JP7172080B2 - Maraging steel for metal belts - Google Patents

Maraging steel for metal belts Download PDF

Info

Publication number
JP7172080B2
JP7172080B2 JP2018055989A JP2018055989A JP7172080B2 JP 7172080 B2 JP7172080 B2 JP 7172080B2 JP 2018055989 A JP2018055989 A JP 2018055989A JP 2018055989 A JP2018055989 A JP 2018055989A JP 7172080 B2 JP7172080 B2 JP 7172080B2
Authority
JP
Japan
Prior art keywords
maraging steel
metal
strength
metal belts
belts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018055989A
Other languages
Japanese (ja)
Other versions
JP2019167578A (en
Inventor
勝彦 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2018055989A priority Critical patent/JP7172080B2/en
Publication of JP2019167578A publication Critical patent/JP2019167578A/en
Application granted granted Critical
Publication of JP7172080B2 publication Critical patent/JP7172080B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、例えば自動車用無段変速機に用いられる金属ベルト用マルエージング鋼に関するものである。 TECHNICAL FIELD The present invention relates to maraging steel for metal belts used, for example, in continuously variable transmissions for automobiles.

マルエージング鋼は、2000MPa前後の非常に高い引張強さをもつため、例えば、0.5mm以下の鋼帯に加工され、高強度が要求される自動車用無段変速機の金属無端ベルト等に使用されている。その代表的な組成には、質量%で18%Ni-8%Co-5%Mo-0.45%Ti-0.1%Al-bal.Feがある。しかし、上記のマルエージング鋼は、非常に高い引張強度が得られる一方、疲労強度に関しては必ずしも高くない。マルエージング鋼の疲労強度を劣化させる最大の要因にTiN介在物が挙げられる。このTiN介在物は、大きさが大きくなり易いうえに、形状も立方体であることから介在物を起点とした疲労破壊が生じ易くなる。そのため、Tiを添加しないマルエージング鋼が提案されている。窒化処理される金属無端ベルト用のマルエージング鋼に含まれるTiは、合金の基地(マトリックス)の強度を向上させるだけでなく、窒化層の強度を高める重要元素である。このTiを添加しないとすると基地と窒化層の両方の強度が低下することになる。そのためTiを添加しないマルエージング鋼においては、Tiに代わる元素を用いて基地と窒化層とを強化する必要がある。 Maraging steel has a very high tensile strength of around 2000 MPa, so for example, it is processed into a steel strip of 0.5 mm or less and used for metal endless belts of continuously variable transmissions for automobiles, which require high strength. It is Its typical composition includes, by weight percent, 18% Ni-8% Co-5% Mo-0.45% Ti-0.1% Al-bal. There is Fe. However, while the maraging steel described above has a very high tensile strength, it is not necessarily high in terms of fatigue strength. TiN inclusions are one of the biggest factors that degrade the fatigue strength of maraging steel. Since the TiN inclusions are likely to be large in size and have a cubic shape, fatigue fracture starting from the inclusions is likely to occur. Therefore, maraging steels to which Ti is not added have been proposed. Ti contained in maraging steel for metal endless belts to be nitrided is an important element that not only improves the strength of the matrix of the alloy, but also increases the strength of the nitrided layer. Without this Ti addition, the strength of both the matrix and the nitride layer would be reduced. Therefore, in a maraging steel to which Ti is not added, it is necessary to reinforce the matrix and the nitrided layer by using an element that replaces Ti.

基地と窒化層とを強化する方法としては、基地の強化に寄与するCoやMoの含有量を高めたうえで、窒化層の強化にCrやAlを用いる方法がある。この方法は、例えば、本願出願人の出願に係る国際公開WO2009/008071パンフレット(特許文献1)に開示されている。この提案は自動車無段変速機用の部材として使用される金属無端ベルトのマルエージング鋼において、Tiを添加しないマルエージング鋼においても時効処理後およびガス軟窒化後に高い引張強さと内部硬さが得られることを示している。 As a method of strengthening the base and the nitride layer, there is a method of increasing the content of Co or Mo that contributes to strengthening the base and then using Cr or Al to strengthen the nitride layer. This method is disclosed, for example, in International Publication WO2009/008071 Pamphlet (Patent Document 1) filed by the applicant of the present application. This proposal is for maraging steel for metal endless belts used as members of automobile continuously variable transmissions. Even in maraging steel to which Ti is not added, high tensile strength and internal hardness can be obtained after aging treatment and after gas nitrocarburizing. This indicates that the

国際公開WO2009/008071パンフレットInternational publication WO2009/008071 pamphlet

上述した特許文献1で示したマルエージング鋼は、Tiを添加しないマルエージング鋼においても高い強度が得られる点では有利であるものの、開示された成分範囲において、時効処理およびガス軟窒化後の強度水準は大きく変化しており、製造性の点では安定した機械的特性を得るのが難しいという問題があった。金属ベルト用マルエージング鋼は、内部硬さが高すぎると材料内部欠陥起因で早期に破断し、また内部硬さが低すぎると低応力下で塑性変形するため硬さや強度などの機械的特性の変化が大きいと実用化する上で大きな問題となる。
本発明の目的は、金属ベルト用マルエージング鋼の合金組成に起因する強度や硬さ水準を適正化することで、製造性や機械的特性に優れる金属ベルト用マルエージング鋼を提供することである。
The maraging steel shown in Patent Document 1 described above is advantageous in that high strength can be obtained even in a maraging steel to which Ti is not added. The standard has changed greatly, and there was a problem that it was difficult to obtain stable mechanical properties in terms of manufacturability. If the internal hardness of maraging steel for metal belts is too high, it will break prematurely due to internal defects in the material. If the change is large, it becomes a big problem in putting it into practical use.
An object of the present invention is to provide a maraging steel for metal belts with excellent manufacturability and mechanical properties by optimizing the strength and hardness levels resulting from the alloy composition of the maraging steel for metal belts. .

本発明者は、合金成分に起因した強度水準の大きな変化に対し、Cr、Mo、Co、Alの添加量を適正範囲に管理することで安定した機械的特性が得られることを見いだし本発明に到達した。
すなわち本発明は、質量%で、C:0.01%以下、Ni:18.0~20.0%、Cr:0.8~1.2%、Mo:4.5~6.0%、Co:9.0~14.0%、Al:0.8~1.7%、残部は、Fe及び不可避的不純物でなる金属ベルト用マルエージング鋼である。
好ましくは、前記マルエージング鋼は、900℃×1時間の固溶化処理と480℃×1時間の時効処理を行ったとき、ビッカース硬さで550HV以上の硬さを有する金属ベルト用マルエージング鋼である。
好ましくは、前記マルエージング鋼は、900℃×1時間の固溶化処理と480℃×3時間の時効処理を行ったとき、ビッカース硬さで600HV以上の硬さを有する金属ベルト用マルエージング鋼である。
The inventor of the present invention found that stable mechanical properties can be obtained by controlling the amounts of Cr, Mo, Co, and Al to be added in an appropriate range in response to a large change in the strength level due to the alloy composition. reached.
That is, in the present invention, in mass%, C: 0.01% or less, Ni: 18.0 to 20.0%, Cr: 0.8 to 1.2%, Mo: 4.5 to 6.0%, Co: 9.0 to 14.0%, Al: 0.8 to 1.7%, and the balance being Fe and unavoidable impurities, this is a maraging steel for metal belts.
Preferably, the maraging steel is a maraging steel for metal belts having a Vickers hardness of 550 HV or more when subjected to solution treatment at 900° C. for 1 hour and aging treatment at 480° C. for 1 hour. be.
Preferably, the maraging steel is a maraging steel for metal belts having a Vickers hardness of 600 HV or more when solution treatment at 900° C. for 1 hour and aging treatment at 480° C. for 3 hours are performed. be.

本発明の金属ベルト用マルエージング鋼は合金組成に起因する強度や硬さ水準を適正化することで、優れた製造性を有しており,自動車用無段変速機の金属無端ベルトのように強度と製造性が要求される部材に使用されると安定した機械的特性が得られるなど、工業的な効果を持つことが期待される。 The maraging steel for metal belts of the present invention has excellent manufacturability by optimizing the strength and hardness levels due to the alloy composition, and it can be used like endless metal belts for continuously variable transmissions for automobiles. It is expected to have industrial effects such as obtaining stable mechanical properties when used for members that require strength and manufacturability.

上述したように、本発明の重要な特徴は安定した製造性と機械的特性を得るために必要な合金組成を適正化したことにある。
本発明の金属ベルト用マルエージング鋼において、以下の範囲で各化学組成を規定した理由は以下の通りである。なお、特に記載のない限り質量%として記す。
<C:0.01%以下>
C(炭素)は、MoやCrと炭化物を形成して、析出すべき金属間化合物や窒化物を減少させて強度を低下させるため、低く抑える必要がある。また、Cを積極添加すると、例えば無段変速機部品に必要とされる溶接性が低下する危険性が高くなる。このような理由からCは0.01%以下とした。好ましくは、0.008%以下である。一方で、Cの微量添加は微細な炭化物を形成し、強度向上に寄与することから0.001%以上が好ましい。
As described above, an important feature of the present invention is the optimization of the alloy composition necessary to obtain stable manufacturability and mechanical properties.
In the maraging steel for metal belts of the present invention, the reasons for defining each chemical composition within the following ranges are as follows. In addition, it describes as the mass % unless there is a description in particular.
<C: 0.01% or less>
C (carbon) forms carbides with Mo and Cr to reduce the amount of intermetallic compounds and nitrides to be precipitated, thereby lowering the strength, so it must be kept low. Further, aggressive addition of C increases the risk of deterioration in weldability required for, for example, continuously variable transmission parts. For these reasons, C is set to 0.01% or less. Preferably, it is 0.008% or less. On the other hand, the addition of a small amount of C forms fine carbides and contributes to strength improvement, so 0.001% or more is preferable.

<Ni:18.0~20.0%>
Niは、金属ベルト用マルエージング鋼の基地組織である低Cマルテンサイト組織を安定して形成させるため、少なくとも18.0%は必要である。しかし、20.0%を超えるとオーステナイト組織が安定化し、マルテンサイト変態を起こし難くなることから、Niは18.0~20.0%とした。Niの好ましい上限は18.5%超であり、好ましい下限は19.5%である。
<Cr:0.8~1.2%>
Crは、窒化を行う場合にNとの親和力が強く、窒化深さを浅くし、窒化硬さを高めたり、窒化表面の圧縮残留応力を増加させたりする元素であるため、必須で添加する。しかし、0.8%より少ないと効果が小さく、一方で1.2%を越えると窒化硬さが高くなり過ぎてしまい、金属ベルトの製造工程の中で不可避的に形成される表面傷などの欠陥に対する感受性が高まり、疲労強度が低下することからCrは0.8~1.2%とした。Crのより好ましい下限は0.9%であり、好ましい上限は1.1%である。
<Ni: 18.0 to 20.0%>
At least 18.0% of Ni is required in order to stably form a low-C martensite structure, which is the base structure of maraging steel for metal belts. However, if the Ni content exceeds 20.0%, the austenitic structure is stabilized and the martensitic transformation is difficult to occur. The preferred upper limit of Ni is over 18.5% and the preferred lower limit is 19.5%.
<Cr: 0.8 to 1.2%>
Cr is an element that has a strong affinity with N when nitriding is performed, makes the nitriding depth shallow, increases the nitriding hardness, and increases the compressive residual stress of the nitriding surface, so it is essential to be added. However, if it is less than 0.8%, the effect is small, and on the other hand, if it exceeds 1.2%, the nitriding hardness becomes too high, and surface scratches, etc., which are inevitably formed in the manufacturing process of the metal belt, occur. Cr was set to 0.8 to 1.2% because the susceptibility to defects increases and the fatigue strength decreases. A more preferable lower limit of Cr is 0.9%, and a preferable upper limit thereof is 1.1%.

<Mo:4.5~6.0%>
Moは、時効処理時にNiMo等の微細な金属間化合物を形成し、析出強化に寄与する重要な元素である。また、Moは窒化による表面の硬さ及び圧縮残留応力を大きくするために有効な元素である。このためのMoは、4.5%より少ないと金属化合物の析出量の低下により引張強度が不十分となり、一方、6.0%より多いとFe、Moを主要元素とする粗大な金属間化合物を形成しやすくなるとともに固溶化処理で形成されるオーステナイト相を固溶強化するため冷却過程でマルテンサイト変態を阻害するためMoは4.5~6.0%とした。Moの好ましい下限は4.5%超であり、好ましい上限は5.8%である。
<Co:9.0~14.0%>
Coは、マトリックスのマルテンサイト組織の安定性に大きく影響することなく、固溶化処理温度で時効析出物形成元素であるMoの固溶度を増加させ、時効析出温度域でのMoの固溶度を低下させることによってMoを含む微細な金属間化合物の析出を促進し、時効析出強化に寄与する重要な元素である。そのため、Coは強度面、靭性面から多く添加することが必要である。Coが9.0%未満ではTiを低減した金属ベルト用マルエージング鋼では十分な強度が得られ難く、一方14.0%を超えて添加するとオーステナイトが安定化してマルテンサイト組織が得られ難くなることから、9.0%以上14.0%以下とした。好ましいCoの下限は10.0%超であり、好ましい上限は13.5%である。
<Mo: 4.5 to 6.0%>
Mo is an important element that forms fine intermetallic compounds such as Ni 3 Mo during aging treatment and contributes to precipitation strengthening. Also, Mo is an effective element for increasing surface hardness and compressive residual stress due to nitriding. For this purpose, when Mo is less than 4.5%, the tensile strength becomes insufficient due to a decrease in the amount of precipitation of metal compounds, while when it is more than 6.0%, coarse intermetallic compounds containing Fe and Mo as main elements are formed. Mo is set to 4.5 to 6.0% in order to facilitate the formation of , and to strengthen the austenite phase formed by the solution treatment and inhibit the martensite transformation in the cooling process. A preferred lower limit for Mo is greater than 4.5% and a preferred upper limit is 5.8%.
<Co: 9.0 to 14.0%>
Co increases the solid solubility of Mo, which is an element that forms aging precipitates, at the solution treatment temperature without significantly affecting the stability of the martensitic structure of the matrix, and increases the solid solubility of Mo in the aging precipitation temperature range. Mo is an important element that promotes the precipitation of fine intermetallic compounds containing Mo by reducing Therefore, it is necessary to add a large amount of Co from the standpoint of strength and toughness. When the Co content is less than 9.0%, it is difficult to obtain sufficient strength in the maraging steel for metal belts with reduced Ti content, while when the Co content exceeds 14.0%, the austenite is stabilized, making it difficult to obtain a martensitic structure. Therefore, it is set to 9.0% or more and 14.0% or less. The preferred lower limit of Co is over 10.0% and the preferred upper limit is 13.5%.

<Al:0.8~1.7%>
Alは、通常、脱酸のために少量添加されるが、本来、時効処理時にNiと共にNiAlを形成して強化に寄与する元素である。Tiを無添加とした本発明の金属ベルト用マルエージング鋼ではAlの添加によって強度を補う必要がある。また、Tiを無添加とした金属ベルト用マルエージング鋼において窒化処理を容易にして良好な窒化層を得るためにもAlの添加が必要である。Alは、0.8%未満では時効処理による十分な強化作用が得られず、一方1.7%より多いと窒化層が硬くなりすぎてしまい疲労強度を低下させたり、表面に薄くて安定な酸化膜を形成して窒化反応を阻害したりすることから、Alは0.8%以上1.7%以下とした。好ましいAlの下限は0.9%であり、好ましいAlの上限は1.6%である。
<残部:Fe及び不純物>
残部は実質的にFeであるが、製造上不可避的に混入する不純物は含まれる。不純物含有量は少ない方が好ましいが、以下の範囲であれば差し支えない。
P≦0.05%、S≦0.05%、Zr≦0.01%、Ca≦0.01%、Mg≦0.005%、N≦0.05%
<Al: 0.8 to 1.7%>
Al is usually added in a small amount for deoxidization, but originally it is an element that contributes to strengthening by forming NiAl together with Ni during aging treatment. In the maraging steel for metal belts of the present invention to which Ti is not added, it is necessary to supplement the strength by adding Al. In addition, addition of Al is also necessary in order to facilitate the nitriding treatment and obtain a good nitrided layer in the maraging steel for metal belts to which Ti is not added. If Al is less than 0.8%, a sufficient strengthening effect due to aging treatment cannot be obtained. Since Al forms an oxide film and inhibits the nitriding reaction, Al is set to 0.8% or more and 1.7% or less. A preferable lower limit of Al is 0.9%, and a preferable upper limit of Al is 1.6%.
<Remainder: Fe and impurities>
The remainder is substantially Fe, but contains impurities that are unavoidably mixed in the manufacturing process. Although it is preferable that the content of impurities is small, it does not matter if the content is within the following range.
P≤0.05%, S≤0.05%, Zr≤0.01%, Ca≤0.01%, Mg≤0.005%, N≤0.05%

次に本発明で規定した熱処理後のビッカース硬さについて説明する。
本発明の金属ベルト用マルエージング鋼は自動車用無段変速機の部材として使用される場合、固溶化処理および時効処理などの調質熱処理と窒化処理などの表面処理を経て使用される。900℃×1時間の固溶化処理は金属間化合物や窒化物の析出に必要な合金元素を母相のオーステナイト中に固溶させ、時効処理ではNiMoやNiAlなどの金属間化合物を析出させることを目的にしている。
本発明では480℃における時効時間を1時間と3時間とし、時効処理後のビッカース硬さをそれぞれ550HV以上と600HV以上としている。480℃で1時間の時効処理は製造性を考慮したもので、短時間時効で自動車用無段変速機の金属無段ベルトに必要とされる硬さ水準の550HV以上を得るために規定したものである。硬さが550HVよりも低いと、例えば金属ベルトに引張の応力が作用した場合、容易に塑性変形してしまい、機械部品として使用することができなくなる。一方、480℃で3時間の時効処理は金属ベルトの高強度化を考慮したもので、硬度を600HV以上とすることで自動車変速機の金属ベルトの許容できる応力レベルを高めることができるため、無段変速機の高トルク化や高排気量化に貢献することが期待できる。一方で、600HVよりも低いと、例えば金属ベルトに高排気量化や高トルク化に伴う高い応力が作用した場合、塑性変形のおそれがある。
Next, the Vickers hardness after heat treatment defined in the present invention will be explained.
When the maraging steel for metal belts of the present invention is used as a member of a continuously variable transmission for automobiles, it is used after refining heat treatment such as solution treatment and aging treatment and surface treatment such as nitriding treatment. The solution treatment at 900° C. for 1 hour dissolves the alloying elements necessary for the precipitation of intermetallic compounds and nitrides into the matrix austenite, and the aging treatment precipitates intermetallic compounds such as Ni 3 Mo and NiAl. The purpose is to
In the present invention, the aging time at 480° C. is 1 hour and 3 hours, and the Vickers hardness after the aging treatment is 550 HV or more and 600 HV or more, respectively. Aging treatment at 480°C for 1 hour is a consideration of manufacturability, and is specified to obtain a hardness level of 550 HV or more, which is required for metal continuously variable belts for continuously variable transmissions for automobiles, in a short period of time. is. If the hardness is lower than 550 HV, for example, when a tensile stress acts on the metal belt, it easily undergoes plastic deformation and cannot be used as a machine part. On the other hand, the aging treatment at 480°C for 3 hours is intended to increase the strength of the metal belt. It can be expected to contribute to higher torque and displacement of stepped transmissions. On the other hand, when it is lower than 600 HV, there is a risk of plastic deformation when, for example, a metal belt is subjected to high stress associated with high displacement or high torque.

以上に説明する本発明の金属ベルト用マルエージング鋼を使用すれば、合金組成に起因する強度や硬さ水準を適正化でき、製造性や機械的特性に優れる金属ベルト用マルエージング鋼とすることができる。
本発明のマルエージング鋼から構成される鋼帯は主に自動車用無段変速機に使用される金属無端ベルトとて使用されることから引張強さや疲労強度に代表される機械的特性を向上させた動力伝達用ベルトのリング素材として最適である。
By using the maraging steel for metal belts of the present invention described above, the strength and hardness levels due to the alloy composition can be optimized, and the maraging steel for metal belts with excellent manufacturability and mechanical properties can be obtained. can be done.
A steel strip composed of the maraging steel of the present invention is mainly used as a metal endless belt used in continuously variable transmissions for automobiles, and therefore has improved mechanical properties such as tensile strength and fatigue strength. It is ideal as a ring material for power transmission belts.

以下の実施例で本発明を更に詳しく説明する。
真空溶解で200kg鋼塊を作製し、鍛造、熱間圧延を行い、焼鈍と冷間圧延を繰返して、幅が180mm、厚さ0.42mmの金属ベルト用マルエージング鋼帯を作製した。その後、900℃で1時間の固溶化処理を行ない、更に480℃で1時間と3時間の時効処理を行なった。この実施例の化学組成を表1に示す。
また、表2に各試料を時効した後の内部硬さを示す。なお、硬さはビッカース硬度計を用い、荷重500gfで測定した。
The following examples further illustrate the invention.
A 200 kg steel ingot was produced by vacuum melting, forged, hot rolled, and repeatedly annealed and cold rolled to produce a maraging steel strip for a metal belt with a width of 180 mm and a thickness of 0.42 mm. After that, solution treatment was performed at 900° C. for 1 hour, and aging treatment was further performed at 480° C. for 1 hour and 3 hours. The chemical composition of this example is shown in Table 1.
Table 2 shows the internal hardness of each sample after aging. The hardness was measured using a Vickers hardness tester under a load of 500 gf.

Figure 0007172080000001
Figure 0007172080000001

Figure 0007172080000002
Figure 0007172080000002

表2より、本発明の金属ベルト用マルエージング鋼No.1及び2は、何れも480℃で1時間の時効処理後のビッカース硬さが550HV以上が得られた。480℃で3時間の時効後のビッカース硬さは、580HV以上であり、自動車用変速機の金属ベルト用途として十分な内部硬さを有している。中でも特に、No.1及び2のマルエージング鋼については、600HV以上の硬さが得られた。
一方でMo添加量が6.4%と高い比較例のNo.10は、480℃で3時間の時効処理後のビッカース硬さが472HVと低い値となっている。Mo添加量が高いため、固溶化処理時にMoがオーステナイト相を安定化しマルテンサイト変態を抑制するともに、時効処理により不安定なマルテンサイト相が逆変態オーステナイト相へと変化したことでビッカース硬さが低下したと考えられる。Co添加量が8%と低い比較例のNo.11は、時効処理後のビッカース硬さが1時間で543HV、3時間で574HVと低い。これはCo添加量の低下に起因したNiMo析出量の減少によるものと考えられる。
From Table 2, maraging steel No. 1 for metal belts of the present invention. Both Nos. 1 and 2 had a Vickers hardness of 550 HV or more after aging treatment at 480° C. for 1 hour. The Vickers hardness after aging at 480° C. for 3 hours is 580 HV or more, and has sufficient internal hardness for metal belt applications in automotive transmissions. Above all, No. For maraging steels 1 and 2, a hardness of 600 HV or higher was obtained.
On the other hand, No. of the comparative example with a high Mo addition amount of 6.4%. No. 10 has a low Vickers hardness of 472 HV after aging treatment at 480° C. for 3 hours. Since the amount of Mo added is high, Mo stabilizes the austenite phase during solution treatment and suppresses martensite transformation. presumably decreased. Comparative example No. 1 with a low Co addition amount of 8%. In No. 11, the Vickers hardness after aging treatment is as low as 543 HV after 1 hour and 574 HV after 3 hours. It is considered that this is due to the decrease in the amount of Ni 3 Mo precipitated due to the decrease in the amount of Co added.

本発明の金属ベルト用マルエージング鋼は、過酷な条件で使用される金属ベルトに用いることが可能であるため、自動車用無段変速機等に使用される動力伝達金属ベルトのような高引張強度、高疲労強度が要求される部材に適用できる。

The maraging steel for metal belts of the present invention can be used for metal belts used under severe conditions, so it has high tensile strength such as power transmission metal belts used for continuously variable transmissions for automobiles. , can be applied to members that require high fatigue strength.

Claims (2)

質量%で、C:0.01%以下、Ni:18.0~20.0%、Cr:0.8~1.2%、Mo:4.5~6.0%、Co:10.0超~14.0以下、Al:0.8~1.7%、残部は、Fe及び不可避的不純物でなり、900℃×1時間の固溶化処理と480℃×3時間の時効処理を行ったとき、ビッカース硬さで600HV以上の硬さを有することを特徴とする金属ベルト用マルエージング鋼。 % by mass, C: 0.01% or less, Ni: 18.0 to 20.0%, Cr: 0.8 to 1.2%, Mo: 4.5 to 6.0%, Co: 10.0 Over to 14.0 % or less, Al: 0.8 to 1.7%, the balance being Fe and unavoidable impurities, solution treatment at 900 ° C. for 1 hour and aging treatment at 480 ° C. for 3 hours. A maraging steel for a metal belt, characterized by having a Vickers hardness of 600 HV or more when crushed. 前記マルエージング鋼は、900℃×1時間の固溶化処理と480℃×1時間の時効処理を行ったとき、ビッカース硬さで550HV以上の硬さを有することを特徴とする請求項1に記載の金属ベルト用マルエージング鋼。 2. The maraging steel according to claim 1, wherein the maraging steel has a Vickers hardness of 550 HV or more when solution treatment at 900° C. for 1 hour and aging treatment at 480° C. for 1 hour are performed. maraging steel for metal belts.
JP2018055989A 2018-03-23 2018-03-23 Maraging steel for metal belts Active JP7172080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018055989A JP7172080B2 (en) 2018-03-23 2018-03-23 Maraging steel for metal belts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018055989A JP7172080B2 (en) 2018-03-23 2018-03-23 Maraging steel for metal belts

Publications (2)

Publication Number Publication Date
JP2019167578A JP2019167578A (en) 2019-10-03
JP7172080B2 true JP7172080B2 (en) 2022-11-16

Family

ID=68106430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018055989A Active JP7172080B2 (en) 2018-03-23 2018-03-23 Maraging steel for metal belts

Country Status (1)

Country Link
JP (1) JP7172080B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7447377B2 (en) 2020-03-24 2024-03-12 株式会社プロテリアル Manufacturing method of Ti-free maraging steel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002167652A (en) 2000-11-28 2002-06-11 Daido Steel Co Ltd Thin sheet material excellent in high strength-high fatigue resisting characteristic
JP2009013464A (en) 2007-07-04 2009-01-22 Hitachi Metals Ltd Maraging steel for metal belt
WO2010110379A1 (en) 2009-03-26 2010-09-30 日立金属株式会社 Maraging steel strip

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002167652A (en) 2000-11-28 2002-06-11 Daido Steel Co Ltd Thin sheet material excellent in high strength-high fatigue resisting characteristic
JP2009013464A (en) 2007-07-04 2009-01-22 Hitachi Metals Ltd Maraging steel for metal belt
WO2010110379A1 (en) 2009-03-26 2010-09-30 日立金属株式会社 Maraging steel strip

Also Published As

Publication number Publication date
JP2019167578A (en) 2019-10-03

Similar Documents

Publication Publication Date Title
JP5429651B2 (en) Maraging steel strip
EP1111080B1 (en) Maraging steel having high fatigue strength and maraging steel strip made of same
RU2456367C2 (en) Hardened martensitic steel with low or zero content of cobalt, method of producing parts out of this steel and part produced by this method
EP1091006B1 (en) Process of producing steel strip or sheet comprising strain-induced martensite
JP2011153364A (en) Crankshaft and method for producing the same
JP5046363B2 (en) Maraging steel for power transmission belt with high fatigue strength and maraging steel strip for power transmission belt using the same
JP5333686B1 (en) Maraging steel
EP2180073B1 (en) Maraging steel for metallic belt
JP2010189697A (en) Crankshaft and method for producing the same
JP5007930B2 (en) Maraging steel having high fatigue strength, maraging steel strip using the same, and method for producing maraging steel having high fatigue strength
JP7172080B2 (en) Maraging steel for metal belts
JP2009013464A (en) Maraging steel for metal belt
JP4613698B2 (en) Steel strip and strip
JP4507149B2 (en) Maraging steel for power transmission belt with high fatigue strength and maraging steel strip for power transmission belt using the same
JP4427772B2 (en) Maraging steel with high fatigue strength and maraging steel strip using it
JP4178490B2 (en) Maraging steel with high fatigue strength and maraging steel strip using it
JP7447377B2 (en) Manufacturing method of Ti-free maraging steel
WO2008075889A1 (en) Ultra high strength carburizing steel with high fatigue resistance
JP4821711B2 (en) Steel for soft nitriding
JP2007119800A (en) Alloy steel suitable for cold forging and wear resisting use and its production method
TW201400625A (en) Steel sheet for soft-nitriding and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221017

R150 Certificate of patent or registration of utility model

Ref document number: 7172080

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350