JP7174203B2 - Transmission electron microscope (TEM) with photoelectron microscope (PEEM) capability - Google Patents

Transmission electron microscope (TEM) with photoelectron microscope (PEEM) capability Download PDF

Info

Publication number
JP7174203B2
JP7174203B2 JP2019127957A JP2019127957A JP7174203B2 JP 7174203 B2 JP7174203 B2 JP 7174203B2 JP 2019127957 A JP2019127957 A JP 2019127957A JP 2019127957 A JP2019127957 A JP 2019127957A JP 7174203 B2 JP7174203 B2 JP 7174203B2
Authority
JP
Japan
Prior art keywords
tem
peem
sample
microscope
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019127957A
Other languages
Japanese (ja)
Other versions
JP2020202167A (en
JP2020202167A5 (en
Inventor
正雄 武藤
勝重 津野
Original Assignee
株式会社北海光電子
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社北海光電子 filed Critical 株式会社北海光電子
Priority to JP2019127957A priority Critical patent/JP7174203B2/en
Publication of JP2020202167A publication Critical patent/JP2020202167A/en
Publication of JP2020202167A5 publication Critical patent/JP2020202167A5/ja
Application granted granted Critical
Publication of JP7174203B2 publication Critical patent/JP7174203B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

本発明は、バルク(塊状)材料の表面に光を当て、放出された光電子の拡大像を作る装置であるPEEMの機能を、TEMの付属装置として用いる方法に関する。 The present invention relates to a method of using the capabilities of a PEEM, a device that illuminates the surface of a bulk material and produces a magnified image of the emitted photoelectrons, as an adjunct to a TEM.

PEEMの空間分解能は一般に低く、数10nmに留まっている。(非特許文献1) The spatial resolution of PEEM is generally low, remaining at several tens of nm. (Non-Patent Document 1)

そのため出願人らはPEEMの空間分解能向上のため、対物レンズの収差低減、検出信号量の増大、収差の補正について特許を出願した。(特許文献1) Therefore, the applicants filed a patent application for reduction of objective lens aberration, increase in detected signal amount, and correction of aberration in order to improve the spatial resolution of PEEM. (Patent Document 1)

レンズの収差補正が施されている最上級のTEMにおいては、原子分解能に達しているが、試料は薄膜に限定され、バルク材料は観察できない。(非特許文献2) A top-class TEM with lens aberration correction has reached atomic resolution, but samples are limited to thin films, and bulk materials cannot be observed. (Non-Patent Document 2)

そのためバルク試料を観察できるSEM(走査型電子顕微鏡)機能を内蔵したSTEM(走査透過型電子顕微鏡)が開発されたが、3~5nmの触媒粒子の報告に留まり、原子分解能は得られない。(非特許文献3図6) Therefore, a STEM (scanning transmission electron microscope) with a built-in SEM (scanning electron microscope) function that can observe bulk samples has been developed, but only reports of catalyst particles of 3 to 5 nm are available, and atomic resolution cannot be obtained. (Non-Patent Document 3, Figure 6)

出願番号特願2018-228545(段差番号0012~0015)Application number: 2018-228545 (step number: 0012-0015)

光電子顕微鏡光電子顕微鏡、木下豊彦、春山雄一、放射光第13巻第4号(2000年)p.292-297.Photoelectron Microscope Photoelectron Microscope, Toyohiko Kinoshita, Yuichi Haruyama, Synchrotron, Vol. 13, No. 4 (2000) p. 292-297.

非特許文献2・電子顕微鏡の分解能の限界、進藤大輔、平賀賢二、まてりあ第35巻第11号(1996)、1230-1234.Non-Patent Document 2: Limit of Resolution of Electron Microscope, Daisuke Shindo, Kenji Hiraga, Materia Vol. 35, No. 11 (1996), 1230-1234.

二次電子による原子分解能像観察、稲田博実、今野充、田村圭司、中村邦康、(2012.02)日立評論、p.29図6Atomic resolution image observation by secondary electrons, Hiromi Inada, Mitsuru Konno, Keiji Tamura, Kuniyasu Nakamura, (2012.02) Hitachi Review, p. 29 Figure 6

特許文献1に開示されるPEEMにおいては、高分解を性能発現させるには振動、騒音、室温など設置環境に対する対策を個別に施さなければならない。 In the PEEM disclosed in Patent Literature 1, in order to exhibit high resolution performance, it is necessary to individually take measures against the installation environment such as vibration, noise, and room temperature.

前述の通りTEMは上記の設置環境対策が施されており、薄膜材料の原子分解能を有しているが、バルク材料については附属のSEMの入射電子線がバルク材料の内部で拡散されるため、原子分解能は得られない。 As mentioned above, the TEM has the above installation environment measures, and has the atomic resolution of thin film materials. Atomic resolution cannot be obtained.

SEMの代わりにPEEMをTEMに附属させる。そのためには、 A PEEM is attached to the TEM instead of the SEM. for that purpose,

TEMにPEEM機能を内蔵させるためには、試料1に光2を当てなければならない。 In order to integrate the PEEM function into the TEM, the sample 1 must be exposed to the light 2 .

TEMの試料1はアース電位であるため、試料1に光2を当てても発生する光電子はエネルギーが低く、レンズ系の作用を施されるに必要な加速電圧を得られないため、試料は高電位3に配されなければならない。 Since the sample 1 of the TEM is at ground potential, even if the sample 1 is exposed to the light 2, the photoelectrons generated have low energy, and the acceleration voltage necessary for the action of the lens system cannot be obtained. It must be placed at potential 3.

試料に光を当てるため、PEEMの光源6はTEMのカメラ室5に設置する。カメラ室を装備していない場合は、付属装置挿入用のフランジ7や、レンズの絞り8を利用する。 The PEEM light source 6 is placed in the TEM camera chamber 5 to illuminate the sample. When the camera room is not equipped, the flange 7 for inserting the accessory device and the diaphragm 8 of the lens are used.

PEEMに用いる試料ホルダ 図2は薄膜とバルクの両方を保持できる構造 図3であって、1KV以上の高電圧3を印加する機構を有し、高電圧による非軸対称な電場分布の発生を防ぐため、試料の両端の箇所は絶縁性の材質4で構成する。 A sample holder used for PEEM Figure 2 shows a structure that can hold both a thin film and a bulk. Therefore, both ends of the sample are made of an insulating material 4 .

PEEMを専用機でなく図1bに示すようにTEMの付属装置として構成することにより、設置環境に対する原子分解能対策を施したTEMにてPEEMでも原子分解能発現を可能にする。 By constructing the PEEM not as a dedicated device but as an accessory device of the TEM as shown in FIG. 1b, it is possible to achieve atomic resolution even in the PEEM with a TEM that has taken atomic resolution measures for the installation environment.

これにより装置一台で薄膜試料とバルク試料の原子分解能観察を可能にする。 This enables atomic resolution observation of thin film samples and bulk samples with a single device.

試料ホルダ 図2を用いることにより、試料1を交換することなくTEM像とPEEM像を切換えて、または同時に観察できることから、試料交換による視野のずれや、試料の変質を防ぐことができる。 2. By using the sample holder FIG. 2, the TEM image and the PEEM image can be switched or simultaneously observed without exchanging the sample 1, so it is possible to prevent the shift of the field of view and the deterioration of the sample due to the sample exchange.

本発明に係るTEMの附属機能としてのPEEMの全体図 a TEMの全体図 b PEEM機能を加えた図Overall view of PEEM as an accessory function of TEM according to the present invention a Overall view of TEM b Figure with PEEM function added 試料ホルダの全体図と先端部の拡大図Overall view of the sample holder and enlarged view of the tip 試料の形態 a 同一使用に薄膜部とバルク部を形成したもの b 薄膜試料とバルク試料を個別に配置したものForm of sample a Thin film part and bulk part formed for the same use b Separately arranged thin film sample and bulk sample a PEEMとして使用した場合の光照射と光電子放出の経路 b TEMとして使用した場合の電子線照射と透過の経路a Path of light irradiation and photoemission when used as PEEM b Path of electron beam irradiation and transmission when used as TEM

図1において、TEMの機能を保持したまま、PEEMとしても使用できることにより、設置環境対策を施したTEMの鏡筒をそのまま使用することで原子分解能観察を容易にする。 In FIG. 1, the TEM can be used as a PEEM while maintaining the TEM function, so that the atomic resolution observation can be facilitated by using the TEM lens barrel that has taken measures for the installation environment as it is.

試料1は材質4により試料ホルダ図2のホルダ部より絶縁され高電位に配することができ、試料より放出する光電子がレンズ作用を受けるに必要な加速電圧を得ることができる。 The sample 1 can be insulated from the holder portion of the sample holder shown in FIG. 2 by the material 4 and placed at a high potential, so that the photoelectrons emitted from the sample can obtain the acceleration voltage necessary for receiving the lens action.

試料1にはカメラ室5内の光源部6またはフランジ7またはレンズの絞り8より光2を照射することにより光電子9を放出させ、PEEMとしての機能を発現する。 When the sample 1 is irradiated with the light 2 from the light source portion 6 in the camera chamber 5, the flange 7, or the aperture 8 of the lens, photoelectrons 9 are emitted and the PEEM functions.

図4aにおいて光2を当てることにより試料1から放出された光電子9は、対物レンズ10で焦点合わせと初段の拡大を行い、結像レンズ11,12,13で拡大され、蛍光板14で可視像に変換され観察し、カメラ室5で撮影される。 Photoelectrons 9 emitted from the sample 1 by applying light 2 in FIG. are observed and photographed in the camera room 5.

TEMの場合は図4bのように電子線16は試料の薄膜部20を透過して対物レンズ10で焦点合わせと初段の拡大を行い、結像レンズ11,12,13で拡大され、蛍光板14で可視像に変換され観察し、カメラ室5で撮影される。 In the case of the TEM, as shown in FIG. 4b, an electron beam 16 passes through a thin film portion 20 of the sample, is focused and magnified by the objective lens 10, is magnified by the imaging lenses 11, 12, and 13, and is magnified by the fluorescent screen 14. It is converted into a visible image, observed, and photographed in the camera room 5 .

試料は図3aのように同一試料をエッチングして薄膜部とバルク部を形成させて試料移動させてそれぞれを観察するか、図3bのように、PEEMの場合はバルク試料23を、TEMの場合は薄膜試料22を載せて同じく試料移動させて観察する。 As shown in FIG. 3a, the same sample is etched to form a thin film portion and a bulk portion, and the sample is moved to observe each. Alternatively, as shown in FIG. is observed by placing a thin film sample 22 and moving the sample in the same manner.

1.試料
2.光
3.高電圧部
4.絶縁材質
5.カメラ室
6.光源部
7.鏡筒フランジ
8.レンズ絞り
9.光電子
10.対物レンズ
11.結像レンズ1
12.結像レンズ2
13.結像レンズ3
14.蛍光板
15.電子銃部
16.電子線
17.集束レンズ1
18.集束レンズ2
19.集束レンズ3
20.薄膜部
21.バルク部
22.薄膜試料
23.バルク試料
24.加速電圧部
1. Sample 2. light3. high voltage section4. Insulation material5. camera room6. light source section 7 . lens barrel flange 8 . lens aperture9. Photoelectronics 10 . objective lens 11 . Imaging lens 1
12. Imaging lens 2
13. Imaging lens 3
14. fluorescent plate 15 . electron gun section 16 . electron beam 17 . Focusing lens 1
18. Converging lens 2
19. Converging lens 3
20. thin film portion 21 . bulk portion 22 . Thin film sample 23 . bulk sample24. Accelerating voltage part

Claims (2)

下向きに取り付けられた試料1に光2を当てるために前記試料1より下方のレンズ絞り8a lens aperture 8 below the sample 1 for directing the light 2 onto the downwardly mounted sample 1; に光照射機能を設けたことを特徴とするTEM。A TEM characterized in that a light irradiation function is provided in the TEM. 請求項1のTEMにおいて薄膜試料とバルク試料の双方の原子分解能観察を同時にまたは 交互に可能にしたPEEM機能が付加されたことを特徴とする The TEM according to claim 1 is characterized by adding a PEEM function that enables atomic resolution observation of both thin film samples and bulk samples simultaneously or alternately .
JP2019127957A 2019-06-11 2019-06-11 Transmission electron microscope (TEM) with photoelectron microscope (PEEM) capability Active JP7174203B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019127957A JP7174203B2 (en) 2019-06-11 2019-06-11 Transmission electron microscope (TEM) with photoelectron microscope (PEEM) capability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019127957A JP7174203B2 (en) 2019-06-11 2019-06-11 Transmission electron microscope (TEM) with photoelectron microscope (PEEM) capability

Publications (3)

Publication Number Publication Date
JP2020202167A JP2020202167A (en) 2020-12-17
JP2020202167A5 JP2020202167A5 (en) 2021-11-25
JP7174203B2 true JP7174203B2 (en) 2022-11-17

Family

ID=73742093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019127957A Active JP7174203B2 (en) 2019-06-11 2019-06-11 Transmission electron microscope (TEM) with photoelectron microscope (PEEM) capability

Country Status (1)

Country Link
JP (1) JP7174203B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000040483A (en) 1998-07-23 2000-02-08 Hitachi Ltd Sample heating holder for electron microscope and sample observing method
JP2006331979A (en) 2005-05-30 2006-12-07 Jeol Ltd Test piece holder of electron microscope

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0374039A (en) * 1989-08-11 1991-03-28 Jeol Ltd Transmission electron microscope equipped with photoelectronic microscope

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000040483A (en) 1998-07-23 2000-02-08 Hitachi Ltd Sample heating holder for electron microscope and sample observing method
JP2006331979A (en) 2005-05-30 2006-12-07 Jeol Ltd Test piece holder of electron microscope

Also Published As

Publication number Publication date
JP2020202167A (en) 2020-12-17

Similar Documents

Publication Publication Date Title
US11251011B2 (en) Electron microscope
JPH07260713A (en) X-ray camera
WO2015045476A1 (en) Electron microscope
JP7174203B2 (en) Transmission electron microscope (TEM) with photoelectron microscope (PEEM) capability
JP7328477B2 (en) photoelectron microscope
JP4958313B2 (en) Scanning electron microscope and method of using the same
JP5485149B2 (en) Transmission electron microscope
US9196456B2 (en) Image acquisition method and transmission electron microscope
US8063365B1 (en) Non-shot-noise-limited source for electron beam lithography or inspection
JP3684106B2 (en) Deposition equipment
JPH06215714A (en) Field emission type transmission electron microscope
JP4475613B2 (en) Emission electron microscope
JP2000208089A (en) Electron microscope device
JP2648538B2 (en) Inspection device using two-dimensional electron source
JP2000215842A (en) In situ observation system in composite emission electron microscope
JP7332803B2 (en) transmission electron microscope
JP2001006605A (en) Focusing ion beam processing device and processing method for specimen using focusing ion beam
JP2000057987A (en) Detection device for shape observation and shape observation method
JP2012173008A (en) Photoelectric microscope
JP3854751B2 (en) Electron microscope equipment
JP6796541B2 (en) Holder and charged particle beam device
JPH06283128A (en) Electron microscope
JP2006349384A (en) Photoemission electron microscope suppressing charging or potential strain of insulator sample, and sample observation method
JP2000011935A (en) Emission type electron microscope
JPH11273610A (en) High energy electron reflection microscope

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210623

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220826

R150 Certificate of patent or registration of utility model

Ref document number: 7174203

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150