構造10の前記軸方向Aの厚みを小さくすることができる。 In this way, the ring-shaped stator core 20, the protruding magnetic poles 40 protruding inwardly at predetermined angular intervals on the inner surface of the ring-shaped stator core 20 and having windings wound thereon, and the tips of the protruding magnetic poles 40 A stator core structure comprising a flange portion 45 having a pair of the first slanted portion 43 and the second slanted portion 44 formed on both sides of the flange portion 45, each of the flange portions 45 having the The protruding magnetic poles 40 are formed to have different shapes along the circumferential direction B of the ring-shaped stator core 20, and the protruding magnetic poles 40 adjacent to each other in the circumferential direction B of the protruding magnetic poles 40 have the first magnetic poles 40 therebetween. One magnetic path a is formed, and the second magnetic path b is formed between the protruding magnetic pole 40 and the protruding magnetic pole 40 adjacent to the protruding magnetic pole 40 on the other side in the circumferential direction B. Therefore, the stator core Only one row of the protruding magnetic poles 40 provided in the structure 10 is sufficient, and the thickness of the stator core structure 10 in the axial direction A can be reduced.

また、前記鍔部45は前記輪状ステータコア20の内方から見て台形であるため、前記輪状ステータコア20の前記周方向Bに沿ったスペースを効率良く利用して前記突出磁極40を配置することができ、前記ステータコア構造10をより小型にすることができる。 Further, since the flange portion 45 has a trapezoidal shape when viewed from the inside of the ring-shaped stator core 20, the protruding magnetic poles 40 can be arranged by efficiently utilizing the space along the circumferential direction B of the ring-shaped stator core 20. and the stator core structure 10 can be made more compact.

また、図5に示す特許文献1に記載の従来の前記ステータコア構造1では、前記各コア2a,2bの間には磁路が通らないため、前記周方向B全体において歪みを検出できない。一方、図2に示す前記ステータコア構造10においては、前記第1磁路a及び前記第2磁路bが前記輪状ステータコア20の前記周方向B全体に交互に形成されているため、前記周方向B全体において歪みを検出することができ歪みセンサの感度が向上する。 Further, in the conventional stator core structure 1 described in Patent Document 1 shown in FIG. 5, strain cannot be detected in the entire circumferential direction B because magnetic paths do not pass between the cores 2a and 2b. On the other hand, in the stator core structure 10 shown in FIG. The strain can be detected as a whole, and the sensitivity of the strain sensor is improved.

なお、この実施の形態1においては前記鍔部45の前記第1斜部43と前記第2斜部44とは略等しい寸法であるように形成されていたが、異なる寸法であるように形成されていてもよい。また、前記鍔部45の前記狭小部41と前記幅広部42とは平行に形成されていたが、前記狭小部41と前記幅広部42とは平行でなくともよい。 In the first embodiment, the first slanted portion 43 and the second slanted portion 44 of the flange portion 45 are formed to have approximately the same dimensions, but they are formed to have different dimensions. may be Further, although the narrow portion 41 and the wide portion 42 of the flange portion 45 are formed in parallel, the narrow portion 41 and the wide portion 42 may not be parallel.

また、実施の形態1では前記突出磁極40が8本形成されていたがこの本数に限定されるものではなく、複数の本数が形成されていればよい。 Further, although eight protruding magnetic poles 40 are formed in the first embodiment, the number is not limited to this, and a plurality of protruding magnetic poles may be formed.

実施の形態2.
次にこの発明の実施の形態2に係るステータコア構造を説明する。尚、以下の実施の形態において、図1及び図2の参照符号と同一の符号は、同一または同様な構成要素であるので、その詳細な説明は省略する。
この実施の形態2に係るステータコア構造は、実施の形態1に対して、突出磁極の鍔部を径方向から見たときの形状を三角形としたものである。
Embodiment 2.
Next, a stator core structure according to Embodiment 2 of the present invention will be described. In the following embodiments, the same reference numerals as those in FIGS. 1 and 2 denote the same or similar components, so detailed description thereof will be omitted.
The stator core structure according to the second embodiment differs from the first embodiment in that the flanges of the projecting magnetic poles are triangular in shape when viewed from the radial direction.

図3は、この発明の実施の形態2の突出磁極40aのうち4本の前記突出磁極40aを、前記輪状ステータコア20の内方、すなわち前記径方向C(図1参照)から見た概略の展開図である。前記突出磁極40aの鍔部45aは前記輪状ステータコア20の内方から見たときの形状が正三角形であり、前記輪状ステータコア20の前記周方向Bに沿って延びる底部42aと、前記底部42aに隣接する第1斜部43a及び第2斜部44aを有する。前記底部42aを下側にしたときに、前記第1斜部43aは右側に、前記第2斜部44aは左側に位置するように前記鍔部45aは形成されている。また、前記鍔部45aは隣り合う前記鍔部45aに対して上下が逆になるように設けられている。すなわち、前記突出磁極40aの前記第1斜部43aには右方向に隣り合う前記鍔部45aの前記第1斜部43aが対向し、前記鍔部45aの前記第2斜部44aには、左方向に隣り合う前記鍔部45aの前記第2斜部44aが対向している。すなわち、前記径方向Cから見たときの形状が正三角形の前記各鍔部45aは、前記輪状ステータコアの前記周方向Bに沿って互いに形状が異なるように、隣り合う前記鍔部45aに対して上下が互い違いに形成されている。 FIG. 3 is a schematic development of four protruding magnetic poles 40a out of the protruding magnetic poles 40a according to the second embodiment of the present invention, viewed from the inside of the ring-shaped stator core 20, that is, from the radial direction C (see FIG. 1). It is a diagram. The flange portion 45a of the protruding magnetic pole 40a has an equilateral triangle shape when viewed from the inside of the annular stator core 20, and is adjacent to the bottom portion 42a extending along the circumferential direction B of the annular stator core 20 and the bottom portion 42a. It has a first slanted portion 43a and a second slanted portion 44a. The flange portion 45a is formed so that the first slanted portion 43a is positioned on the right side and the second slanted portion 44a is positioned on the left side when the bottom portion 42a faces downward. Further, the flange portion 45a is provided so as to be upside down with respect to the adjacent flange portion 45a. That is, the first slanted portion 43a of the protruding magnetic pole 40a faces the first slanted portion 43a of the flange portion 45a adjacent to the right, and the second slanted portion 44a of the flange portion 45a faces the left side. The second slanted portions 44a of the collar portions 45a adjacent to each other in the direction face each other. That is, each of the flanges 45a having an equilateral triangular shape when viewed from the radial direction C is arranged with respect to the adjacent flanges 45a such that the shapes thereof are different from each other along the circumferential direction B of the annular stator core. The top and bottom are alternately formed.

前記各突出磁極40aに巻回された励磁巻線及び検出巻線により、隣り合う前記各突出磁極40aの間に二つの異なる前記第1磁路a及び前記第2磁路bが交互に形成される。前記第1磁路aは隣り合う前記各鍔部45aの前記第1斜部43a同士を通るように形成される。前記第2磁路bは隣り合う前記各鍔部45aの前記第2斜部44a同士を通るように形成される。前記第1磁路a及び前記第2磁路bは異なる向きに形成され、前記第1磁路a及び前記第2磁路bが前記回転軸60(図1参照)に2種類の異方性を付与する。その他の構成は実施の形態1と同じである。 Two different first magnetic paths a and second magnetic paths b are alternately formed between the adjacent protruding magnetic poles 40a by the excitation windings and the detection windings wound around the protruding magnetic poles 40a. be. The first magnetic path a is formed so as to pass through the first slanted portions 43a of the adjacent flange portions 45a. The second magnetic path b is formed so as to pass through the second inclined portions 44a of the adjacent flange portions 45a. The first magnetic path a and the second magnetic path b are formed in different directions. to give Other configurations are the same as those of the first embodiment.

このように、前記突出磁極40aは前記径方向Cから見て三角形であるため、実施の形態1の前記鍔部45の前記幅広部42と、実施の形態2の前記鍔部45aの前記底部42aが前記周方向Bについて同じ幅を有していても、実施の形態1の前記鍔部45の前記第1斜部43,前記第2斜部44よりも、この実施の形態2の前記鍔部45aの前記第1斜部43a,前記第2斜部44aを幅広に形成することができる。これにより、前記第1磁路a及び前記第2磁路bが通る前記第1斜部43a,前記第2斜部44aの幅が広くなるため、歪みセンサの感度が向上する。 Thus, since the projecting magnetic pole 40a is triangular when viewed from the radial direction C, the wide portion 42 of the flange portion 45 of the first embodiment and the bottom portion 42a of the flange portion 45a of the second embodiment have the same width in the circumferential direction B, the first slanted portion 43 and the second slanted portion 44 of the brim portion 45 of the first embodiment are less likely to be slanted than the first slanted portion 43 and the second slanted portion 44 of the brim portion 45 of the first embodiment. The first slanted portion 43a and the second slanted portion 44a of 45a can be formed wide. As a result, the widths of the first slanted portion 43a and the second slanted portion 44a through which the first magnetic path a and the second magnetic path b pass are widened, thereby improving the sensitivity of the strain sensor.

なお、この実施の形態2では前記鍔部45aは前記輪状ステータコア20の内方から見たときの形状が正三角形であったが、それ以外の例えば二等辺三角形等の三角形であってもよい。 In the second embodiment, the flange portion 45a has the shape of an equilateral triangle when viewed from the inside of the annular stator core 20, but may have another shape such as an isosceles triangle.

実施の形態3.
次にこの発明の実施の形態3に係るステータコア構造を図4に基づいて説明する。この実施の形態3に係るステータコア構造は、実施の形態1に対して、突出磁極を軸方向に2列に形成したものである。
Embodiment 3.
Next, a stator core structure according to Embodiment 3 of the present invention will be described with reference to FIG. The stator core structure according to the third embodiment is different from the first embodiment in that protruding magnetic poles are formed in two rows in the axial direction.

図4は、この発明の実施の形態3の突出磁極40のうち8本の前記突出磁極40を、前記輪状ステータコア20の内方から、すなわち前記径方向C(図1参照)から見た概略の展開図である。
前記輪状ステータコア20には、1列目の前記突出磁極40と、2列目の前記突出磁極40とが形成されている。1列目の前記突出磁極40の前記鍔部45の前記狭小部41と2列目の前記突出磁極40の前記鍔部45の前記狭小部41とが前記軸方向Aに沿って対向し、1列目の前記突出磁極40の前記鍔部45の前記幅広部42と2列目の前記突出磁極40の前記幅広部42とが前記軸方向Aに沿って対向するように、1列目及び2列目の前記突出磁極40の前記鍔部45の形状が異なるように配列されている。すなわち、1列目と2列目の前記突出磁極40の前記鍔部45の上下が逆となるように、前記突出磁極40が前記軸方向Aに沿って2列に形成されている。その他の形態は実施の形態1と同じである。
FIG. 4 is a schematic view of eight protruding magnetic poles 40 out of the protruding magnetic poles 40 according to Embodiment 3 of the present invention, viewed from the inside of the ring-shaped stator core 20, that is, from the radial direction C (see FIG. 1). It is a development view.
The annular stator core 20 is formed with the protruding magnetic poles 40 in the first row and the protruding magnetic poles 40 in the second row. the narrow portion 41 of the flange portion 45 of the protruding magnetic pole 40 in the first row and the narrow portion 41 of the flange portion 45 of the protruding magnetic pole 40 in the second row face each other along the axial direction A; The wide portions 42 of the flange portions 45 of the protruding magnetic poles 40 in the first row and the wide portions 42 of the protruding magnetic poles 40 in the second row face each other along the axial direction A. The protruding magnetic poles 40 in each row are arranged so that the shapes of the flange portions 45 are different. That is, the protruding magnetic poles 40 are formed in two rows along the axial direction A so that the flange portions 45 of the protruding magnetic poles 40 of the first row and the second row are upside down. Other forms are the same as those of the first embodiment.

このように、前記突出磁極40は前記輪状ステータコア20の前記軸方向Aに沿って2列に形成され、前記軸方向Aに隣り合う他の列の前記突出磁極40と前記鍔部45の形状が異なるように形成されており、前記周方向Bにおいて前記第1磁路a及び前記第2磁路bが途切れずに形成されるため、前記回転軸60(図1参照)の偏心の影響や前記周方向Bにおける巻線のばらつきの影響が小さくなり、歪みセンサの精度を向上させることができる。 In this manner, the protruding magnetic poles 40 are formed in two rows along the axial direction A of the annular stator core 20, and the protruding magnetic poles 40 of another row adjacent to the axial direction A and the flange portion 45 have a shape of Since the first magnetic path a and the second magnetic path b are formed without interruption in the circumferential direction B, the influence of the eccentricity of the rotating shaft 60 (see FIG. 1) and the above The influence of winding variations in the circumferential direction B is reduced, and the accuracy of the strain sensor can be improved.

また、図6に示す特願2018-107624に記載の従来の前記ステータコア構造1aでは、斜方向の前記磁束Mの変化を検出巻線により検出することで歪み検出を行っていたが、前記各突出磁極4間の距離が最も短い横方向、すなわち前記周方向Bの漏れ磁束Nの方が前記磁束Mよりも強度が大きくなるため、前記磁束Mの変化を十分に検出することが難しい。一方、この実施の形態3に係る前記ステータコア構造10においては、前記周方向Bの漏れ磁束を小さくして、前記第1磁路a及び前記第2磁路bの方向の磁束を大きくすることができるため、歪みセンサの感度及び精度を向上させることができる。 Further, in the conventional stator core structure 1a described in Japanese Patent Application No. 2018-107624 shown in FIG. Since the leakage magnetic flux N in the lateral direction where the distance between the magnetic poles 4 is the shortest, that is, the circumferential direction B, is stronger than the magnetic flux M, it is difficult to sufficiently detect the change in the magnetic flux M. On the other hand, in the stator core structure 10 according to the third embodiment, it is possible to reduce the leakage magnetic flux in the circumferential direction B and increase the magnetic flux in the directions of the first magnetic path a and the second magnetic path b. Therefore, the sensitivity and accuracy of the strain sensor can be improved.

なお、この実施の形態3では前記突出磁極40は前記軸方向Aに沿って2列に形成されていたが、前記軸方向Aに沿って隣り合う列の前記鍔部45の向きが上下逆となるように形成されていれば、前記突出磁極40は前記軸方向Aに3列以上形成されていてもよい。また、前記鍔部45は前記輪状ステータコア20の内方から見たときの形状が台形であったが、実施の形態2のような三角形(図3参照)であってもよい。 In the third embodiment, the protruding magnetic poles 40 are formed in two rows along the axial direction A. However, if the directions of the flange portions 45 in rows adjacent to each other along the axial direction A are upside down. The protruding magnetic poles 40 may be formed in three or more rows in the axial direction A, as long as they are formed in such a manner as to be. Further, although the flange portion 45 has a trapezoidal shape when viewed from the inside of the annular stator core 20, it may have a triangular shape (see FIG. 3) as in the second embodiment.

また、実施の形態1~3に係るステータコア構造は、歪みセンサに用いられるものであったが、角度センサ等の他の種類の磁束を利用するセンサに用いてもよい。 Further, the stator core structures according to Embodiments 1 to 3 are used for strain sensors, but may be used for other types of sensors using magnetic flux, such as angle sensors.

また、実施の形態1及び3に係る前記鍔部45は、前記輪状ステータコア20の内方から見たときの形状が台形であり、実施の形態2に係る前記鍔部45aは、前記輪状ステータコア20の内方から見たときの形状が三角形であったが、2種類以上の異なる向きの磁路を形成できれば、鍔部の輪状ステータコアの内方から見たときの形状はこれ以外の多角形や、多角形の角を丸めた形状等の任意の形状であってもよい。 Further, the flange portion 45 according to Embodiments 1 and 3 has a trapezoidal shape when viewed from the inside of the annular stator core 20, and the flange portion 45a according to Embodiment 2 has a shape similar to that of the annular stator core 20. When viewed from the inside, the shape of the ring-shaped stator core was triangular. , a polygon with rounded corners, or any other shape.

なお、本発明によるステータコア構造は、以下の通りである。すなわち、前記輪状ステータコア20と、前記輪状ステータコア20の内面に、所定角度間隔毎に内方に向けて突出し、巻線が巻回された前記突出磁極40と、前記突出磁極40の先端に形成された前記鍔部45とを備えるステータコア構造において、前記鍔部45の両側に形成された一対の前記第1斜部43及び前記第2斜部44を有し、前記各鍔部45は、前記輪状ステータコア20の前記周方向Bに沿って互いに形状が異なるように形成され、前記突出磁極40と、当該突出磁極40の前記周方向Bの一方に隣り合う前記突出磁極40との間に前記第1磁路aが形成され、当該突出磁極40と、当該突出磁極40の前記周方向Bの他方に隣り合う前記突出磁極40との間に前記第2磁路bが形成される構成であり、また、前記鍔部45は前記輪状ステータコア20の内方から見て台形である構成であり、また、前記鍔部45aは前記輪状ステータコア20の内方から見て三角形である構成であり、また、前記突出磁極40は前記輪状ステータコア20の前記軸方向Aに沿って2列に形成され、前記軸方向Aに沿って隣り合う他の列の前記鍔部45と形状が異なるように形成されている構成である。 The stator core structure according to the present invention is as follows. That is, the ring-shaped stator core 20, the protruding magnetic poles 40 protruding inwardly at predetermined angular intervals on the inner surface of the ring-shaped stator core 20 and wound with windings, and the protruding magnetic poles 40 formed at the tips of the protruding magnetic poles 40. and a pair of the first slanted portion 43 and the second slanted portion 44 formed on both sides of the brim portion 45, and each of the brim portions 45 has the annular shape. The first magnetic poles 40 are formed to have different shapes along the circumferential direction B of the stator core 20 , and the first magnetic poles 40 are formed between the magnetic poles 40 adjacent to each other in the circumferential direction B of the magnetic poles 40 . A magnetic path a is formed, and the second magnetic path b is formed between the protruding magnetic pole 40 and the protruding magnetic pole 40 adjacent to the protruding magnetic pole 40 on the other side in the circumferential direction B, and The flange portion 45 has a trapezoidal configuration when viewed from the inside of the annular stator core 20, and the flange portion 45a has a triangular configuration when viewed from the inside of the annular stator core 20. The protruding magnetic poles 40 are formed in two rows along the axial direction A of the annular stator core 20, and are formed so as to have a shape different from that of the flange portions 45 of other adjacent rows along the axial direction A. is.

本発明によるステータコア構造は、輪状ステータコアと、輪状ステータコアの内面に、所定角度間隔毎に内方に向けて突出し、巻線が巻回された突出磁極と、突出磁極の先端に形成された鍔部とを備えるステータコア構造において、鍔部の両側に形成された一対の第1斜部及び第2斜部を有し、各鍔部は、輪状ステータコアの周方向に沿って互いに形状が異なるように形成され、突出磁極と、当該突出磁極の周方向の一方に隣り合う突出磁極との間に第1磁路が形成され、当該突出磁極と、当該突出磁極の周方向の他方に隣り合う突出磁極との間に第2磁路が形成されるため、軸方向の厚みを小さくすることができる。 The stator core structure according to the present invention includes a ring-shaped stator core, protruding magnetic poles protruding inwardly at predetermined angular intervals on the inner surface of the ring-shaped stator core and having windings wound thereon, and flanges formed at the tips of the protruding magnetic poles. and a pair of first slanted portions and second slanted portions formed on both sides of the flange portion, and each flange portion is formed to have a different shape from each other along the circumferential direction of the ring-shaped stator core. A first magnetic path is formed between the protruding magnetic pole and the protruding magnetic pole adjacent in one circumferential direction of the protruding magnetic pole, and the protruding magnetic pole and the protruding magnetic pole adjacent in the other circumferential direction of the protruding magnetic pole Since the second magnetic path is formed between , the thickness in the axial direction can be reduced.

20 輪状ステータコア
40,40a 突出磁極
43 第1斜部
44 第2斜部
45,45a 鍔部
A 軸方向
B 周方向
a 第1磁路
b 第2磁路
20 Annular stator core 40, 40a Protruding magnetic pole 43 First slanted portion 44 Second slanted portion 45, 45a Flange A Axial direction B Circumferential direction a First magnetic path b Second magnetic path

Claims (4)

輪状ステータコア(20)と、
前記輪状ステータコア(20)の内面に、所定角度間隔毎に内方に向けて突出し、巻線が巻回された突出磁極(40)と、
前記突出磁極(40)の先端に形成された鍔部(45)と
を備えるステータコア構造において、
前記鍔部(45)の両側に形成された一対の第1斜部(43)及び第2斜部(44)を有し、
前記各鍔部(45)は、前記輪状ステータコア(20)の周方向(B)に沿って隣り合う前記鍔部(45)の前記第1斜部(43)同士が対向し且つ隣り合う前記鍔部(45)の前記第2斜部(44)同士が対向するように形成され、
前記突出磁極(40)と、当該突出磁極(40)の前記周方向(B)の一方に隣り合う前記突出磁極(40)との間に第1磁路(a)が形成され、当該突出磁極(40)と、当該突出磁極(40)の前記周方向(B)の他方に隣り合う前記突出磁極(40)との間に第2磁路(b)が形成されることを特徴とするステータコア構造。
an annular stator core (20);
protruding magnetic poles (40) protruding inwardly at predetermined angular intervals from the inner surface of the annular stator core (20) and wound with windings;
In a stator core structure comprising a flange (45) formed at the tip of the protruding magnetic pole (40),
A pair of first slanted portion (43) and second slanted portion (44) formed on both sides of the collar (45),
In each of the flange portions (45), the first inclined portions (43) of the flange portions (45) adjacent to each other along the circumferential direction (B) of the annular stator core (20) face each other and are adjacent to each other. The second inclined portions (44) of the portion (45) are formed so as to face each other ,
A first magnetic path (a) is formed between the protruding magnetic pole (40) and the protruding magnetic pole (40) adjacent to the protruding magnetic pole (40) in one of the circumferential directions (B), and the protruding magnetic pole A stator core characterized in that a second magnetic path (b) is formed between (40) and the protruding magnetic pole (40) adjacent to the other protruding magnetic pole (40) in the circumferential direction (B). structure.
前記鍔部(45)は前記内方から見て台形であることを特徴とする請求項1に記載のステータコア構造。 The stator core structure according to claim 1, wherein said flange (45) has a trapezoidal shape when viewed from the inside. 前記鍔部(45)は前記内方から見て三角形であることを特徴とする請求項1に記載のステータコア構造。 The stator core structure according to claim 1, wherein said flange (45) is triangular when viewed from said inside. 前記突出磁極(40)は前記輪状ステータコア(20)の軸方向(A)に沿って複数列形成され、前記軸方向(A)に沿って隣り合う他の列の前記突出磁極(40)前記鍔部(45)の上下が逆になるように形成されていることを特徴とする請求項1~3のいずれか一項に記載のステータコア構造。 The protruding magnetic poles (40) are formed in a plurality of rows along the axial direction (A) of the annular stator core (20). The stator core structure according to any one of claims 1 to 3, wherein the flange (45) is formed upside down .
JP2018206217A 2018-11-01 2018-11-01 stator core structure Active JP7179284B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018206217A JP7179284B2 (en) 2018-11-01 2018-11-01 stator core structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018206217A JP7179284B2 (en) 2018-11-01 2018-11-01 stator core structure

Publications (2)

Publication Number Publication Date
JP2020071159A JP2020071159A (en) 2020-05-07
JP7179284B2 true JP7179284B2 (en) 2022-11-29

Family

ID=70547692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018206217A Active JP7179284B2 (en) 2018-11-01 2018-11-01 stator core structure

Country Status (1)

Country Link
JP (1) JP7179284B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001201366A (en) 2000-01-20 2001-07-27 Tamagawa Seiki Co Ltd Stator structure
JP2018128312A (en) 2017-02-07 2018-08-16 多摩川精機株式会社 Torque detector

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2939566A1 (en) * 1979-09-29 1981-04-09 Zahnradfabrik Friedrichshafen Ag, 7990 Friedrichshafen MAGNETOSTRICTIVE MEASURING PROCESS, IN PARTICULAR FOR TORQUE MEASUREMENT ON SHAFTS

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001201366A (en) 2000-01-20 2001-07-27 Tamagawa Seiki Co Ltd Stator structure
JP2018128312A (en) 2017-02-07 2018-08-16 多摩川精機株式会社 Torque detector

Also Published As

Publication number Publication date
JP2020071159A (en) 2020-05-07

Similar Documents

Publication Publication Date Title
US20170370788A1 (en) Arrangement for measuring a force or a torque, using at least three magnetic sensors
JP7099699B2 (en) Core structure and strain detector for detecting changes in permeability
JP4862118B2 (en) Angle detector
JP4873709B2 (en) Current sensor
US20220018723A1 (en) Torque detection sensor
JP7076780B2 (en) Core structure and strain detector for detecting changes in permeability
JP7179284B2 (en) stator core structure
JP7076505B2 (en) Torque detection sensor core and torque detection sensor
JP3938886B2 (en) Eddy current testing probe and eddy current testing equipment
JP7166551B2 (en) Torque sensor stator structure
JP4344617B2 (en) Angular position magnetic sensor device
JP5138039B2 (en) Magnetic position sensor
JP2010266209A (en) Current sensor
JP5374741B2 (en) Multiple redundant linear sensor
JP4049305B2 (en) Rotation angle detector
JP5374739B2 (en) Linear sensor
JP2018173294A5 (en)
JP6070464B2 (en) Rotating body
JP4704018B2 (en) Torque sensor
JP6349428B2 (en) Rotating electrical machine rotor
JP6883843B2 (en) Torque detector
JP7179297B2 (en) Torque sensor stator structure
JP2004077231A (en) Eddy current flaw detecting device
JP7184941B2 (en) Torque detection sensor
JP2563512B2 (en) Torque sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221108

R150 Certificate of patent or registration of utility model

Ref document number: 7179284

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150