JP7178508B2 - PEAN FORMING CONDITION SETTING METHOD, PEAN FORMING METHOD, AND PEAN FORMING CONDITION SETTING DEVICE - Google Patents

PEAN FORMING CONDITION SETTING METHOD, PEAN FORMING METHOD, AND PEAN FORMING CONDITION SETTING DEVICE Download PDF

Info

Publication number
JP7178508B2
JP7178508B2 JP2021551102A JP2021551102A JP7178508B2 JP 7178508 B2 JP7178508 B2 JP 7178508B2 JP 2021551102 A JP2021551102 A JP 2021551102A JP 2021551102 A JP2021551102 A JP 2021551102A JP 7178508 B2 JP7178508 B2 JP 7178508B2
Authority
JP
Japan
Prior art keywords
amount
forming
peen
molding
condition setting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021551102A
Other languages
Japanese (ja)
Other versions
JPWO2021070395A1 (en
Inventor
大河 岡井
亮 河野
毅 山田
貴史 小▲崎▼
宏輔 赤沼
敏宏 ▲桑▼野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Publication of JPWO2021070395A1 publication Critical patent/JPWO2021070395A1/ja
Application granted granted Critical
Publication of JP7178508B2 publication Critical patent/JP7178508B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D31/00Other methods for working sheet metal, metal tubes, metal profiles
    • B21D31/06Deforming sheet metal, tubes or profiles by sequential impacts, e.g. hammering, beating, peen forming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/10Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for compacting surfaces, e.g. shot-peening

Description

本発明は、ピーン成形条件設定方法、ピーン成形方法およびピーン成形条件設定装置に関する。 The present invention relates to a pean forming condition setting method, a pean forming method, and a pean forming condition setting device.

従来、板ピーン成形条件の設定は、成形前後における被成形部材の表面に区画された複数の領域の変形量を指標として行われていた。 Conventionally, the setting of plate peen forming conditions has been carried out using, as indices, the amounts of deformation of a plurality of regions partitioned on the surface of the member to be formed before and after forming.

特許文献1では、ピーン成形方法において、金属部材を複数領域に分割し、各領域毎の板厚および成形すべき曲率を求める加工エリア分割工程と、異なる板厚を有する複数のテストピースに対して所定曲率を与えるためのショットの投射条件をまとめた投射条件データを参照して、各領域毎の板厚および成形すべき曲率の組み合わせに対応する投射条件を求め、この求められた投射条件に基づいて各領域を成形する成形工程を有する発明が開示されている。 In Patent Document 1, in a peen forming method, a metal member is divided into a plurality of regions, and a processing area dividing step of obtaining the plate thickness and curvature to be formed for each region, and a plurality of test pieces having different plate thicknesses. By referring to projection condition data summarizing shot projection conditions for giving a predetermined curvature, projection conditions corresponding to combinations of plate thicknesses and curvatures to be formed for each region are obtained, and based on the obtained projection conditions. An invention is disclosed having a molding step that molds each region with a .

特許文献2では、部材の表面を複数の領域に区分して領域毎に仮成形条件を設定し、仮成形条件で成形した場合の一の領域における変形量が、他の領域における変形量に及ぼす影響度合いを関係情報として領域毎に算出し、目標形状となる変形量となるための一の領域および他の領域におけるピーン成形条件を、関係情報に基づきを設定する発明が開示されている。 In Patent Document 2, the surface of a member is divided into a plurality of regions, temporary molding conditions are set for each region, and the deformation amount in one region when molded under the temporary molding conditions affects the deformation amount in the other regions. An invention is disclosed in which the degree of influence is calculated for each region as relational information, and the peen forming conditions for one region and the other region for achieving the deformation amount of the target shape are set based on the relational information.

特開2003-220428号公報Japanese Patent Application Laid-Open No. 2003-220428 特開2019-155387号公報JP 2019-155387 A

しかし、特許文献1の記載に係るピーン成形方法では、領域毎の板厚および曲率の組み合わせに最適化された投射条件が、そのまま全体の成形における各領域の投射条件として使用されていた。また、特許文献2の記載に係るピーン成形方法では、部材を成形後形状に成形するための領域毎の変形量のみを指標としていた。これにより、成形形状において特に精度を必要とする箇所における成形の精度が低下することがあった。 However, in the peen forming method described in Patent Document 1, the projection conditions optimized for the combination of plate thickness and curvature for each region are used as they are as the projection conditions for each region in the entire molding. Further, in the peen forming method described in Patent Document 2, only the amount of deformation for each region for forming the member into the shape after forming is used as an index. As a result, there is a case where the accuracy of molding is lowered at a portion of the molding shape that particularly requires accuracy.

上記目的を達成するための本開示に係るピーン成形条件設定方法は、被成形部材の解析モデルを複数の個別領域に区画し、所定の仮成形条件に基づいて解析を実行することで仮成形形状を取得するステップと、前記仮成形形状について、基準形状に対する前記個別領域の乖離量と、前記個別領域の変形量とを取得するステップと、前記仮成形条件と前記乖離量と前記変形量との関係式を取得するステップと、前記関係式に前記仮成形条件を代入して算出された前記乖離量および前記変形量のうち、前記乖離量が最小であり、且つ、目標変形量に対する前記変形量の差が最小である前記仮成形条件を最適成形条件に設定するステップと、を有する。 A peen forming condition setting method according to the present disclosure for achieving the above object divides an analysis model of a member to be formed into a plurality of individual regions, and performs analysis based on predetermined temporary forming conditions, thereby forming a temporary forming shape. obtaining the amount of deviation of the individual region from the reference shape and the amount of deformation of the individual region for the provisional forming shape; and the provisional forming condition, the amount of separation, and the amount of deformation obtaining a relational expression, wherein, of the deviation amount and the deformation amount calculated by substituting the temporary molding condition into the relational expression, the deviation amount is the smallest and the deformation amount with respect to the target deformation amount. and setting the temporary molding conditions that have the smallest difference in the optimum molding conditions.

上記目的を達成するための本開示に係る成形方法は、ピーン成形条件設定方法により設定された前記最適成形条件で、前記被成形部材をピーン成形加工するステップを有する。 A molding method according to the present disclosure for achieving the above object has a step of peen-molding the member to be molded under the optimum molding conditions set by the peen molding condition setting method.

ピーン成形条件を設定するピーン成形条件設定装置であって、被成形部材の解析モデルを複数の領域に区画し、所定の仮成形条件に基づいて解析を実行することで取得される仮成形形状について、基準形状に対する前記個別領域の乖離量と、前記個別領域の変形量とを取得し、前記仮成形条件と前記乖離量と前記変形量との関係式を取得する手段と、前記関係式に所定の前記仮成形条件を代入することにより前記乖離量および前記変形量を算出する手段と、算出された前記乖離量および前記変形量のうち、前記乖離量が最小であり、且つ、目標変形量に対する前記変形量の差が最小である前記仮成形条件を最適成形条件に設定する手段と、を有する。 A peen forming condition setting device for setting peen forming conditions, in which a provisional forming shape obtained by dividing an analysis model of a member to be formed into a plurality of regions and executing an analysis based on predetermined provisional forming conditions means for acquiring the amount of deviation of the individual region from the reference shape and the amount of deformation of the individual region, and acquiring a relational expression between the temporary molding condition, the amount of deviation, and the amount of deformation; means for calculating the amount of deviation and the amount of deformation by substituting the temporary molding conditions of, and the amount of deviation is the smallest among the amount of deviation and the amount of deformation calculated, and and means for setting the temporary molding conditions under which the difference in the amount of deformation is the smallest as optimum molding conditions.

本発明によれば、ピーン成形加工による成形形状の、基準形状に対する乖離量および目標変形量と変形量との差が最小となる成形条件を最適成形条件に設定するので、最適成形条件にて成形された成形形状の全体としての、目標成形形状に対する精度を高めることができる。 According to the present invention, since the forming conditions under which the amount of deviation of the formed shape by peen forming from the reference shape and the difference between the target deformation amount and the deformation amount are minimized are set as the optimum forming conditions, forming is performed under the optimum forming conditions. It is possible to improve the accuracy of the target molding shape as a whole of the formed molding shape.

図1は、本発明の実施例に係る被成形部材の複数の領域に区画された解析モデルを示す図である。FIG. 1 is a diagram showing an analysis model divided into a plurality of regions of a member to be molded according to an embodiment of the present invention. 図2は、本発明の実施例に係る成形条件設定装置を含むピーン成形システムを示すブロック図である。FIG. 2 is a block diagram showing a peen forming system including a forming condition setting device according to an embodiment of the present invention. 図3は、本発明の実施例に係る被成形部材の成形形状における乖離量を示す図である。FIG. 3 is a diagram showing deviation amounts in the molded shape of the molded member according to the embodiment of the present invention. 図4は、本発明の実施例に係る被成形部材の成形形状における変形量であるアークハイトを示す図である。FIG. 4 is a diagram showing the arc height, which is the amount of deformation in the molded shape of the molded member according to the embodiment of the present invention. 図5は、本発明の実施例に係るピーン成形条件設定方法を示すフローチャートである。FIG. 5 is a flow chart showing a method for setting peen forming conditions according to an embodiment of the present invention. 図6は、本発明の実施例に係る補強部材を備える被成形部材を示した図である。FIG. 6 illustrates a molded member with a reinforcing member according to an embodiment of the present invention. 図7は、本発明の実施例に係る補強部材を備える被成形部材が複数の領域に区画された解析モデルの詳細を示した図である。FIG. 7 is a diagram showing details of an analysis model in which a molded member having reinforcing members according to an embodiment of the present invention is divided into a plurality of regions.

<ピーン成形加工について>
ピーン成形加工とは、複数の小さな粒状の鋼球を板状部材等の表面に投射し、その圧力により板状部材の表面側から塑性変形を生じさせて板状部材に曲げ変形を生じさせる加工である。ピーン加工された板状部材は、原理的に加工中心を中心とした加工表面側が突出するような湾曲形状を生じる、いわゆる等方性のひずみを有している。ピーン成形加工に用いられる成形条件は、例えば、鋼球を投射する速度、時間当たりの投射量、および鋼球を投射するショット投射部の移動速度があり、これらの成形条件を変化させることにより、成形形状の調整を行うことができる。
<About pean molding>
Pean forming is a process in which a plurality of small grained steel balls are projected onto the surface of a plate-shaped member, etc., and the pressure from the projection causes plastic deformation from the surface side of the plate-shaped member, resulting in bending deformation of the plate-shaped member. is. A peen-processed plate-shaped member has a so-called isotropic strain that, in principle, produces a curved shape in which the processed surface side protrudes from the processing center. Forming conditions used in the peen forming process include, for example, the speed of projecting steel balls, the amount of shot per hour, and the moving speed of the shot projecting part for projecting steel balls. By changing these forming conditions, Molding shape can be adjusted.

以下に、本発明の実施例について、図を参照しながら詳細に説明する。なお、本発明は、以下に説明する実施例のみに限定されるものではない。 Embodiments of the present invention will be described in detail below with reference to the drawings. It should be noted that the present invention is not limited only to the examples described below.

本発明に係る被成形部材Pは、図1に示す通り、長尺の板状部材であり、材料は、例えばアルミニウム合金を含む金属である。本実施例に係る被成形部材Pは、飛行機の翼体を構成する部品に使用される。 A member P to be formed according to the present invention is, as shown in FIG. 1, a long plate-like member, and the material thereof is a metal containing, for example, an aluminum alloy. The member to be molded P according to the present embodiment is used for a part constituting a wing body of an airplane.

<ピーン成形システム>
ピーン成形システム100は、図2に示す通り、ピーン成形条件Rを設定するピーン成形条件設定装置200と、実際にピーン成形加工を行うピーン成形装置300とを有している。ピーン成形システム100では、ピーン成形条件設定装置200にて、被成形部材Pをピーン成形加工するためのピーン成形条件Rが設定され、ピーン成形装置300にて、ピーン成形条件Rに基づいて被成形部材Pに対しピーン成形加工がされ、成形形状が取得される。本実施例において、ピーン成形条件Rは、鋼球を投射する投射速度、時間当たりの投射量および後述するショット投射部350の被成形部材Pに対する移動速度から構成される。なお、ピーン成形条件Rは、これらの構成に限られない。以下、図2を参照して、ピーン成形システム100を構成するピーン成形条件設定装置200およびピーン成形装置300について説明する。なお、ピーン成形条件設定装置200とピーン成形装置300とは、一体に構成されていてもよい。
<Pean molding system>
The peen forming system 100 has, as shown in FIG. 2, a pean forming condition setting device 200 that sets pean forming conditions R, and a pean forming device 300 that actually performs pean forming processing. In the pean forming system 100, the peen forming condition setting device 200 sets peen forming conditions R for peen forming the member P to be formed, and the pean forming device 300 forms the peen forming conditions R based on the pean forming conditions. A peen forming process is performed on the member P to obtain a formed shape. In this embodiment, the peen forming condition R is composed of the projecting speed of projecting steel balls, the amount of projecting per hour, and the moving speed of the shot projecting unit 350 with respect to the member to be formed P, which will be described later. Note that the peen forming condition R is not limited to these configurations. A pean forming condition setting device 200 and a pean forming device 300 that constitute the pean forming system 100 will be described below with reference to FIG. 2 . Note that the pean forming condition setting device 200 and the pean forming device 300 may be configured integrally.

<ピーン成形条件設定装置>
ピーン成形条件設定装置200は、図2に示す通り、演算処理を行う演算部210と、外部との入出力処理を行う入出力部220と、プログラムおよびデータの記録処理を行う記録部230とを備えている。記録部230および入出力部220はそれぞれ演算部210と接続されている。ピーン成形条件設定装置200は、コンピュータ端末として構成されており、入出力部220に、外部入力装置として例えばキーボード、マウス、および表示モニタを備えていてもよい。
<Pean molding condition setting device>
As shown in FIG. 2, the pean forming condition setting device 200 includes an arithmetic unit 210 for arithmetic processing, an input/output unit 220 for input/output processing with the outside, and a recording unit 230 for recording programs and data. I have. Recording unit 230 and input/output unit 220 are each connected to computing unit 210 . The peen forming condition setting device 200 is configured as a computer terminal, and the input/output unit 220 may be provided with, for example, a keyboard, a mouse, and a display monitor as external input devices.

演算部210は、入出力部220からの入力並びに記録部230のプログラムおよびデータに基づき演算処理を行う。演算部210は、設定されたピーン成形条件Rを入出力部220に出力するとともに、ピーン成形条件設定装置200の全般の制御を行う。演算部210は、CPUとして構成される。 The arithmetic unit 210 performs arithmetic processing based on the input from the input/output unit 220 and the program and data of the recording unit 230 . The calculation unit 210 outputs the set peen forming condition R to the input/output unit 220 and controls the entire pean forming condition setting device 200 . The calculation unit 210 is configured as a CPU.

記録部230は、プログラムおよびデータの記録を行う。記録部230は、図2に示す通り、領域区画プログラム232、仮成形条件設定プログラム234、形状取得プログラム236、乖離量取得プログラム238、変形量取得プログラム240、学習モデルプログラム242、関係式取得プログラム244、算出プログラム246、および成形条件設定プログラム248を備えている。また記録部230は、成形結果データベース250を備えている。記録部230は、メモリおよびHDDにより構成される。 The recording unit 230 records programs and data. As shown in FIG. 2, the recording unit 230 includes a region division program 232, a provisional molding condition setting program 234, a shape acquisition program 236, a divergence amount acquisition program 238, a deformation amount acquisition program 240, a learning model program 242, and a relational expression acquisition program 244. , a calculation program 246 and a molding condition setting program 248 . The recording unit 230 also has a molding result database 250 . Recording unit 230 is configured by a memory and an HDD.

領域区画プログラム232は、入力された被成形部材Pの解析モデルMおよび目標成形形状Hに基づいて、解析モデルMの表面および裏面に複数の領域を区画する。解析モデルMは、成形前の被成形部材Pの形状であり、例えばCADデータにより与えられる。解析モデルMは、材料に関する情報を有している。目標成形形状Hは、ピーン成形加工により得るべき形状のモデルであり、例えばCADデータにより与えられる。解析モデルMへの複数の領域の区画は、例えば材料、板厚および曲率に応じて行われ、解析モデルMへの複数の領域の区画は、例えば形状や曲率の変化が大きい箇所に対して多くの領域が区画され、形状や曲率の変化が小さい箇所に対しては少ない領域が区画されてもよい。 The area partitioning program 232 partitions a plurality of areas on the front surface and the back surface of the analysis model M based on the input analysis model M of the member to be molded P and the target molding shape H. The analysis model M is the shape of the member to be molded P before molding, and is given by CAD data, for example. The analysis model M has information on materials. The target forming shape H is a model of the shape to be obtained by peen forming, and is given by CAD data, for example. The division of a plurality of regions into the analysis model M is performed, for example, according to the material, plate thickness, and curvature, and the division of a plurality of regions into the analysis model M is often performed, for example, for locations with large changes in shape and curvature. may be partitioned, and fewer regions may be partitioned for locations where the change in shape or curvature is small.

仮成形条件設定プログラム234は、仮成形条件Tを複数設定する。本実施例において、仮成形条件Tは、鋼球を投射する投射速度、時間当たりの投射量、およびショット投射部330の移動速度から構成される。なお、仮成形条件Tは、これらの構成に限られない。 The provisional molding condition setting program 234 sets a plurality of provisional molding conditions T. FIG. In this embodiment, the temporary molding condition T is composed of the projecting speed of the steel balls, the amount of projecting per hour, and the moving speed of the shot projecting section 330 . Note that the temporary molding condition T is not limited to these configurations.

形状取得プログラム236は、入力された解析モデルおよび成形条件に基づいて、ピーン成形加工のシミュレーションを行い、成形形状(仮成形形状)を出力する。すなわち形状取得プログラム236は、解析モデルMおよび仮成形条件Tが入力された場合には、解析モデルMについての成形形状である全体仮成形形状Bを出力する。形状取得プログラム236で、ピーン成形加工のシミュレーションに用いられる手法としては、例えば有限要素法が挙げられる。 The shape acquisition program 236 simulates peen forming processing based on the input analysis model and forming conditions, and outputs a forming shape (temporary forming shape). That is, the shape acquisition program 236 outputs the entire temporary forming shape B, which is the forming shape for the analysis model M, when the analysis model M and the provisional forming conditions T are input. The shape acquisition program 236 uses, for example, the finite element method as a method for simulating the peen forming process.

乖離量取得プログラム238は、基準形状Sの設定領域Uに対する成形形状における個別領域Aの乖離量Gを取得する。ここで、基準形状Sは、図3に示すように、成形後の面形状を備えており、基準形状Sには設定領域Uが区画されている。ここで、基準形状Sの設定領域Uは、複数の個別領域を含むよう構成される。また、乖離量Gとは、図3及び図4に示す通り、成形形状の個別領域Aの中心点ACの、基準形状Sの設定領域Uに対する面方向における距離を意味する。基準形状Sは、図3に示すように、成形形状に対するモールド形状であってもよい。基準形状Sは、例えばCADデータにより作成されている。 The divergence amount acquisition program 238 acquires the divergence amount G of the individual region A in the forming shape with respect to the set region U of the reference shape S. Here, as shown in FIG. 3, the reference shape S has a surface shape after molding, and the reference shape S has a set region U defined therein. Here, the setting area U of the reference shape S is configured to include a plurality of individual areas. 3 and 4, the divergence amount G means the distance of the center point AC of the individual area A of the forming shape from the setting area U of the reference shape S in the plane direction. The reference shape S, as shown in FIG. 3, may be a mold shape for the molding shape. The reference shape S is created by CAD data, for example.

変形量取得プログラム240は、解析モデルMの成形前後における各個別領域の変形量Dを取得する。変形量Dとは、ピーン成形加工による個別領域Aの中心点ACの変形の量である。本実施例では、変形量Dは各個別領域におけるアークハイトを指すものとする。本実施例においては、成形前の被成形部材Pの形状は平面であるため、アークハイトは成形後の形状により求めることができる。アークハイトは、図4に示す通り、成形後の形状における個別領域Aの面の中心点ACと、個別領域Aを構成する辺の、X軸方向と平行な2辺DX1およびDX2の中点同士XM1およびXM2を結んだ線AXとの距離HX、および同様にY軸方向に平行な2辺DY1およびDY2の中点YM1およびYM2同士を結んだ線AYとの距離HYである。なお、変形量Dは個別領域Aがピーン成形加工により変形を表す量であればよく、必ずしもアークハイトに限らない。 The deformation amount acquisition program 240 acquires the deformation amount D of each individual region before and after the analysis model M is molded. The deformation amount D is the amount of deformation of the center point AC of the individual region A due to the peen forming process. In this embodiment, the deformation amount D indicates the arc height in each individual region. In this embodiment, since the shape of the member to be molded P before molding is flat, the arc height can be obtained from the shape after molding. As shown in FIG. 4, the arc height is the center point AC of the surface of the individual region A in the shape after molding, and the midpoints of two sides DX1 and DX2 parallel to the X-axis direction of the sides forming the individual region A. A distance HX from a line AX connecting XM1 and XM2, and a distance HY from a line AY connecting midpoints YM1 and YM2 of two sides DY1 and DY2 parallel to the Y-axis direction. The amount of deformation D is not necessarily limited to the arc height as long as it represents the deformation of the individual region A due to the peen forming process.

学習モデルプログラム242は、成形条件、乖離量Gおよび変形量Dのデータ群から成形条件から乖離量Gおよび変形量Dを導出する学習モデルLを得る。なお、本実施例においては、学習モデルLは、後述する関係式Fに包含される。学習モデルLは、説明変数である成形条件から目的変数である乖離量Gおよび変形量Dを算出するための、重みつき関数である。学習モデルLは、例えば、全体仮成形形状Bにおいては、仮成形条件Tから乖離量Gおよび変形量Dを算出するための重みつき関数となる。学習モデルLは、例えばニューラルネットワークとして取得される。 The learning model program 242 obtains a learning model L for deriving the amount of deviation G and the amount of deformation D from the molding condition from the data group of the amount of deviation G and the amount of deformation D of the molding condition. Note that, in this embodiment, the learning model L is included in the relational expression F described later. The learning model L is a weighted function for calculating the amount of divergence G and the amount of deformation D, which are objective variables, from the molding conditions, which are explanatory variables. The learning model L is, for example, a weighted function for calculating the amount of deviation G and the amount of deformation D from the temporary molding conditions T in the overall temporary molding shape B. FIG. The learning model L is acquired as, for example, a neural network.

学習モデルLは、成形条件、乖離量G、変形量Dおよび成形良否結果Jを含む正解付データKを、いわゆる教師あり学習として機械学習した後の学習モデルLとして取得してもよい。教師あり学習による機械学習により、学習モデルLは、与えられた成形条件から算出される乖離量Gおよび変形量Dが正解となるよう重みが修正されることにより精度の高いデータを算出することができる。ここで、成形結果データは、実際のピーン成形加工したピーン成形条件R、基準形状Sに対する乖離量G、変形量Dおよび成形良否結果Jを含んでおり、いわゆる正解付データKとして使用することができる。学習モデルプログラム242は、後述する成形結果データベース250に記録されている成形結果データを使用することができる。 The learning model L may be acquired as a learning model L after performing machine learning as so-called supervised learning on the correct data K including the molding condition, the deviation amount G, the deformation amount D, and the molding quality result J. Machine learning based on supervised learning enables the learning model L to calculate highly accurate data by correcting the weights so that the amount of deviation G and the amount of deformation D calculated from given molding conditions are correct. can. Here, the forming result data includes the peen forming conditions R for the actual peen forming process, the deviation amount G from the reference shape S, the deformation amount D, and the forming quality result J, and can be used as so-called correct answer data K. can. The learning model program 242 can use molding result data recorded in a molding result database 250, which will be described later.

関係式取得プログラム244は、成形条件、乖離量Gおよび変形量Dのデータ群から関係式Fを取得する。関係式Fは、乖離量Gおよび変形量Dを目的変数、成形形状を説明変数として相関関係を求めたものである。関係式Fは成形条件、乖離量Gおよび変形量Dのデータ群を、例えば重回帰分析することにより取得される。関係式取得プログラム244は、後述する成形結果データベース250に記録されている成形結果データを使用することができる。 The relational expression acquisition program 244 acquires the relational expression F from the data group of the molding conditions, the amount of divergence G, and the amount of deformation D. The relational expression F is obtained by determining the correlation using the amount of deviation G and the amount of deformation D as objective variables and the molding shape as explanatory variables. The relational expression F is obtained by, for example, multiple regression analysis of the data group of the molding conditions, the amount of divergence G, and the amount of deformation D. The relational expression acquisition program 244 can use molding result data recorded in a molding result database 250, which will be described later.

以下に、関係式Fを重回帰分析にて取得した場合の一例として、仮成形条件Tにより乖離量Gおよび変形量DとしてのアークハイトHXおよびHYを表した式を示す。
G=C+C・T1+C・T2・・・(1)
HX=C+C・T+C・T2・・・(2)
HY=C+C・T1+C・T2・・・(3)
ここで、T1は、個別領域Aの表面へのショット投射についての仮成形条件であり、T2は、個別領域Aの裏面へのショット投射についての仮成形条件である。また、C~Cは、重回帰分析等により求められる重みである。
As an example of the case where the relational expression F is obtained by multiple regression analysis, an expression expressing the arc heights HX and HY as the amount of deviation G and the amount of deformation D according to the provisional molding conditions T is shown below.
G= C0 + C1.T1 + C2.T2 (1)
HX = C3 + C4.T1 + C5.T2 (2)
HY= C6 + C7.T1 + C8.T2 (3)
Here, T1 is a temporary molding condition for shot projection onto the front surface of the individual region A, and T2 is a temporary molding condition for shot projection onto the back surface of the individual region A. C 0 to C 8 are weights obtained by multiple regression analysis or the like.

算出プログラム246は、所定の範囲の成形条件を関係式Fに代入し、乖離量Gおよび変形量Dを算出する。ここで、上述の通り、本実施例においては、関係式Fは学習モデルLを包含するため、以下の説明にて関係式Fに成形条件を代入して乖離量Gおよび変形量Dを算出する場合には、学習モデルLに成形条件を代入して乖離量Gおよび変形量Dを取得する場合も含むものとする。 The calculation program 246 substitutes a predetermined range of molding conditions into the relational expression F to calculate the amount of divergence G and the amount of deformation D. Here, as described above, in this embodiment, since the relational expression F includes the learning model L, the deviation amount G and the deformation amount D are calculated by substituting the molding conditions into the relational expression F in the following description. In some cases, the case where the deviation amount G and the deformation amount D are acquired by substituting the molding conditions into the learning model L is also included.

成形条件設定プログラム248は、算出プログラム246で算出された乖離量G、および目標変形量と変形量Dとの差が最小かの判定を行う。複数の乖離量Gおよび変形量Dが存在する場合には、その中で乖離量Gおよび目標変形量と変形量Dとの差が最小である場合の成形条件を、最適なピーン成形条件Rとして設定する。 The molding condition setting program 248 determines whether the divergence amount G calculated by the calculation program 246 and the difference between the target deformation amount and the deformation amount D are minimum. When a plurality of divergence amounts G and deformation amounts D exist, the forming condition in which the difference between the divergence amount G and the target deformation amount and the deformation amount D is the smallest is defined as the optimum peen forming condition R. set.

なお、成形条件設定プログラム248は、最小であると判定するための閾値が与えられてもよい。この場合において、成形条件設定プログラム248は、乖離量Gおよび目標変形量と変形量Dとの差が閾値以下であった場合に最小と判定することができ、この場合における成形条件を最適なピーン成形条件Rとして設定する。 In addition, the molding condition setting program 248 may be given a threshold for judging that it is the minimum. In this case, the molding condition setting program 248 can determine that the deviation amount G and the difference between the target deformation amount and the deformation amount D are equal to or less than the threshold value, and the molding condition in this case is set to the optimum peening condition. A molding condition R is set.

成形結果データベース250は、実際にピーン成形加工された被成形部材に関する情報、材料、成形形状、成形条件および加工結果の良否のデータを有する。ここで、成形結果データベース250は、ピーン成形装置300での成形結果が入出力部220を介してピーン成形条件設定装置200に入力され、成形結果データベース250に記録されるよう構成されてもよい。 The molding result database 250 has information on the molded member actually peen-molded, material, molding shape, molding conditions, and data on the quality of the processing result. The forming result database 250 may be configured such that the forming result of the peen forming device 300 is input to the peen forming condition setting device 200 via the input/output unit 220 and recorded in the forming result database 250 .

入出力部220は、演算部210からの指示に基づきピーン成形条件設定装置200の外部とのデータの入出力処理を行う。入出力部220は、図2に示すように、ピーン成形装置300の入出力部320と接続されている。入出力部220は、図示しないLANに有線接続される。また、入出力部220は、WiFiなどにより無線接続されてデータの入出力が行われてもよく、さらにUSBメモリなどの持ち運び可能な記録媒体を介してデータの入出力が行われてもよい。 The input/output unit 220 performs input/output processing of data with the outside of the peen forming condition setting device 200 based on instructions from the calculation unit 210 . The input/output unit 220 is connected to the input/output unit 320 of the peen forming device 300, as shown in FIG. The input/output unit 220 is wired to a LAN (not shown). The input/output unit 220 may be wirelessly connected by WiFi or the like to input/output data, or may input/output data via a portable recording medium such as a USB memory.

<ピーン成形装置>
ピーン成形装置300は、被成形部材Pに対して設定されたピーン成形条件Rに基づき実際にピーン成形を行う。ピーン成形装置300は、図2に示すように、制御部310、入出力部320、ショット投射部330および記録部340を備えている。本実施例におけるピーン成形加工は、ピーン成形装置300に取り付けられる被成形部材Pに対し、ショット投射部330を所定の移動速度で移動させることにより行う。なお、ピーン成形加工は、ショット投射部330に対し、被成形部材Pを所定の移動速度で移動させることにより行われてもよい。
<Pean forming device>
The peen forming device 300 actually performs peen forming based on peen forming conditions R set for the member P to be formed. The peen forming apparatus 300 includes a control section 310, an input/output section 320, a shot projection section 330 and a recording section 340, as shown in FIG. The peen forming process in this embodiment is performed by moving the shot projection part 330 at a predetermined movement speed with respect to the member P to be formed attached to the peen forming device 300 . The peen forming process may be performed by moving the member P to be formed with respect to the shot projection section 330 at a predetermined moving speed.

制御部310は、設定されたピーン成形条件Rに基づいてショット投射部330の動作の制御を行うほか、ピーン成形装置300に関する全般の制御を行う。制御部310は、図示しないCPU、メモリ、HDDを備えている。さらに制御部310は、ピーン成形加工の状態を表示する表示モニタを備えていてもよい。 The control unit 310 controls the operation of the shot projection unit 330 based on the set peen forming condition R, and also performs overall control of the peen forming apparatus 300 . The control unit 310 includes a CPU, memory, and HDD (not shown). Furthermore, the control unit 310 may include a display monitor that displays the status of the peen forming process.

入出力部320は、ピーン成形条件設定装置200からピーン成形条件Rを受け取るほか、外部とのデータの入出力処理を行う。入出力部320は、図示しないLANに有線接続される。また、入出力部320は、WiFiなどにより無線接続されてデータの入出力が行われてもよく、また、USBメモリなどの持ち運び可能な記録媒体を介してデータの入出力が行われてもよい。 The input/output unit 320 receives the pean forming conditions R from the pean forming condition setting device 200, and also performs data input/output processing with the outside. The input/output unit 320 is wired to a LAN (not shown). The input/output unit 320 may be wirelessly connected by WiFi or the like to input/output data, or may input/output data via a portable recording medium such as a USB memory. .

ショット投射部330は、制御部310から指示されるピーン成形条件Rに基づいて、板状部材に対し実際にピーン成形加工を行う。ショット投射部330は、ピーン成形条件Rに基づいて鋼球をショット投射可能に構成されており、鋼球の投射速度、時間当たりの投射量、およびショット投射部330の移動速度が調整可能となっている。なお、被成形部材Pがショット投射部330に対して移動する場合には、移動速度は、被成形部材Pの移動速度となる。 The shot projection unit 330 actually performs peen forming processing on the plate-like member based on the peen forming conditions R instructed by the control unit 310 . The shot projection unit 330 is configured to shoot steel balls based on the peen forming condition R, and the projection speed of the steel balls, the amount of shot per hour, and the movement speed of the shot projection unit 330 can be adjusted. ing. In addition, when the member P to be molded moves with respect to the shot projection part 330, the moving speed is the moving speed of the member P to be molded.

<成形方法>
被成形部材Pの成形方法について、図5に示すフローチャートに基づき説明する。ここで、成形方法は、大きく3つの段階に分けられる。すなわち、1つ目の段階は、成形条件を算出する関係式Fの導出を行う段階(S10~S50)であり、2つ目の段階は、関係式Fからピーン成形条件Rの算出を行う段階(S60~S80)であり、3つ目の段階は、算出されたピーン成形条件Rに基づいて、実際に板状部材に対してピーン成形加工を行う段階(S90)である。以下、それぞれの段階に分けて詳細に説明する。
<Molding method>
A method for molding the member to be molded P will be described based on the flowchart shown in FIG. Here, the molding method is roughly divided into three stages. That is, the first step is the step of deriving the relational expression F for calculating the molding conditions (S10 to S50), and the second step is the step of calculating the peen forming condition R from the relational expression F. (S60 to S80), and the third stage is a stage (S90) in which peen forming processing is actually performed on the plate-like member based on the calculated peen forming conditions R. Each step will be described in detail below.

<関係式の取得>
関係式Fの取得を行う段階について説明する。関係式Fの取得を行う段階は、図5に示すように、被成形部材Pの解析モデルMに複数の領域を区画するステップ(S10)と、仮成形条件Tを設定するステップ(S20)と、被成形部材Pの全体仮成形形状Bを取得するステップ(S30)と、全体仮成形形状Bの基準形状Sに対する乖離量Gおよび変形量Dを取得するステップ(S40)と、成形条件、乖離量Gおよび変形量Dの関係式Fを取得するステップ(S50)とを有する。
<Acquisition of relational expression>
The step of obtaining the relational expression F will be described. As shown in FIG. 5, the step of obtaining the relational expression F includes a step of dividing a plurality of regions into the analysis model M of the member to be molded P (S10) and a step of setting the temporary molding conditions T (S20). , the step of acquiring the overall temporary molding shape B of the member to be molded P (S30), the step of acquiring the deviation amount G and the deformation amount D of the overall temporary molding shape B from the reference shape S (S40), the molding conditions, the deviation and obtaining a relational expression F of the amount G and the amount of deformation D (S50).

被成形部材Pの解析モデルMに複数の領域を区画するステップ(S10)では、入力された被成形部材Pおよび目標成形形状Hに基づき、被成形部材Pの解析モデルMの表面および裏面を、複数の領域に区画する。解析モデルMの複数の領域への区画は、領域区画プログラム232により行われる。 In the step (S10) of dividing a plurality of areas into the analysis model M of the member P to be molded P, based on the input member P and the target molding shape H, the front and back surfaces of the analysis model M of the member P are Divide into multiple areas. Partitioning of the analysis model M into a plurality of regions is performed by the region partitioning program 232 .

仮成形条件Tを設定するステップ(S20)では、領域が区画された解析モデルMに対して、仮成形条件Tの設定を行う。仮成形条件Tの取得は、仮成形条件設定プログラム234により行われる。 In the step of setting the temporary molding conditions T (S20), the temporary molding conditions T are set for the analysis model M in which the regions are divided. Acquisition of the temporary molding conditions T is performed by the temporary molding condition setting program 234 .

被成形部材Pの全体仮成形形状Bを取得するステップ(S30)では、複数の仮成形条件Tに基づき、解析モデルMの全体について数値解析によるシミュレーションを行い複数の全体仮成形形状Bを取得する。全体仮成形形状Bの取得は、形状取得プログラム236により行われる。 In the step (S30) of acquiring the overall temporary molding shape B of the member P to be molded P, a plurality of overall temporary molding shapes B are acquired by performing a numerical analysis simulation for the entire analysis model M based on a plurality of temporary molding conditions T. . Acquisition of the overall temporary molding shape B is performed by the shape acquisition program 236 .

全体仮成形形状Bの基準形状Sに対する乖離量Gおよび変形量Dを取得するステップ(S40)では、取得された全体仮成形形状Bについて、仮成形条件T、基準形状Sとの乖離量Gおよび変形量Dを取得する。乖離量Gの取得は乖離量取得プログラム238により行われ、また変形量Dの取得は変形量取得プログラム240により行われる。 In the step (S40) of acquiring the amount of deviation G and the amount of deformation D of the overall provisional forming shape B from the reference shape S, the provisional forming condition T, the amount of deviation G from the reference shape S, and A deformation amount D is acquired. Acquisition of the deviation amount G is performed by the deviation amount acquisition program 238 , and acquisition of the deformation amount D is performed by the deformation amount acquisition program 240 .

成形条件、乖離量Gおよび変形量Dの関係式Fを取得するステップ(S50)では、仮成形条件Tについて、それぞれの乖離量Gおよび変形量Dとの学習モデルLを含む関係式Fを取得する。学習モデルLの取得は、学習モデルプログラム242により行われる。関係式Fの取得は、関係式取得プログラム244により行われる。 In the step (S50) of obtaining the relational expression F of the molding conditions, the amount of deviation G, and the amount of deformation D, the relational expression F including the learning model L between the amount of deviation G and the amount of deformation D is obtained for the provisional molding condition T. do. Acquisition of the learning model L is performed by the learning model program 242 . Acquisition of the relational expression F is performed by the relational expression acquisition program 244 .

<成形条件の設定>
成形条件の設定を行う段階について説明する。成形条件の設定を行う段階は、図5に示すように、関係式Fに成形条件を代入し乖離量Gおよび変形量Dを算出するステップ(S60)と、乖離量Gが最小か、および目標変形量に対する変形量Dの差が最小かを判定するステップ(S70)と、最適成形条件を設定するステップ(S80)と、を有する。
<Setting molding conditions>
A step of setting molding conditions will be described. As shown in FIG. 5, the stage of setting the molding conditions consists of a step (S60) of substituting the molding conditions into the relational expression F to calculate the amount of deviation G and the amount of deformation D; It has a step (S70) of determining whether the difference between the deformation amount D and the deformation amount is minimal, and a step (S80) of setting the optimum molding conditions.

関係式Fに成形条件を代入し乖離量Gおよび変形量Dを算出するステップ(S60)では、関係式Fに所定の範囲の成形条件を代入し、所定の範囲の成形条件における乖離量Gおよび変形量Dを算出する。ここで、関係式Fに代入される所定の範囲の仮成形条件としては、例えば仮成形条件Tで用いた成形条件などが用いられる。乖離量Gおよび変形量Dの算出は算出プログラム246により行う。 In the step (S60) of substituting the molding conditions into the relational expression F to calculate the deviation amount G and the deformation amount D, a predetermined range of molding conditions is substituted into the relational expression F, and the deviation amount G and the deviation amount in the predetermined range of the molding conditions are calculated. A deformation amount D is calculated. Here, as the temporary molding conditions in the predetermined range to be substituted into the relational expression F, the molding conditions used in the temporary molding conditions T, for example, are used. The deviation amount G and the deformation amount D are calculated by the calculation program 246 .

乖離量Gが最小か、および目標変形量に対する変形量Dの差が最小かを判定するステップ(S70)および最適成形条件を設定するステップ(S80)では、関係式Fに所定の範囲の成形条件を代入して算出された乖離量Gおよび変形量Dのうち、乖離量Gおよび目標変形量と変形量Dの差が最小と判定される場合(S70のYes)の成形条件が、最適な成形条件として設定することにより行われる(S80)。また、乖離量Gおよび目標変形量と変形量Dとの差が最小と判断されない場合(S70のNo)には、再度別の成形条件について、新たに乖離量Gおよび変形量Dの算出が行われ、乖離量Gと変形量Dとの差の判定がされる。ここで、成形条件の判定は、成形条件設定プログラム248により行う。設定されたピーン成形条件Rは、ピーン成形装置300に送られる。 In the step (S70) of determining whether the divergence amount G is the smallest and whether the difference between the deformation amount D and the target deformation amount is the smallest (S70) and the step of setting the optimum molding conditions (S80), the relational expression F is formed with molding conditions within a predetermined range. When the deviation amount G and the difference between the target deformation amount and the deformation amount D are determined to be the minimum among the deviation amount G and the deformation amount D calculated by substituting This is done by setting conditions (S80). Further, if the deviation amount G and the difference between the target deformation amount and the deformation amount D are not determined to be the minimum (No in S70), the deviation amount G and the deformation amount D are newly calculated for another molding condition. Then, the difference between the amount of divergence G and the amount of deformation D is determined. Here, molding condition determination is performed by the molding condition setting program 248 . The set peen forming conditions R are sent to the peen forming device 300 .

<ピーン成形加工>
ピーン成形加工の段階では、実成形加工するステップ(S90)で、ピーン成形条件Rに基づいて被成形部材Pに対して実際のピーン成形加工が行われる。ピーン成形加工は、ピーン成形装置300により行われ、ピーン成形装置300に対して取り付けられた被成形部材Pに対し、ショット投射部330により、設定されたピーン成形条件Rの投射速度、時間当たりの投射量およびショット投射部330の移動速度でショット投射することにより行う。
<Pean forming process>
In the stage of the peen forming process, the actual peen forming process is performed on the member to be formed P based on the peen forming conditions R in the actual forming step (S90). The peen forming process is performed by the peen forming device 300, and the shot projection unit 330 shoots the peen forming condition R at the set peen forming condition R on the member to be formed P attached to the peen forming device 300. This is performed by projecting shots at the projection amount and the movement speed of the shot projection unit 330 .

<異方性ひずみについて>
本発明に係るピーン成形条件設定方法は、ピーン成形加工により被成形部材に異方性ひずみを生じさせる場合においても、適用することができる。上述の通り、ピーン成形加工は原理的に板状体に等方性ひずみを生じさせる2軸方向の成形であるところ、異方性ひずみとは、特に1軸方向にのみ湾曲した形状に成形することができる。異方性ひずみを生じさせる手法については、さまざまな手法があり、例えば被成形部材の表面および裏面からショット投射を行う手法、被成形部材をショット面が突出するようクランプし、予め被成形部材のショット面側に引張力を生じさせた状態でショット投射を行う手法、およびショット面に対して長方形状の圧子をショット投射を行う手法がある。いずれの方法においても仮成形条件Tと乖離量Gおよび変形量Dとの学習モデルLを含む関係式Fを取得し、成形条件から乖離量Gおよび変形量Dを算出し、最適成形条件Rを設定することができる。
<About anisotropic strain>
The peen forming condition setting method according to the present invention can also be applied to the case where an anisotropic strain is produced in a member to be formed by peen forming. As mentioned above, the peen forming process is, in principle, biaxial forming that causes isotropic strain in the plate-like body. be able to. There are various methods for generating anisotropic strain. For example, a method in which shots are projected from the front and back surfaces of the member to be formed, a method in which the member to be formed is clamped so that the shot surface protrudes, and the member to be formed is pre-stressed There are a method of projecting a shot while a tensile force is generated on the shot surface side, and a method of projecting a shot with a rectangular indenter against the shot surface. In any method, a relational expression F including a learning model L between the provisional molding conditions T and the amount of deviation G and the amount of deformation D is obtained, the amount of deviation G and the amount of deformation D are calculated from the molding conditions, and the optimum molding conditions R are calculated. can be set.

<異方性部材について>
関係式Fは、図1に示すような板状材のみからなる被成形部材Pに限らず、図6に示すように、被成形部材Qが、板状部材Q1と補強部材Q2とを備え、補強部材Q2が板状部材Q1の片面に板状部材Q1の長辺と平行に配置され、被成形部材Qの板状部材Q1と補強部材Q2とが一体構造となっている場合にも適用することができる。この場合においても、図7に示す通り、被成形部材Qの解析モデルNについて、板状部材Q1および補強部材Q2の表面および裏面に複数の個別領域を区画し、板状部材Q1および補強部材Q2の表面および裏面における成形条件と、乖離量Gおよび変形量Dとの学習モデルLを含む関係式Fを取得することにより、被成形部材Pと同様の手法で、最適成形条件Rを設定することができる。
<About anisotropic members>
The relational expression F is not limited to the to-be-shaped member P made of only a plate-like material as shown in FIG. 1, but the to-be-shaped member Q as shown in FIG. The reinforcing member Q2 is arranged on one side of the plate-like member Q1 in parallel with the long side of the plate-like member Q1, and the plate-like member Q1 of the molded member Q and the reinforcing member Q2 are integrated. be able to. Also in this case, as shown in FIG. 7, for the analysis model N of the member to be molded Q, a plurality of individual regions are defined on the front and back surfaces of the plate-like member Q1 and the reinforcing member Q2. By acquiring the relational expression F including the learning model L of the molding conditions on the front and back surfaces of the , and the deviation amount G and the deformation amount D, the optimum molding conditions R are set in the same manner as for the molded member P. can be done.

被成形部材Qが板状部材Q1およびが補強部材Q2を有する場合の関係式Fを重回帰分析にて取得した場合の一例として以下に示す。
G=C+C10・T1+C11・T2+C12・T3+C13・T4・・・(4)
HzX=C14+C15・T1+C16・T2+C17・T3+C18・T4・・・(5)
HzY=C19+C20・T1+C21・T2+C22・T3+C23・T4・・・(6)
HxY=C24+C25・T1+C26・T2+C27・T3+C28・T4・・・(7)
HxZ=C29+C30・T1+C31・T2+C32・T3+C33・T4・・・(8)
ここで、HzXおよびHzYは、それぞれZ方向におけるAzX軸およびAzY軸に対するアークハイト、HxYおよびHxZは、それぞれ図示しないX方向におけるAxY軸およびAxZ軸に対するアークハイトである。また、T3は補強部材Q2の側面(YZ面)におけるX+方向の面における成形条件、T4は補強部材Q2の側面(YZ面)におけるX-方向の面における成形条件である。また、C~C33は重回帰分析等により求まる重みである。このようにして求められる関係式Fから、被成形部材Pの場合と同様の方法により、被成形部材Qについても最適成形条件Rを設定することができる。
An example of the case where the relational expression F in the case where the molded member Q has the plate member Q1 and the reinforcing member Q2 is obtained by multiple regression analysis is shown below.
G= C9 + C10.T1 + C11.T2 + C12.T3 + C13.T4 (4)
HzX= C14 + C15.T1 + C16.T2 + C17.T3 + C18.T4 (5)
HzY= C19 + C20.T1 + C21.T2 + C22.T3 + C23.T4 (6)
HxY= C24 + C25.T1 + C26.T2 + C27.T3 + C28.T4 (7)
HxZ= C29 + C30.T1 + C31.T2 + C32.T3 + C33.T4 (8)
Here, HzX and HzY are arc heights with respect to the AzX-axis and AzY-axis in the Z direction, respectively, and HxY and HxZ are arc heights with respect to the AxY-axis and AxZ-axis in the X direction (not shown), respectively. T3 is the molding condition for the X+ direction surface of the side surface (YZ surface) of the reinforcing member Q2, and T4 is the molding condition for the X- direction surface of the side surface (YZ surface) of the reinforcing member Q2. Also, C 9 to C 33 are weights obtained by multiple regression analysis or the like. From the relational expression F obtained in this manner, the optimum molding conditions R can be set for the member Q to be molded by the same method as for the member P to be molded.

以下に、本発明に係る実施態様の効果について、各実施態様ごとに述べる。
本発明に係る第1の実施態様は、ピーン成形条件設定方法であって、被成形部材Pの解析モデルMを複数の個別領域に区画し、所定の仮成形条件Tに基づいて解析を実行することで全体仮成形形状Bを取得するステップと、全体仮成形形状Bについて、基準形状Sに対する個別領域の乖離量Gと、個別領域の変形量Dとを取得するステップと、仮成形条件Tと乖離量Gと変形量Dとの関係式Fを取得するステップと、関係式Fに仮成形条件Tを代入して算出された乖離量Gおよび変形量Dのうち、乖離量Gが最小であり、且つ、目標変形量に対する変形量Dの差が最小である仮成形条件Tを最適なピーン成形条件Rに設定するステップと、を有する。
Below, the effects of the embodiments according to the present invention will be described for each embodiment.
A first embodiment according to the present invention is a method for setting peen forming conditions, in which an analysis model M of a member to be formed P is divided into a plurality of individual regions, and analysis is performed based on predetermined temporary forming conditions T. a step of acquiring the overall temporary forming shape B, a step of acquiring the deviation amount G of the individual region from the reference shape S and the deformation amount D of the individual region for the entire temporary forming shape B, and the provisional forming condition T and a step of obtaining a relational expression F between the amount of deviation G and the amount of deformation D; and setting the temporary forming condition T under which the difference of the deformation amount D from the target deformation amount is the smallest to the optimum peen forming condition R.

第1の実施態様によれば、仮成形条件Tと、仮成形条件Tに基づいて取得された全体仮成形形状Bと、全体仮成形形状Bから取得された乖離量Gおよび変形量Dとから、成形条件と、乖離量および変形量との関係式Fを取得することができる。また、関係式Fに成形条件を代入して算出された乖離量Gおよび変形量Dについて、乖離量Gおよび目標変形量と変形量Dとの差が最小となるものを最適なピーン成形条件Rとして設定するので、成形形状の全体の目標形状に対する全体の形状の精度を高めることができる。 According to the first embodiment, from the provisional molding condition T, the overall provisional molding shape B obtained based on the provisional molding condition T, and the divergence amount G and the deformation amount D obtained from the overall provisional molding shape B , a relational expression F between the molding conditions, the amount of divergence, and the amount of deformation. Further, regarding the divergence amount G and the deformation amount D calculated by substituting the molding conditions into the relational expression F, the difference between the divergence amount G and the target deformation amount and the deformation amount D is the optimum peen forming condition R , it is possible to improve the accuracy of the overall shape with respect to the overall target shape of the molding shape.

本発明の第2の実施態様は、第1の実施態様に記載のピーン成形条件設定方法において、基準形状Sは治具面板として構成され、乖離量Gは、治具面板と成形形状との法線方向における差である。 In a second embodiment of the present invention, in the peen forming condition setting method according to the first embodiment, the reference shape S is configured as a jig face plate, and the deviation amount G is a method of the jig face plate and the forming shape. It is the difference in the linear direction.

第2の実施態様によれば、基準形状Sは治具面板として構成され、治具面板と成形形状との法線方向における差を、乖離量Gとして取得することができる。 According to the second embodiment, the reference shape S is configured as a jig face plate, and the difference in the normal direction between the jig face plate and the forming shape can be obtained as the divergence amount G.

本発明の第3の実施態様は、第1の実施態様または第2の実施態様に係るピーン成形条件設定方法において、複数の個別領域に亘って乖離量Gを設定する設定領域に乖離量Gが設定されることで、個別領域の乖離量Gが取得されるピーン条件設定方法である。 A third embodiment of the present invention is the peen forming condition setting method according to the first embodiment or the second embodiment, wherein the deviation amount G is set in the setting area in which the deviation amount G is set over a plurality of individual areas. This is a peen condition setting method in which the deviation amount G of the individual region is acquired by being set.

第3の実施態様によれば、基準形状Sの設定領域Uは、複数の個別領域に対応して構成されるので、個別領域は、複数の個別領域に対応する設定領域Uに対して乖離量Gを取得することができる。 According to the third embodiment, since the set region U of the reference shape S is configured corresponding to a plurality of individual regions, the individual region has a divergence amount from the set region U corresponding to the plurality of individual regions. G can be obtained.

本発明の第4の実施態様は、第1の実施態様から第3の実施態様のいずれかに記載のピーン成形条件設定方法において、関係式Fは、取得した仮成形条件Tと乖離量Gと変形量Dとを用いて機械学習を行うことで生成される学習モデルLを含む。 A fourth embodiment of the present invention is the peen molding condition setting method according to any one of the first embodiment to the third embodiment, wherein the relational expression F is the obtained provisional molding condition T and the divergence amount G A learning model L generated by performing machine learning using the deformation amount D is included.

第4の実施態様によれば、関係式Fは、成形条件と、乖離量および全領域における変形量について機械学習した学習モデルLを含むので、成形条件を関係式Fに代入して算出される乖離量Gおよび変形量Dの信頼性を高めることができる。 According to the fourth embodiment, since the relational expression F includes the molding conditions and the learning model L that has been machine-learned with respect to the deviation amount and the deformation amount in the entire region, the molding conditions are substituted into the relational expression F for calculation. The reliability of the deviation amount G and the deformation amount D can be improved.

本発明の第5の実施態様は、第1の実施態様から第4の実施態様のいずれかに係るピーン成形条件設定方法において、仮成形条件Tは、被成形部材Pに異方性ひずみを生じさせる成形条件を含む。 A fifth embodiment of the present invention is the peen forming condition setting method according to any one of the first to fourth embodiments, wherein the temporary forming conditions T cause an anisotropic strain in the member P to be formed. Includes molding conditions that cause

第5の実施態様によれば、第1の実施態様または第4の実施態様に係るピーン成形条件Rは、被成形部材Pに異方性ひずみを生じさせることができる成形条件を含むので、異方性ひずみによるピーン成形加工が必要な場合においても、第1の実施態様または第2の実施態様と同じ効果を奏することができる。 According to the fifth embodiment, the peen forming conditions R according to the first embodiment or the fourth embodiment include forming conditions capable of producing an anisotropic strain in the member P to be formed. The same effect as in the first embodiment or the second embodiment can be obtained even when peen forming processing by directional strain is required.

本発明の第6の実施態様は、第1の実施態様から第5の実施態様のいずれかに記載のピーン成形条件設定方法において、被成形部材Qは、板状部材Q1と補強部材Q2とを有し、補強部材Q2は板状部材Q1の片面に板状部材Q1の長手方向に沿って配置され、板状部材Q1と補強部材Q2とは一体に構成される。 A sixth aspect of the present invention is the pean forming condition setting method according to any one of the first to fifth aspects, wherein the member Q to be formed comprises a plate member Q1 and a reinforcing member Q2. The reinforcing member Q2 is arranged on one side of the plate-like member Q1 along the longitudinal direction of the plate-like member Q1, and the plate-like member Q1 and the reinforcing member Q2 are integrally formed.

第6の実施態様によれば、第1の実施態様から第5の実施態様のいずれかにおいて被成形部材Pは、板状部材Q1の片面の板状部材Q1の長手方向に配置される補強部材Q2が一体に構造される被成形部材Qにおいても第1の実施形態から第6の実施形態と同一の効果を奏することができる。 According to the sixth embodiment, in any one of the first to fifth embodiments, the member to be molded P is a reinforcing member arranged in the longitudinal direction of the plate-like member Q1 on one side of the plate-like member Q1. The same effects as those of the first to sixth embodiments can be obtained in the member to be molded Q in which Q2 is integrally constructed.

本発明の第7の実施態様は、第1の実施態様から第6の実施態様のいずれかに係るピーン成形方法において、被成形部材Qは、飛行機の翼体に使用される部材である。 According to a seventh embodiment of the present invention, in the peen forming method according to any one of the first to sixth embodiments, the member Q to be formed is a member used for a wing body of an airplane.

第7の実施態様によれば、第1の実施態様から第6の実施態様に係る成形方法を、飛行機の翼体に使用することができる。 According to a seventh embodiment, the molding methods according to the first to sixth embodiments can be used for aircraft wing bodies.

本発明の第8の実施態様に係るピーン成形方法は、第1の実施態様から第7の実施態様のいずれかに係るピーン成形条件設定方法で設定されたピーン成形条件Rに基づいて、被成形部材Qを成形する成形ステップを有する。 The peen forming method according to the eighth embodiment of the present invention is based on the peen forming condition R set by the peen forming condition setting method according to any one of the first to seventh embodiments. A molding step for molding the member Q is provided.

第8の実施態様によれば、第1の実施態様から第7の実施態様に係るピーン成形条件設定方法で設定されたピーン成形条件Rにおいて、ピーン成形加工を行うことができる。 According to the eighth embodiment, the pean forming process can be performed under the pean forming conditions R set by the pean forming condition setting method according to the first to seventh embodiments.

本発明の第9の実施態様に係るピーン成形条件設定装置は、被成形部材Pの解析モデルMを複数の領域に区画し、所定の仮成形条件Tに基づいて解析を実行することで取得される全体仮成形形状Bについて、基準形状Sに対する個別領域の乖離量Gと、個別領域の変形量Dとを取得し、仮成形条件Tと乖離量Gと変形量Dとの関係式Fを取得する手段と、関係式Fに所定の仮成形条件Tを代入することにより乖離量Gおよび変形量Dを算出する手段と、算出された乖離量Gおよび変形量Dのうち、乖離量Gが最小であり、且つ、目標変形量に対する変形量Dの差が最小である仮成形条件Tを最適成形条件に設定する手段と、を有する。 A peen forming condition setting device according to a ninth embodiment of the present invention divides an analysis model M of a member P to be formed into a plurality of regions, and performs analysis based on predetermined temporary forming conditions T. For the overall provisional forming shape B, the amount of deviation G of the individual region from the reference shape S and the amount of deformation D of the individual region are obtained, and the relational expression F between the provisional forming condition T, the amount of separation G, and the amount of deformation D is obtained. means for calculating the amount of deviation G and the amount of deformation D by substituting a predetermined temporary molding condition T into the relational expression F; and means for setting the temporary molding condition T under which the difference between the deformation amount D and the target deformation amount is the smallest as the optimum molding condition.

第9の実施態様によれば、ピーン成形条件設定装置200において、第1の実施態様と同一の効果を奏することができる。 According to the ninth embodiment, the pean forming condition setting device 200 can achieve the same effect as the first embodiment.

100…ピーン成形システム、200…ピーン成形条件設定装置、
210…演算部、220…入出力部、230…記録部、
232…領域区画プログラム、234…仮成形条件設定プログラム、
236…形状取得プログラム、238…乖離量取得プログラム、
240…変形量取得プログラム、242…学習モデルプログラム、
244…関係式取得プログラム、246…算出プログラム、
248…成形条件設定プログラム、250…成形結果データベース、
300…ピーン成形装置、310…制御部、320…入出力部、
330…ショット投射部、340…記録部、
A…個別領域、B…全体仮成形形状、D…変形量、F…関係式、
G…乖離量、H…目標成形形状、K…正解付データ、M…解析モデル、
P、Q…被成形部材、Q1…板状部材、Q2…補強部材、
R…ピーン成形条件、最適成形条件、S…基準形状、T…仮成形条件、
U…設定領域
100... Peen forming system, 200... Peen forming condition setting device,
210... Arithmetic unit, 220... Input/output unit, 230... Recording unit,
232... area division program, 234... provisional molding condition setting program,
236... Shape acquisition program, 238... Deviation amount acquisition program,
240 ... deformation amount acquisition program, 242 ... learning model program,
244 ... relational expression acquisition program, 246 ... calculation program,
248 ... molding condition setting program, 250 ... molding result database,
300... Peen forming device, 310... Control unit, 320... Input/output unit,
330... shot projection unit, 340... recording unit,
A... Individual region, B... Whole temporary molding shape, D... Deformation amount, F... Relational expression,
G... deviation amount, H... target molding shape, K... correct answer data, M... analysis model,
P, Q... molded member, Q1... plate-shaped member, Q2... reinforcing member,
R... Peen molding conditions, optimum molding conditions, S... Reference shape, T... Temporary molding conditions,
U: setting area

Claims (9)

被成形部材の解析モデルを複数の個別領域に区画し、所定の仮成形条件に基づいて解析を実行することで仮成形形状を取得するステップと、
前記仮成形形状について、基準形状に対する前記個別領域の乖離量と、前記個別領域の変形量とを取得するステップと、
前記仮成形条件と前記乖離量と前記変形量との関係式を取得するステップと、
前記関係式に前記仮成形条件を代入して算出された前記乖離量および前記変形量のうち、前記乖離量が最小であり、且つ、目標変形量に対する前記変形量の差が最小である前記仮成形条件を最適成形条件に設定するステップと、
を有するピーン成形条件設定方法。
obtaining a provisional formed shape by dividing the analysis model of the member to be formed into a plurality of individual regions and performing analysis based on predetermined provisional forming conditions;
a step of acquiring the deviation amount of the individual region from the reference shape and the deformation amount of the individual region for the temporary forming shape;
a step of acquiring a relational expression among the temporary molding conditions, the amount of divergence, and the amount of deformation;
Among the deviation amount and the deformation amount calculated by substituting the temporary molding condition into the relational expression, the deviation amount is the smallest, and the difference between the deformation amount and the target deformation amount is the smallest. setting molding conditions to optimum molding conditions;
A method for setting peen molding conditions.
請求項1に記載のピーン成形条件設定方法において、
前記基準形状は治具面板として構成され、前記乖離量は、前記治具面板と成形形状との法線方向における差であるピーン成形条件設定方法。
In the peen forming condition setting method according to claim 1,
The peen forming condition setting method, wherein the reference shape is configured as a jig faceplate, and the divergence amount is a difference in the normal direction between the jig faceplate and the forming shape.
請求項1または請求項2に記載のピーン成形条件設定方法において、
複数の前記個別領域に亘って前記乖離量を設定する設定領域に前記乖離量が設定されることで、前記個別領域の前記乖離量が取得されるピーン成形条件設定方法。
In the peen forming condition setting method according to claim 1 or claim 2,
A peen forming condition setting method, wherein the amount of deviation is set in a setting area for setting the amount of deviation over a plurality of the individual areas, so that the amount of deviation of the individual area is acquired.
請求項1から請求項3のいずれか一項に記載のピーン成形条件設定方法において、
前記関係式は、取得した前記仮成形条件と前記乖離量と前記変形量とを用いて機械学習を行うことで生成される学習モデルを含む、ピーン成形条件設定方法。
In the peen forming condition setting method according to any one of claims 1 to 3,
The peen forming condition setting method, wherein the relational expression includes a learning model generated by performing machine learning using the obtained temporary forming conditions, the divergence amount, and the deformation amount.
請求項1から請求項4のいずれか一項に記載のピーン成形条件設定方法において、
前記仮成形条件は、異方性ひずみを生じさせる成形条件を含むピーン成形条件設定方法。
In the peen forming condition setting method according to any one of claims 1 to 4,
The temporary molding conditions include a peen molding condition setting method including molding conditions that cause anisotropic strain.
請求項1から請求項5のいずれか一項に記載のピーン成形条件設定方法であって、
前記被成形部材は、板状部材と補強部材とを有し、
前記補強部材は、前記板状部材の長手方向に沿って前記被成形部材の片面に配置され、
前記板状部材と前記補強部材とは一体に構成されるピーン成形条件設定方法。
The pean forming condition setting method according to any one of claims 1 to 5,
The member to be molded has a plate-like member and a reinforcing member,
The reinforcing member is arranged on one side of the member to be molded along the longitudinal direction of the plate member,
The peen forming condition setting method, wherein the plate member and the reinforcing member are integrally formed.
請求項1から請求項6のいずれか一項に記載のピーン成形条件設定方法において、
前記被成形部材は、飛行機の翼体に使用される部材であるピーン成形条件設定方法。
In the peen forming condition setting method according to any one of claims 1 to 6,
The method for setting peen forming conditions, wherein the member to be formed is a member used for a wing body of an airplane.
板状部材のピーン成形方法であって、
請求項1から請求項7のいずれか一項に記載のピーン成形条件設定方法により設定された最適成形条件に基づいて前記被成形部材を成形するピーン成形方法。
A peen forming method for a plate-like member,
A peen forming method for forming the member to be formed based on optimum forming conditions set by the peen forming condition setting method according to any one of claims 1 to 7.
被成形部材の解析モデルを複数の領域に区画し、所定の仮成形条件に基づいて解析を実行することで取得される仮成形形状について、基準形状に対する個別領域の乖離量と、前記個別領域の変形量とを取得し、前記仮成形条件と前記乖離量と前記変形量との関係式を取得する手段と、
前記関係式に所定の前記仮成形条件を代入することにより前記乖離量および前記変形量を算出する手段と、
算出された前記乖離量および前記変形量のうち、前記乖離量が最小であり、且つ、目標変形量に対する前記変形量の差が最小である前記仮成形条件を最適成形条件に設定する手段と、
を有するピーン成形条件設定装置。
The analysis model of the member to be formed is partitioned into a plurality of regions, and the provisional formed shape obtained by executing the analysis based on the predetermined provisional forming conditions is divided into the amount of deviation of the individual region from the reference shape, and the amount of deviation of the individual region. means for obtaining a deformation amount and obtaining a relational expression between the temporary molding condition, the divergence amount, and the deformation amount;
means for calculating the divergence amount and the deformation amount by substituting the predetermined temporary molding condition into the relational expression;
means for setting the provisional molding condition under which the deviation amount is the smallest among the calculated deviation amount and the deformation amount and the difference of the deformation amount from the target deformation amount is the smallest, as an optimum molding condition;
A peen forming condition setting device.
JP2021551102A 2019-10-11 2019-10-11 PEAN FORMING CONDITION SETTING METHOD, PEAN FORMING METHOD, AND PEAN FORMING CONDITION SETTING DEVICE Active JP7178508B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/040339 WO2021070395A1 (en) 2019-10-11 2019-10-11 Method for setting condition for peen molding, peen molding method, and device for setting condition for peen molding

Publications (2)

Publication Number Publication Date
JPWO2021070395A1 JPWO2021070395A1 (en) 2021-04-15
JP7178508B2 true JP7178508B2 (en) 2022-11-25

Family

ID=75437822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021551102A Active JP7178508B2 (en) 2019-10-11 2019-10-11 PEAN FORMING CONDITION SETTING METHOD, PEAN FORMING METHOD, AND PEAN FORMING CONDITION SETTING DEVICE

Country Status (2)

Country Link
JP (1) JP7178508B2 (en)
WO (1) WO2021070395A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115090751B (en) * 2022-07-14 2024-04-05 中国航空制造技术研究院 Method for improving shot blasting forming limit of ribbed integral wallboard

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003191028A (en) 2001-12-26 2003-07-08 Mitsubishi Heavy Ind Ltd Peening method
JP5299961B2 (en) 2009-01-14 2013-09-25 東芝メディカルシステムズ株式会社 Ultrasonic diagnostic apparatus, image processing apparatus, and control program for ultrasonic diagnostic apparatus
JP2019155387A (en) 2018-03-08 2019-09-19 三菱重工業株式会社 Molding condition setting method, molding condition setting device, and molding method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5927247B2 (en) * 1976-02-18 1984-07-04 川崎重工業株式会社 Method of forming plate material by shot peening
US4329862A (en) * 1980-01-21 1982-05-18 The Boeing Company Shot peen forming of compound contours

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003191028A (en) 2001-12-26 2003-07-08 Mitsubishi Heavy Ind Ltd Peening method
JP5299961B2 (en) 2009-01-14 2013-09-25 東芝メディカルシステムズ株式会社 Ultrasonic diagnostic apparatus, image processing apparatus, and control program for ultrasonic diagnostic apparatus
JP2019155387A (en) 2018-03-08 2019-09-19 三菱重工業株式会社 Molding condition setting method, molding condition setting device, and molding method

Also Published As

Publication number Publication date
WO2021070395A1 (en) 2021-04-15
JPWO2021070395A1 (en) 2021-04-15

Similar Documents

Publication Publication Date Title
JP5582211B1 (en) Stress-strain relationship simulation method, springback amount prediction method, and springback analysis device
US6353768B1 (en) Method and apparatus for designing a manufacturing process for sheet metal parts
CN110261247B (en) Synchronous characterization method for anisotropic yield and hardening constitutive parameters of metal material
US7937183B2 (en) Molded-component stress-strain curve estimation device
US10101153B2 (en) Method and device for detecting deviations of an object surface
JP2008142774A (en) Method, system and program for stress-strain relation simulation, and recording medium recording the program
US20100036646A1 (en) Analytical model preparation method, and simulation system method for predicting molding failure
CN114818401A (en) Training method, training device and evaluation system of machine learning model
WO2013042600A1 (en) Stress-strain relation simulation method, stress-strain relation simulation system, and stress-strain relation simulation program which use chaboche model
JP7178508B2 (en) PEAN FORMING CONDITION SETTING METHOD, PEAN FORMING METHOD, AND PEAN FORMING CONDITION SETTING DEVICE
JP6944736B1 (en) Fatigue life prediction method, fatigue life prediction device, fatigue life prediction program and storage medium
JP2006272928A (en) Method for predicting shape of injection molded article, apparatus for predicting shape, program for predicting shape, and storage medium
CN109766511B (en) Contact relation model considering deformation error and assembly error calculation method
JP2005169766A (en) Mold optimizing apparatus, mold optimizing program and mold optimizing control program
JP2007229784A (en) Method for preparing correction shape data of press die
JP6446740B2 (en) Simulation apparatus, simulation method, and program
JP7246636B2 (en) Information processing device, particle simulator system, and particle simulator method
JP6949415B2 (en) Mold CAD model data creation device and mold CAD model data creation method
Felipe-Sese et al. Exploiting measurement-based validation for a high-fidelity model of dynamic indentation of a hyperelastic material
JP2002126834A (en) Mold and its designing apparatus, designing method or manufacturing apparatus, and formed product
Ilg et al. Constitutive model parameter identification via full-field calibration
JP2010176573A (en) Mold design device and method therefor
JP6044606B2 (en) Expected mold shape creation method and apparatus
JP2015187767A (en) Method, system, and program for determining fracture of component, and method for creating theory formation limit diagram
Miedzińska et al. Numerical modelling of resins used in stereolitography rapid prototyping

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221114

R150 Certificate of patent or registration of utility model

Ref document number: 7178508

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150