JP7164504B2 - Optical modulator and optical transmitter - Google Patents

Optical modulator and optical transmitter Download PDF

Info

Publication number
JP7164504B2
JP7164504B2 JP2019181627A JP2019181627A JP7164504B2 JP 7164504 B2 JP7164504 B2 JP 7164504B2 JP 2019181627 A JP2019181627 A JP 2019181627A JP 2019181627 A JP2019181627 A JP 2019181627A JP 7164504 B2 JP7164504 B2 JP 7164504B2
Authority
JP
Japan
Prior art keywords
electrical signal
signal
modulated light
sine wave
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019181627A
Other languages
Japanese (ja)
Other versions
JP2021057845A (en
Inventor
昇太 石村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
KDDI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KDDI Corp filed Critical KDDI Corp
Priority to JP2019181627A priority Critical patent/JP7164504B2/en
Publication of JP2021057845A publication Critical patent/JP2021057845A/en
Application granted granted Critical
Publication of JP7164504B2 publication Critical patent/JP7164504B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Communication System (AREA)

Description

本発明は、光単側波帯(SSB)信号の生成技術に関する。 The present invention relates to the generation of optical single sideband (SSB) signals.

情報を搬送する電気信号で連続光を振幅変調して伝送する光通信システムが利用されている。この場合、光送信装置が送信する変調光は、周波数領域において光搬送波の両側に情報に対応する光信号成分を有する光両側波帯(DSB)信号になる。光受信装置は、光DSB信号を光電変換することで、光搬送波と上側波帯成分との第1ビート信号と、光搬送波と下側波帯成分との第2ビート信号とが合成された電気信号を取得する。 2. Description of the Related Art Optical communication systems are used in which electrical signals carrying information are amplitude-modulated and transmitted through continuous light. In this case, the modulated light transmitted by the optical transmitter becomes an optical double sideband (DSB) signal having optical signal components corresponding to information on both sides of the optical carrier in the frequency domain. The optical receiving device photoelectrically converts the optical DSB signal to generate an electrical signal obtained by synthesizing a first beat signal of the optical carrier wave and the upper sideband component and a second beat signal of the optical carrier wave and the lower sideband component. Get the signal.

ここで、波長分散の影響により、光ファイバを伝送される変調光には波長(周波数)により異なる位相回転が生じる。したがって、光DSB信号の場合、上側波帯成分と下側波帯成分の位相の回転量は異なる。ここで、光受信装置の設置位置において、第1ビート信号と第2ビート信号が逆相になると、光受信装置は、光電変換しても電気信号を取得することができなくなる。 Here, due to the influence of chromatic dispersion, the modulated light transmitted through the optical fiber undergoes different phase rotations depending on the wavelength (frequency). Therefore, in the case of the optical DSB signal, the amount of phase rotation differs between the upper sideband component and the lower sideband component. Here, if the phases of the first beat signal and the second beat signal are reversed at the installation position of the optical receiving device, the optical receiving device cannot acquire the electric signal even if photoelectric conversion is performed.

上記問題は、光送信装置が光SSB変調を行い、光SSB信号を送信することで解決される。非特許文献1は、光フィルタにより一方の側波帯を除去することで光SSB信号を生成する構成を開示している。また、非特許文献2は、2電極型マッハツェンダ変調器(DD-MZM)を使用することで、光SSB変調を行う構成を開示している。 The above problem is solved by having the optical transmitter perform optical SSB modulation and transmit an optical SSB signal. Non-Patent Document 1 discloses a configuration for generating an optical SSB signal by removing one sideband with an optical filter. Non-Patent Document 2 discloses a configuration for performing optical SSB modulation by using a two-electrode Mach-Zehnder modulator (DD-MZM).

J.Park,et.al.,"Elimination of the fibre chromatic dispersion penalty on 1550nm millimeter-wave optical transmission",Electron.Lett.,vol.33,pp.512-513,1997年J. Park, et. al. , "Elimination of the fiber chromatic dispersion penalty on 1550 nm millimeter-wave optical transmission", Electron. Lett. , vol. 33, pp. 512-513, 1997 W.Peng,et.al.,"Spectrally Efficient Direct-Detected OFDM Transmission Incorporating a Tunable Frequency Gap and an Iterative Detection Techniques",in Journal of Lightwave Technology,vol.27,no.24,pp.5723-5735,2009年12月15日W. Peng, et. al. , "Spectrally Efficient Direct-Detected OFDM Transmission Incorporating a Tunable Frequency Gap and an Iterative Detection Techniques", in Journal of Lightwave Technology. 27, no. 24, pp. 5723-5735, December 15, 2009

しかしながら、非特許文献1の構成では、急峻なフィルタリング特性のフィルタが必要となり、かつ、光源の発光波長の揺らぎに合わせてフィルタリング特性をシフトさせる必要があるため、その実現は難しい。また、非特許文献2の構成では、デジタル信号処理によるヒルベルト変換を行う必要があり装置コストが増加する。 However, the configuration of Non-Patent Document 1 requires a filter with a steep filtering characteristic, and it is necessary to shift the filtering characteristic in accordance with fluctuations in the emission wavelength of the light source. In addition, in the configuration of Non-Patent Document 2, Hilbert transform must be performed by digital signal processing, which increases the cost of the device.

本発明は、簡易な構成で光SSB信号を生成する技術を提供するものである。 The present invention provides a technique for generating an optical SSB signal with a simple configuration.

本発明の一側面によると、光送信装置は、送信対象の電気信号と第1正弦波信号とを含む第1電気信号により第1連続光を変調して第1変調光を出力する第1変調手段と、前記電気信号と、前記第1正弦波信号との位相差がπ/2である第2正弦波信号とを含む第2電気信号により第2連続光を変調して第2変調光を出力する第2変調手段と、前記第1変調光の光電変換を含む処理により第3電気信号を出力する第1変換手段と、前記第2変調光の光電変換を含む処理により第4電気信号を出力する第2変換手段と、前記第3電気信号により第3連続光を位相変調して第3変調光を生成し、前記第4電気信号により前記第3連続光を位相変調して第4変調光を生成し、前記第3変調光及び前記第4変調光を合波して出力する第3変調手段と、を備えており、前記第3変調手段は、前記第3電気信号及び前記第4電気信号が入力されない場合、前記第3変調光と前記第4変調光の位相差をπ/2とする様に構成されることを特徴とする。 According to one aspect of the present invention, an optical transmission device includes a first modulation that modulates a first continuous light with a first electrical signal that includes an electrical signal to be transmitted and a first sinusoidal signal and outputs the first modulated light. modulating the second continuous light by means of a second electrical signal including means, the electrical signal, and a second sine wave signal having a phase difference of π/2 from the first sine wave signal to produce a second modulated light; a second modulation means for outputting; a first conversion means for outputting a third electrical signal by processing including photoelectric conversion of the first modulated light; and a fourth electrical signal by processing including photoelectric conversion of the second modulated light. a second conversion means for outputting, phase-modulating the third continuous light with the third electrical signal to generate a third modulated light, and phase-modulating the third continuous light with the fourth electrical signal to perform the fourth modulation and a third modulating means for generating light and combining and outputting the third modulated light and the fourth modulated light, wherein the third modulating means generates the third electrical signal and the fourth modulated light. It is characterized in that the phase difference between the third modulated light and the fourth modulated light is set to π/2 when no electrical signal is input.

本発明によると、簡易な構成で光SSB信号を生成することができる。 According to the present invention, an optical SSB signal can be generated with a simple configuration.

一実施形態による光送信装置の構成図。1 is a configuration diagram of an optical transmission device according to an embodiment; FIG. 光送信装置内の各位置での周波数成分を示す図。FIG. 4 is a diagram showing frequency components at each position in the optical transmission device; 光送信装置内の各位置での周波数成分を示す図。FIG. 4 is a diagram showing frequency components at each position in the optical transmission device; 一実施形態による光送信装置の構成図。1 is a configuration diagram of an optical transmission device according to an embodiment; FIG. 一実施形態による光送信装置の構成図。1 is a configuration diagram of an optical transmission device according to an embodiment; FIG. 光送信装置内の各位置での周波数成分を示す図。FIG. 4 is a diagram showing frequency components at each position in the optical transmission device;

以下、添付図面を参照して実施形態を詳しく説明する。尚、以下の実施形態は特許請求の範囲に係る発明を限定するものでなく、また実施形態で説明されている特徴の組み合わせの全てが発明に必須のものとは限らない。実施形態で説明されている複数の特徴うち二つ以上の特徴が任意に組み合わされてもよい。また、同一若しくは同様の構成には同一の参照番号を付し、重複した説明は省略する。 Hereinafter, embodiments will be described in detail with reference to the accompanying drawings. It should be noted that the following embodiments do not limit the invention according to the claims, and not all combinations of features described in the embodiments are essential to the invention. Two or more of the features described in the embodiments may be combined arbitrarily. Also, the same or similar configurations are denoted by the same reference numerals, and redundant explanations are omitted.

<第一実施形態>
図1は、本実施形態による光送信装置の構成図である。電気信号は、送信する情報に対応する。例えば、電気信号は中間周波数帯の信号である。電気信号は、2分岐され、一方の第1電気信号は加算器11に入力され、他方の第2電気信号は加算器12に入力される。発振器61は、第1正弦波信号を生成し、加算器11及び位相器70に出力する。位相器70は、発振器61が生成した第1正弦波信号の位相をπ/2だけシフトさせ、位相シフト後の第2正弦波信号を加算器12に入力する。なお、発振器61が生成する第1正弦波信号の周波数と、電気信号の中心周波数との差をftとする。なお、差ftは、第1電気信号の帯域幅の半分より大きい。加算器11は、第1電気信号及び第1正弦波信号を含む第3電気信号を変調器21に入力する。一方、加算器12は、第2電気信号及び第2正弦波信号を含む第4電気信号を変調器22に入力する。
<First Embodiment>
FIG. 1 is a configuration diagram of an optical transmitter according to this embodiment. The electrical signal corresponds to information to be transmitted. For example, the electrical signal is an intermediate frequency band signal. The electrical signal is branched into two, the first electrical signal on one side is input to the adder 11 and the second electrical signal on the other side is input to the adder 12 . Oscillator 61 generates a first sine wave signal and outputs it to adder 11 and phase shifter 70 . The phase shifter 70 shifts the phase of the first sine wave signal generated by the oscillator 61 by π/2, and inputs the phase-shifted second sine wave signal to the adder 12 . Note that the difference between the frequency of the first sine wave signal generated by the oscillator 61 and the center frequency of the electrical signal is ft. Note that the difference ft is greater than half the bandwidth of the first electrical signal. The adder 11 inputs a third electrical signal including the first electrical signal and the first sine wave signal to the modulator 21 . Meanwhile, the adder 12 inputs a fourth electrical signal including the second electrical signal and the second sine wave signal to the modulator 22 .

図2(A)及び図2(B)は、それぞれ、第3電気信号及び第4電気信号の周波数成分を示している。なお、本例においては、発振器61が生成する第1正弦波信号の周波数が、電気信号の周波数帯域より高いものとしている。図2(A)の矢印は第1正弦波信号に対応し、四角形は第1電気信号に対応し、図2(B)の矢印は第2正弦波信号に対応し、四角形は第2電気信号に対応する。なお、各正弦波信号の上には、第1正弦波信号を基準とする位相差を示している。負の周波数成分は、正の周波数成分の共役複素であるため、第2正弦波信号の負の周波数成分の位相は-π/2となる。なお、四角形で示す電気信号の正又は負の周波数成分については、一律な位相及び振幅を定義できないが、説明目的で1つの位相及び振幅を複素数で示している。以下では、電気信号の正の周波数成分のこの説明目的の位相及び振幅を"a+bj"とする。負の周波数成分の位相は、正の周波数成分の共役複素であるため、負の周波数成分の位相及び振幅は、a-bjとなる。 FIGS. 2A and 2B show frequency components of the third electrical signal and the fourth electrical signal, respectively. In this example, the frequency of the first sine wave signal generated by the oscillator 61 is higher than the frequency band of the electric signal. The arrows in FIG. 2A correspond to the first sine wave signal, the squares correspond to the first electrical signal, the arrows in FIG. 2B correspond to the second sine wave signal, and the squares to the second electrical signal. corresponds to Above each sine wave signal is shown a phase difference based on the first sine wave signal. Since the negative frequency component is the complex conjugate of the positive frequency component, the phase of the negative frequency component of the second sinusoidal signal is -π/2. For the positive or negative frequency components of the electrical signal indicated by squares, uniform phases and amplitudes cannot be defined, but one phase and amplitude are indicated by complex numbers for the purpose of explanation. In the following, this illustrative phase and amplitude of the positive frequency component of the electrical signal will be referred to as "a+bj". Since the phase of the negative frequency component is the complex conjugate of the positive frequency component, the phase and amplitude of the negative frequency component are a−bj.

変調器21は、図示しない連続光を第3電気信号で振幅変調して第1変調光を出力し、変調器22は、図示しない連続光を第4電気信号で振幅変調して第2変調光を出力する。光電変換部(O/E)31は、第1変調光を光電変換、つまり、直接検波して第5電気信号を出力し、O/E32は、第2変調光を光電変換、つまり、直接検波して第6電気信号を出力する。 The modulator 21 amplitude-modulates the continuous light (not shown) with a third electrical signal to output a first modulated light, and the modulator 22 amplitude-modulates the continuous light (not shown) with a fourth electrical signal to produce a second modulated light. to output A photoelectric conversion unit (O/E) 31 photoelectrically converts, that is, directly detects, the first modulated light and outputs a fifth electrical signal. An O/E 32 photoelectrically converts, that is, directly detects, the second modulated light. and output the sixth electrical signal.

図2(C)及び図2(D)は、それぞれ、第5電気信号及び第6電気信号の周波数成分を示している。直接検波により、第5電気信号及び第6電気信号の帯域幅の中心周波数は|ft|となる。なお、本例では、第1正弦波信号の周波数が、電気信号の周波数帯域より高いため、第5電気信号及び第6電気信号の負の周波数成分は、第3電気信号及び第4電気信号の正の周波数成分の積により生じ、第5電気信号及び第6電気信号の正の周波数成分は、第3電気信号及び第4電気信号の負の周波数成分の積により生じる。第1正弦波信号の位相が0であるため、第1電気信号の位相回転は生じず、よって、図2(C)に示す様に、第5電気信号の正の周波数成分は、図2(A)に示す第3電気信号の負の周波数成分と同じであり、第5電気信号の負の周波数成分は、第3電気信号の正の周波数成分と同じである。一方、第2正弦波信号の正の周波数成分の位相はπ/2であるため、第6電気信号の負の周波数成分の位相は、図2(B)に示す第4電気信号の正の周波数成分をπ/2だけ回転させたもの、つまり、図2(D)に示す様に-b+ajになる。また、第2正弦波信号の負の周波数成分の位相は-π/2であるため、第6電気信号の正の周波数成分の位相は、図2(B)に示す第4電気信号の負の周波数成分を-π/2だけ回転させたもの、つまり、図2(D)に示す様に-b-ajになる。 FIGS. 2(C) and 2(D) show the frequency components of the fifth electrical signal and the sixth electrical signal, respectively. With direct detection, the center frequency of the bandwidth of the fifth and sixth electrical signals is |ft|. In this example, since the frequency of the first sine wave signal is higher than the frequency band of the electrical signal, the negative frequency components of the fifth electrical signal and the sixth electrical signal are the negative frequency components of the third electrical signal and the fourth electrical signal. The positive frequency components of the fifth electrical signal and the sixth electrical signal result from the product of the negative frequency components of the third electrical signal and the fourth electrical signal. Since the phase of the first sinusoidal signal is 0, no phase rotation occurs in the first electrical signal, so as shown in FIG. 2(C), the positive frequency component of the fifth electrical signal is A) is the same as the negative frequency component of the third electrical signal, and the negative frequency component of the fifth electrical signal is the same as the positive frequency component of the third electrical signal. On the other hand, since the phase of the positive frequency component of the second sine wave signal is π/2, the phase of the negative frequency component of the sixth electrical signal is the positive frequency of the fourth electrical signal shown in FIG. The component is rotated by π/2, ie, -b+aj as shown in FIG. 2(D). Also, since the phase of the negative frequency component of the second sine wave signal is -π/2, the phase of the positive frequency component of the sixth electrical signal is the negative phase of the fourth electrical signal shown in FIG. The frequency component is rotated by -π/2, that is, -b-aj as shown in FIG. 2(D).

フィルタ41は、O/E31における直接検波で生じる不要な信号を除去し、図2(C)に示す信号成分のみを通過させる。フィルタ42は、O/E32における直接検波で生じる不要な信号を除去し、図2(D)に示す信号成分のみを通過させる。 Filter 41 removes unnecessary signals generated by direct detection in O/E 31 and allows only the signal components shown in FIG. 2(C) to pass. Filter 42 removes unnecessary signals generated by direct detection in O/E 32 and allows only the signal components shown in FIG. 2(D) to pass.

フィルタ41によりフィルタリングされた第5電気信号は、DD-MZM90の第1電極に印加され、フィルタ42によりフィルタリングされた第6電気信号は、DD-MZM90の第2電極に印加される。また、光源80は、連続光を生成してDD-MZM90に入力する。 The fifth electrical signal filtered by filter 41 is applied to the first electrode of DD-MZM 90 and the sixth electrical signal filtered by filter 42 is applied to the second electrode of DD-MZM 90 . Also, the light source 80 generates continuous light and inputs it to the DD-MZM 90 .

DD-MZM90は、入力される連続光を第1連続光と第2連続光に分岐し、第1連続光の位相を第1電極への印加電圧に基づき変化させて第3変調光とし、第2連続光の位相を第2電極への印加電圧に基づき変化させて第4変調光とする。そして、DD-MZM90は、第3変調光と第4変調光を合波した変調光を出力する。なお、第1電極への印加電圧が正の場合の位相の回転方向と、第2電極への印加電圧が正の場合の位相の回転方向は同じである。 The DD-MZM 90 splits the input continuous light into a first continuous light and a second continuous light, changes the phase of the first continuous light based on the voltage applied to the first electrode, and converts it into third modulated light. A fourth modulated light is obtained by changing the phase of the two continuous lights based on the voltage applied to the second electrode. Then, the DD-MZM 90 outputs modulated light obtained by combining the third modulated light and the fourth modulated light. The direction of phase rotation when the voltage applied to the first electrode is positive is the same as the direction of phase rotation when the voltage applied to the second electrode is positive.

また、図示してはいないが、第1電極及び第2電極には、それぞれ、バイアス電圧が印加され、第5電気信号及び第6電気信号が第1電極及び第2電極に印加されていなくても(第5電気信号及び第6電気信号の電圧が0であっても)、DD-MZM90は、バイアス電圧に応じた位相変化を第1連続光や第2連続光に与える。第1電極及び第2電極に印加されるバイアス電圧は、第1電極及び第2電極に第5電気信号及び第6電気信号が印加されていない場合、第3変調光と第4変調光の位相がπ/2だけ異なる様に設定される。例えば、第1電極に印加するバイアス電圧を0、つまり、バイアス電圧による位相変化を0とし、第2電極には、位相をπ/2だけ遅らせる(回転させる)バイアス電圧Vbを与えることができる。第2電極にバイアス電圧Vbを印加して、かつ、図2(D)に示す第6電気信号を第2電極に印加することは、第2電極へのバイアス電圧を0にして図2(E)に示す第6電気信号を第2電極に印加することと等価である。なお、図2(E)は、図2(D)の信号の位相をπ/2だけ遅らせたもの(-jを乗じたもの)である。図2(C)及び図2(E)に示す様に、第5電気信号及び第6電気信号の正の周波数成分は同じ振幅で位相が反転しているため相殺される。一方、第5電気信号及び第6電気信号の負の周波数成分は同じ振幅で位相が同じであるため相殺されない。したがって、変調光は、第5電気信号及び第6電気信号の負の周波数成分に対応する下側波帯のみを有する光SSB信号となる。なお、位相をπ/2だけ進めるバイアス電圧を第2電極に印加すると上側波帯のみを有する光SSB信号となる。 Also, although not shown, a bias voltage is applied to the first electrode and the second electrode, respectively, and the fifth electric signal and the sixth electric signal are not applied to the first electrode and the second electrode. Also (even if the voltages of the fifth electric signal and the sixth electric signal are 0), the DD-MZM 90 gives the first continuous light and the second continuous light a phase change corresponding to the bias voltage. When the fifth electrical signal and the sixth electrical signal are not applied to the first electrode and the second electrode, the bias voltage applied to the first electrode and the second electrode is the phase of the third modulated light and the fourth modulated light. are set to differ by π/2. For example, the bias voltage applied to the first electrode is 0, that is, the phase change due to the bias voltage is 0, and the second electrode is applied with a bias voltage Vb that delays (rotates) the phase by π/2. Applying the bias voltage Vb to the second electrode and applying the sixth electric signal shown in FIG. ) to the second electrode. FIG. 2(E) is obtained by delaying the phase of the signal of FIG. 2(D) by π/2 (multiplied by -j). As shown in FIGS. 2(C) and 2(E), the positive frequency components of the fifth electrical signal and the sixth electrical signal have the same amplitude and are phase-inverted, so they cancel each other out. On the other hand, since the negative frequency components of the fifth electrical signal and the sixth electrical signal have the same amplitude and the same phase, they are not cancelled. The modulated light is thus an optical SSB signal having only the lower sideband corresponding to the negative frequency components of the fifth electrical signal and the sixth electrical signal. When a bias voltage that advances the phase by π/2 is applied to the second electrode, an optical SSB signal having only the upper waveband is obtained.

発振器61が生成する第1正弦波信号の周波数が、電気信号の周波数帯域より低い場合についても同様であり、図3を用いて説明する。図3(A)及び図3(B)は、それぞれ、第3電気信号及び第4電気信号の周波数成分を示している。また、図3(C)及び図3(D)は、それぞれ、第5電気信号及び第6電気信号の周波数成分を示している。本例では、第1正弦波信号の周波数が、電気信号の周波数帯域より低いため、第5電気信号及び第6電気信号の正の周波数成分は、第3電気信号及び第4電気信号の正の周波数成分の積により生じ、第5電気信号及び第6電気信号の負の周波数成分は、第3電気信号及び第4電気信号の負の周波数成分の積により生じる。第1正弦波信号の位相が0であるため、第1電気信号の位相回転は生じず、よって、図3(C)に示す様に、第5電気信号の正負の周波数成分は、図3(A)に示す第3電気信号の正負の周波数成分と同じである。第2正弦波信号の正の周波数成分の位相はπ/2であるため、第6電気信号の正の周波数成分の位相は、図3(B)に示す第4電気信号の正の周波数成分をπ/2だけ回転させたもの、つまり、図3(D)に示す様に-b+ajになる。また、第2正弦波信号の負の周波数成分の位相は-π/2であるため、第6電気信号の負の周波数成分の位相は、図3(B)に示す第4電気信号の負の周波数成分を-π/2だけ回転させたもの、つまり、図3(D)に示す様に-b-ajになる。 The same applies to the case where the frequency of the first sine wave signal generated by the oscillator 61 is lower than the frequency band of the electrical signal, which will be described with reference to FIG. FIGS. 3A and 3B show frequency components of the third electrical signal and the fourth electrical signal, respectively. 3(C) and 3(D) respectively show the frequency components of the fifth electrical signal and the sixth electrical signal. In this example, since the frequency of the first sinusoidal signal is lower than the frequency band of the electrical signal, the positive frequency components of the fifth electrical signal and the sixth electrical signal are the positive frequency components of the third electrical signal and the fourth electrical signal. Resulting from the product of the frequency components, the negative frequency components of the fifth electrical signal and the sixth electrical signal result from the product of the negative frequency components of the third electrical signal and the fourth electrical signal. Since the phase of the first sine wave signal is 0, the phase rotation of the first electrical signal does not occur. Therefore, as shown in FIG. 3C, the positive and negative frequency components of the fifth electrical signal are It is the same as the positive and negative frequency components of the third electrical signal shown in A). Since the phase of the positive frequency component of the second sine wave signal is π/2, the phase of the positive frequency component of the sixth electrical signal corresponds to the positive frequency component of the fourth electrical signal shown in FIG. It is rotated by π/2, that is, -b+aj as shown in FIG. 3(D). Also, since the phase of the negative frequency component of the second sine wave signal is −π/2, the phase of the negative frequency component of the sixth electrical signal is the negative phase of the fourth electrical signal shown in FIG. The frequency component is rotated by -π/2, that is, -b-aj as shown in Fig. 3(D).

例えば、DD-MZM90の第1電極に印加するバイアス電圧を0、つまり、バイアス電圧による位相変化を0とし、第2電極には、位相をπ/2だけ遅らせる(回転させる)バイアス電圧Vbを与えるものとする。第2電極にバイアス電圧Vbを印加して、かつ、図3(D)に示す第6電気信号を第2電極に印加することは、第2電極へのバイアス電圧を0にして図3(E)に示す第6電気信号を第2電極に印加することと等価である。なお、図3(E)は、図3(D)の信号の位相をπ/2だけ遅らせたもの(-jを乗じたもの)である。図3(C)及び図3(E)に示す様に、第5電気信号及び第6電気信号の負の周波数成分は同じ振幅で位相が反転しているため相殺される。一方、第5電気信号及び第6電気信号の正の周波数成分は同じ振幅で位相が同じであるため相殺されない。したがって、変調光は、第5電気信号及び第6電気信号の正の周波数成分に対応する上側波帯のみを有する光SSB信号となる。なお、位相をπ/2だけ進めるバイアス電圧を第2電極に印加すると下側波帯のみを有する光SSB信号となる。 For example, the bias voltage applied to the first electrode of the DD-MZM 90 is 0, that is, the phase change due to the bias voltage is 0, and the second electrode is given a bias voltage Vb that delays (rotates) the phase by π/2. shall be Applying the bias voltage Vb to the second electrode and applying the sixth electrical signal shown in FIG. ) to the second electrode. FIG. 3(E) is obtained by delaying the phase of the signal of FIG. 3(D) by π/2 (multiplied by -j). As shown in FIGS. 3(C) and 3(E), the negative frequency components of the fifth electrical signal and the sixth electrical signal have the same amplitude and are phase-inverted, so they cancel each other out. On the other hand, the positive frequency components of the fifth electrical signal and the sixth electrical signal have the same amplitude and the same phase, so they are not cancelled. Therefore, the modulated light becomes an optical SSB signal having only the upper sideband corresponding to the positive frequency components of the fifth electrical signal and the sixth electrical signal. When a bias voltage that advances the phase by π/2 is applied to the second electrode, an optical SSB signal having only the lower sideband is obtained.

以上、簡易な構成で光SSB信号を生成することができる。 As described above, an optical SSB signal can be generated with a simple configuration.

<第二実施形態>
続いて、第二実施形態について第一実施形態との相違点を中心に説明する。図4は、本実施形態による光送信装置の構成図である。本実施形態の光送信装置は、第一実施形態における光変調器21及びO/E31を自乗検波器101に置き換え、光変調器22及びO/E32を自乗検波器102に置き換えたものである。自乗検波器101及び102は、それぞれ、第一実施形態の第3電気信号及び第4電気信号の自乗検波を行って第5電気信号及び第6電気信号を出力する。その他の構成については第一実施形態と同様である。
<Second embodiment>
Next, the second embodiment will be described, focusing on differences from the first embodiment. FIG. 4 is a configuration diagram of an optical transmission device according to this embodiment. The optical transmitter of the present embodiment is obtained by replacing the optical modulator 21 and O/E 31 in the first embodiment with a square detector 101 and replacing the optical modulator 22 and O/E 32 with a square detector 102 . Square-law detectors 101 and 102 respectively perform square-law detection of the third electrical signal and the fourth electrical signal of the first embodiment, and output fifth electrical signal and sixth electrical signal. Other configurations are the same as those of the first embodiment.

<第三実施形態>
続いて、第三実施形態について第一実施形態及び第二実施形態との相違点を中心に説明する。図5は、本実施形態による光送信装置の構成図である。なお、本実施形態による光送信装置のフィルタ41及び42より上流側の構成は、第一実施形態や第二実施形態と同様であるため省略する。
<Third embodiment>
Next, the third embodiment will be described, focusing on differences from the first and second embodiments. FIG. 5 is a configuration diagram of an optical transmission device according to this embodiment. Note that the configuration upstream of the filters 41 and 42 of the optical transmitter according to this embodiment is the same as in the first and second embodiments, and therefore will be omitted.

発振器62は、周波数fcの第3正弦波信号を生成して乗算器51及び乗算器52に出力する。乗算器51は、第5電気信号と第3正弦波信号を乗じて第7電気信号を出力し、乗算器52は、第6電気信号と第3正弦波信号を乗じて第8電気信号を出力する。 The oscillator 62 generates a third sine wave signal of frequency fc and outputs it to the multipliers 51 and 52 . The multiplier 51 multiplies the fifth electrical signal and the third sine wave signal to output a seventh electrical signal, and the multiplier 52 multiplies the sixth electrical signal and the third sine wave signal to output an eighth electrical signal. do.

図6(A)及び図6(B)は、それぞれ、図2(C)及び図2(D)に示す第5電気信号及び第6電気信号を周波数シフトして生成した第7電気信号及び第8電気信号の周波数成分を示している。第7電気信号は、周波数fcの両側に第5電気信号の負の周波数成分及び正の周波数成分を有する。つまり、第7電気信号は、第5電気信号と第3正弦波信号の周波数和をその周波数とする周波数成分(以下、周波数和成分)と、第5電気信号と第3正弦波信号の周波数差をその周波数とする周波数成分(以下、周波数差成分)を有する。同様に、第8電気信号は、周波数fcの両側に第6電気信号の負の周波数成分及び正の周波数成分を有する。つまり、第8電気信号は、第6電気信号と第3正弦波信号の周波数和成分と、第6電気信号と第3正弦波信号の周波数差成分を有する。 FIGS. 6(A) and 6(B) respectively show the seventh electrical signal and the sixth electrical signal generated by frequency-shifting the fifth electrical signal and the sixth electrical signal shown in FIGS. 2(C) and 2(D). 8 shows the frequency components of the electrical signal. The seventh electrical signal has the negative and positive frequency components of the fifth electrical signal on both sides of frequency fc. That is, the seventh electrical signal has a frequency component whose frequency is the sum of the frequencies of the fifth electrical signal and the third sine wave signal (hereinafter referred to as the frequency sum component), and the frequency difference between the fifth electrical signal and the third sine wave signal. has a frequency component (hereinafter referred to as a frequency difference component) whose frequency is . Similarly, the eighth electrical signal has the negative and positive frequency components of the sixth electrical signal on either side of frequency fc. That is, the eighth electrical signal has a frequency sum component of the sixth electrical signal and the third sine wave signal and a frequency difference component of the sixth electrical signal and the third sine wave signal.

BPF111は、第7電気信号に含まれる周波数和成分と周波数差成分の内の一方を取り出して他方を除去する。BPF112は、第8電気信号に含まれる周波数和成分と周波数差成分の内の一方を取り出して他方を除去する。なお、BPF111とBPF112は、周波数fcの同じ側の周波数成分を取り出す。本例においては、周波数和成分を取り出すものとする。図6(C)及び図6(D)は、それぞれ、BPF111が出力する第9電気信号及びBPF112が出力する第10電気信号を示している。 The BPF 111 extracts one of the frequency sum component and the frequency difference component included in the seventh electrical signal and removes the other. The BPF 112 extracts one of the frequency sum component and the frequency difference component included in the eighth electrical signal and removes the other. Note that the BPF 111 and the BPF 112 extract frequency components on the same side of the frequency fc. In this example, it is assumed that the frequency sum component is taken out. 6(C) and 6(D) show the ninth electrical signal output by the BPF 111 and the tenth electrical signal output by the BPF 112, respectively.

第9電気信号及び第10電気信号の周波数成分は、図2(C)及び図2(D)に示す第5電気信号及び第6電気信号と同様であるため、DD-MZM90に適切なバイアス電圧を印加した上で、第9電気信号をDD-MZM90の第1電極に印加し、第10電気信号をDD-MZM90の第2電極に印加することで光SSB信号を生成することができる。なお、周波数差成分を取り出しても同様である。 Since the frequency components of the ninth electrical signal and the tenth electrical signal are similar to the fifth electrical signal and the sixth electrical signal shown in FIGS. is applied, a ninth electrical signal is applied to the first electrode of the DD-MZM 90, and a tenth electrical signal is applied to the second electrode of the DD-MZM 90, thereby generating an optical SSB signal. It should be noted that the same is true even if the frequency difference component is taken out.

この様に、第5電気信号及び第6電気信号の周波数変換を行うことで、光SSB信号の側波帯の周波数を制御することが可能になる。 By performing frequency conversion on the fifth electrical signal and the sixth electrical signal in this way, it becomes possible to control the frequency of the sideband of the optical SSB signal.

[その他の実施形態]
なお、上記各実施形態においては図1、図4及び図5の構成を光送信装置としたが、図1、図4及び図5の構成は、光SSB変調器でもある。
[Other embodiments]
Although the configurations of FIGS. 1, 4 and 5 are used as optical transmitters in each of the above embodiments, the configurations of FIGS. 1, 4 and 5 are also optical SSB modulators.

発明は上記の実施形態に制限されるものではなく、発明の要旨の範囲内で、種々の変形・変更が可能である。 The invention is not limited to the above embodiments, and various modifications and changes are possible within the scope of the invention.

21、22:変調器、31、32:光電変換部、90:2電極型マッハツェンダ変調器 21, 22: modulators 31, 32: photoelectric converters 90: two-electrode Mach-Zehnder modulators

Claims (8)

送信対象の電気信号と第1正弦波信号とを含む第1電気信号により第1連続光を変調して第1変調光を出力する第1変調手段と、
前記電気信号と、前記第1正弦波信号との位相差がπ/2である第2正弦波信号とを含む第2電気信号により第2連続光を変調して第2変調光を出力する第2変調手段と、
前記第1変調光の光電変換を含む処理により第3電気信号を出力する第1変換手段と、
前記第2変調光の光電変換を含む処理により第4電気信号を出力する第2変換手段と、
前記第3電気信号により第3連続光を位相変調して第3変調光を生成し、前記第4電気信号により前記第3連続光を位相変調して第4変調光を生成し、前記第3変調光及び前記第4変調光を合波して出力する第3変調手段と、
を備えており、
前記第3変調手段は、前記第3電気信号及び前記第4電気信号が入力されない場合、前記第3変調光と前記第4変調光の位相差をπ/2とする様に構成されることを特徴とする光送信装置。
a first modulating means for modulating the first continuous light with a first electric signal including the electric signal to be transmitted and the first sine wave signal to output the first modulated light;
a second electrical signal including the electrical signal and a second sine wave signal having a phase difference of π/2 from the first sine wave signal to modulate the second continuous light to output the second modulated light; 2 modulating means;
a first conversion means for outputting a third electrical signal by processing including photoelectric conversion of the first modulated light;
second conversion means for outputting a fourth electrical signal by processing including photoelectric conversion of the second modulated light;
phase-modulate the third continuous light with the third electrical signal to generate a third modulated light; phase-modulate the third continuous light with the fourth electrical signal to generate the fourth modulated light; a third modulating means for combining and outputting the modulated light and the fourth modulated light;
and
The third modulating means is configured to set the phase difference between the third modulated light and the fourth modulated light to π/2 when the third electric signal and the fourth electric signal are not input. An optical transmitter characterized by:
前記第1変換手段は、
前記第1変調光の光電変換により第5電気信号を出力する第1光電変換手段と、
前記第5電気信号を第2正弦波信号により周波数変換して第7電気信号を出力する第1周波数変換手段と、
前記第7電気信号をフィルタリングして、前記第7電気信号に含まれる、前記第5電気信号と前記第2正弦波信号の周波数和をその周波数とする周波数成分及び周波数差をその周波数とする周波数成分の内のいずれか一方の周波数成分を取り出し、前記第3電気信号として出力する第1フィルタ手段と、
を備え、
前記第2変換手段は、
前記第2変調光の光電変換により第6電気信号を出力する第2光電変換手段と、
前記第6電気信号を前記第2正弦波信号により周波数変換して第8電気信号を出力する第2周波数変換手段と、
前記第8電気信号をフィルタリングして、前記第8電気信号に含まれる、前記第6電気信号と前記第2正弦波信号の周波数和をその周波数とする周波数成分及び周波数差をその周波数とする周波数成分の内の、前記第1フィルタ手段が取り出す側と同じ側の周波数成分を取り出し、前記第4電気信号として出力する第2フィルタ手段と、
を備えていることを特徴とする請求項1に記載の光送信装置。
The first conversion means is
a first photoelectric conversion means for outputting a fifth electrical signal by photoelectric conversion of the first modulated light;
first frequency conversion means for frequency-converting the fifth electrical signal with a second sine wave signal to output a seventh electrical signal;
filtering the seventh electrical signal to obtain a frequency component whose frequency is the sum of the frequencies of the fifth electrical signal and the second sine wave signal and a frequency whose frequency is the difference between the frequencies of the fifth electrical signal and the second sine wave signal; a first filter means for extracting one of the frequency components and outputting it as the third electrical signal;
with
The second conversion means is
a second photoelectric conversion means for outputting a sixth electrical signal by photoelectric conversion of the second modulated light;
second frequency conversion means for frequency-converting the sixth electrical signal with the second sine wave signal to output an eighth electrical signal;
filtering the eighth electrical signal to obtain a frequency component whose frequency is the sum of the frequencies of the sixth electrical signal and the second sine wave signal and a frequency whose frequency is the difference between the frequencies of the sixth electrical signal and the second sine wave signal; second filter means for extracting a frequency component on the same side as the side extracted by the first filter means and outputting it as the fourth electrical signal;
2. The optical transmitter according to claim 1, comprising:
送信対象の電気信号と第1正弦波信号とを含む第1電気信号の自乗検波を含む処理により第3電気信号を出力する第1検波手段と、
前記電気信号と、前記第1正弦波信号との位相差がπ/2である第2正弦波信号とを含む第2電気信号の自乗検波を含む処理により第4電気信号を出力する第2検波手段と、
前記第3電気信号により連続光を位相変調して第3変調光を生成し、前記第4電気信号により前記連続光を位相変調して第4変調光を生成し、前記第3変調光及び前記第4変調光を合波して出力する第3変調手段と、
を備えており、
前記第3変調手段は、前記第3電気信号及び前記第4電気信号が入力されない場合、前記第3変調光と前記第4変調光の位相差をπ/2とする様に構成されることを特徴とする光送信装置。
a first detection means for outputting a third electrical signal by processing including square-law detection of a first electrical signal including the electrical signal to be transmitted and the first sine wave signal;
A second detection that outputs a fourth electrical signal by processing including square-law detection of the second electrical signal including the electrical signal and a second sine wave signal having a phase difference of π/2 from the first sine wave signal. means and
phase-modulating the continuous light with the third electrical signal to generate a third modulated light; phase-modulating the continuous light with the fourth electrical signal to generate a fourth modulated light; a third modulating means for combining and outputting the fourth modulated light;
and
The third modulating means is configured to set the phase difference between the third modulated light and the fourth modulated light to π/2 when the third electric signal and the fourth electric signal are not input. An optical transmitter characterized by:
前記第1検波手段は、
前記第1電気信号を自乗検波して第5電気信号を出力する第1自乗検波手段と、
前記第5電気信号を第2正弦波信号により周波数変換して第7電気信号を出力する第1周波数変換手段と、
前記第7電気信号をフィルタリングして、前記第7電気信号に含まれる、前記第5電気信号と前記第2正弦波信号の周波数和をその周波数とする周波数成分及び周波数差をその周波数とする周波数成分の内のいずれか一方の周波数成分を取り出し、前記第3電気信号として出力する第1フィルタ手段と、
を備え、
前記第2検波手段は、
前記第2電気信号を自乗検波して第6電気信号を出力する第2自乗検波手段と、
前記第6電気信号を前記第2正弦波信号により周波数変換して第8電気信号を出力する第2周波数変換手段と、
前記第8電気信号をフィルタリングして、前記第8電気信号に含まれる、前記第6電気信号と前記第2正弦波信号の周波数和をその周波数とする周波数成分及び周波数差をその周波数とする周波数成分の内の、前記第1フィルタ手段が取り出す側と同じ側の周波数成分を取り出し、前記第4電気信号として出力する第2フィルタ手段と、
を備えていることを特徴とする請求項3に記載の光送信装置。
The first detection means is
first square-law detection means for square-law-detecting the first electric signal and outputting a fifth electric signal;
first frequency conversion means for frequency-converting the fifth electrical signal with a second sine wave signal to output a seventh electrical signal;
filtering the seventh electrical signal to obtain a frequency component whose frequency is the sum of the frequencies of the fifth electrical signal and the second sine wave signal and a frequency whose frequency is the difference between the frequencies of the fifth electrical signal and the second sine wave signal; a first filter means for extracting one of the frequency components and outputting it as the third electrical signal;
with
The second detection means is
a second square-law detection means for square-law-detecting the second electric signal and outputting a sixth electric signal;
second frequency conversion means for frequency-converting the sixth electrical signal with the second sine wave signal to output an eighth electrical signal;
filtering the eighth electrical signal to obtain a frequency component whose frequency is the sum of the frequencies of the sixth electrical signal and the second sine wave signal and a frequency whose frequency is the difference between the frequencies of the sixth electrical signal and the second sine wave signal; second filter means for extracting a frequency component on the same side as the side extracted by the first filter means and outputting it as the fourth electrical signal;
4. The optical transmitter according to claim 3, comprising:
前記第3変調手段は、2電極型マッハツェンダ変調器であることを特徴とする請求項1から4のいずれか1項に記載の光送信装置。 5. The optical transmitter according to claim 1, wherein said third modulating means is a two-electrode Mach-Zehnder modulator. 前記2電極型マッハツェンダ変調器の各電極に印加するバイアス電圧により、前記第3電気信号及び前記第4電気信号が入力されない場合、前記第3変調光と前記第4変調光の位相差はπ/2とされることを特徴とする請求項5に記載の光送信装置。 When the third electrical signal and the fourth electrical signal are not input due to the bias voltage applied to each electrode of the two-electrode Mach-Zehnder modulator, the phase difference between the third modulated light and the fourth modulated light is π/ 6. The optical transmitter according to claim 5, wherein the number of the optical transmitter is 2. 送信対象の電気信号と第1正弦波信号とを含む第1電気信号により第1連続光を変調して第1変調光を出力する第1変調手段と、
前記電気信号と、前記第1正弦波信号との位相差がπ/2である第2正弦波信号とを含む第2電気信号により第2連続光を変調して第2変調光を出力する第2変調手段と、
前記第1変調光の光電変換を含む処理により第3電気信号を出力する第1変換手段と、
前記第2変調光の光電変換を含む処理により第4電気信号を出力する第2変換手段と、
前記第3電気信号により第3連続光を位相変調して第3変調光を生成し、前記第4電気信号により前記第3連続光を位相変調して第4変調光を生成し、前記第3変調光及び前記第4変調光を合波して出力する第3変調手段と、
を備えており、
前記第3変調手段は、前記第3電気信号及び前記第4電気信号が入力されない場合、前記第3変調光と前記第4変調光の位相差をπ/2とする様に構成されることを特徴とする光変調器。
a first modulating means for modulating the first continuous light with a first electric signal including the electric signal to be transmitted and the first sine wave signal to output the first modulated light;
a second electrical signal including the electrical signal and a second sine wave signal having a phase difference of π/2 from the first sine wave signal to modulate the second continuous light to output the second modulated light; 2 modulating means;
a first conversion means for outputting a third electrical signal by processing including photoelectric conversion of the first modulated light;
second conversion means for outputting a fourth electrical signal by processing including photoelectric conversion of the second modulated light;
phase-modulate the third continuous light with the third electrical signal to generate a third modulated light; phase-modulate the third continuous light with the fourth electrical signal to generate the fourth modulated light; a third modulating means for combining and outputting the modulated light and the fourth modulated light;
and
The third modulating means is configured to set the phase difference between the third modulated light and the fourth modulated light to π/2 when the third electric signal and the fourth electric signal are not input. An optical modulator characterized by:
送信対象の電気信号と第1正弦波信号とを含む第1電気信号の自乗検波を含む処理により第3電気信号を出力する第1検波手段と、
前記電気信号と、前記第1正弦波信号との位相差がπ/2である第2正弦波信号とを含む第2電気信号の自乗検波を含む処理により第4電気信号を出力する第2検波手段と、
前記第3電気信号により連続光を位相変調して第3変調光を生成し、前記第4電気信号により前記連続光を位相変調して第4変調光を生成し、前記第3変調光及び前記第4変調光を合波して出力する第3変調手段と、
を備えており、
前記第3変調手段は、前記第3電気信号及び前記第4電気信号が入力されない場合、前記第3変調光と前記第4変調光の位相差をπ/2とする様に構成されることを特徴とする光変調器。
a first detection means for outputting a third electrical signal by processing including square-law detection of a first electrical signal including the electrical signal to be transmitted and the first sine wave signal;
A second detection that outputs a fourth electrical signal by processing including square-law detection of the second electrical signal including the electrical signal and a second sine wave signal having a phase difference of π/2 from the first sine wave signal. means and
phase-modulating the continuous light with the third electrical signal to generate a third modulated light; phase-modulating the continuous light with the fourth electrical signal to generate a fourth modulated light; a third modulating means for combining and outputting the fourth modulated light;
and
The third modulating means is configured to set the phase difference between the third modulated light and the fourth modulated light to π/2 when the third electric signal and the fourth electric signal are not input. An optical modulator characterized by:
JP2019181627A 2019-10-01 2019-10-01 Optical modulator and optical transmitter Active JP7164504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019181627A JP7164504B2 (en) 2019-10-01 2019-10-01 Optical modulator and optical transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019181627A JP7164504B2 (en) 2019-10-01 2019-10-01 Optical modulator and optical transmitter

Publications (2)

Publication Number Publication Date
JP2021057845A JP2021057845A (en) 2021-04-08
JP7164504B2 true JP7164504B2 (en) 2022-11-01

Family

ID=75272883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019181627A Active JP7164504B2 (en) 2019-10-01 2019-10-01 Optical modulator and optical transmitter

Country Status (1)

Country Link
JP (1) JP7164504B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008040053A1 (en) 2006-10-03 2008-04-10 National Ict Australia Limited Single sideband orthogonal frequency division multiplexed optical fibre transmission
JP2009294263A (en) 2008-06-02 2009-12-17 Nippon Telegr & Teleph Corp <Ntt> Optical single sideband (ssb) modulator
JP2012249122A (en) 2011-05-30 2012-12-13 Nippon Telegr & Teleph Corp <Ntt> Optical communication system and optical transmitter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008040053A1 (en) 2006-10-03 2008-04-10 National Ict Australia Limited Single sideband orthogonal frequency division multiplexed optical fibre transmission
JP2009294263A (en) 2008-06-02 2009-12-17 Nippon Telegr & Teleph Corp <Ntt> Optical single sideband (ssb) modulator
JP2012249122A (en) 2011-05-30 2012-12-13 Nippon Telegr & Teleph Corp <Ntt> Optical communication system and optical transmitter

Also Published As

Publication number Publication date
JP2021057845A (en) 2021-04-08

Similar Documents

Publication Publication Date Title
JP4178617B2 (en) Optical transmission system, optical transmitter, and optical transmission method
US8437638B2 (en) Optical modulation circuit and optical transmission system
CN109150314B (en) Frequency conversion phase shift integrated photon microwave frequency mixing device
US7715729B2 (en) Apparatus and method for generating an optical single sideband signal
US8768174B2 (en) Modulation device and modulation method, and demodulation device and demodulation method
JP4878358B2 (en) Optical SSB modulator
US9258061B2 (en) Individual information in lower and upper optical sidebands
KR100640509B1 (en) Single side band modulation device
JPH053458A (en) Bi-direction optical transmitting method and device
WO2007080950A1 (en) Angle modulation device
JP7164504B2 (en) Optical modulator and optical transmitter
US7734185B2 (en) Optical transmitter and optical transmission system
WO2022254855A1 (en) Optical angle modulator and optical transmission device
KR100713408B1 (en) Single side band modulator module and single side band modulator device using the same
EP1271807A1 (en) Optical vestigial sideband modulator
EP3382910B1 (en) Optical transceiver and method of operating an optical transceiver
JP4531010B2 (en) Optical phase modulation / demodulation circuit and optical phase modulation / demodulation method
JP4728275B2 (en) Optical SSB transmitter
JP2022110482A (en) frequency multiplier
JP6363933B2 (en) Optical transmitter / receiver, optical receiver, and optical transmitter / receiver method
JP6103100B1 (en) Optical signal demodulator
JP2020088598A (en) Wireless transmission apparatus
JP7273382B2 (en) Optical transmitter and optical transmission method
JP7467398B2 (en) Optical modulator and optical transmitter
JP7306652B2 (en) Optical transmitter and optical communication system

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210203

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221020

R150 Certificate of patent or registration of utility model

Ref document number: 7164504

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150