JP7167322B2 - 放射線検出器及び放射線画像撮影装置 - Google Patents

放射線検出器及び放射線画像撮影装置 Download PDF

Info

Publication number
JP7167322B2
JP7167322B2 JP2021516277A JP2021516277A JP7167322B2 JP 7167322 B2 JP7167322 B2 JP 7167322B2 JP 2021516277 A JP2021516277 A JP 2021516277A JP 2021516277 A JP2021516277 A JP 2021516277A JP 7167322 B2 JP7167322 B2 JP 7167322B2
Authority
JP
Japan
Prior art keywords
layer
radiation
sensor substrate
laminate
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021516277A
Other languages
English (en)
Other versions
JPWO2020218538A1 (ja
Inventor
信一 牛倉
達教 谷本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Publication of JPWO2020218538A1 publication Critical patent/JPWO2020218538A1/ja
Application granted granted Critical
Publication of JP7167322B2 publication Critical patent/JP7167322B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4233Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using matrix detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/10Safety means specially adapted therefor
    • A61B6/102Protection against mechanical damage, e.g. anti-collision devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4283Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by a detector unit being housed in a cassette
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • G01T1/20188Auxiliary details, e.g. casings or cooling
    • G01T1/20189Damping or insulation against damage, e.g. caused by heat or pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/202Measuring radiation intensity with scintillation detectors the detector being a crystal

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Pathology (AREA)
  • Surgery (AREA)
  • Optics & Photonics (AREA)
  • Biophysics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Measurement Of Radiation (AREA)

Description

本開示は、放射線検出器及び放射線画像撮影装置に関する。
従来、医療診断を目的とした放射線撮影を行う放射線画像撮影装置が知られている。このような放射線画像撮影装置には、被写体を透過した放射線を検出し放射線画像を生成するための放射線検出器が用いられている。
放射線検出器としては、放射線を光に変換するシンチレータ等の変換層と、変換層で変換された光に応じて発生した電荷を蓄積する複数の画素が基材の画素領域に設けられたセンサ基板と、を備えたものがある。このような放射線検出器のセンサ基板の基材として、可撓性の基材を用いたものが知られている(例えば、特開2013-217769号公報参照)。可撓性の基材を用いることにより、例えば、放射線画像撮影装置(放射線検出器)を軽量化でき、また、被写体の撮影が容易となる場合がある。
センサ基板に変換層が積層された積層体等に、微細な凹凸が生じる場合がある。放射線画像の撮影において放射線画像撮影装置に荷重や衝撃が加わった場合、上記積層体に生じた凹凸が、可撓性の基材に伝播することがあり、放射線検出器により生成される放射線画像の画質が低下する場合があった。
本開示は、放射線画像の画質を向上することができる放射線検出器及び放射線画像撮影装置を提供する。
本開示の第1の態様の放射線画像撮影装置は、放射線から変換された光に応じて発生した電荷を蓄積する複数の画素が可撓性の基材の画素領域に形成されたセンサ基板と、基材の画素領域が設けられた面に設けられ、かつ放射線を光に変換する変換層と、センサ基板と変換層とが積層された積層体の放射線が照射される側と反対側に設けられ、かつ変換層に生じる凹凸のセンサ基板への影響を吸収する吸収層と、吸収層の積層体に対向する側と反対側に設けられ、センサ基板よりも剛性が高い剛性板と、を備えた放射線検出器が、放射線が照射される側から積層体、吸収層、及び剛性板の順に収納された筐体と、吸収層と積層体の間に設けられ、吸収層に係る圧縮力を吸収層の面内方向に分散させる補強基板と、を備える。
本開示の第の態様の放射線画像撮影装置は、第の態様の放射線画像撮影装置において、吸収層のデュロメータ硬度は、積層体全体のデュロメータ硬度よりも小さい。
本開示の第の態様の放射線画像撮影装置は、第1の態様または第2の態様の放射線画像撮影装置において、吸収層は、表面抵抗値が1013Ω以下である。
本開示の第の態様の放射線画像撮影装置は、第1の態様から第3の態様のいずれか1態様の放射線画像撮影装置において、補強基板は、曲げ弾性率が150MPa以上、2500MPa以下である。
本開示の第の態様の放射線画像撮影装置、第の態様から第の態様のいずれか1態様の放射線画像撮影装置において、補強基板は、曲げ剛性が540Pacm以上、140000Pacm以下である。
本開示の第の態様の放射線画像撮影装置は、第の態様から第の態様のいずれか1態様の放射線画像撮影装置において、吸収層と、剛性板との間に、放射線を遮蔽する放射線遮蔽層をさらに備える。
本開示の第の態様の放射線画像撮影装置は、第の態様から第の態様のいずれか1態様の放射線画像撮影装置において、剛性板は、カーボンを材料とした板である。
本開示の第の態様の放射線画像撮影装置は、第の態様から第の態様のいずれか1態様の放射線画像撮影装置において、積層体の、放射線が入射される側に、緩衝材をさらに備える。
本開示の第の態様の放射線画像撮影装置は、第の態様から第の態様のいずれか1態様の放射線画像撮影装置において、変換層は、CsIの柱状結晶を含む。
本開示の第10の態様の放射線画像撮影装置は、第の態様から第の態様のいずれか1態様の放射線画像撮影装置において、複数の画素に蓄積された電荷を読み出すための制御信号を出力する制御部と、制御信号に応じて複数の画素から電荷を読み出させる駆動部と、複数の画素から読み出された電荷に応じた電気信号が入力され、入力された電気信号に応じた画像データを生成して制御部に出力する信号処理部と、をさらに備える。
また、本開示の第11の態様の放射線画像撮影装置は、放射線から変換された光に応じて発生した電荷を蓄積する複数の画素が可撓性の基材の画素領域に形成されたセンサ基板と、基材の画素領域が設けられた面に設けられ、かつ放射線を光に変換する変換層と、センサ基板と変換層とが積層された積層体の放射線が照射される側と反対側に設けられた吸収層と、吸収層の積層体に対向する側と反対側に設けられ、センサ基板よりも剛性が高い剛性板と、を備えた放射線検出器が、放射線が照射される側から積層体、吸収層、及び剛性板の順に収納された筐体と、吸収層と積層体の間に設けられた補強基板と、を備える。
本開示によれば、放射線画像の画質を向上することができる。
実施形態の放射線検出器におけるTFT(Thin Film Transistor)基板の構成の一例を示す構成図である。 実施形態の基材の一例を説明するための断面図である。 実施形態のPSS(Penetration Side Sampling)方式の放射線検出器の一例を、放射線が照射される側からみた平面図である。 図3に示した放射線検出器のA-A線断面図である。 実施形態の放射線画像撮影装置の一例を示す断面図である。 実施形態の放射線検出器における吸収層の作用を説明するための断面図である。 実施形態の放射線画像撮影装置の他の例を示す断面図である。 実施形態の放射線画像撮影装置の他の例を示す断面図である。 実施形態の放射線検出器の他の例の断面図である。 実施形態のISS(Irradiation Side Sampling)方式の放射線検出器の一例を示す断面図である。 比較例の放射線検出器(放射線画像撮影装置)の一例において変換層に生じる凹凸のセンサ基板への影響を説明するための断面図である。
以下、図面を参照して本発明の実施形態を詳細に説明する。なお、本実施形態は本発明を限定するものではない。
本実施形態の放射線検出器は、被写体を透過した放射線を検出して被写体の放射線画像を表す画像情報を出力する機能を有する。本実施形態の放射線検出器は、センサ基板と、放射線を光に変換する変換層と、を備えている(図4、放射線検出器10のセンサ基板12及び変換層14参照)。
まず、図1を参照して本実施形態の放射線検出器におけるセンサ基板12の構成の一例について説明する。なお、本実施形態のセンサ基板12は、基材11の画素領域35に、複数の画素30が形成された基板である。
基材11は、樹脂製、かつ、可撓性を有する。基材11は、例えば、ポリイミド等のプラスチックを含む樹脂シート等である。基材11の厚みは、材質の硬度、及びセンサ基板12の大きさ等に応じて、所望の可撓性が得られる厚みであればよい、例えば、基材11が樹脂シートの場合、厚みが5μm~125μmのものであればよく、厚みが20μm~50μmのものであればより好ましい。
なお、基材11は、詳細を後述する画素30の製造に耐え得る特性を有しており、本実施形態では、アモルファスシリコンTFT(a-Si Thin Film Transistor)の製造に耐え得る特性を有している。このような、基材11が有する特性としては、300℃~400℃における熱膨張率が、アモルファスシリコン(Si)ウェハと同程度(例えば、±5ppm/K)であることが好ましく、具体的には、20ppm/K以下であることが好ましい。また、基材11の熱収縮率としては、厚みが25μmの状態において400℃におけるMD(Machine Direction)方向の熱収縮率が0.5%以下であることが好ましい。また、基材11の弾性率は、300℃~400℃間の温度領域において、一般的なポリイミドが有する転移点を有さず、500℃における弾性率が1GPa以上であることが好ましい。
また、本実施形態の基材11は、図2に示したように、変換層14が設けられる側と反対側の面に、自身による後方散乱線を抑制するために、平均粒子径が0.05μm以上、2.5μm以下の、後方散乱線を吸収する無機の微粒子11Pを含む微粒子層11Lを有することが好ましい。なおこのような無機の微粒子11Pとしては、樹脂性の基材11の場合、基材11である有機物を構成する原子よりも原子番号が大きく、かつ原子番号が30以下である無機物を用いることが好ましい。このような微粒子11Pの具体例としては、原子番号が14のSiの酸化物であるSiO、原子番号が12のMgの酸化物であるMgO、原子番号が13のAlの酸化物であるAl、及び原子番号が22のTiの酸化物であるTiO等が挙げられる。このような特性を有する樹脂シートの具体例としては、XENOMAX(登録商標)が挙げられる。
なお、本実施形態における上記の厚みについては、マイクロメーターを用いて測定した。熱膨張率については、JIS K7197:1991に則して測定した。なお測定は、基材11の主面から、15度ずつ角度を変えて試験片を切り出し、切り出した各試験片について熱膨張率を測定し、最も高い値を基材11の熱膨張率とした。熱膨張率の測定は、MD(Machine Direction)方向およびTD(Transverse Direction)方向のそれぞれについて、-50℃~450℃において10℃間隔で行い、(ppm/℃)を(ppm/K)に換算した。熱膨張率の測定には、MACサイエンス社製 TMA4000S装置を用い、サンプル長さを10mm、サンプル幅を2mm、初荷重を34.5g/mm、昇温速度を5℃/min、及び雰囲気をアルゴンとした。弾性率については、JIS K 7171:2016に則して測定した。なお測定は、基材11の主面から、15度ずつ角度を変えて試験片を切り出し、切り出した各試験片について引っ張り試験を行い、最も高い値を基材11の弾性率とした。
画素30の各々は、変換層が変換した光に応じて電荷を発生して蓄積するセンサ部34及びセンサ部34にて蓄積された電荷を読み出すスイッチング素子32を含む。本実施形態では、一例として、薄膜トランジスタ(TFT)をスイッチング素子32として用いている。そのため、以下では、スイッチング素子32を「TFT32」という。
複数の画素30は、センサ基板12の画素領域35に、一方向(図1の横方向に対応する走査配線方向、以下「行方向」ともいう)及び行方向に対する交差方向(図1の縦方向に対応する信号配線方向、以下「列方向」ともいう)に二次元状に配置されている。図1では、画素30の配列を簡略化して示しているが、例えば、画素30は行方向及び列方向に1024個×1024個配置される。
また、放射線検出器10には、TFT32のスイッチング状態(オン及びオフ)を制御するための複数の走査配線38と、画素30の列毎に備えられた、センサ部34に蓄積された電荷が読み出される複数の信号配線36と、が互いに交差して設けられている。複数の走査配線38の各々は、それぞれセンサ基板12に設けられたパッド(図示省略)を介して、放射線検出器10の外部の駆動部103(図5参照)に接続されることにより、駆動部103から出力される、TFT32のスイッチング状態を制御する制御信号が流れる。また、複数の信号配線36の各々が、それぞれセンサ基板12に設けられたパッド(図示省略)を介して、放射線検出器10の外部の信号処理部104(図5参照)に接続されることにより、各画素30から読み出された電荷が、信号処理部104に出力される。
また、各画素30のセンサ部34には、各画素30にバイアス電圧を印加するために、共通配線39が信号配線36の配線方向に設けられている。共通配線39が、センサ基板12に設けられたパッド(図示省略)を介して、放射線検出器10の外部のバイアス電源に接続されることにより、バイアス電源から各画素30にバイアス電圧が印加される。
本実施形態の放射線検出器10を含む放射線画像撮影装置1について、図3~図5を参照してさらに詳細に説明する。本実施形態の放射線検出器10は、センサ基板12上には、変換層14が形成された積層体19を備えており、センサ基板12側から放射線Rが照射されるISS(Irradiation Side Sampling)方式の放射線検出器である。図3は、本実施形態の放射線検出器10を含む放射線画像撮影装置1の一例を、センサ基板12が形成された側からみた平面図である。換言すると、図3は、放射線画像撮影装置1(放射線検出器10)を放射線Rが照射される側からみた平面図である。また、図4は、図3における放射線検出器10の一例のA-A線断面図である。さらに、図5は、図3及び図4の放射線検出器10を筐体120内に収納した状態の放射線画像撮影装置1の一例の断面図である。
以下では、放射線検出器10の構造において「上」という場合、図4におけるセンサ基板12側を基準とした位置関係において上であることを表している。例えば、変換層14は、センサ基板12の上に設けられている。
図3~図5に示すように、本実施形態の放射線画像撮影装置1は、保護層62、帯電防止層60、センサ基板12、変換層14、補強基板50、吸収層52、放射線遮蔽層54、及び剛性板56を備える。また、図5に示すように、放射線画像撮影装置1は、放射線Rが照射される側から順に、保護層62、帯電防止層60、センサ基板12、変換層14、補強基板50、吸収層52、放射線遮蔽層54、及び剛性板56とされた状態で筐体120内に収納されている。
図3~図5に示すように、本実施形態の変換層14は、センサ基板12における基材11の第1の面11Aにおける画素領域35を含む一部の領域上に設けられている。このように、本実施形態の変換層14は、基材11の第1の面11Aの外周部の領域上には設けられていない。
本実施形態では、変換層14の一例としてCsI(ヨウ化セシウム)を含むシンチレータを用いている。このようなシンチレータとしては、例えば、X線照射時の発光スペクトルが400nm~700nmであるCsI:Tl(タリウムが添加されたヨウ化セシウム)やCsI:Na(ナトリウムが添加されたヨウ化セシウム)を含むことが好ましい。なお、CsI:Tlの可視光域における発光ピーク波長は565nmである。
本実施形態の放射線検出器10では、図4に示した一例のように、変換層14は、センサ基板12上に直接、真空蒸着法、スパッタリング法、及びCVD(Chemical Vapor Deposition)法等の気相堆積法によって短冊状の柱状結晶(図示省略)として形成される。変換層14の形成方法としては、例えば、変換層14としてCsI:Tlを用いた場合、真空度0.01Pa~10Paの環境下、CsI:Tlを抵抗加熱式のるつぼ等の加熱手段により加熱して気化させ、センサ基板12の温度を室温(20℃)~300℃としてCsI:Tlをセンサ基板12上に堆積させる真空蒸着法が挙げられる。変換層14の厚さとしては、100μm~800μmが好ましい。
なお、本実施形態では、変換層14の柱状結晶の、成長方向の基点側(本実施形態ではセンサ基板12側)の端部を「根元」といい、成長方向における根元と反対側の尖った端部を「先端」という。なお、センサ基板12と変換層14との間には緩衝層(図示省略)が設けられていることが好ましい。この場合の緩衝層としては、PI(PolyImide:ポリイミド)膜や、パリレン(登録商標)膜が用いられる。
また、本実施形態の放射線検出器10は、図3及び図4に示すように、粘着層40と、反射層42と、接着層44と、保護層46と、を備えている。なお、以下では、センサ基板12及び変換層14が並ぶ方向(図4における上下方向)を積層方向(図4、積層方向P参照)という。
本実施形態では、一例として図4に示すように、粘着層40及び反射層42が、変換層14上の全体に設けられている。また、粘着層40及び反射層42は、センサ基板12の上に直接設けられてはいない。
本実施形態の粘着層40は、光透過性の層であり、粘着層40の材料としては、アクリル系粘着剤、ホットメルト系粘着剤、及びシリコーン系接着剤等が挙げられる。アクリル系粘着剤としては、例えば、ウレタンアクリレート、アクリル樹脂アクリレート、及びエポキシアクリレート等が挙げられる。ホットメルト系粘着剤としては、例えば、EVA(エチレン・酢酸ビニル共重合樹脂)、EAA(エチレンとアクリル酸の共重合樹脂)、EEA(エチレン-エチルアクリレート共重合樹脂)、及びEMMA(エチレン-メタクリル酸メチル共重合体)等の熱可塑性プラスチックが挙げられる。
粘着層40の厚さが厚くなるほど、すなわち、変換層14と反射層42との間隔が広がるほど、変換層14により変換された光が粘着層40内でぼけてしまうため、結果として、放射線検出器10により得られる放射線画像がぼやけた画像となる。そのため、粘着層40の厚さが厚くなるほど、MTF(Modulation Transfer Function)及びDQE(Detective Quantum Efficiency)が低下し、かつその低下度合も大きくなる。
一方、粘着層40を設けない場合も含み、粘着層40の厚さを薄くしすぎた場合、変換層14と反射層42との間に、微小な空気層が形成される場合がある。この場合、空気層と変換層14との間、及び空気層と反射層42との間で、変換層14から反射層42に向かった光の多重反射が生じる。多重反射によって光が減衰してしまうと、放射線検出器10の感度が低下する。粘着層40の厚さが7μmを越えると、DQEの低下度合がより大きくなり、粘着層40の厚さが0μmの場合よりも低下してしまう。すなわち、粘着層40の厚さが7μmを越えると、粘着層40を設けない場合よりもDQEが低下してしまう。また、粘着層40の厚さが2μm未満の場合、放射線検出器10の感度が低下する。そこで、本実施形態では、粘着層40の厚さを2μm以上、7μm以下としている。なお、材料によっても異なるが粘着層40の屈折率は、概ね1.5程度である。
なお、粘着層40は、反射層42を変換層14に固定する機能を有するが、粘着層40の厚さが2μm以上であれば、反射層42が変換層14に対して面内方向(厚さ方向と交差する方向)においてずれてしまうことを抑制する十分な効果が得られる。
一方、反射層42は、一例として図4に示すように、粘着層40上に設けられており、粘着層40そのものの上面全体を覆っている。反射層42は、変換層14で変換された光を反射する機能を有する。
反射層42の材料としては、有機系の材料を用いたものが好ましく、例えば、白PET(Polyethylene Terephthalate)、TiO、Al、発泡白PET、ポリエステル系高反射シート、及び鏡面反射アルミ等の少なくとも1つを材料として用いたものが好ましい。特に、反射率の観点から、白PETを材料として用いたものが好ましい。
なお白PETとは、PETに、TiOや硫酸バリウム等の白色顔料を添加したものである。また、ポリエステル系高反射シートとは、薄いポリエステルのシートを複数重ねた多層構造を有するシート(フィルム)である。また、発泡白PETとは、表面が多孔質になっている白PETである。
本実施形態では、反射層42の厚さは、10μm以上、40μm以下としている。反射層42の厚さが厚くなると、反射層42の外周部の上面と変換層14の上面との間の段差が大きくなり、接着層44及び保護層46の少なくとも一方が浮き上がってしまう場合がある。また、反射層42の厚さが厚くなると、いわばコシがある状態になるため、変換層14の周縁部の傾斜に沿って曲がり難くなる場合があり、加工し難くなる。そのため、これらの観点から、本実施形態の放射線検出器10では、反射層42の材料として白PETを用いた場合、上述のように反射層42の厚さを40μm以下としている。
一方、反射層42の厚さが薄くなるほど、反射率が低下する。反射率が低下すると、放射線検出器10により得られる放射線画像の画質も低下する傾向がある。そのため、放射線検出器10により得られる放射線画像の画質の観点から、所望の反射率(例えば、80%)を考慮して反射層42の厚さの下限を定めることが好ましい。本実施形態の放射線検出器10では、反射層42の材料として白PETを用いた場合、上述のように反射層42の厚さを10μm以上としている。
一方、接着層44は、一例として図4に示すように、センサ基板12における変換層14の外周部近傍の領域上から反射層42端部を覆う領域まで設けられている。換言すると、本実施形態の放射線検出器10では、粘着層40及び反射層42が設けられた変換層14全体を覆う接着層44が、センサ基板12の表面に直接固定(接着)されている。接着層44は、反射層42を、センサ基板12及び変換層14に対して固定する機能を有する。また、接着層44は、保護層46を固定する機能を有する。接着層44の材料としては、例えば、粘着層40と同様の材料が挙げられる。なお、本実施形態では、接着層44が有する接着力は、粘着層40が有する接着力よりも強い。
さらに、保護層46は、一例として図4に示すように、接着層44上に設けられており、本実施形態の保護層46は、粘着層40及び反射層42に上面が覆われた状態の変換層14を覆う接着層44の上面全体を覆っている。保護層46は、変換層14を湿気等の水分から保護する機能を有する。また、保護層46は、接着層44と共に、反射層42を、センサ基板12及び変換層14に対して固定する機能を有する。保護層46の材料としては、例えば、有機膜が挙げられ、例えば、PET、PPS(PolyPhenylene Sulfide:ポリフェニレンサルファイド)、OPP(Oriented PolyPropylene:二軸延伸ポリプロピレンフィルム)、PEN(PolyEthylene Naphthalate:ポリエチレンナフタレート)、PI等が挙げられる。また、保護層46としては、ポリエチレンテレフタレート等の絶縁性のシート(フィルム)に、アルミ箔を接着させる等してアルミを積層したアルペット(登録商標)のシートを用いてもよい。
また、積層体19の放射線Rが照射される側、換言すると、センサ基板12における基材11の第2の面11B側には、帯電防止層60及び保護層62が設けられている。図4に示すように、帯電防止層60は、基材11の第2の面11Bに設けられており、センサ基板12が帯電するのを防止する機能を有している。一例として、本実施形態の帯電防止層60は、帯電防止塗料「コルコート」(商品名:コルコート社製)を用いた膜を帯電防止層60として用いている。
保護層62は、帯電防止層60の基材11と接する側と反対側に設けられており、帯電防止層60と同様に、センサ基板12が帯電するのを防止する機能を有している。一例として本実施形態の保護層62は、絶縁性のシート(フィルム)に、アルミ箔を接着させる等してアルミを積層したアルペット(登録商標)のシートを保護層62として用いている。また、保護層62は、図5に示すように、帯電防止層60及び保護層62に滞留する電荷を排出するためのグランドに接続されている。本実施形態ではグランドの一例として、筐体120をグランドとして保護層62に接続する、いわゆるフレームグランドを用いているが、保護層62を接続するグランドは本実施形態に限定されず、定電位を供給する部位であればよい。また、グランドに代えてアースを適用してもよい。また、図5に示すように、本実施形態の放射線画像撮影装置1では、保護層62と筐体120における放射線Rが照射される照射面を有する天板120Aとの間には、緩衝材150が設けられている。緩衝材150は、筐体120の天板120Aに加わる、被検体の荷重等による衝撃を吸収し、天板120Aの撓みによる影響を吸収する機能を有する。また、本実施形態の緩衝材150は、筐体120Aに生じた凹凸を吸収する機能を有する。緩衝材150としては、例えば、後述する吸収層52と同様の、デュロメータ硬度であるショアE硬度を有する材料が挙げられる。
なお、保護層62は、帯電防止機能を有する層に限定されず、画素領域35に対する防湿機能及び帯電防止機能の少なくとも一方を有しておればよく、本実施形態のアルペット(登録商標)のシートの他、パリレン(登録商標)膜、及びPET等の絶縁性のシート等を保護層として用いることができる。
さらに、積層体19の放射線Rが照射される側と反対側、換言すると、変換層14のセンサ基板12と接する側と反対側には、補強基板50、吸収層52、放射線遮蔽層54、及び剛性板56が設けられている。補強基板50、吸収層52、放射線遮蔽層54、及び剛性板56は、この順に変換層14上に積層されている。
吸収層52は、放射線検出器10の積層体19や筐体120等の凹凸に起因して積層体19の変換層14に生じる凹凸を吸収することで、センサ基板12に、上記凹凸が伝播するのを抑制する機能を有する。
積層体19自身や筐体120等の凹凸に起因して、積層体19に生じる凹凸について、まず、図11を参照して説明する。図11は、本実施形態の放射線検出器10と異なり、補強基板50及び吸収層52が設けられていない状態の放射線検出器10X(放射線画像撮影装置1X)について示している。
図11の領域Aは、変換層14に起因する凹凸96Aを含む領域の一例である。上述したように、変換層14は、センサ基板12上に柱状結晶14Aとして形成される。この場合、変換層14の放射線遮蔽層54側が柱状結晶14Aの先端となる。しかしながら、センサ基板12の基材11が上述したように比較的、柔らかく撓みやすいため、図11の領域Aに示すように、センサ基板12側に柱状結晶14Aの先端の凹凸が伝播され、変換層14の先端側ではなく、根元側のセンサ基板12に凹凸96Aが生じる場合がある。いわば、変換層14の柱状結晶14Aの凹凸が、根元側のセンサ基板12に転写される場合がある。
また、図11の領域Bは、放射線遮蔽層54に生じた気泡90に起因する凹凸96Bを含む領域の一例である。放射線遮蔽層54に生じた気泡90により、放射線遮蔽層54と剛性板56との間に凹凸が生じる場合がある。主に、図11の領域Bに示すように、変換層14側に放射線遮蔽層54が入りこみ、変換層14に凹凸が生じる場合がある。この場合、放射線遮蔽層54により生じた凹凸の影響が伝播することで、センサ基板12に凹凸96Bが生じる場合がある。
また、図11の領域Cは、剛性板56の凹凸92に起因する凹凸96Cを含む領域の一例である。剛性板56の表面に微細な凹凸が生じる場合があり、例えば、図11の領域Cの凹凸92は、剛性板56の凹みによる凹凸であり、剛性板56の凹凸92により積層体19に凹凸が生じた状態の一例を示している。図11の領域Cに示すように、剛性板56の凹凸92により放射線遮蔽層54に凹凸が生じ、さらに剛性板56により生じた凹凸の影響が伝播することで、センサ基板12に凹凸96Cが生じる場合がある。
このように図11に示すように、センサ基板12の基材11が比較的撓み易いため、放射線検出器10Xを形成する他の層(部材)よりも柔らかい場合等では、積層体19や筐体120等の放射線画像撮影装置1Xに起因する凹凸の影響が伝播され、センサ基板12に凹凸が生じる場合がある。特に、筐体120の天板120Aに被検者の荷重がかかる等、圧力や衝撃等が加わった場合、上記凹凸の影響が、センサ基板12に伝播し易くなり、センサ基板12に凹凸が生じ易くなる。センサ基板12に生じた凹凸は、放射線検出器10Xにより得られた放射線画像に画像むらとして現れる場合がある。
これに対して、本実施形態の吸収層52は、積層体19における放射線Rが照射される側と反対側、本実施形態の放射線検出器10では、図3~図5に示すように変換層14の上に設けられている。吸収層52は、上記のように積層体19や筐体120等に起因する凹凸の影響を吸収し、凹凸の影響がセンサ基板12に伝播されるのを抑制する機能を有する。
吸収層52は、上記凹凸の影響を吸収するための柔らかい材質の層であり、デュロメータ硬度が、積層体19全体のデュロメータ硬度よりも小さい。なお、本実施形態における硬度の測定方法は、JIS K6253に準拠したタイプEデュロメータに試料をセットし、押針の接触から15秒後に測定することで得られる。
吸収層52の具体的な材料としては、ウレタンフォーム、ポリエチレン、ゴムスポンジ、シリコンフォーム等の発泡体、及びウレタンゲル等が挙げられる。
本実施形態の放射線画像撮影装置1(放射線検出器10)では、図6に示すように、吸収層52を設けることにより、変換層14の柱状結晶14Aの凹凸を含む領域Aであっても、柱状結晶14Aの凹凸に応じて吸収層52が変形することにより、上記凹凸がセンサ基板12に伝播されることがない。
また、図6に示すように、吸収層52を設けることにより、放射線遮蔽層54により気泡90が生じている領域Bであっても、気泡90に応じて吸収層52が変形することにより、気泡90による凹凸がセンサ基板12に伝播されることがない。
さらに、図6に示すように、吸収層52を設けることにより、剛性板56の凹凸92が生じている領域Cであっても、凹凸92に応じて吸収層52が変形することにより、凹凸92に起因した凹凸がセンサ基板12に伝播されることがない。
このように、本実施形態の放射線検出器10によれば、吸収層52が、放射線検出器10の積層体19や筐体120等の凹凸に起因して積層体19の変換層14に生じる凹凸に応じた形状となるため、センサ基板12に、上記凹凸が伝播するのを抑制することができる。
図3~図5に示すように、本実施形態の吸収層52は、センサ基板12における基材11の第1の面11A側と同等の大きさ(面積)を有している。吸収層52の大きさは、図3~図5に示した形態に限定されないが、センサ基板12よりも大きいことが好ましく、少なくとも変換層14よりも大きい面積を有することが好ましい。
吸収層52の厚み(積層方向Pの厚み)は、積層体19や筐体120に起因する凹凸、例えば、上記図5に示した気泡90や凹凸92の大きさとして想定される大きさに応じて定められる。吸収層52は、少なくとも気泡90や凹凸92の大きさよりも大きな厚みを有することが好ましい。
なお、吸収層52は、センサ基板12が帯電するのを防止するための帯電防止機能、または導電性をさらに有することが好ましく、表面抵抗値が、1013Ω以下であることが好ましい。導電性を有する吸収層52としては、例えば、ポリエチレン樹脂に導電性のカーボンを練り込んだ材料を適用することができる。
また、補強基板50は、吸収層52にかかる圧縮力を、吸収層52の面内方向に分散する機能を有し、吸収層52にかかる圧縮力を分散することで、吸収層52を均一に圧縮させる。
補強基板50は、曲げ弾性率が150MPa以上、2500MPa以下の素材を用いることが好ましい。曲げ弾性率の測定方法は、例えばJIS K 7171:2016準拠に基づく。補強基板50は、吸収層52にかかる圧縮力を吸収層52の面内方向に分散させる観点からは、基材11よりも曲げ剛性が高いことが好ましい。なお、曲げ弾性率が低くなると曲げ剛性も低くなり、所望の曲げ剛性を得るためには、補強基板50の厚みを厚くしなくてはならず、放射線検出器10全体の厚みが増大してしまう。補強基板50の材料を考慮すると、140000Pacmを越える曲げ剛性を得ようとする場合、補強基板50の厚みが、比較的厚くなってしまう傾向がある。そのため、適切な剛性が得られ、かつ放射線検出器10全体の厚みを考慮すると、補強基板50に用いる素材は、曲げ弾性率が150MPa以上、2500MPa以下であることがより好ましい。また、補強基板50の曲げ剛性は、540Pacm以上、140000Pacm以下であることが好ましい。
本実施形態の補強基板50は、プラスチックを材料とした基板である。補強基板50の材料となるプラスチックは、熱可塑性の樹脂であることが好ましく、PC(Polycarbonate:ポリカーボネート)、PET、スチロール、アクリル、ポリアセターゼ、ナイロン、ポリプロピレン、ABS(Acrylonitrile Butadiene Styrene)、エンプラ、PET、及びポリフェニレンエーテルの少なくとも一つが挙げられる。なお、補強基板50は、これらのうち、ポリプロピレン、ABS、エンプラ、PET、及びポリフェニレンエーテルの少なくとも一つであることが好ましく、スチロール、アクリル、ポリアセターゼ、及びナイロンの少なくとも一つであることがより好ましく、PC及びPETの少なくとも一つであることがより好ましい。
また、補強基板50の上に設けられた放射線遮蔽層54は、積層体19を透過した放射線Rを遮蔽し、筐体120の外部へ透過する放射線Rを抑制する機能を有する。放射線遮蔽層54としては、例えば、鉛等の板が挙げられる。
さらに、放射線遮蔽層54の上に設けられた剛性板56は、放射線検出器10を支持する。剛性板56は、センサ基板12よりも剛性が高く、例えば、カーボン等が用いられる。
本実施形態の放射線検出器10を収納する、図5に示した筐体120は、軽量であり、放射線R、特にX線の吸収率が低く、且つ高剛性であることが好ましく、弾性率が十分に高い材料により構成されることが好ましい。筐体120の材料として、曲げ弾性率が10000MPa以上である材料を用いることが好ましい。筐体120の材料として、20000~60000MPa程度の曲げ弾性率を有するカーボンまたはCFRP(Carbon Fiber Reinforced Plastics)を好適に用いることができる。
放射線画像撮影装置1による放射線画像の撮影においては、筐体120の天板120Aに被写体からの荷重が印加される。筐体120の剛性が不足する場合、被写体からの荷重によりセンサ基板12に撓みが生じ、画素30が損傷する等の不具合が発生するおそれがある。10000MPa以上の曲げ弾性率を有する材料からなる筐体120内部に、放射線検出器10が収容されることで、被写体からの荷重によるセンサ基板12の撓みを抑制することが可能となる。
図5に示すように、筐体120内には、放射線検出器10、電源部108、及び制御基板110が放射線Rの入射方向と交差する方向に並んで設けられている。
制御基板110は、センサ基板12の画素30から読み出された電荷に応じた画像データを記憶する画像メモリ380や画素30からの電荷の読み出し等を制御する制御部382等が形成された基板であり、複数の信号配線を含むフレキシブルケーブル112によりセンサ基板12の画素30と電気的に接続されている。なお、図5に示した放射線画像撮影装置1では、制御部382の制御により画素30のTFT32のスイッチング状態を制御する駆動部103、及び画素30から読み出された電荷に応じた画像データを生成して出力する信号処理部104がフレキシブルケーブル112上に設けられた、いわゆる、COF(Chip on Film)としているが、駆動部103及び信号処理部104の少なくとも一方が制御基板110に形成されていてもよい。
また、制御基板110は、電源線114により、制御基板110に形成された画像メモリ380や制御部382等に電源を供給する電源部108と接続されている。
なお、図5に示した例のように、電源部108及び制御基板110の各々の方が、放射線検出器10よりも厚みを有している場合が多い。このような場合、図7に示す例のように、電源部108及び制御基板110の各々が設けられている筐体120の部分の厚みよりも、放射線検出器10が設けられている筐体120の部分の厚みの方が薄くてもよい。なお、このように、電源部108及び制御基板110の各々が設けられている筐体120の部分と、放射線検出器10が設けられている筐体120の部分とで、厚みを異ならせる場合、両部分の境界部に段差が生じていると境界部120Bに接触した被検者に違和感等を与える懸念があるため、境界部120Bの形態は傾斜を有する状態とすることが好ましい。
これにより、放射線検出器10の厚さに応じた極薄型の可搬型電子カセッテを構成することが可能となる。
また例えば、この場合、電源部108及び制御基板110の各々が設けられている筐体120の部分と、放射線検出器10が設けられている筐体120の部分とで、筐体120の材質が異なっていてもよい。さらに、例えば、電源部108及び制御基板110の各々が設けられている筐体120の部分と、放射線検出器10が設けられている筐体120の部分とが、別体として構成されていてもよい。
また、放射線画像撮影装置1は、図8に示した例のように、放射線Rが照射される天板120A側から順に、放射線検出器10と、制御基板110及び電源部108とが、並んだ状態で筐体120内に収納されていてもよい。
以上説明したように、本実施形態の放射線検出器10は、放射線Rから変換された光に応じて発生した電荷を蓄積する複数の画素30が可撓性の基材11の画素領域35に形成されたセンサ基板12と、基材11の画素領域35が設けられた第1の面11Aに設けられ、かつ放射線Rを光に変換する変換層14と、センサ基板12と変換層14とが積層された積層体19の放射線Rが照射される側と反対側に設けられ、かつ変換層14に生じる凹凸のセンサ基板12への影響を吸収する吸収層52と、吸収層52の積層体19に対向する側と反対側に設けられ、センサ基板12よりも剛性が高い剛性板56と、を備える。
上述したように、本実施形態の放射線検出器10によれば、吸収層52が、放射線検出器10の積層体19や筐体120等の凹凸に起因して積層体19の変換層14に生じる凹凸に応じた形状となるため、センサ基板12に、上記凹凸が影響するのを抑制することができる。従って、センサ基板12に凹凸が生じるのを抑制することにより、本実施形態の放射線検出器10によれば、センサ基板12の凹凸に起因して生じる放射線画像の画像むら等を抑制し、放射線画像の画質を向上することができる。
なお、補強基板50を設ける位置は、本実施形態(図4参照)に示した位置に限定されず、図9に示すように、積層体19の反対側、具体的には、帯電防止層60及び保護層62の側の位置に設けてもよい。この場合、図9に示した例に限定されず、例えば、帯電防止層60とセンサ基板12との間に補強基板50を設ける形態としてもよい。
また、上記では、ISS方式の放射線検出器10(放射線画像撮影装置1)について説明したが、図10に示すように、放射線検出器10(放射線画像撮影装置1)は、変換層14側から放射線Rが照射されるPSS(Penetration Side Sampling)方式の放射線検出器10(放射線画像撮影装置1)であってもよい。図10に示した放射線検出器10においても、変換層14に生じる凹凸のセンサ基板12への影響を吸収する吸収層52が、センサ基板12と変換層14とが積層された積層体19の放射線Rが照射される側と反対側に設けられる。また、吸収層52の積層体19に対向する側と反対側に設けられ、センサ基板12よりも剛性が高い剛性板56と、を備える。
従って、図10に示した放射線検出器10においても、吸収層52が、放射線検出器10の積層体19や筐体120等の凹凸に起因して積層体19の変換層14に生じる凹凸に応じた形状となるため、センサ基板12に、上記凹凸が影響するのを抑制することができる。従って、センサ基板12に凹凸が生じるのを抑制することにより、本実施形態の放射線検出器10によれば、センサ基板12の凹凸に起因して生じる放射線画像の画像むら等を抑制し、放射線画像の画質を向上することができる。
また、上記実施形態では、図1に示したように画素30がマトリクス上に2次元配列されている態様について説明したがこれに限らず、例えば、1次元配列であってもよいし、ハニカム配列であってもよい。また、画素の形状も限定されず、矩形であってもよいし、六角形等の多角形であってもよい。さらに、画素領域35の形状も限定されないことはいうまでもない。
また、変換層14の形状等も上記実施形態に限定されない。上記実施形態では、変換層14の形状が画素領域35の形状と同様に矩形状である態様について説明したが、変換層14の形状は、画素領域35と同様の形状でなくてもよい。また、画素領域35の形状が、矩形状ではなく、例えば、その他の多角形であってもよいし、円形であってもよい。
なお、上記実施形態では、一例として、放射線検出器10の変換層14がCsIを含むシンチレータである形態について説明したが、変換層14は、GOS(GdS:Tb)等が樹脂等のバインダに分散されたシンチレータであってもよい。GOSを用いた変換層14は、例えば、センサ基板12や剥離層等の上に、GOSが分散されたバインダを直接塗布した後、乾燥させて固化させることにより形成される。変換層14の形成方法としては、例えば、塗布膜の厚みを制御しながら変換層14を形成する領域に塗布液を塗布するギーザ法を採用してもよい。なお、この場合、GOSが分散されたバインダを塗布する前に、画素領域35の表面を活性化するための表面処理を行ってもよい。また、画素領域35の表面に層間絶縁膜は表面保護膜を設けてもよい。
その他、上記実施形態で説明した放射線画像撮影装置1及び放射線検出器10等の構成は一例であり、本発明の主旨を逸脱しない範囲内において状況に応じて変更可能であることはいうまでもない。
2019年4月26日出願の日本国特許出願2019-086596号の開示は、その全体が参照により本明細書に取り込まれる。
本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
1、1X 放射線画像撮影装置
10、10X 放射線検出器
11 基材、11A 第1の面、11B 第2の面、11P 微粒子、11L 微粒子層
12 センサ基板
14 変換層、14A 柱状結晶
19 積層体
30 画素
32 スイッチング素子(TFT)
34 センサ部
35 画素領域
36 信号配線
38 走査配線
39 共通配線
40 粘着層
42 反射層
44 接着層
46 保護層
50 補強基板
52 吸収層
54 放射線遮蔽層
56 剛性板
60 帯電防止層
62 保護層
90 気泡
92、96A、96B、96C 凹凸
103 駆動部
104 信号処理部
108 電源部
110 制御基板
112 フレキシブルケーブル
114 電源線
117 保護層
120 筐体、120A 天板、120B 境界部
150 緩衝材
380 画像メモリ
382 制御部
A、B、C 領域
P 積層方向
R 放射線

Claims (11)

  1. 放射線から変換された光に応じて発生した電荷を蓄積する複数の画素が可撓性の基材の画素領域に形成されたセンサ基板と、
    前記基材の前記画素領域が設けられた面に設けられ、かつ前記放射線を光に変換する変換層と、
    前記センサ基板と前記変換層とが積層された積層体の前記放射線が照射される側と反対側に設けられ、かつ前記変換層に生じる凹凸の前記センサ基板への影響を吸収する吸収層と、
    前記吸収層の前記積層体に対向する側と反対側に設けられ、前記センサ基板よりも剛性が高い剛性板と、
    を備えた放射線検出器が、
    放射線が照射される側から前記積層体、前記吸収層、及び前記剛性板の順に収納された筐体と、
    前記吸収層と前記積層体の間に設けられ、前記吸収層に係る圧縮力を前記吸収層の面内方向に分散させる補強基板と、
    を備えた、
    放射線画像撮影装置。
  2. 前記吸収層のデュロメータ硬度は、前記積層体全体のデュロメータ硬度よりも小さい、
    請求項に記載の放射線画像撮影装置。
  3. 前記吸収層は、表面抵抗値が1013Ω以下である、
    請求項1または請求項2に記載の放射線画像撮影装置。
  4. 前記補強基板は、曲げ弾性率が150MPa以上、2500MPa以下である、
    請求項1から請求項3のいずれか1項に記載の放射線画像撮影装置。
  5. 前記補強基板は、曲げ剛性が540Pacm以上、140000Pacm以下である、
    請求項から請求項のいずれか1項に記載の放射線画像撮影装置。
  6. 前記吸収層と、前記剛性板との間に、前記放射線を遮蔽する放射線遮蔽層をさらに備えた、
    請求項から請求項のいずれか1項に記載の放射線画像撮影装置。
  7. 前記剛性板は、カーボンを材料とした板である、
    請求項から請求項のいずれか1項に記載の放射線画像撮影装置。
  8. 前記積層体の、前記放射線が入射される側に、緩衝材をさらに備える、
    請求項から請求項のいずれか1項に記載の放射線画像撮影装置。
  9. 前記変換層は、CsIの柱状結晶を含む、
    請求項から請求項のいずれか1項に記載の放射線画像撮影装置。
  10. 前記複数の画素に蓄積された電荷を読み出すための制御信号を出力する制御部と、
    前記制御信号に応じて前記複数の画素から電荷を読み出させる駆動部と、
    前記複数の画素から読み出された電荷に応じた電気信号が入力され、入力された電気信号に応じた画像データを生成して前記制御部に出力する信号処理部と、
    をさらに備えた、請求項から請求項のいずれか1項に記載の放射線画像撮影装置。
  11. 放射線から変換された光に応じて発生した電荷を蓄積する複数の画素が可撓性の基材の画素領域に形成されたセンサ基板と、
    前記基材の前記画素領域が設けられた面に設けられ、かつ前記放射線を光に変換する変換層と、
    前記センサ基板と前記変換層とが積層された積層体の前記放射線が照射される側と反対側に設けられた吸収層と、
    前記吸収層の前記積層体に対向する側と反対側に設けられ、前記センサ基板よりも剛性が高い剛性板と、
    を備えた放射線検出器が、
    放射線が照射される側から前記積層体、前記吸収層、及び前記剛性板の順に収納された筐体と、
    前記吸収層と前記積層体の間に設けられた補強基板と、
    を備えた、
    放射線画像撮影装置。
JP2021516277A 2019-04-26 2020-04-24 放射線検出器及び放射線画像撮影装置 Active JP7167322B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019086596 2019-04-26
JP2019086596 2019-04-26
PCT/JP2020/017770 WO2020218538A1 (ja) 2019-04-26 2020-04-24 放射線検出器及び放射線画像撮影装置

Publications (2)

Publication Number Publication Date
JPWO2020218538A1 JPWO2020218538A1 (ja) 2020-10-29
JP7167322B2 true JP7167322B2 (ja) 2022-11-08

Family

ID=72942777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021516277A Active JP7167322B2 (ja) 2019-04-26 2020-04-24 放射線検出器及び放射線画像撮影装置

Country Status (5)

Country Link
US (1) US11747490B2 (ja)
EP (1) EP3961269A4 (ja)
JP (1) JP7167322B2 (ja)
CN (1) CN113767306B (ja)
WO (1) WO2020218538A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008212343A (ja) 2007-03-02 2008-09-18 General Electric Co <Ge> 軽量で頑丈なディジタルx線検出器
JP2012128091A (ja) 2010-12-14 2012-07-05 Fujifilm Corp 放射線画像撮影装置
JP2014006233A (ja) 2011-07-20 2014-01-16 Fujifilm Corp 放射線撮像装置
US20160169714A1 (en) 2014-12-16 2016-06-16 Carestream Health, Inc. Impact protection for wireless digital detector glass panel
US20180132806A1 (en) 2016-11-16 2018-05-17 Samsung Electronics Co., Ltd. X-ray detector and x-ray imaging apparatus having the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3815766B2 (ja) 1998-01-28 2006-08-30 キヤノン株式会社 二次元撮像装置
US7495227B2 (en) * 2007-07-10 2009-02-24 General Electric Company Digital x-ray detectors
JP5827856B2 (ja) * 2011-09-28 2015-12-02 富士フイルム株式会社 カセッテ
JP2013217769A (ja) 2012-04-09 2013-10-24 Canon Inc 放射線検出装置
JP6646002B2 (ja) * 2017-03-22 2020-02-14 富士フイルム株式会社 放射線検出器及び放射線画像撮影装置
JP2019086596A (ja) 2017-11-02 2019-06-06 キヤノン株式会社 画像形成装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008212343A (ja) 2007-03-02 2008-09-18 General Electric Co <Ge> 軽量で頑丈なディジタルx線検出器
JP2012128091A (ja) 2010-12-14 2012-07-05 Fujifilm Corp 放射線画像撮影装置
JP2014006233A (ja) 2011-07-20 2014-01-16 Fujifilm Corp 放射線撮像装置
US20160169714A1 (en) 2014-12-16 2016-06-16 Carestream Health, Inc. Impact protection for wireless digital detector glass panel
US20180132806A1 (en) 2016-11-16 2018-05-17 Samsung Electronics Co., Ltd. X-ray detector and x-ray imaging apparatus having the same

Also Published As

Publication number Publication date
CN113767306B (zh) 2024-03-26
CN113767306A (zh) 2021-12-07
JPWO2020218538A1 (ja) 2020-10-29
EP3961269A1 (en) 2022-03-02
US20220082714A1 (en) 2022-03-17
WO2020218538A1 (ja) 2020-10-29
EP3961269A4 (en) 2022-06-01
TW202105756A (zh) 2021-02-01
US11747490B2 (en) 2023-09-05

Similar Documents

Publication Publication Date Title
JP7087164B2 (ja) 放射線検出器及び放射線画像撮影装置
CN210294542U (zh) 放射线检测器以及放射线图像摄影装置
JP7030956B2 (ja) 放射線検出器及び放射線画像撮影装置
US20210333421A1 (en) Radiation detector, radiographic imaging apparatus, and manufacturing method
JP7376636B2 (ja) 放射線検出器、放射線画像撮影装置及び放射線検出器の製造方法
WO2014050861A1 (ja) 放射線画像検出装置
JP7342184B2 (ja) 放射線検出器、放射線画像撮影装置及び放射線検出器の製造方法
US11802981B2 (en) Method of manufacturing radiation detector and radiographic imaging apparatus
US20140091209A1 (en) Radiation detecting apparatus and radiation detecting system
JP7167322B2 (ja) 放射線検出器及び放射線画像撮影装置
JP7370950B2 (ja) 放射線画像撮影装置
TWI841726B (zh) 放射線檢測器及放射線圖像攝影裝置
JP7125502B2 (ja) 放射線検出器、放射線画像撮影装置、及び製造方法
JP2023001752A (ja) 放射線画像撮影装置
TW202141776A (zh) 放射線檢測器、放射線圖像攝影裝置及放射線檢測器之製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221026

R150 Certificate of patent or registration of utility model

Ref document number: 7167322

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150