JP7177014B2 - Organic wastewater treatment method and organic wastewater treatment apparatus - Google Patents
Organic wastewater treatment method and organic wastewater treatment apparatus Download PDFInfo
- Publication number
- JP7177014B2 JP7177014B2 JP2019130618A JP2019130618A JP7177014B2 JP 7177014 B2 JP7177014 B2 JP 7177014B2 JP 2019130618 A JP2019130618 A JP 2019130618A JP 2019130618 A JP2019130618 A JP 2019130618A JP 7177014 B2 JP7177014 B2 JP 7177014B2
- Authority
- JP
- Japan
- Prior art keywords
- organic wastewater
- aerobic treatment
- bod
- aerobic
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Biological Treatment Of Waste Water (AREA)
- Activated Sludge Processes (AREA)
Description
本発明は、有機性排水の処理方法及び有機性排水の処理装置に関する。 TECHNICAL FIELD The present invention relates to an organic wastewater treatment method and an organic wastewater treatment apparatus.
下水、し尿及び食品工場から排出される有機性排水等を対象とした好気性生物処理として活性汚泥法が広く利用されている。活性汚泥処理を運転する上で温度条件は重要なパラメータである。 The activated sludge process is widely used as an aerobic biological treatment for sewage, night soil, and organic wastewater discharged from food factories. Temperature condition is an important parameter in operating activated sludge treatment.
流入排水温度が低い場合、或いは寒冷地において活性汚泥処理が行われる場合などには、蒸気などの加温調整が必要となる。特に寒冷地においては、外気温が低い状態で運転が停止されると、正月休み等の長期休暇後の再立上げ運転の際に、温度調整を行ってから運転することがある。 When the temperature of the inflowing waste water is low, or when activated sludge treatment is performed in cold regions, it is necessary to adjust the heating of steam or the like. Particularly in cold regions, if the operation is stopped when the outside air temperature is low, the operation may be restarted after a long holiday such as the New Year's holiday after adjusting the temperature.
一方、流入排水温度が高い場合、或いは、BOD濃度5000~10000mg/L以上の高濃度BOD濃度排水を活性汚泥処理する場合には、排水の温度にもよるがBOD分解に伴う生物反応熱により曝気槽の温度が高くなりすぎることがある。し尿処理における硝化・脱窒処理においても、生物反応熱や曝気装置のジュール熱により、硝化槽・脱窒槽の水温が高くなりすぎることがある。そのため、温度調整対策として、槽外型熱交換器による冷却方法、槽内型熱交換器による冷却方法、冷凍機による冷却方法、或いは地下水による冷却方式等が必要となっている。 On the other hand, if the temperature of the inflow wastewater is high, or if the high BOD concentration wastewater with a BOD concentration of 5000 to 10000mg/L or more is treated with activated sludge, depending on the temperature of the wastewater, aeration is caused by the heat of biological reaction accompanying BOD decomposition. The temperature of the bath may become too high. In the nitrification and denitrification processes in human waste treatment, the water temperature in the nitrification and denitrification tanks may become too high due to the heat of biological reaction and the Joule heat of the aerator. Therefore, as temperature control measures, a cooling method using an external heat exchanger, a cooling method using an in-tank heat exchanger, a cooling method using a refrigerator, or a cooling method using underground water is required.
生物反応熱を利用した処理法としてはコンポスト処理が挙げられる。有機性廃棄物をコンポスト処理すると、一次発酵段階では生物反応熱により発酵槽内の温度は70~80℃に上昇する事が知られている。 Composting is an example of a treatment method that utilizes the heat of biological reaction. It is known that when organic waste is composted, the temperature in the fermentation tank rises to 70-80°C due to the heat of biological reaction in the primary fermentation stage.
生物反応熱を利用した有機性排水の処理方法としては、例えば特許文献1に記載された発明が知られている。特許文献1に記載された発明では、し尿処理において生物反応熱によって温度上昇した生物処理水を外部設備であるヒートポンプの熱源として利用して温度調整に利用することで、水質浄化の目的と同時に省エネルギー化を達成できることが記載されている。
For example, the invention described in
しかしながら、特許文献1に記載された発明は、生物反応熱によって温度上昇した生物処理水をヒートポンプ等の外部設備に供給することで、装置面積が大きくなり、設備も複雑化する。また、特許文献1に記載された発明では、外部設備の定期的なメンテナンス作業も必要となる。よって、特許文献1に記載された発明とは異なる手法でより効率的に好気性処理装置を加温又は冷却するための方法及び装置が得られればまた有用である。
However, the invention described in
上記課題を鑑み、本発明は、有機性排水の供給により好気性処理槽内で発生する熱を有効利用でき、好気性処理装置内を好気性処理に適した温度に維持して安定した排水処理を行うことが可能な有機性排水の処理方法及び処理装置を提供する。 In view of the above problems, the present invention is capable of effectively utilizing the heat generated in the aerobic treatment tank by the supply of organic wastewater, and maintains the inside of the aerobic treatment apparatus at a temperature suitable for aerobic treatment, thereby stably treating wastewater. To provide an organic wastewater treatment method and treatment apparatus capable of performing
上記課題を解決するために本発明者が鋭意検討したところ、好気性処理装置に供給される有機性排水の水温と、有機性排水中に含まれる有機物の分解等に伴う生物反応熱と、好気性処理装置の機械設備運転に伴う発熱量とを考慮に入れた好気性処理装置内の熱収支に基づいて、好気性処理装置内へ供給する有機性排水の供給流量を調整することが有効であるとの知見を得た。 In order to solve the above problems, the present inventors have made intensive studies and found that the water temperature of the organic wastewater supplied to the aerobic treatment device and the heat of biological reaction accompanying the decomposition of organic matter contained in the organic wastewater are favorable. It is effective to adjust the supply flow rate of the organic wastewater supplied to the aerobic treatment equipment based on the heat balance in the aerobic treatment equipment that takes into account the amount of heat generated by the operation of the mechanical equipment of the aerobic treatment equipment. I got the knowledge that there is.
以上の知見を基礎として完成した本発明の実施の形態は一側面において、1又は複数の有機性排水を好気的に生物処理する好気性処理装置において、有機性排水の水温、有機性排水のBOD分解に伴う発熱量、有機性排水の硝化に伴う発熱量及び好気性処理装置の機械設備運転に伴う発熱量を考慮に入れた好気性処理装置内の熱収支計算を行い、該熱収支計算の計算結果に基づいて、好気性処理装置内の温度が15~40℃に維持されるように、好気性処理装置内へ供給される有機性排水の供給流量を調整することを含む有機性排水の処理方法である。 In one aspect of the embodiment of the present invention completed based on the above findings, in an aerobic treatment apparatus for aerobically biologically treating one or more organic wastewaters, the temperature of the organic wastewater, the amount of the organic wastewater A heat balance calculation is performed in the aerobic treatment equipment, taking into consideration the calorific value associated with BOD decomposition, the calorific value associated with the nitrification of organic wastewater, and the calorific value associated with the operation of the mechanical equipment of the aerobic treatment equipment, and the heat balance calculation is performed. Organic wastewater including adjusting the supply flow rate of the organic wastewater supplied to the aerobic treatment device so that the temperature in the aerobic treatment device is maintained at 15 to 40 ° C. based on the calculation results of is a processing method.
本発明の実施の形態に係る有機性排水の処理方法は一実施態様において、有機性排水の供給流量を調整することにより、好気性処理装置内のBOD濃度及びアンモニア性窒素濃度を調整することを含む。 In one embodiment of the organic wastewater treatment method according to the embodiment of the present invention, the BOD concentration and the ammonia nitrogen concentration in the aerobic treatment apparatus are adjusted by adjusting the supply flow rate of the organic wastewater. include.
本発明の実施の形態に係る有機性排水の処理方法は別の一実施態様において、以下の関係式(1)~(5)式に基づいて、熱収支計算を行い、好気性処理装置内へ供給する有機性排水の供給流量を決定することを含む請求項1又は2に記載の有機性排水の処理方法。
X1(Kcal/d)=供給流量(m3/d)×(処理水水温(℃)-供給水水温(℃))×0.001 ・・・(1)
Y1(Kcal/d)=BOD分解に伴う単位重量当たりの生物反応熱A(Kcal/kg-BOD)×除去BOD量(kg-BOD/d) ・・・(2)
Y2(Kcal/d)=硝化に伴う単位重量当たりの生物反応熱B(Kcal/kg-N)×NH4-N硝化量(kg-N/d) ・・・(3)
Y3(Kcal/d):好気性処理装置の機械設備運転に伴う発熱量 ・・・(4)
X1=(Y1+Y2+Y3)×α ・・・(5)
(αは好気性処理装置からの熱放散率(-)を示す)
In another embodiment of the organic wastewater treatment method according to the embodiment of the present invention, heat balance calculation is performed based on the following relational expressions (1) to (5), and 3. The method for treating organic waste water according to
X1 (Kcal/d) = supply flow rate (m 3 /d) × (treated water temperature (°C) - supply water temperature (°C)) × 0.001 (1)
Y1 (Kcal/d) = heat of biological reaction A per unit weight associated with BOD decomposition (Kcal/kg-BOD) x amount of BOD removed (kg-BOD/d) (2)
Y2 (Kcal/d) = Heat of biological reaction B per unit weight associated with nitrification (Kcal/kg-N) x NH 4 -N nitrification amount (kg-N/d) (3)
Y3 (Kcal/d): calorific value associated with mechanical equipment operation of aerobic treatment equipment (4)
X1=(Y1+Y2+Y3)×α (5)
(α indicates the heat dissipation rate (-) from the aerobic treatment equipment)
本発明の実施の形態に係る有機性排水の処理方法は更に別の一実施態様において、好気性処理装置が散水ろ床であり、散水ろ床内の温度が30~40℃に維持されるように、有機性排水の供給流量を調整することを含む。 In still another embodiment of the organic wastewater treatment method according to the embodiment of the present invention, the aerobic treatment device is a trickling filter, and the temperature in the trickling filter is maintained at 30 to 40 ° C. , including adjusting the feed flow of organic wastewater.
本発明の実施の形態に係る有機性排水の処理方法は更に別の一実施態様において、好気性処理装置内の気体と液体の容積比(液体の容積/気体の容積)βが0.2以下であることを含む。 In still another embodiment of the organic wastewater treatment method according to the embodiment of the present invention, the volume ratio (liquid volume/gas volume) β of the gas and liquid in the aerobic treatment apparatus is 0.2 or less. including being
本発明の実施の形態に係る有機性排水の処理方法は更に別の一実施態様において、好気性処理装置内へ供給される有機性排水のBOD濃度が1000~10000mg/Lであることを含む。 In still another embodiment of the organic wastewater treatment method according to the embodiment of the present invention, the organic wastewater supplied to the aerobic treatment apparatus has a BOD concentration of 1000 to 10000 mg/L.
本発明の実施の形態は別の一側面において、1又は2以上の有機性排水を好気性生物処理する好気性処理装置であって、有機性排水の水温、有機性排水のBOD分解に伴う発熱量、有機性排水の硝化に伴う発熱量、及び好気性処理装置の機械設備運転に伴う発熱量を考慮に入れた好気性処理装置内の熱収支計算を行い、該熱収支計算の計算結果に基づいて、好気性処理装置内の温度が15~40℃に維持されるように、好気性処理装置内へ供給される有機性排水の供給流量を調整する流量調整手段を備える有機性排水の処理装置である。 According to another aspect of the present invention, there is provided an aerobic treatment apparatus for aerobic biological treatment of one or more organic wastewaters, wherein the water temperature of the organic wastewater and heat generation associated with BOD decomposition of the organic wastewater are A heat balance calculation is performed in the aerobic treatment equipment, taking into consideration the amount of heat generated by nitrification of organic wastewater, and the amount of heat generated due to the operation of the mechanical equipment of the aerobic treatment equipment. Based on this, treatment of organic wastewater provided with a flow rate adjusting means for adjusting the supply flow rate of the organic wastewater supplied into the aerobic treatment apparatus so that the temperature in the aerobic treatment apparatus is maintained at 15 to 40 ° C. It is a device.
本発明の実施の形態に係る有機性排水の処理装置は一実施態様において、有機性排水の水温を測定する水温測定手段と、該水温の測定結果に基づいて、有機性排水を希釈する希釈流体の希釈倍率を決定する希釈倍率決定手段と、有機性排水に対して希釈流体を供給する希釈流体供給手段とを備える。 In one embodiment of the organic wastewater treatment apparatus according to the embodiment of the present invention, water temperature measuring means for measuring the water temperature of the organic wastewater and a diluent fluid for diluting the organic wastewater based on the water temperature measurement result and a dilution fluid supply means for supplying a dilution fluid to the organic wastewater.
本発明の実施の形態に係る有機性排水の処理装置は別の一実施態様において、好気性処理装置が散水ろ床であり、流量調整手段が、散水ろ床内の有機性排水の温度が30~40℃に調整されるように、流量調整手段が有機性排水の供給量を調整することを含む。 In another embodiment of the organic wastewater treatment apparatus according to the embodiment of the present invention, the aerobic treatment apparatus is a trickling filter, and the flow rate adjusting means is such that the temperature of the organic wastewater in the trickling filter is 30%. A flow regulating means includes regulating the supply of organic waste water so that the temperature is adjusted to ∼40°C.
本発明によれば、有機性排水の供給により好気性処理槽内で発生する熱を有効利用でき、好気性処理装置内を好気性処理に適した温度に維持して安定した排水処理を行うことが可能な有機性排水の処理方法及び処理装置が提供できる。 According to the present invention, the heat generated in the aerobic treatment tank by the supply of organic wastewater can be effectively used, and the inside of the aerobic treatment apparatus can be maintained at a temperature suitable for aerobic treatment to perform stable wastewater treatment. It is possible to provide a method and apparatus for treating organic wastewater.
以下、図面を参照しながら本発明の実施の形態を説明する。以下に示す実施の形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであってこの発明の技術的思想は構成部品の構造、配置等を下記のものに特定するものではない。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings. The embodiments shown below are examples of devices and methods for embodying the technical idea of the present invention. not something to do.
(有機性排水の処理方法)
本発明の実施の形態に係る有機性排水の処理方法は、1又は複数の有機性排水を好気的に生物処理する好気性処理装置において、有機性排水の水温と、有機性排水のBOD分解に伴う発熱量及び硝化に伴う発熱量の少なくとも一つと、好気性処理装置の機械設備運転に伴う発熱量とを考慮に入れた好気性処理装置内の熱収支計算を行い、熱収支計算の計算結果に基づいて、好気性処理装置内の温度が15~40℃に維持されるように、好気性処理装置内へ供給される有機性排水の供給流量を調整することを含む。
(Method for treating organic wastewater)
An organic wastewater treatment method according to an embodiment of the present invention is an aerobic treatment apparatus for aerobically biologically treating one or more organic wastewaters, wherein the water temperature of the organic wastewater and the BOD decomposition of the organic wastewater are Calculation of the heat balance in the aerobic treatment equipment taking into account at least one of the calorific value associated with nitrification and the calorific value associated with nitrification, and the calorific value associated with the operation of the mechanical equipment of the aerobic treatment equipment. Based on the result, adjusting the supply flow rate of the organic wastewater supplied into the aerobic treatment apparatus so that the temperature in the aerobic treatment apparatus is maintained at 15 to 40°C.
有機性排水としては、下水、し尿及び食品工場から排出される有機性排水を対象とすることができる。特に、生物化学的酸素要求量(BOD濃度)が1000mg/L以上、より好ましくは5000mg/L、更に好ましくは10000mg/L以上の高有機物濃度の有機性排水が本実施形態に係る有機性排水として好適に利用できる。 Organic waste water can be sewage, night soil, and organic waste water discharged from food factories. In particular, organic wastewater having a biochemical oxygen demand (BOD concentration) of 1000 mg/L or more, more preferably 5000 mg/L, and still more preferably 10000 mg/L or more and having a high organic matter concentration is used as the organic wastewater according to the present embodiment. It can be used conveniently.
好気性処理装置としては、活性汚泥装置、散水ろ床、流動担体法、接触酸化法、生物膜ろ過法及び回転円板法などが利用可能である。特に、好気性処理装置内の気体と液体の容積比(液体の容積/気体の容積)βが0.2以下、更には0.1以下となるような好気性処理装置を利用することが好ましい。 As an aerobic treatment apparatus, an activated sludge apparatus, a trickling filter, a fluid carrier method, a contact oxidation method, a biofilm filtration method, a rotating disk method, and the like can be used. In particular, it is preferable to use an aerobic treatment apparatus in which the volume ratio of gas to liquid (volume of liquid/volume of gas) β in the aerobic treatment apparatus is 0.2 or less, more preferably 0.1 or less. .
容積比βが0.2以下となる好気性処理装置を用いることにより、有機性排水以外の液相の熱収支の影響を考慮する必要がなくなるため、有機性排水に含まれる有機物の分解により生じる生物反応熱量をより適切かつ精度良く推測することができる。容積比βが0.2以下となるような好気性処理装置としては、例えば、散水ろ床、回転円板(気相部)が挙げられる。 By using an aerobic treatment device with a volume ratio β of 0.2 or less, there is no need to consider the influence of the heat balance of the liquid phase other than the organic wastewater. Biological reaction calorie can be estimated more appropriately and accurately. Examples of the aerobic treatment apparatus having a volume ratio β of 0.2 or less include a trickling filter and a rotating disc (gas phase portion).
好気性処理装置内へ供給される有機性排水のBOD濃度及びアンモニア性窒素(NH4-N)濃度が高すぎると、好気性処理装置内で生じる生物反応熱により好気性処理装置内の有機性排水の水温が高くなりすぎて生物活性が阻害され、冷却装置等の外部設備が必要になる場合がある。一方、有機性排水のBOD濃度及びアンモニア性窒素濃度が低すぎると、好気性処理装置内で生じる生物反応熱による加温が困難となり、加温装置等の外部設備が必要となる場合がある。 If the BOD concentration and the ammonia nitrogen (NH 4 —N) concentration of the organic wastewater supplied to the aerobic treatment equipment are too high, the organic wastewater in the aerobic treatment equipment will be degraded by the heat of biological reaction generated in the aerobic treatment equipment. In some cases, the water temperature of the wastewater becomes too high, inhibiting biological activity and requiring external equipment such as a cooling device. On the other hand, if the BOD concentration and the ammonia nitrogen concentration of the organic waste water are too low, it becomes difficult to heat the organic waste water by the heat of biological reaction generated in the aerobic treatment apparatus, and external equipment such as a heating device may be required.
好気性処理装置内へ供給される有機性排水のBOD濃度は、1000~10000mg/Lであることが好ましく、より好ましくは2000~5000mg/Lであり、更に好ましくは3000~4000mg/Lである。 The BOD concentration of the organic wastewater supplied to the aerobic treatment apparatus is preferably 1000-10000 mg/L, more preferably 2000-5000 mg/L, and still more preferably 3000-4000 mg/L.
好気性処理装置内では、有機性排水中に含まれる有機物の好気的な生物処理による分解反応により、生物反応熱が生じる。本実施形態では、好気性処理装置内に供給される有機性排水に含まれる有機物の供給流量を好適な範囲に調整することにより、好気性処理装置内の温度を、微生物を用いた有機物の分解反応に好適な15~40℃に制御する。これにより、有機性排水の供給により好気性処理槽内で発生する熱を有効利用して好気性処理装置内を微生物による好気性生物処理に適した温度に維持することができるため、設備の簡素化が図れるとともに、安定した排水処理を行うことが可能となる。 In the aerobic treatment apparatus, bioreaction heat is generated by a decomposition reaction of organic substances contained in organic wastewater due to aerobic biotreatment. In this embodiment, by adjusting the supply flow rate of the organic matter contained in the organic wastewater supplied into the aerobic treatment apparatus to a suitable range, the temperature inside the aerobic treatment apparatus can be adjusted to the level at which organic matter is decomposed using microorganisms. The temperature is controlled at 15 to 40°C suitable for the reaction. As a result, the heat generated in the aerobic treatment tank by the supply of organic wastewater can be effectively used to maintain the inside of the aerobic treatment apparatus at a temperature suitable for aerobic biological treatment by microorganisms, so the equipment can be simplified. In addition, it is possible to perform stable wastewater treatment.
好気性処理装置内で生じる反応熱を適切に制御するためには、好気性生物処理前の有機性排水の水温を測定し、水温の測定結果に基づいて、有機性排水を希釈する希釈流体で希釈することにより、好気性処理装置内へ供給される有機性排水の供給流量、具体的には、BOD濃度及びアンモニア性窒素濃度が好適な範囲内となるように調整することが好ましい。 In order to appropriately control the reaction heat generated in the aerobic treatment equipment, the water temperature of the organic wastewater before aerobic biological treatment is measured, and based on the water temperature measurement results, a dilution fluid is used to dilute the organic wastewater. By diluting, it is preferable to adjust the supply flow rate of the organic wastewater to be supplied into the aerobic treatment apparatus, specifically, the BOD concentration and the ammonia nitrogen concentration to be within a suitable range.
例えば、外気温等の影響により、好気性生物処理前の有機性排水の水温が低すぎる場合には、好気性処理装置内の生物反応熱を利用して好気性処理装置内を微生物の生物活性を維持するような温度条件にするために、有機性排水中の有機物の濃度、具体的には、BOD濃度及びアンモニア性窒素濃度を高くして好気性処理装置内の生物反応熱が多く得られるように、有機性排水の供給流量を増大させるような調整を行う。 For example, if the water temperature of the organic wastewater before aerobic biological treatment is too low due to the influence of the outside air temperature, etc., the biological activity of microorganisms in the aerobic treatment equipment can be improved by utilizing the heat of biological reaction in the aerobic treatment equipment. In order to maintain the temperature condition, the concentration of organic matter in the organic wastewater, specifically, the concentration of BOD and ammonia nitrogen is increased to increase the heat of biological reaction in the aerobic treatment device. make adjustments to increase the supply flow rate of organic wastewater.
逆に、好気性生物処理前の有機性排水の水温が高すぎる場合には、有機性排水の供給量を少なくしたり、希釈流体の希釈倍率を高くしたりして、有機性排水中の有機物の濃度を、具体的には、BOD濃度及びアンモニア性窒素濃度を低くし、好気性処理装置内での生物反応熱量が小さく抑えられるように、有機性排水の供給流量の調整を行う。 Conversely, if the water temperature of the organic wastewater before aerobic biological treatment is too high, the amount of organic wastewater supplied is reduced or the dilution ratio of the diluent fluid is increased to reduce the organic matter in the organic wastewater. Specifically, the BOD concentration and the ammonia nitrogen concentration are lowered, and the supply flow rate of the organic waste water is adjusted so that the amount of heat generated by the biological reaction in the aerobic treatment apparatus can be kept small.
希釈流体としては、有機性排水(原水)と水温、BOD濃度及び/又はアンモニア性窒素濃度が異なる希釈流体が利用できる。例えば、希釈流体として水や河川水等を用いてもよいし、原水よりもBOD濃度が低い低有機性排水等を用いることもできる。低有機性排水としては、典型的には、BOD濃度が1000mg/L未満、より典型的にはBOD濃度が500mg/L以下の有機性排水が利用できる。 As the diluent fluid, a diluent fluid different in water temperature, BOD concentration and/or ammonia nitrogen concentration from organic waste water (raw water) can be used. For example, water, river water, or the like may be used as the diluent fluid, or low-organic waste water, etc., having a BOD concentration lower than that of raw water may be used. Organic wastewater with a BOD concentration of less than 1000 mg/L, more typically with a BOD concentration of 500 mg/L or less can be used as the low organic wastewater.
好気性処理装置内へ供給される有機性排水の供給流量を好適な範囲に調整するためには、好気性処理装置内の生物反応熱を考慮した熱収支を推定する必要がある。具体的には、好気性生物処理前の有機性排水(原水)の水温、有機性排水のBOD分解に伴う発熱量及び硝化処理に伴う発熱量、及び好気性処理装置の機械設備運転に伴う発熱量を少なくとも考慮に入れた好気性処理装置内の熱収支計算を行い、熱収支計算の計算結果に基づいて、好気性処理装置内へ供給される有機性排水の供給流量を調整することが好ましい。 In order to adjust the supply flow rate of the organic wastewater supplied into the aerobic treatment apparatus to a suitable range, it is necessary to estimate the heat balance in consideration of the heat of biological reaction in the aerobic treatment apparatus. Specifically, the water temperature of organic wastewater (raw water) before aerobic biological treatment, the calorific value associated with BOD decomposition of organic wastewater and the calorific value associated with nitrification treatment, and the heat associated with the operation of mechanical equipment for aerobic treatment equipment. It is preferable to perform a heat balance calculation in the aerobic treatment apparatus that takes into account at least the amount, and adjust the supply flow rate of the organic wastewater supplied to the aerobic treatment apparatus based on the calculation result of the heat balance calculation. .
ここで、有機性排水のBOD分解に伴う単位重量当たりの生物反応熱及びアンモニア性窒素の硝化処理に伴う単位重量当たりの生物反応熱は一定の値をとることが知られている。本実施形態では、これら単位重量当たりの生物反応熱の値を用いて、好気性処理装置内の熱収支を算出する。例えば、BOD分解に伴う単位重量当たりの生物反応熱は3,000~5000Kcal/kg-除去BODとすることができ、アンモニア性窒素の硝化処理に伴う生物反応熱は5000~7000Kcal/Kg-除去Nとすることができる。 Here, it is known that the heat of biological reaction per unit weight associated with BOD decomposition of organic waste water and the heat of biological reaction per unit weight associated with nitrification of ammoniacal nitrogen take constant values. In this embodiment, the heat balance in the aerobic treatment apparatus is calculated using these values of the heat of biological reaction per unit weight. For example, the heat of biological reaction per unit weight associated with BOD decomposition can be 3,000 to 5000 Kcal/kg-removed BOD, and the heat of biological reaction associated with nitrification of ammonia nitrogen is 5000 to 7000 Kcal/Kg-removed N. can be
好気性処理装置内で分解されるBOD量とBOD分解に伴う単位重量当たりの生物反応熱との関係から、有機性排水のBOD分解に伴う発熱量を推定することができる。同様に、好気性処理装置内で硝化されるアンモニア性窒素量とアンモニア性窒素の硝化処理に伴う単位重量当たりの生物反応熱量との関係から、硝化処理に伴う発熱量を推定することができる。同様に、好気性生物処理前後の有機性排水の水温の関係と、好気性生物処理へ流入する有機性排水の供給流量との関係から、好気性処理内の熱収支を算出することができる。これらの推定結果に基づいて、好気性処理装置に流入する有機性排水の供給流量を調整することで、好気性処理装置内で生じる生物反応熱を有効に利用し、加温又は冷却のための外部設備の設置を省略することができる。 From the relationship between the amount of BOD decomposed in the aerobic treatment apparatus and the heat of biological reaction per unit weight associated with BOD decomposition, the amount of heat generated by BOD decomposition of organic wastewater can be estimated. Similarly, the amount of heat generated by the nitrification process can be estimated from the relationship between the amount of ammonia nitrogen nitrified in the aerobic treatment apparatus and the amount of biological reaction heat per unit weight involved in the nitrification process of the ammonia nitrogen. Similarly, the heat balance in the aerobic treatment can be calculated from the relationship between the water temperature of the organic wastewater before and after the aerobic biological treatment and the relationship between the supply flow rate of the organic wastewater flowing into the aerobic biological treatment. Based on these estimation results, by adjusting the supply flow rate of the organic wastewater flowing into the aerobic treatment equipment, the heat of biological reaction generated in the aerobic treatment equipment can be effectively used for heating or cooling. Installation of external equipment can be omitted.
より具体的には、以下の関係式(1)~(5)式に基づいて、熱収支計算を行い、好気性処理装置内へ供給する有機性排水(原水)の供給流量を決定することが好ましい。
X1(Kcal/d)=供給流量(m3/d)×(処理水水温(℃)-供給水水温(℃))×0.001 ・・・(1)
Y1(Kcal/d)=BOD分解に伴う単位重量当たりの生物反応熱A(Kcal/kg-BOD)×除去BOD量(kg-BOD/d) ・・・(2)
Y2(Kcal/d)=硝化に伴う単位重量当たりの生物反応熱B(Kcal/kg-N)×NH4-N硝化量(kg-N/d) ・・・(3)
Y3(Kcal/d):好気性処理装置の機械設備運転に伴う発熱量 ・・・(4)
X1=(Y1+Y2+Y3)×α ・・・(5)
(αは好気性処理装置からの熱放散率(-)を示す)
More specifically, heat balance calculation is performed based on the following relational expressions (1) to (5) to determine the supply flow rate of organic wastewater (raw water) to be supplied into the aerobic treatment apparatus. preferable.
X1 (Kcal/d) = supply flow rate (m 3 /d) × (treated water temperature (°C) - supply water temperature (°C)) × 0.001 (1)
Y1 (Kcal/d) = heat of biological reaction A per unit weight associated with BOD decomposition (Kcal/kg-BOD) x amount of BOD removed (kg-BOD/d) (2)
Y2 (Kcal/d) = Heat of biological reaction B per unit weight associated with nitrification (Kcal/kg-N) x NH 4 -N nitrification amount (kg-N/d) (3)
Y3 (Kcal/d): calorific value associated with mechanical equipment operation of aerobic treatment equipment (4)
X1=(Y1+Y2+Y3)×α (5)
(α indicates the heat dissipation rate (-) from the aerobic treatment equipment)
αは好気性処理装置からの熱放散率(-)を示し、好気性処理装置の反応槽の材質に基づいて決定される係数である。反応槽が鋼板製(鉄、ステンレス等)でできている場合は熱伝導率の高い素材であるため、αの値は0.5~0.8の範囲で設定することが好ましい。一方、反応槽がコンクリ-ト、プラスチック素材(塩化ビニル樹脂、アクリル樹種等)でできている場合は熱伝導率の低い素材であるため、αの値はコンクリ-トで0.7~0.9、プラスチック素材で0.8~1.0の範囲で設定することが好ましい。「処理水水温」とは好気性処装置における処理後の水温を示し、「供給水水温」は好気性処理装置に供給される供給水の水温を示す。 α indicates the heat dissipation rate (-) from the aerobic treatment apparatus, and is a coefficient determined based on the material of the reaction vessel of the aerobic treatment apparatus. When the reactor is made of steel plate (iron, stainless steel, etc.), the value of α is preferably set in the range of 0.5 to 0.8 because the material has high thermal conductivity. On the other hand, if the reaction tank is made of concrete or plastic material (vinyl chloride resin, acrylic resin, etc.), the material has low thermal conductivity. 9. It is preferable to set in the range of 0.8 to 1.0 for plastic materials. "Treatment water temperature" indicates the water temperature after treatment in the aerobic treatment apparatus, and "supply water temperature" indicates the water temperature of the supply water supplied to the aerobic treatment apparatus.
なお、上記(1)~(5)式は、好気性処理装置内の熱収支計算において少なくとも考慮に入れるべき条件を例示するものであって、実際の熱収支の計算においては、上記(1)~(5)式で規定される条件を全て考慮した上で、好気性処理装置内の処理条件に応じて、(5)式の計算に組み入れられるべきY1~Y3、αを選択及び省略することができるし、Y1~Y3、α以外の別の発熱量を計算に含ませることもできる。 The above equations (1) to (5) are examples of conditions that should be taken into consideration at least in the heat balance calculation in the aerobic treatment apparatus, and in the actual heat balance calculation, the above (1) ~ Selecting and omitting Y1 to Y3 and α to be incorporated in the calculation of the formula (5) according to the processing conditions in the aerobic treatment device after considering all the conditions defined by the formula (5) , and other calorific values other than Y1 to Y3 and α can be included in the calculation.
例えば、好気性処理装置内で発生する生物反応熱として、例えば、散水ろ床法においてろ材表面に生物膜が形成され、これをろ床バエの幼虫が餌として食べる際に幼虫から発生する発熱量がある。幼虫から発生する発熱量以外の散水ろ床法における食物連鎖に関与する昆虫類から発生する発熱量等もある。これら微生物による発熱を含めた発熱量を「その他生物酸化反応に伴う発熱量(Y4)」として、(5)式における熱収支の計算に更に考慮にいれてもよい。即ち、上述の(5)式の右辺を「(Y1+Y2+Y3+Y4)×α」として、好気性処理装置内で発生する発熱量の一つとして考慮にいれてもよい。 For example, biological reaction heat generated in an aerobic treatment apparatus is, for example, the amount of heat generated by filter bed fly larvae when a biofilm is formed on the surface of the filter medium in the trickling filter bed method and the larvae eat this as food. There is In addition to the calorific value generated from larvae, there are calorific values generated from insects involved in the food chain in the trickling filter method. The calorific value including the calorific value due to these microorganisms may be taken into consideration in the calculation of the heat balance in the formula (5) as "the calorific value associated with other biological oxidation reactions (Y4)". That is, the right side of the above equation (5) may be set to "(Y1+Y2+Y3+Y4)×α" and taken into consideration as one of the calorific values generated in the aerobic treatment apparatus.
BOD分解に伴う単位重量当たりの生物反応熱A(Kcal/kg-BOD)及びアンモニア性窒素の硝化処理に伴う生物反応熱B(Kcal/kg-除去N)は実験的に求められる。典型的には、生物反応熱Aは3000~5000Kcal/kg-除去BODとすることができ、また、生物反応熱Bは5000~7000Kcal/kg-除去Nとすることができる。 The heat of biological reaction A (Kcal/kg-BOD) per unit weight associated with decomposition of BOD and the heat of biological reaction B (Kcal/kg-removed N) associated with the nitrification of ammoniacal nitrogen are obtained experimentally. Typically, the heat of bioreaction A can be between 3000 and 5000 Kcal/kg-BOD removed and the heat of bioreaction B can be between 5000 and 7000 Kcal/kg-N removed.
好気性処理において、BOD負荷が2kg/m3/d以上の場合は、BOD処理が主体となり、アンモニアの硝化反応は進まないため、BOD酸化による生物反応熱Y1が対象となる。一方、BOD負荷1kg/m3/d以下の低負荷の場合、Y1に加えて、Y2の割合が増えてくる。Y4については生物処理において食物連鎖が活発に行われる系で考慮することができる。たとえば、BOD容積負荷が低い場合の散水ろ床法などの生物膜法において食物連鎖が活発に行われるケース等が挙げられる。 In aerobic treatment, when the BOD load is 2 kg/m 3 /d or more, the BOD treatment is the main treatment, and the nitrification reaction of ammonia does not proceed, so the biological reaction heat Y1 due to BOD oxidation is the target. On the other hand, in the case of a low BOD load of 1 kg/m 3 /d or less, the ratio of Y2 increases in addition to Y1. Y4 can be considered in systems where the food chain is active in biological treatment. For example, there is a case where the food chain is active in a biofilm method such as a trickling filter method when the BOD volume load is low.
更に、(2)式に関し、除去BOD除去量は以下の2式を使い分けることが好ましい。
除去BOD量(kg/d)=水量(m3/d)×(原水T-BOD(mg/L)-処理水T-BOD(mg/L))×0.001 ・・・(6)
除去BOD量(kg/d)=水量(m3/d)×(原水T-BOD(mg/L)-処理水S-BOD(mg/L))×0.001 ・・・(7)
(ここで「T-BOD」はSSを含んだBODを示し、「S-BOD」は、溶解性BOD(1.0μのろ紙でろ過した液のBOD)を示す)
Furthermore, regarding the formula (2), it is preferable to use the following two formulas properly for the removal amount of BOD.
Amount of BOD removed (kg/d) = Amount of water (m 3 /d) x (Raw water T-BOD (mg/L) - Treated water T-BOD (mg/L)) x 0.001 (6)
Amount of BOD removed (kg/d) = Amount of water (m 3 /d) x (Raw water T-BOD (mg/L) - Treated water S-BOD (mg/L)) x 0.001 (7)
(Here, “T-BOD” indicates BOD containing SS, and “S-BOD” indicates soluble BOD (BOD of liquid filtered through 1.0 μ filter paper))
(2)式において、通常は、(6)式を使用することとする。一方、散水ろ床法のような生物膜法で運転条件(BOD負荷等)により、生物膜の剥離が多い場合、処理水SS濃度が高くなるため処理水T-BOD濃度も高くなる。この場合は除去BOD量の計算に(7)式を使用する場合がある。 In formula (2), formula (6) is usually used. On the other hand, in a biofilm method such as a trickling filter, if there is a large amount of biofilm peeling due to operating conditions (BOD load, etc.), the SS concentration in the treated water increases, and the T-BOD concentration in the treated water also increases. In this case, equation (7) may be used to calculate the amount of BOD removed.
(4)式の「好気性処理槽の機械設備運転に伴う発熱量」とは、活性汚泥処理の場合、曝気装置のジュ-ル熱が該当する。例えば、曝気装置の動力を0.8kw/m3/dとすると、Y3=0.8(kw/m3/d)×24(h/d)×860(kcal/kWh)=16,512(Kcal/m3)となる。一方、曝気装置を使用しない散水ろ床の場合は、循環ポンプが使用されるが、循環ポンプによる温度上昇分は無視できる数値なので考慮しなくても良い。 In the case of activated sludge treatment, the "calorific value associated with the operation of the mechanical equipment of the aerobic treatment tank" in the formula (4) corresponds to the Joule heat of the aeration equipment. For example, if the power of the aerator is 0.8 kw/m 3 /d, Y3 = 0.8 (kw/m 3 /d) x 24 (h/d) x 860 (kcal/kWh) = 16,512 ( Kcal/m 3 ). On the other hand, in the case of a trickling filter that does not use an aerator, a circulation pump is used.
好気性処理装置内の温度は30~40℃、より好ましくは33~38℃に維持されるように、好気性処理装置内へ供給される有機性排水の供給流量を調整することが好ましい。例えば、好気性処理装置として散水ろ床が用いられる場合には、散水ろ床の温度を30~40℃、より好ましくは33~38℃に維持することで、ハエの発生を抑制することできるため、害虫の発生が少ない安定した排水処理を行うことが可能となる。 It is preferable to adjust the flow rate of the organic wastewater supplied into the aerobic treatment apparatus so that the temperature in the aerobic treatment apparatus is maintained at 30 to 40°C, more preferably 33 to 38°C. For example, when a trickling filter is used as the aerobic treatment device, the temperature of the trickling filter is maintained at 30 to 40°C, more preferably at 33 to 38°C, thereby suppressing the generation of flies. , it is possible to perform stable wastewater treatment with less pests.
散水ろ床で通常発生するチョウバエは20~28℃の温度条件で最も生育が良いが、30℃以上になると生育が悪くなる。したがって、下水放流などをBOD粗処理する場合や、好気性処理を多段で行う場合において一段目好気性処理に散水ろ床法を適用した場合、散水ろ床の温度を30~40℃、より好ましくは33℃~38℃に維持することで、ハエの発生を抑制することができる。チョウバエの駆除には通常、薬剤を用いることが多いが、本願のように温度条件によりコントロ-ルすることで、害虫の発生が少なく安定した排水処理を行うことが可能となる。 The fruit flies that normally occur in trickling filters grow best at a temperature of 20 to 28°C, but grow poorly at temperatures above 30°C. Therefore, when performing BOD rough treatment of sewage discharge, etc., or when performing aerobic treatment in multiple stages, when the trickling filter method is applied to the first stage aerobic treatment, the temperature of the trickling filter is 30 to 40 ° C., more preferably. By maintaining the temperature at 33°C to 38°C, the generation of flies can be suppressed. Chemicals are usually used for extermination of fruit flies, but by controlling the temperature conditions as in the present application, it is possible to perform stable wastewater treatment with less generation of pests.
好気性処理装置の外気温が、例えば10℃以下となるような寒冷地においては、例えば定期点検又は長期休暇などにより、好気性処理装置の運転を一定期間停止する際に、運転停止期間中に好気性処理装置内の温度が低下し、運転再開時に好気性生物処理を安定化させるための立ち上げ運転が必要となることがある。 In cold regions where the outside temperature of the aerobic treatment equipment is, for example, 10 ° C. or less, when the operation of the aerobic treatment equipment is stopped for a certain period of time, for example due to periodic inspection or long vacation, during the operation stop period The temperature in the aerobic treatment equipment may drop, and start-up operation may be required to stabilize the aerobic biological treatment when restarting operation.
このような場合、好気性処理装置の運転を一定期間停止する前に、好気性処理装置のBOD負荷を、所定の期間だけ通常運転時のBOD負荷よりも高くし、有機性排水の好気性生物処理で生じる生物反応熱で、好気性処理装置内の温度が運転停止期間中においても15~40℃に維持されるように、好気性処理装置内への有機性排水の供給流量を調整することが好ましい。また、一定期間(5日~1週間)有機性排水が出ない時に既知の高濃度有機性排水(BOD濃度10,000~50,000mg/L)を用いて反応槽の温度を33℃~38℃に調整することでハエ発生を抑制することができる。 In such a case, before stopping the operation of the aerobic treatment equipment for a certain period of time, the BOD load of the aerobic treatment equipment is made higher than the BOD load during normal operation for a predetermined period of time, and the aerobic organisms in the organic wastewater are Adjust the supply flow rate of organic wastewater into the aerobic treatment equipment so that the temperature inside the aerobic treatment equipment is maintained at 15 to 40°C by the heat of biological reaction generated by the treatment even during the shutdown period. is preferred. In addition, when organic wastewater does not come out for a certain period of time (5 days to 1 week), the temperature of the reaction tank is changed to 33°C to 38°C using known high-concentration organic wastewater (BOD concentration of 10,000 to 50,000mg/L). By adjusting the temperature to ℃, it is possible to suppress the generation of flies.
夏場等のように好気性処理装置の外気温が高い場合、例えば点検又は長期休暇などにより、好気性処理装置の運転を一定期間停止する際に、運転停止期間中に好気性処理装置内の温度が高くなりすぎて生物活性が阻害される場合がある。このような状況化においては、運転停止前の所定の期間に対し、好気性処理装置のBOD負荷を、通常運転時のBOD負荷よりも低くし、有機性排水の好気性生物処理で生じる生物反応熱で好気性処理装置内の温度が15~40℃に維持されるように、好気性処理装置内への有機性排水の供給流量を調整することが好ましい。 When the outside temperature of the aerobic treatment equipment is high, such as in the summer, when the operation of the aerobic treatment equipment is stopped for a certain period of time due to inspection or long vacation, the temperature inside the aerobic treatment equipment during the shutdown period may become too high and inhibit biological activity. In such a situation, the BOD load of the aerobic treatment equipment is made lower than the BOD load during normal operation for a predetermined period before the operation is stopped, and the biological reactions that occur in the aerobic biological treatment of organic wastewater are reduced. It is preferable to adjust the supply flow rate of the organic wastewater into the aerobic treatment apparatus so that the temperature in the aerobic treatment apparatus is maintained at 15 to 40° C. by heat.
運転停止期間中に、有機性排水に含まれる有機物の分解により生じる生物反応熱で好気性処理装置内の温度が15~40℃に維持されるように、好気性処理装置内へ供給される有機性排水の供給流量及びBOD負荷を調整することにより、外部設備を利用することなく、運転停止期間中も生物反応熱によってより安定的に処理を行うことができる。 During the operation stop period, organic matter supplied to the aerobic treatment apparatus is maintained at 15 to 40°C by the heat of biological reaction generated by the decomposition of organic matter contained in the organic wastewater. By adjusting the supply flow rate and BOD load of biochemical wastewater, treatment can be performed more stably by the heat of biological reaction even during the shutdown period without using external equipment.
本発明の実施の形態に係る有機性排水の処理方法によれば、有機性排水の好気性生物処理で生じる生物反応熱のみで好気性処理装置内の温度が維持されるように、好気性処理装置内へ供給される有機性排水の供給流量(体積流量)を調整することにより、外部設備による好気性生物処理の加温又は冷却が基本的に不要となるため、有機性排水の供給により好気性処理槽内で発生する熱を有効利用でき、処理及び装置の簡素化及び小型化が図れる。 According to the method for treating organic wastewater according to the embodiment of the present invention, aerobic treatment is performed so that the temperature in the aerobic treatment apparatus is maintained only by the heat of biological reaction generated in the aerobic biological treatment of organic wastewater. By adjusting the supply flow rate (volumetric flow rate) of the organic wastewater supplied into the equipment, it is basically unnecessary to heat or cool the aerobic biological treatment by external equipment, so it is better to supply organic wastewater. The heat generated in the gas treatment tank can be effectively used, and the treatment and equipment can be simplified and downsized.
(有機性排水の処理装置)
本発明の実施の形態に係る有機性排水の処理装置は、図1に示すように、有機性排水を好気性生物処理する好気性処理装置(一段目好気性処理装置1)と、有機性排水に含まれる有機物の分解により生じる生物反応熱で好気性処理装置内の温度が15~40℃に維持されるように、好気性処理装置内へ供給される有機性排水の供給流量を調整する流量調整手段2とを備える。なお、図1の例では、一段目好気性処理装置1の後段に二段目好気性処理装置7が接続される例を示しているが、一段目好気性処理装置1の好気性生物処理による処理水が所定の水質基準を満たす場合には、二段目好気性処理装置7を省略できることは勿論である。
(Organic wastewater treatment equipment)
The organic wastewater treatment apparatus according to the embodiment of the present invention comprises, as shown in FIG. The flow rate for adjusting the supply flow rate of the organic wastewater supplied to the aerobic treatment apparatus so that the temperature in the aerobic treatment apparatus is maintained at 15 to 40°C by the heat of biological reaction generated by the decomposition of the organic matter contained in the and adjusting means 2 . In the example of FIG. 1, the second-stage
一段目好気性処理装置1としては、好気性処理装置内の気体と液体の容積比(液体の容積/気体の容積)βが0.2以下である装置を利用することで、有機性排水以外の液相の熱収支の影響を考慮する必要がなくなるため、有機性排水に含まれる有機物の分解により生じる生物反応熱の影響をより適切かつ精度良く推測することができる。このような、一段目好気性処理装置1としては、例えば、散水ろ床法を利用した好気性処理装置が利用可能である。以下の実施の形態では、一例として、散水ろ床を利用した例を用いて説明するが、以下の態様に限定されることを意図するものではないことは勿論である。
As the first-stage
散水ろ床法は、好気性生物処理法の一つであり、ろ材の表面に付着した微生物の作用によって、散布される有機性排水中の有機物を分解することにより、生物処理水を得る方法である。散水ろ床法は、一般的に、生物膜の表面が好気的、生物膜の内部が嫌気的になることが知られている。このため、硝化が進行可能な負荷で散水ろ床の運転を実施すると、生物膜の表面では硝化反応が進行し、生物膜の内部では脱窒反応が進行するという特徴があり、窒素除去効率の面で優れている。 The trickling filter bed method is one of the aerobic biological treatment methods, and is a method of obtaining biologically treated water by decomposing organic matter in the organic wastewater that is sprayed by the action of microorganisms adhering to the surface of the filter medium. be. In the trickling filter bed method, it is generally known that the surface of the biofilm becomes aerobic and the inside of the biofilm becomes anaerobic. Therefore, when the trickling filter is operated under a load that allows nitrification to proceed, the nitrification reaction proceeds on the surface of the biofilm and the denitrification reaction proceeds inside the biofilm. excellent in terms of
散水ろ床に用いられる担体、散水部等の具体的構成に特に制限はない。担体の素材は、微生物が付着すればどのような素材でも良く、代表的なものとしては、プラスチック、砕石等が用いられる。担体の形状は、プレート状、球状、円柱状、直方体、中空状などいずれの形状でもよい。また、反応槽の容量に対する担体の充填率としては、40~80%、望ましくは50~70%が好ましい。膜状担体の場合は、反応槽の容量に対する膜の表面の面積として、0.05~0.15 m2/m3となるように充填することが好ましい。 There are no particular restrictions on the specific configurations of the carrier, sprinkler section, etc. used in the trickling filter. Any material to which microorganisms can adhere can be used as the material of the carrier, and typical examples thereof include plastics and crushed stone. The shape of the carrier may be plate-like, spherical, columnar, rectangular parallelepiped, hollow, or any other shape. The filling rate of the carrier with respect to the volume of the reaction tank is preferably 40-80%, preferably 50-70%. In the case of a film-like carrier, it is preferable to fill the reaction vessel so that the surface area of the film is 0.05 to 0.15 m 2 /m 3 with respect to the capacity of the reaction tank.
より効率良く且つ安定的に生物処理を行うためには、散水ろ床に供給される固液分離後の分離液と散水ろ床内の酸素とが膜面を挟んで対向して浸透する構造を有する図2に示すような膜状担体20が散水ろ床内に配置されることがより好ましい。
In order to perform biological treatment more efficiently and stably, a structure in which the separated liquid after solid-liquid separation supplied to the trickling filter and the oxygen in the trickling filter face each other across the membrane face and permeate is required. It is more preferable that a
膜状担体20は、支持体21と支持体21に支持される膜22を備え、膜22が支持体21を覆うループ形状を有しており、分離液がループ形状の膜22の外面から浸透し、酸素がループ形状の膜22の内面に形成された空間23から膜の外面へ浸透するように構成されている。膜22は支持体21の外側で湾曲する湾曲部22aと、湾曲部22aの両端から互いに略平行に延伸する延伸部22b、22cとを備え、膜22の下端側、即ち、膜22が配置された好気性処理装置の底面と対向する側に、膜22の内面に堆積してその後剥離する汚泥(不図示)を空間23の外へ排出するための開口部22dが形成されている。
The
散水ろ床法を用いた好気性処理装置を一段目好気性処理装置1として利用する場合、散水ろ床内で処理される有機性排水の温度が30~40℃、より好ましくは33℃~38℃に調整されるように、流量調整手段2が、散水ろ床内へ供給される有機性排水の供給流量(体積流量)を調整することが好ましい。これにより、散水ろ床内のBOD除去率を65~85%程度に高く維持しながら、ハエの発生を抑制して、より効率的な好気性生物処理が達成できる。
When an aerobic treatment apparatus using a trickling filter method is used as the first-stage
流量調整手段2としては、有機性排水の体積流量を調節できる装置であれば特に制限はなく、例えばバルブ等の汎用の装置が利用できる。流量調整手段2は制御手段10に接続されており、制御手段(装置)10から出力された出力信号に基づいて、供給流量が変更されるように構成されることができる。 The flow rate adjusting means 2 is not particularly limited as long as it is a device that can adjust the volumetric flow rate of the organic wastewater, and for example, a general-purpose device such as a valve can be used. The flow rate adjusting means 2 is connected to the control means 10 and can be configured such that the supply flow rate is changed based on the output signal output from the control means (device) 10 .
制御手段10は、一段目好気性処理装置1内で生じる生物反応熱の熱収支計算結果に基づいて、例えば、一段目好気性処理装置1内に供給された有機性排水に含まれる有機物の分解によって生じる生物反応熱で好気性反応装置内の温度が15℃を下回ると推定される場合には、有機性排水中の有機物濃度を増加させるような流量制御を行い、40℃を上回ると推定される場合には、有機性排水中の有機物濃度を低減させるような流量制御を行うことができる。
Based on the heat balance calculation result of the biological reaction heat generated in the first-stage
更に、本発明の実施の形態に係る有機性排水の処理装置は、好気性生物処理前の有機性排水の水温を測定する水温測定手段3と、水温の測定結果に基づいて、一段目好気性処理装置1に供給される有機性排水のBOD濃度及びアンモニア性窒素濃度を調整するために、有機性排水を希釈する希釈流体の希釈倍率を決定する希釈倍率決定手段(不図示)と、有機性排水に対して希釈流体を供給する希釈流体供給手段6とを備えることができる。
Furthermore, the organic wastewater treatment apparatus according to the embodiment of the present invention includes a water temperature measuring means 3 for measuring the water temperature of the organic wastewater before aerobic biological treatment, and a first stage aerobic In order to adjust the BOD concentration and the ammonia nitrogen concentration of the organic wastewater supplied to the
希釈倍率決定手段は、制御手段10によって出力される制御信号によって制御されることができる。希釈倍率決定手段は、例えば、一段目好気性処理装置1内の有機性排水の分解により生じる生物反応熱を考慮して予め設定された有機性排水の水温と希釈流体の希釈倍率の関係に基づいて希釈倍率を決定することで、一段目好気性処理装置1内の有機性排水の水温をより適切な範囲に調整することができる。一段目好気性処理装置1には、一段目好気性処理装置1内の有機性排水の水温を測定する水温測定手段5を備えることができる。希釈流体の水温を測定する水温測定手段4が設けられていてもよい。水温測定手段4、5による水温測定結果は、制御手段10に出力される。
The dilution factor determination means can be controlled by control signals output by the control means 10 . The dilution ratio determination means is based on the relationship between the water temperature of the organic wastewater and the dilution ratio of the diluent fluid, which is preset in consideration of the biological reaction heat generated by the decomposition of the organic wastewater in the first-stage
制御手段10は、上述の(1)~(5)式を用いて、好気性処理装置内の熱収支を計算する熱収支計算手段を備えることができ、熱収支計算手段による熱収支計算結果に基づいて、流量調整手段2が調整すべき有機性排水の供給流量の情報を出力することで、有機性排水の供給により好気性処理槽内で発生する熱を有効利用でき、有機性排水に含まれる有機物の分解による生物反応熱及び有機性排水の水温を利用して一段目好気性処理装置1内の有機性排水の温度を微生物による処理に好適な温度に維持することができる。
The control means 10 can be provided with heat balance calculation means for calculating the heat balance in the aerobic treatment apparatus using the above equations (1) to (5). Based on this, by outputting information on the supply flow rate of the organic wastewater to be adjusted by the flow rate adjusting means 2, the heat generated in the aerobic treatment tank by the supply of the organic wastewater can be effectively used, and the heat contained in the organic wastewater can be effectively used. The temperature of the organic wastewater in the first-stage
二段目好気性処理装置7としては、一段目好気性処理装置1よりもBOD負荷を低くした好気性処理装置を用いることができ、例えば、活性汚泥処理装置、ろ過装置等が好適に利用できる。
As the second-stage
有機性排水を好気性生物処理する場合、有機物を分解する微生物の生物活性を維持するために、好気性処理装置内の温度を最適温度に維持することが重要であり、低水温時には外部加熱が必要であり、高水温時には熱交換処理等により冷却する必要があった。そのため、従来の手法においては温度調節のための外部設備を設ける必要があった。 When organic wastewater is subjected to aerobic biological treatment, it is important to maintain the optimum temperature inside the aerobic treatment equipment in order to maintain the biological activity of the microorganisms that decompose organic matter. When the water temperature is high, it is necessary to cool the water by heat exchange treatment or the like. Therefore, in the conventional method, it was necessary to provide an external facility for temperature control.
本発明の実施の形態に係る有機性排水の処理装置によれば、有機性排水自身が持つ熱量、即ち、有機性排水の水温及び有機性排水に含まれる有機物の分解による生物反応熱を利用して、好気性処理装置内の温度が15~40℃に維持されるように、流量調整手段2により、有機性排水の供給流量が調整される。その結果、温度調整のための外部設備を使用することなく、一段目好気性処理装置内を好気性生物処理に適した温度に維持することができ、安定した排水処理を行うことができる。 According to the organic wastewater treatment apparatus according to the embodiment of the present invention, the heat of the organic wastewater itself, that is, the temperature of the organic wastewater and the heat of biological reaction due to the decomposition of the organic matter contained in the organic wastewater are utilized. The flow rate adjusting means 2 adjusts the supply flow rate of the organic wastewater so that the temperature in the aerobic treatment apparatus is maintained at 15 to 40°C. As a result, the inside of the first-stage aerobic treatment apparatus can be maintained at a temperature suitable for aerobic biological treatment without using external equipment for temperature adjustment, and stable wastewater treatment can be performed.
なお、図1の例では、一段目好気性処理装置1内の有機性排水の供給流量を調整する場合を例に説明したが、二段目好気性処理装置7に対しても、一段目好気性処理装置1と同様な処理を行うことができることは勿論である。
In the example of FIG. 1, the case of adjusting the supply flow rate of the organic wastewater in the first-stage
以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。 Examples of the present invention are presented below along with comparative examples, which are provided for a better understanding of the invention and its advantages and are not intended to be limiting of the invention.
(実施例1)
<生物酸化熱の係数を推定するための室内実験>
図1の有機性排水の処理装置の一段目好気性処理装置(「一段目好機槽」ともいう)に図2に示す膜状担体20を収容した散水ろ床処理装置(実験装置有効容量36L)を使用し、図4に示す高濃度有機性排水に対して必要に応じて図4の低濃度有機性排水を希釈流体として加えて処理を行った。
(Example 1)
<Laboratory experiment for estimating the coefficient of heat of biological oxidation>
A trickling filter bed treatment apparatus (experimental apparatus effective capacity: 36 L) in which the membrane-
高濃度有機性排水は図4に示す通り、水温27℃、SS200mg/L、CODCr16,000mg/L、BOD8,000mg/L、NH4-N300mg/Lであり、低濃度有機性排水は水温20℃、SS20mg/L、CODCr300mg/L、BOD100mg/L、NH4-N6mg/Lである。
As shown in Fig. 4, the high-concentration organic wastewater has a water temperature of 27°C, SS200mg/L, COD Cr 16,000mg/L, BOD8,000mg/L, and NH4 - N300mg/L. 20° C.,
図5に高濃度有機性排水(「高濃度排水」ともいう)及び低濃度有機性排水(「低濃度排水」ともいう))の一段目好気槽への流入量と、流入原水BOD濃度及び一段目好機槽内水温(「リアクタ内水温」ともいう)の変化を示す。図6に、流入BOD濃度と反応槽内水温の関係を示す。 Figure 5 shows the amount of high-concentration organic wastewater (also referred to as “high-concentration wastewater”) and low-concentration organic wastewater (also referred to as “low-concentration wastewater”) flowing into the first stage aerobic tank, and the inflow raw water BOD concentration and It shows the change in the water temperature in the first stage opportunity tank (also referred to as "water temperature in the reactor"). FIG. 6 shows the relationship between the inflow BOD concentration and the water temperature in the reactor.
図5に示すように低濃度有機性排水の流入量を0、1、2、4、7、10(L/d)6種類に変えて6系列について検討した。それぞれの系列の流入BOD濃度は8000、7380、6680、5740、4750、4050mg/Lであった。反応槽のBOD容積負荷は2~4kg/m3/dの範囲とした。 As shown in FIG. 5, the inflow amount of low-concentration organic wastewater was changed to 0, 1, 2, 4, 7, and 10 (L/d), and 6 lines were examined. The influent BOD concentrations for each series were 8000, 7380, 6680, 5740, 4750 and 4050 mg/L. The BOD volume load of the reactor was in the range of 2-4 kg/m 3 /d.
低濃度有機性排水の流入量が4L/d以上、流入BOD濃度5740mg/L以下の範囲ではリアクタ内の水温は33~39℃であり、BOD除去率は70~80%と安定したBOD処理性能を示した。一方、低濃度有機性排水のバイパス量4L/d以下、流入水BOD濃度5740mg/L以上では、リアクタ内温度は40℃以上となり、BOD除去率は40~60%となり、BOD処理性能の低下を示した。 When the inflow of low-concentration organic wastewater is 4 L/d or more and the inflow BOD concentration is 5740 mg/L or less, the water temperature in the reactor is 33 to 39°C, and the BOD removal rate is 70 to 80%, providing stable BOD treatment performance. showed that. On the other hand, when the bypass amount of low-concentration organic wastewater is 4 L/d or less and the influent BOD concentration is 5740 mg/L or more, the temperature inside the reactor becomes 40°C or more, and the BOD removal rate becomes 40 to 60%, which reduces the BOD treatment performance. Indicated.
以上の結果をもとに、式(1)~式(5)からY1~Y4の値を求めた。実施例1の処理条件では反応槽のBOD負荷が2~4kg/m3/dと高いため、(3)式の硝化反応(Y2)は進まない。また、その他の生物酸化反応(Y4)、循環ポンプによる発熱量(Y3)は考慮する必要はないため、(5)式の右辺においては、Y1とαを考慮すれば足りる。(2)式のBOD分解に伴う単位重量当たりの生物反応熱Aを3,800Kcal/kg-BODとして採用した。リアクタの材質が塩化ビニル製で放散率が低いため、熱放散率αはα=0.95として熱収支を算出した。 Based on the above results, the values of Y1 to Y4 were obtained from formulas (1) to (5). Under the treatment conditions of Example 1, the BOD load in the reaction tank is as high as 2 to 4 kg/m 3 /d, so the nitrification reaction (Y2) of formula (3) does not proceed. In addition, since it is not necessary to consider the other biological oxidation reaction (Y4) and the amount of heat generated by the circulating pump (Y3), it is sufficient to consider Y1 and α in the right side of equation (5). The heat of biological reaction A per unit weight associated with BOD decomposition in formula (2) was adopted as 3,800 Kcal/kg-BOD. Since the material of the reactor is vinyl chloride and has a low heat dissipation rate, the heat dissipation rate was calculated as α=0.95.
<リアクタ内水温を制御した実証実験>
図1の有機性排水の処理装置の一段目好気性処理装置に、図2に示す膜状担体20を収容した散水ろ床処理装置(実験装置有効容量2m3)を用い、図4に示す高濃度有機性排水と低濃度有機性排水を用いて実験を行った。高濃度有機性排水温度を30~15℃の範囲で変動させた。低濃度排水水温は20℃の一定条件とした。
<Demonstration experiment controlling the water temperature in the reactor>
A trickling filter bed treatment device (experimental device effective capacity: 2 m 3 ) accommodating the
図7に高濃度有機性排水温度、流入水BOD濃度及びリアクタ内水温の変化を示す。図7上図は、高濃度有機性排水と低濃度排水の供給流量の経時変化を示し、図7中図は流入水のBOD濃度の推移を示し、図7下図は高濃度有機性排水の水温とリアクタ内水温の経時変化を示す。 FIG. 7 shows changes in the temperature of the high-concentration organic wastewater, the BOD concentration of the influent, and the water temperature in the reactor. The upper graph in FIG. 7 shows the change over time in the supply flow rate of high-concentration organic wastewater and low-concentration wastewater, the middle graph in FIG. and the time course of water temperature in the reactor.
高濃度有機性排水温度を30~15℃の範囲で変動させる際に、上述の生物反応熱Aの係数を推定するための室内実験で求めたY1~Y4の値を用いて(5)式を計算した。高濃度有機性排水温度30℃、流量0.75m3/d、低濃度有機性排水水温20℃の条件で式(5)を計算し、低濃度有機性排水流量を0.8m3/dに設定し、流入BOD濃度4000mg/Lとした。その結果、リアクタ内の水温は33~36℃に維持することができた。 When varying the temperature of high-concentration organic wastewater in the range of 30 to 15 ° C., formula (5) is calculated using the values of Y1 to Y4 obtained in laboratory experiments for estimating the coefficient of the heat of biological reaction A described above. Calculated. Formula (5) was calculated under the conditions of a high-concentration organic wastewater temperature of 30°C, a flow rate of 0.75m 3 /d, and a low-concentration organic wastewater temperature of 20°C, and the low-concentration organic wastewater flow rate was set to 0.8m 3 /d was set to an influent BOD concentration of 4000 mg/L. As a result, the water temperature in the reactor could be maintained at 33-36°C.
次に高濃度有機性排水温度25℃、流量0.75m3/d、低濃度有機性排水水温20℃の条件で式(5)を計算し、低濃度有機性排水流量を0.75m3/dに設定し、流入BOD濃度4000mg/Lとした。その結果、リアクタ内の水温は32~33℃に維持することができた。 Next, formula (5) is calculated under the conditions of a high-concentration organic wastewater temperature of 25°C, a flow rate of 0.75m 3 /d, and a low-concentration organic wastewater temperature of 20°C, and the low-concentration organic wastewater flow rate is 0.75m 3 /d. d, with an influent BOD concentration of 4000 mg/L. As a result, the water temperature in the reactor could be maintained at 32-33°C.
次に高濃度系有機性排水20℃において流量0.75m3/d、低濃度有機性排水水温20℃の条件で式(5)を計算し、低濃度有機性排水流量を0.5m3/dに設定し、流入BOD濃度5000mg/Lとした。その結果、リアクタ内の水温は32~34℃に維持することができた。 Next, formula (5) is calculated under the conditions of a flow rate of 0.75 m 3 /d at 20 ° C. of high-concentration organic waste water and a low-concentration organic waste water temperature of 20 ° C., and the flow rate of low-concentration organic waste water is 0.5 m 3 / d, with an influent BOD concentration of 5000 mg/L. As a result, the water temperature in the reactor could be maintained at 32-34°C.
次に高濃度系有機性排水15℃において流量0.75m3/d、低濃度有機性排水水温20℃の条件で式(5)を計算し、低濃度有機性排水流量を0m3/dに設定し、流入BOD濃度8000mg/Lとした。その結果、リアクタ内の水温は33~35℃に維持することができた。 Next, formula (5) is calculated under the conditions of high-concentration organic wastewater flow rate of 15°C and low-concentration organic wastewater temperature of 20°C, and the low - concentration organic wastewater flow rate is set to 0 m3 /d. was set to an influent BOD concentration of 8000 mg/L. As a result, the water temperature in the reactor could be maintained at 33-35°C.
このように高濃度有機性排水温度が30℃~15℃の範囲で段階的に変動した場合においても、低濃度有機性排水の量を適宜制御することで、リアクタ内水温を32~35℃の範囲に維持でき、安定したBOD処理を可能とした。 Even when the temperature of the high-concentration organic wastewater fluctuates step by step in the range of 30°C to 15°C, the water temperature in the reactor can be maintained at 32-35°C by appropriately controlling the amount of the low-concentration organic wastewater. It can be maintained within the range, enabling stable BOD treatment.
(実施例2)
<リアクタ内水温調整とチョウバエ発生抑制>
図1の有機性排水の処理装置の一段目好気性処理装置に、図2に示す膜状担体20を収容した散水ろ床処理装置(実験装置有効容量4m3)を用い、図8に示す高濃度有機性排水と低濃度有機性排水を用いて実験を行った。
(Example 2)
<Adjusting water temperature in the reactor and suppressing the generation of fruit flies>
A trickling filter bed treatment device (experimental device effective capacity: 4 m 3 ) accommodating the
図8に高濃度有機性排水性状と低濃度有機性排水性状を示す。高濃度有機性排水は水温24℃、SS500mg/L、CODCr7,000mg/L、BOD3,000mg/L、NH4-N1,500mg/Lであり、低濃度有機性排水は水温24℃、SS100mg/L、CODCr600mg/L、BOD150mg/L、NH4-N54mg/Lである。比較例の系列は高濃度有機性排水と低濃度有機性排水を混合後通水し、実施例2の系列は高濃度有機性排水のみを通水した。
Figure 8 shows the properties of high-concentration organic wastewater and low-concentration organic wastewater. High-concentration organic wastewater has a water temperature of 24°C, SS 500mg/L, COD Cr 7,000mg/L, BOD 3,000mg/L, and NH 4 -N 1,500mg/L. /L,
図9に高濃度有機性排水量、低濃度有機性排水量、流入水BOD濃度、リアクタ内水温、チョウバエの発生状況を示す。チョウバエの発生状況は目視で評価した。比較例は流入水BOD濃度1,580mg/Lで、リアクタ内水温は26~28℃であり、ハエの発生は++(多い)~+++(非常に多い)であった。一方、実施例2では流入水BOD濃度3,000mg/Lで、リアクタ内水温は32~34℃であり、ハエの発生は+(少ない)~-(発生が見られない)であった。このように、リアクタ内の水温を30~40℃に維持することでチョウバエの発生を抑制することが可能であった。 FIG. 9 shows the amount of high-concentration organic wastewater, the amount of low-concentration organic wastewater, the BOD concentration of the influent, the water temperature in the reactor, and the occurrence of moth flies. Occurrence of moth flies was visually evaluated. In the comparative example, the influent BOD concentration was 1,580 mg/L, the water temperature in the reactor was 26 to 28° C., and the number of flies was ++ (many) to +++ (very many). On the other hand, in Example 2, the influent BOD concentration was 3,000 mg/L, the water temperature in the reactor was 32 to 34° C., and the occurrence of flies was + (few) to − (no occurrence). Thus, by maintaining the water temperature in the reactor at 30 to 40° C., it was possible to suppress the generation of fruit flies.
1…一段目好気性処理装置
2…流量調整手段
3、4、5…水温測定手段
6…希釈流体供給手段
7…二段目好気性処理装置
10…制御手段
20…膜状担体
21…支持体
22d…開口部
22b…延伸部
22…膜
22a…湾曲部
23…空間
REFERENCE SIGNS
Claims (9)
前記有機性排水の水温、前記有機性排水のBOD分解に伴う発熱量、前記有機性排水の硝化に伴う発熱量及び前記好気性処理装置の機械設備運転に伴う発熱量を考慮に入れた好気性処理装置内の熱収支計算を行い、該熱収支計算の計算結果に基づいて、前記好気性処理装置内の温度が15~40℃に維持されるように、前記好気性処理装置内へ供給される前記有機性排水の供給流量を調整することを含む有機性排水の処理方法。 In an aerobic treatment apparatus for aerobically biologically treating one or more organic wastewaters,
An aerobic process that takes into account the water temperature of the organic wastewater, the amount of heat generated by the decomposition of BOD in the organic wastewater, the amount of heat generated by the nitrification of the organic wastewater, and the amount of heat generated by the operation of the mechanical equipment of the aerobic treatment apparatus. A heat balance calculation is performed within the processing apparatus, and based on the calculation result of the heat balance calculation, the heat is supplied into the aerobic processing apparatus so that the temperature in the aerobic processing apparatus is maintained at 15 to 40 ° C. A method for treating organic wastewater, comprising adjusting the supply flow rate of the organic wastewater.
X1(Kcal/d)=供給流量(m3/d)×(処理水水温(℃)-供給水水温(℃))×0.001 ・・・(1)
Y1(Kcal/d)=BOD分解に伴う単位重量当たりの生物反応熱A(Kcal/kg-BOD)×除去BOD量(kg-BOD/d) ・・・(2)
Y2(Kcal/d)=硝化に伴う単位重量当たりの生物反応熱B(Kcal/kg-N)×NH4-N硝化量(kg-N/d) ・・・(3)
Y3(Kcal/d):好気性処理装置の機械設備運転に伴う発熱量 ・・・(4)
X1=(Y1+Y2+Y3)×α ・・・(5)
(αは好気性処理装置からの熱放散率(-)を示す) Claim 1 or 2, comprising performing the heat balance calculation based on the following relational expressions (1) to (5) and determining the supply flow rate of the organic wastewater supplied to the aerobic treatment device 3. The method for treating organic wastewater according to .
X1 (Kcal/d) = supply flow rate (m 3 /d) × (treated water temperature (°C) - supply water temperature (°C)) × 0.001 (1)
Y1 (Kcal/d) = heat of biological reaction A per unit weight associated with BOD decomposition (Kcal/kg-BOD) x amount of BOD removed (kg-BOD/d) (2)
Y2 (Kcal/d) = Heat of biological reaction B per unit weight associated with nitrification (Kcal/kg-N) x NH 4 -N nitrification amount (kg-N/d) (3)
Y3 (Kcal/d): calorific value associated with mechanical equipment operation of aerobic treatment equipment (4)
X1=(Y1+Y2+Y3)×α (5)
(α indicates the heat dissipation rate (-) from the aerobic treatment equipment)
前記有機性排水の水温、前記有機性排水のBOD分解に伴う発熱量、前記有機性排水の硝化に伴う発熱量、及び前記好気性処理装置の機械設備運転に伴う発熱量を考慮に入れた好気性処理装置内の熱収支計算を行い、該熱収支計算の計算結果に基づいて、前記好気性処理装置内の温度が15~40℃に維持されるように、前記好気性処理装置内へ供給される前記有機性排水の供給流量を調整する流量調整手段を備える有機性排水の処理装置。 An aerobic treatment apparatus for aerobic biological treatment of one or more organic wastewaters,
It is preferable to consider the water temperature of the organic wastewater, the calorific value associated with BOD decomposition of the organic wastewater, the calorific value associated with nitrification of the organic wastewater, and the calorific value associated with the operation of the mechanical equipment of the aerobic treatment apparatus. A heat balance calculation is performed in the aerobic treatment apparatus, and based on the calculation result of the heat balance calculation, the temperature in the aerobic treatment apparatus is maintained at 15 to 40 ° C. Supply to the aerobic treatment apparatus A treatment apparatus for organic wastewater, comprising flow rate adjusting means for adjusting the supply flow rate of the organic wastewater.
該水温の測定結果に基づいて、前記有機性排水を希釈する希釈流体の希釈倍率を決定する希釈倍率決定手段と、
前記有機性排水に対して前記希釈流体を供給する希釈流体供給手段と
を備える請求項7に記載の有機性排水の処理装置。 a water temperature measuring means for measuring the water temperature of the organic wastewater;
Dilution rate determination means for determining a dilution rate of a diluent fluid for diluting the organic waste water based on the result of measuring the water temperature;
8. The organic wastewater treatment apparatus according to claim 7, further comprising a dilution fluid supply means for supplying the dilution fluid to the organic wastewater.
前記流量調整手段が、前記散水ろ床内の前記有機性排水の温度が30~40℃に調整されるように、前記流量調整手段が前記有機性排水の供給量を調整することを含む請求項7又は8に記載の有機性排水の処理装置。 The aerobic treatment device is a trickling filter,
wherein said flow rate adjusting means adjusts the supply amount of said organic waste water so that the temperature of said organic waste water in said trickling filter is adjusted to 30 to 40°C. The organic wastewater treatment device according to 7 or 8.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019130618A JP7177014B2 (en) | 2019-07-12 | 2019-07-12 | Organic wastewater treatment method and organic wastewater treatment apparatus |
JP2022179799A JP7418532B2 (en) | 2019-07-12 | 2022-11-09 | Organic wastewater treatment method and organic wastewater treatment device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019130618A JP7177014B2 (en) | 2019-07-12 | 2019-07-12 | Organic wastewater treatment method and organic wastewater treatment apparatus |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022179799A Division JP7418532B2 (en) | 2019-07-12 | 2022-11-09 | Organic wastewater treatment method and organic wastewater treatment device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021013903A JP2021013903A (en) | 2021-02-12 |
JP7177014B2 true JP7177014B2 (en) | 2022-11-22 |
Family
ID=74530937
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019130618A Active JP7177014B2 (en) | 2019-07-12 | 2019-07-12 | Organic wastewater treatment method and organic wastewater treatment apparatus |
JP2022179799A Active JP7418532B2 (en) | 2019-07-12 | 2022-11-09 | Organic wastewater treatment method and organic wastewater treatment device |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022179799A Active JP7418532B2 (en) | 2019-07-12 | 2022-11-09 | Organic wastewater treatment method and organic wastewater treatment device |
Country Status (1)
Country | Link |
---|---|
JP (2) | JP7177014B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022117290A (en) | 2021-01-29 | 2022-08-10 | 三菱重工業株式会社 | Countermeasure presentation system, countermeasure presentation method, and program |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002096085A (en) | 2000-09-22 | 2002-04-02 | Sumitomo Heavy Ind Ltd | Water treatment method and device |
JP2002096086A (en) | 2000-09-21 | 2002-04-02 | Shinko Pantec Co Ltd | Method of treating organic waste water |
JP2005536325A (en) | 2002-06-18 | 2005-12-02 | サゾル テクノロジー(プロプライアタリー)リミティド | Purification method of Fischer-Tropsch generated water |
JP2011092862A (en) | 2009-10-30 | 2011-05-12 | N Ii T Kk | Apparatus for treating waste water with trickling filter |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5895589A (en) * | 1981-12-01 | 1983-06-07 | Ebara Infilco Co Ltd | Treatment for organic sewage of high concentration |
JPS61178094A (en) * | 1985-01-31 | 1986-08-09 | Kubota Ltd | Treatment of waste water containing organic nitrogen |
JPS62168596A (en) * | 1986-01-20 | 1987-07-24 | Ebara Infilco Co Ltd | Biological treatment for waste water containing highly concentrated organic substance |
JPH09187783A (en) * | 1996-01-11 | 1997-07-22 | Nkk Corp | Method for operating biological contacting and filtering apparatus for clean water |
-
2019
- 2019-07-12 JP JP2019130618A patent/JP7177014B2/en active Active
-
2022
- 2022-11-09 JP JP2022179799A patent/JP7418532B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002096086A (en) | 2000-09-21 | 2002-04-02 | Shinko Pantec Co Ltd | Method of treating organic waste water |
JP2002096085A (en) | 2000-09-22 | 2002-04-02 | Sumitomo Heavy Ind Ltd | Water treatment method and device |
JP2005536325A (en) | 2002-06-18 | 2005-12-02 | サゾル テクノロジー(プロプライアタリー)リミティド | Purification method of Fischer-Tropsch generated water |
JP2011092862A (en) | 2009-10-30 | 2011-05-12 | N Ii T Kk | Apparatus for treating waste water with trickling filter |
Also Published As
Publication number | Publication date |
---|---|
JP7418532B2 (en) | 2024-01-19 |
JP2021013903A (en) | 2021-02-12 |
JP2023001308A (en) | 2023-01-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7854843B2 (en) | Wastewater treatment method | |
Leyva-Díaz et al. | Comparative kinetic study between moving bed biofilm reactor-membrane bioreactor and membrane bioreactor systems and their influence on organic matter and nutrients removal | |
Sirianuntapiboon et al. | Sequencing batch reactor biofilm system for treatment of milk industry wastewater | |
Leyva-Díaz et al. | Comparative kinetics of hybrid and pure moving bed reactor-membrane bioreactors | |
Marina et al. | Kinetic models for nitrogen inhibition in ANAMMOX and nitrification process on deammonification system at room temperature | |
Guillén et al. | Long-term performance of the Anammox process under low nitrogen sludge loading rate and moderate to low temperature | |
JP2012066231A (en) | Water treatment system and aeration air flow control method therefor | |
Mohammadi et al. | Comparative study of SMBR and extended aeration activated sludge processes in the treatment of high-strength wastewaters | |
US20130264282A1 (en) | Process, apparatus and membrane bioreactor for wastewater treatment | |
US20070102354A1 (en) | System for treating wastewater and a media usable therein | |
Gutwiński et al. | Startup of the anammox process in a membrane bioreactor (AnMBR) from conventional activated sludge | |
Singh et al. | Environmental performance of an integrated fixed-film activated sludge (IFAS) reactor treating actual municipal wastewater during start-up phase | |
Rodríguez‐Sánchez et al. | Performance and kinetics of membrane and hybrid moving bed biofilm‐membrane bioreactors treating salinity wastewater | |
JP2023001308A (en) | Treatment method and apparatus for organic waste water | |
Lim et al. | Evaluation of pilot-scale modified A2O processes for the removal of nitrogen compounds from sewage | |
KR20080019975A (en) | Wastewater treatment apparatus using hybrid bio-electrochemical sequencing batch reactor combined a biological reactor and an electrode system | |
KR20180031085A (en) | Method and device for biologically treating organic wastewater | |
KR100953075B1 (en) | Oxidation-reduction reaction tank for treating wastewater and wastewater treatment method using the same | |
IL155193A (en) | Apparatus and method for wastewater treatment with enhanced solids reduction (esr) | |
JP4375265B2 (en) | Microbial acclimatization method and organic wastewater treatment method with acclimatized microorganisms | |
Coskuner et al. | Performance assessment of a wastewater treatment plant treating weak campus wastewater | |
Rodríguez et al. | Influence of sludge retention time and temperature on the sludge removal in a submerged membrane bioreactor: Comparative study between pure oxygen and air to supply aerobic conditions | |
US20230219833A1 (en) | Wastewater treatment systems and methods of use | |
JP7579606B2 (en) | Biological treatment system, biological treatment device, water purification system, biological treatment method, and water purification method | |
Hashtroudi et al. | Experimental study of nutrient removal in an anaerobic hybrid upflow sludge blanket filtration bioreactor using response surface methodology |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220114 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220930 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20221011 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20221110 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7177014 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |