JP4531010B2 - Optical phase modulation / demodulation circuit and optical phase modulation / demodulation method - Google Patents

Optical phase modulation / demodulation circuit and optical phase modulation / demodulation method Download PDF

Info

Publication number
JP4531010B2
JP4531010B2 JP2006146456A JP2006146456A JP4531010B2 JP 4531010 B2 JP4531010 B2 JP 4531010B2 JP 2006146456 A JP2006146456 A JP 2006146456A JP 2006146456 A JP2006146456 A JP 2006146456A JP 4531010 B2 JP4531010 B2 JP 4531010B2
Authority
JP
Japan
Prior art keywords
phase
optical
modulator
phase modulator
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006146456A
Other languages
Japanese (ja)
Other versions
JP2007318483A (en
Inventor
明秀 佐野
一茂 米永
宮本  裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2006146456A priority Critical patent/JP4531010B2/en
Publication of JP2007318483A publication Critical patent/JP2007318483A/en
Application granted granted Critical
Publication of JP4531010B2 publication Critical patent/JP4531010B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、多値の光位相変調を適用した変調技術および遅延検波を用いた復調技術に関する。   The present invention relates to a modulation technique using multi-level optical phase modulation and a demodulation technique using delayed detection.

光ファイバ伝送技術の周波数利用効率を向上する狭帯域変調方式として、差動直交位相シフトキーイング(Differential Quadrature Phase-Shift Keying:DQPSK)方式が注目されている。本変調方式では、2値の差動位相シフトキーイング(Differential Phase-Shift Keying:DPSK)方式と同じ占有帯域幅でありながら、伝送容量を2倍に拡大することが可能である(例えば、非特許文献1参照)。   A differential quadrature phase-shift keying (DQPSK) system has attracted attention as a narrowband modulation system that improves the frequency utilization efficiency of optical fiber transmission technology. In this modulation system, the transmission capacity can be doubled while the occupied bandwidth is the same as that of the binary differential phase-shift keying (DPSK) system (for example, non-patent) Reference 1).

また、受信側では遅延マッハツェンダ干渉計(Mach−Zehnder
Interferometer:MZI)を用いた遅延検波により復調するため、偏波依存性が小さく、安定した受信特性を実現することができる。
On the receiving side, a delay Mach-Zehnder interferometer (Mach-Zehnder
Since demodulation is performed by delay detection using Interferometer (MZI), polarization dependency is small, and stable reception characteristics can be realized.

R.A.Griffin et al.,“Optical Differential Quadrature Phase−Shift Key(oDQPSK)for High Capacity Optical Transmission”、OFC2002,PaperWX6,2002.R. A. Griffin et al. "Optical Differential Quadrature Phase-Shift Key (oDQPSK) for High Capacity Optical Transmission", OFC2002, PaperWX6, 2002. C.R.Doerr et al.,“Simultaneous reception of both quadratures of 40−Gb/s DQPSK usinga simple monolithic demodulator”、OFC2005,Paper PDP12,2005.C. R. Doerr et al. , “Simultaneous reception of both quadratures of 40-Gb / s DQPSK using simple simple demodulator”, OFC 2005, Paper PDP 12, 2005.

しかしながら、従来のDQPSK変復調方式においては以下のような課題がある。すなわち、DQPSK方式における受信側の2つの遅延マッハツェンダ干渉計は、一方の遅延マッハツェンダ干渉計については2つのアームの位相差をπ/4とし、もう一方の遅延マッハツェンダ干渉計は前者の位相差からπ/2だけシフトさせる(すなわち−π/4とする)必要がある。   However, the conventional DQPSK modulation / demodulation system has the following problems. That is, in the two delay Mach-Zehnder interferometers on the receiving side in the DQPSK system, the phase difference between the two arms is set to π / 4 for one delay Mach-Zehnder interferometer, and the other delay Mach-Zehnder interferometer is π from the former phase difference. It is necessary to shift by / 2 (that is, −π / 4).

このため、遅延マッハツェンダ干渉計の透過スペクトルは、透過ピークとなる周波数が光キャリア周波数からFSR/8だけずれた位置に来ることになる。ただし、FSRは自由スペクトル域(Free
Spectral Range)である。
For this reason, the transmission spectrum of the delayed Mach-Zehnder interferometer comes to a position where the frequency that becomes the transmission peak is shifted from the optical carrier frequency by FSR / 8. However, FSR is the free spectral range (Free
Spectral Range).

実際のDQPSK送受信器では、送信信号の波長に合せて受信側の遅延マッハツェンダ干渉計の中心波長を調整する必要があるが、この際に透過パワーが最大となる光キャリア周波数の位置からFSR/8だけずらした位置に遅延マッハツェンダ干渉計を調整するため、透過パワーを用いた調整方法を用いることができないため、復調波形をモニタするなど、複雑な調整手段が必要となる。   In an actual DQPSK transceiver, it is necessary to adjust the center wavelength of the delayed Mach-Zehnder interferometer on the receiving side according to the wavelength of the transmission signal. At this time, the FSR / 8 is determined from the position of the optical carrier frequency at which the transmission power is maximum. Since the delay Mach-Zehnder interferometer is adjusted to a position shifted by a certain amount, an adjustment method using transmitted power cannot be used, so that complicated adjustment means such as monitoring a demodulated waveform is required.

本発明は、このような背景を考慮してなされたもので、従来のDQPSK信号と同程度の狭スペクトル特性を有していながら、遅延マッハツェンダ干渉計の位相差が零、すなわち、光キャリア周波数において遅延マッハツェンダ干渉計の透過パワーが最大となる状態に設定することによって復調されるようにすることにより、遅延マッハツェンダ干渉計の中心周波数の調整を容易にすることを目的とする。   The present invention has been made in consideration of such a background, and has a narrow spectrum characteristic comparable to that of a conventional DQPSK signal, but the phase difference of the delayed Mach-Zehnder interferometer is zero, that is, at the optical carrier frequency. An object of the present invention is to facilitate the adjustment of the center frequency of the delayed Mach-Zehnder interferometer by setting the transmission power of the delayed Mach-Zehnder interferometer to a maximum value so as to be demodulated.

本発明の光位相変調回路は、パワー一定の連続光を発生するCW光源と、入力された光信号に対してシンボルレートの半分の周波数で位相またはπ/4に変調するπ/4位相変調器と、入力された光信号を2経路に分け、それぞれの光信号に対して位相またはπに変調し、一方の光信号の位相をπ/2だけずらして再び合波する光直交位相変調器とにより構成され、CW光源−π/4位相変調器−光直交位相変調器、もしくはCW光源−光直交位相変調器−π/4位相変調器の順に直列に接続されたことを特徴とする。 The optical phase modulation circuit of the present invention includes a CW light source that generates continuous light with constant power, and a π / 4 phase that modulates the phase to 0 or π / 4 at a frequency that is half the symbol rate of the input optical signal. Modulator and optical quadrature that divides the input optical signal into two paths , modulates the phase of each optical signal to 0 or π , shifts the phase of one optical signal by π / 2, and multiplexes again is more configured to a phase modulator, the CW light source - [pi / 4 phase modulator - optical quadrature phase modulator, or CW light source - optical quadrature phase modulator - [pi / 4 that are connected in series in the order of the phase modulator Features.

あるいは、本発明の光位相変調回路は、パワー一定の連続光を発生するCW光源と、入力された光信号に対してシンボルレートの半分の周波数で位相または3π/4に変調する3π/4位相変調器と、入力された光信号を2経路に分け、それぞれの光信号に対して位相またはπに変調し、一方の光信号の位相をπ/2だけずらして再び合波する光直交位相変調器とにより構成され、CW光源−3π/4位相変調器−光直交位相変調器、もしくはCW光源−光直交位相変調器−3π/4位相変調器の順に直列に接続されたことを特徴とする。 Alternatively, the optical phase modulation circuit of the present invention includes a CW light source that generates continuous light with constant power, and 3π / that modulates the phase to 0 or 3π / 4 at a frequency that is half the symbol rate of the input optical signal. 4 and the phase modulator divides the input optical signal into two paths, the phase with respect to each of the optical signal is modulated to 0 or [pi, multiplexes again shifting the phase of one of the optical signal by [pi / 2 It is more configured to the optical quadrature phase modulator, the CW light source - 3 [pi] / 4 phase modulator - optical quadrature phase modulator, or CW light source - optical quadrature phase modulator - connected in series in the order of 3 [pi] / 4 phase modulator It is characterized by that.

あるいは、本発明の光位相変調回路は、パワー一定の連続光を発生するCW光源と、入力された光信号に対してシンボルレートの半分の周波数で位相を0またはπ/4に変調するπ/4位相変調器と、入力された光信号に対して位相を0またはπに変調するπ位相変調器と、入力された光信号に対して位相を0またはπ/2に変調するπ/2位相変調器とが、CW光源を先頭にし、その後前記π/4位相変調器と前記π/2位相変調器と前記π位相変調器とが任意の順序で直列に接続されたことを特徴とする。 Alternatively, the optical phase modulation circuit of the present invention includes a CW light source that generates continuous light with constant power, and π / that modulates the phase to 0 or π / 4 at a frequency half the symbol rate with respect to the input optical signal. 4 and the phase modulator, and [pi phase modulator for modulating the phase 0 or [pi with respect to the input optical signal, modulates the phase 0 or [pi / 2 relative to the input optical signal [pi / 2 phase and modulator, the heading of the CW light source, then the [pi / 4 phase modulator and the [pi / 2 phase modulator and said [pi phase modulator is characterized by being connected in series in any order.

あるいは、本発明の光位相変調回路は、パワー一定の連続光を発生するCW光源と、入力された光信号に対してシンボルレートの半分の周波数で位相3π/4に変調する3π/4位相変調器と、入力された光信号に対して位相πに変調するπ位相変調器と、入力された光信号に対して位相π/2に変調するπ/2位相変調器とが、CW光源を先頭にし、その後前記3π/4位相変調器と前記π/2位相変調器と前記π位相変調器とが任意の順序で直列に接続されたことを特徴とする。 Alternatively, the optical phase modulation circuit of the present invention includes a CW light source that generates continuous light with constant power and a 3π / 4 phase that modulates the phase to 3π / 4 at a frequency that is half the symbol rate of the input optical signal. a modulator, a phase modulator [pi for modulating the phase [pi to light signals inputted, and [pi / 2 phase modulator for modulating the phase [pi / 2 with respect to the input optical signal, CW a light source at the beginning, then the 3 [pi] / 4 phase modulator and the [pi / 2 phase modulator and said [pi phase modulator is characterized by being connected in series in any order.

さらに、シンボルレートと同じ周波数で光強度を変調する光強度変調器を任意の位置に挿入した構成とすることにより、シンボルレートに等しい周波数で強度変調を重畳することもできる。   Furthermore, by adopting a configuration in which a light intensity modulator that modulates light intensity at the same frequency as the symbol rate is inserted at an arbitrary position, it is possible to superimpose intensity modulation at a frequency equal to the symbol rate.

本発明の光位相変調回路の構成では、前記π/4位相変調器または3π/4位相変調器に代えて、シンボルレートの半分の周波数で、位相がシフトした正弦波駆動信号により駆動された両電極駆動マッハツェンダ光変調器を用いることもできる。 In the configuration of the optical phase modulation circuit of the present invention, or prior SL [pi / 4 phase modulator in place of the 3 [pi / 4 phase modulator, at half the frequency of the symbol rate, driven by sinusoidal drive signals having phases shifted A dual electrode drive Mach-Zehnder optical modulator can also be used.

例えば、このときに、前記正弦波駆動信号の各アーム間の位相差が約14°であり、振幅がそれぞれ半波長電圧の約0.51倍である。あるいは、前記正弦波駆動信号の各アーム間の位相差が約37°であり、振幅がそれぞれ半波長電圧の約0.63倍である。   For example, at this time, the phase difference between the arms of the sine wave drive signal is about 14 °, and the amplitude is about 0.51 times the half-wave voltage. Alternatively, the phase difference between the arms of the sine wave drive signal is about 37 °, and the amplitude is about 0.63 times the half-wave voltage.

あるいは、前記π/4位相変調器または3π/4位相変調器に代えて、シンボルレートの半分の周波数で、位相が互いにπだけシフトしていて振幅の異なる正弦波駆動信号により駆動された両電極駆動マッハツェンダ光変調器を用いることもできる。 Alternatively, or pre SL [pi / 4 phase modulator in place of the 3 [pi / 4 phase modulator, at half the frequency of the symbol rate, and are phase shifted by [pi each other are driven by different sinusoidal drive signal amplitude A double electrode drive Mach-Zehnder optical modulator can also be used.

例えば、このときに、前記正弦波駆動信号の振幅が半波長電圧の約0.875倍と半波長電圧の約0.125倍である。あるいは、前記正弦波駆動信号の振幅が半波長電圧の約0.625倍と半波長電圧の約0.375倍である。   For example, at this time, the amplitude of the sine wave drive signal is about 0.875 times the half-wave voltage and about 0.125 times the half-wave voltage. Alternatively, the amplitude of the sine wave drive signal is about 0.625 times the half-wave voltage and about 0.375 times the half-wave voltage.

また、本発明を光位相復調回路の観点から観ると、本発明の光位相復調回路は、受信された光信号を2経路に分ける光分岐回路と、2経路に分けたそれぞれの光信号に対して、1シンボル分の遅延を加える2つの遅延マッハツェンダ干渉計と、この2つの遅延マッハツェンダ干渉計から出力される信号をそれぞれ受信する2つのバランスドレシーバとから構成されており、前記2つの遅延マッハツェンダ干渉計で光信号に与える位相差がそれぞれ0およびπ/2ラジアンであることを特徴とする。 Further, when the present invention is viewed from the viewpoint of an optical phase demodulator circuit, the optical phase demodulator circuit of the present invention has an optical branch circuit that divides a received optical signal into two paths, and each optical signal divided into two paths. Te, 1 and symbol delay two delay Mach-Zehnder interferometer Ru added, and the signal output from the two delay Mach-Zehnder interferometer is composed of two balanced receivers for receiving respectively the two and wherein the phase difference given to the optical signal delay Mach-Zehnder interferometer are each 0 and [pi / 2 radians.

また、本発明を光変調方法の観点からみると、本発明の光変調方法、差動直交位相シフトキーイングを用いた光変調方法において、偶数シンボルの光位相が0、π/2、π、3π/2のいずれかの値をとり、奇数シンボルの光位相がπ/4、3π/4、5π/4、7π/4のいずれかの値をとり、偶数シンボルと奇数シンボルでは取りうる位相点がπ/4シフトしていることを特徴とするFurther, when the present invention is viewed from the viewpoint of the optical modulation method, in the optical modulation method of the present invention and the optical modulation method using differential quadrature phase shift keying, the optical phase of even symbols is 0, π / 2, π, 3π. / 2 takes any value, the value of any of the odd symbol the light phase is π / 4,3π / 4,5π / 4,7π / 4 DOO is, the phase point that can be taken in the even symbols and the odd symbols Is shifted by π / 4 .

また、本発明を光復調方法の観点から観ると、本発明の光復調方法は、受信された光信号を2経路に分け、2経路に分けた光信号を、1シンボル分の遅延を加える2つの遅延マッハツェンダ干渉計にそれぞれ入力し、該2つの遅延マッハツェンダ干渉計から出力される信号を2つのバランスドレシーバによりそれぞれ光―電気変換した後に受信する光受信方法であって、前記2つの遅延マッハツェンダ干渉計で光信号に与える位相差がそれぞれ0およびπ/2であることを特徴とする。 When the present invention is viewed from the viewpoint of the optical demodulation method, the optical demodulation method of the present invention divides the received optical signal into two paths, and adds a delay of one symbol to the optical signal divided into the two paths. one of the respectively input to the delay Mach-Zehnder interferometer, an optical respectively by signals of two balanced receiver output from the two delay Mach-Zehnder interferometer - an optical receiving method for receiving after electrical conversion, the two delay Mach-Zehnder a phase difference provided to the optical signal interferometer characterized in that each 0 and [pi / 2.

これにより、従来のDQPSK信号と同程度の狭スペクトル特性を有していながら、遅延マッハツェンダ干渉計の位相差が零、すなわち、光キャリア周波数において遅延マッハツェンダ干渉計の透過パワーが最大となる状態に設定することができ、遅延マッハツェンダ干渉計の中心周波数の調整を容易にすることができる。   As a result, the phase difference of the delayed Mach-Zehnder interferometer is set to zero, that is, the transmission power of the delayed Mach-Zehnder interferometer is maximized at the optical carrier frequency while having narrow spectrum characteristics comparable to those of the conventional DQPSK signal. Therefore, the center frequency of the delay Mach-Zehnder interferometer can be easily adjusted.

本発明によれば、4値の位相変調信号を生成することができ、受信側で用いる遅延マッハツェンダ干渉計の透過ピークを光キャリア周波数に一致させることができるため、遅延マッハツェンダ干渉計の中心周波数の調整を容易にすることができる。   According to the present invention, a quaternary phase modulation signal can be generated, and the transmission peak of the delay Mach-Zehnder interferometer used on the receiving side can be matched with the optical carrier frequency. Adjustment can be facilitated.

(第一実施例)
本発明の第一の実施例を図1ないし図4を参照して説明する。図1は、本発明第一実施例の光位相変調回路の構成を示す図である。図1に示すように、本発明の光位相変調回路は、パワー一定の連続光を発生するCW光源1と、このCW光源1が発生したパワー一定の連続光に対してシンボルレート(B/2、B:ビットレート)の半分の周波数で位相偏移が0またはπ/4ラジアンである周期的な位相変調を与える位相変調器2と、入力された光信号を2経路に分け、それぞれの光信号に対して位相偏移が0またはπの位相変調を与え、一方の光信号の位相をπ/2ラジアンだけずらして再び合波する光直交位相変調器3より構成される。
(First Example)
A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a diagram showing a configuration of an optical phase modulation circuit according to a first embodiment of the present invention. As shown in FIG. 1, the optical phase modulation circuit of the present invention includes a CW light source 1 that generates continuous light with constant power, and a symbol rate (B / 2) with respect to continuous light with constant power generated by the CW light source 1. , B: bit rate), a phase modulator 2 that gives periodic phase modulation with a phase shift of 0 or π / 4 radians at half the frequency, and an input optical signal divided into two paths, It is composed of an optical quadrature phase modulator 3 that applies phase modulation with a phase shift of 0 or π to the signal, and shifts the phase of one optical signal by π / 2 radians and combines the signals again.

ここで、本発明の特徴とする点は、通常のDQPSK変調を行う光直交位相変調器3に加えて、シンボルレートの半分の周期で0またはπ/4の周期的な変調を行う位相変調器2を付加した点である。なお、位相変調器2と光直交位相変調器3の順序は入れ替えても同様の出力信号を得ることができる。 Here, a feature of the present invention is that in addition to the optical quadrature phase modulator 3 that performs normal DQPSK modulation, a phase modulator that performs periodic modulation of 0 or π / 4 at a period of half the symbol rate. 2 is added. Even if the order of the phase modulator 2 and the optical quadrature phase modulator 3 is changed, a similar output signal can be obtained.

また、図1に示す光直交位相変調器3の代わりに、図2に示すように、0またはπの位相変調と0またはπ/2の位相変調とを行う直列に接続された2台の位相変調器4および5により実現することもできる。この場合にはπ/4シフト用の位相変調器2と合わせて3台の位相変調器2、4、5が直列に接続されることになるが、これらの位相変調器2、4、5は任意の順序で構成することが可能である。 Further, in place of the optical quadrature modulator 3 as shown in FIG. 1, as shown in FIG. 2, 0 or [pi phase modulation and 0 or [pi / 2 phase modulation and connected in series to perform a two phase It can also be realized by the modulators 4 and 5. In this case, three phase modulators 2, 4, and 5 are connected in series with the phase modulator 2 for π / 4 shift, and these phase modulators 2, 4, and 5 are connected to each other. It can be configured in any order.

また、0またはπ/4の位相変調を行う位相変調器2を駆動する駆動信号は、光直交位相変調器3で印加する位相変化に対して、タイムスロットの中央で最大(π/4)または最小(0)となるように駆動信号の位相を調整することにより良好な変調特性を得ることができる。 The drive signal for driving the phase modulator 2 that performs phase modulation of 0 or π / 4 is maximum (π / 4) or at the center of the time slot with respect to the phase change applied by the optical quadrature phase modulator 3. Good modulation characteristics can be obtained by adjusting the phase of the drive signal so as to be the minimum (0).

本実施例の光位相変調回路の出力信号のコンスタレーションを図3に示す。図3には、比較のため従来のDQPSK変調方式のコンスタレーションも合わせて示す。従来のDQPSK変調では、位相はπ/4、3π/4、5π/4、7π/4の4点を取るのに対し、本実施例の変調方式では奇数シンボルはπ/4、3π/4、5π/4、7π/4の4点であり、偶数シンボルは0、π/2、π、3π/2の4点であり、偶数シンボルと奇数シンボルでは取りうる位相点がπ/4シフトしている点が異なっていることがわかる。   FIG. 3 shows the constellation of the output signal of the optical phase modulation circuit of this embodiment. FIG. 3 also shows a constellation of a conventional DQPSK modulation method for comparison. In the conventional DQPSK modulation, the phase takes four points of π / 4, 3π / 4, 5π / 4, and 7π / 4, whereas in the modulation system of this embodiment, the odd symbols are π / 4, 3π / 4, There are 4 points of 5π / 4 and 7π / 4, and even symbols are 4 points of 0, π / 2, π, 3π / 2, and the phase points that can be taken by even and odd symbols are shifted by π / 4. It can be seen that the points are different.

なお、本実施例ではRZ化は行っていないが、送信光源にパルス光源を用いたり、RZ化用の強度変調器をさらに付け加えることにより、シンボルレートに等しい周波数で強度変調を重畳することも可能である。   In this embodiment, RZ conversion is not performed, but it is also possible to superimpose intensity modulation at a frequency equal to the symbol rate by using a pulse light source as a transmission light source or adding an intensity modulator for RZ conversion. It is.

本実施例では、位相シフト量がπ/4である場合を説明したが、位相シフト量が3π/4であっても同様に図3のコンスタレーションを得ることができることは、説明するまでもない。   In the present embodiment, the case where the phase shift amount is π / 4 has been described, but it is needless to say that the constellation of FIG. 3 can be obtained similarly even if the phase shift amount is 3π / 4. .

本実施例の受信回路の構成を図4に示す。本実施例の受信回路では、入力された信号を光分岐回路10により2つに分岐し、それぞれ1シンボル分の遅延を与える遅延マッハツェンダ干渉計MZI♯1および♯2に入力する。ここで、2つの遅延マッハツェンダ干渉計MZI♯1および♯2では、アーム間の光位相差が0およびπ/2となるように設定されている。この2つの遅延マッハツェンダ干渉計MZI♯1および♯2により位相変調信号を2系統の強度変調信号に変換して、バランスドレシーバ9−1および9−2で受信することにより復調される。   The configuration of the receiving circuit of this embodiment is shown in FIG. In the receiving circuit of this embodiment, the input signal is branched into two by the optical branching circuit 10 and input to the delay Mach-Zehnder interferometers MZI # 1 and # 2 which respectively give a delay of one symbol. Here, in the two delay Mach-Zehnder interferometers MZI # 1 and # 2, the optical phase difference between the arms is set to be 0 and π / 2. These two delayed Mach-Zehnder interferometers MZI # 1 and # 2 convert the phase modulation signal into two intensity modulation signals and receive them by balanced receivers 9-1 and 9-2.

本実施例の受信回路における遅延マッハツェンダ干渉計MZI♯1および♯2の各ポートの透過特性を図4にあわせて示す。本実施例の受信回路の場合には、遅延マッハツェンダ干渉計MZI♯1ではアーム間の位相差が0であるため、constructive
portの出力は光キャリア周波数において最大となり、またdestructive portの出力はキャリア周波数において最小となる。
The transmission characteristics of each port of the delay Mach-Zehnder interferometers MZI # 1 and # 2 in the receiving circuit of this embodiment are shown in FIG. In the case of the receiving circuit of the present embodiment, the phase difference between the arms is zero in the delay Mach-Zehnder interferometer MZI # 1.
The output of the port is maximized at the optical carrier frequency, and the output of the destructive port is minimized at the carrier frequency.

本実施例の変調信号の光スペクトルは、キャリア周波数においてピークとなるため、遅延マッハツェンダ干渉計MZI♯1はconstructive
portの透過パワーが最大になるように遅延マッハツェンダ干渉計MZI♯1の位相差を調整してやればよい。また、遅延マッハツェンダ干渉計MZI♯2に関しては、非特許文献2に示す構成を用いることなどにより、2つの遅延マッハツェンダ干渉計MZI♯1および♯2を周波数軸上で周波数差を保ったまま移動することが可能であるため、遅延マッハツェンダ干渉計MZI♯1の中心周波数をあわせれば遅延マッハツェンダ干渉計MZI♯2は自動的に調整することが可能である。
Since the optical spectrum of the modulated signal of this embodiment has a peak at the carrier frequency, the delay Mach-Zehnder interferometer MZI # 1 is constitutive.
What is necessary is just to adjust the phase difference of the delay Mach-Zehnder interferometer MZI # 1 so that the transmission power of the port is maximized. As for the delayed Mach-Zehnder interferometer MZI # 2, by using the configuration shown in Non-Patent Document 2, the two delayed Mach-Zehnder interferometers MZI # 1 and # 2 are moved while maintaining the frequency difference on the frequency axis. Therefore, the delay Mach-Zehnder interferometer MZI # 2 can be automatically adjusted by adjusting the center frequency of the delay Mach-Zehnder interferometer MZI # 1.

これに対して、従来のDQPSK信号では図5に示すように遅延マッハツェンダ干渉計MZI♯1および♯2の透過ピークが光キャリア周波数からずれているため、平均光パワーを用いた遅延マッハツェンダ干渉計MZI♯1および♯2の調整は困難である。   On the other hand, in the conventional DQPSK signal, as shown in FIG. 5, the transmission peaks of the delayed Mach-Zehnder interferometers MZI # 1 and # 2 are shifted from the optical carrier frequency, so that the delayed Mach-Zehnder interferometer MZI using the average optical power is used. Adjustment of # 1 and # 2 is difficult.

以上説明したように、本実施例の光位相変調回路を用いることにより、受信系の遅延マッハツェンダ干渉計MZI♯1および♯2の位相差を0およびπ/2にできるため、遅延マッハツェンダ干渉計MZI♯1および♯2の透過ピークを光キャリア周波数にあわせることができ、遅延マッハツェンダ干渉計MZI♯1および♯2の調整を容易にできるという利点がある。   As described above, by using the optical phase modulation circuit of the present embodiment, the phase difference between the delay Mach-Zehnder interferometers MZI # 1 and # 2 in the receiving system can be set to 0 and π / 2. Therefore, the delay Mach-Zehnder interferometer MZI The transmission peaks of # 1 and # 2 can be matched to the optical carrier frequency, and there is an advantage that the delay Mach-Zehnder interferometers MZI # 1 and # 2 can be easily adjusted.

(第二実施例)
第一実施例では位相変調器2により0またはπ/4の位相変調を付加していたが、第二実施例ではこの位相変調とRZ化のための強度変調をひとつの光変調器で行うことを可能とする構成を示す。第二実施例の構成を図6に示す。ここでは、図1に示した位相変調器2に代えて両電極駆動マッハツェンダ光変調器6を用いており、シンボルレートの半分の周波数のクロック信号を用い、両電極駆動マッハツェンダ光変調器6の各アームにかかるクロック信号の位相を位相シフタ7によりシフトさせる構成をとっている。
(Second embodiment)
In the first embodiment, phase modulation of 0 or π / 4 is added by the phase modulator 2, but in the second embodiment, this phase modulation and intensity modulation for RZ conversion are performed by one optical modulator. The structure which enables is shown. The configuration of the second embodiment is shown in FIG. Here, a double-electrode drive Mach-Zehnder optical modulator 6 is used instead of the phase modulator 2 shown in FIG. 1, and a clock signal having a frequency half the symbol rate is used, and each of the double-electrode drive Mach-Zehnder optical modulator 6 is used. The phase of the clock signal applied to the arm is shifted by the phase shifter 7.

位相差がδである周波数fmの正弦波信号で駆動された両電極駆動マッハツェンダ光変調器6からの出力信号の変調成分は、   The modulation component of the output signal from the two-electrode drive Mach-Zehnder optical modulator 6 driven by a sine wave signal of frequency fm with a phase difference of δ is:

Figure 0004531010
と表される。ここで、Vπは光位相シフトがπとなる印加電圧であり、Vは印加する正弦波信号の振幅である。式1より、δ≒14°、V≒0.51Vπで駆動することにより位相変化がπ/4、光強度の繰り返し周波数が2fmのパルス列が得られる。
Figure 0004531010
It is expressed. Here, Vπ is an applied voltage at which the optical phase shift is π, and V is the amplitude of the sine wave signal to be applied. From Equation 1, a pulse train having a phase change of π / 4 and a light intensity repetition frequency of 2 fm can be obtained by driving at δ≈14 ° and V≈0.51Vπ.

図7に、式1から計算した位相変化がπ/4となる場合の光強度と位相の変化の様子を示す。この結果からわかるように、両電極駆動マッハツェンダ光変調器6を用い、シンボルレートの半分の周波数であり、位相が約14°シフトした正弦波信号で駆動することにより、0またはπ/4の交番位相パルス列を生成することが可能であり、この信号を光直交位相変調器3に入力することにより、第一実施例と同様にπ/4シフトDQPSK信号が生成できる。また、位相変化が0または3π/4の交番パルス列を生成するためにはδ≒37°、V≒0.63Vπで駆動すればよい。 FIG. 7 shows how the light intensity and phase change when the phase change calculated from Equation 1 is π / 4. As can be seen from this result, the double electrode drive Mach-Zehnder optical modulator 6 is used, and it is driven by a sine wave signal whose frequency is half the symbol rate and whose phase is shifted by about 14 °, so that an alternating of 0 or π / 4 is obtained. A phase pulse train can be generated, and by inputting this signal to the optical quadrature phase modulator 3, a π / 4 shift DQPSK signal can be generated as in the first embodiment. In order to generate an alternating pulse train having a phase change of 0 or 3π / 4, driving may be performed at δ≈37 ° and V≈0.63Vπ.

これまでは、両電極駆動マッハツェンダ光変調器6の透過率が最大になる点を中心に駆動した場合について述べたが、両電極駆動マッハツェンダ光変調器6の透過率が最小となる点を中心に駆動する場合も可能である。この場合には、図8に示すように位相シフタ7に加えて振幅を調整する減衰器11を用いる構成をとる。   Up to this point, the case where driving is performed centering on the point where the transmittance of the both-electrode driving Mach-Zehnder optical modulator 6 is maximized has been described. However, focusing on the point where the transmittance of the both-electrode driving Mach-Zehnder optical modulator 6 is minimized. It is also possible to drive. In this case, as shown in FIG. 8, in addition to the phase shifter 7, an attenuator 11 for adjusting the amplitude is used.

両電極駆動マッハツェンダ光変調器6の透過率が最小となる点で駆動する場合には、両電極駆動マッハツェンダ光変調器6のそれぞれに与える信号を、   When driving at a point where the transmittance of the both-electrode drive Mach-Zehnder optical modulator 6 is minimized, a signal given to each of the both-electrode drive Mach-Zehnder optical modulator 6 is:

Figure 0004531010
とした場合に、両電極駆動マッハツェンダ光変調器6からの出力信号の変調成分は
Figure 0004531010
In this case, the modulation component of the output signal from the both-electrode drive Mach-Zehnder optical modulator 6 is

Figure 0004531010
と表される。従って、0またはπ/4の位相変調を行う位相変調の場合(Δ=0.25)は、振幅は半波長電圧の0.625倍及び0.375倍、0または3π/4の位相変調を行う位相変調の場合(Δ=0.75)は、振幅は半波長電圧の0.875倍及び0.125倍とすればよいことがわかる。
Figure 0004531010
It is expressed. Therefore, in the case of phase modulation that performs phase modulation of 0 or π / 4 (Δ = 0.25), the amplitude is 0.625 times and 0.375 times the half-wave voltage, and phase modulation of 0 or 3π / 4 is performed. In the case of phase modulation to be performed (Δ = 0.75), it can be seen that the amplitude may be 0.875 times and 0.125 times the half-wave voltage.

本発明によれば、4値の位相変調信号を生成することができ、受信側で用いる遅延マッハツェンダ干渉計の透過ピークを光キャリア周波数に一致させることができるため、遅延マッハツェンダ干渉計の中心周波数の調整を容易にすることができる。これにより、DQPSK方式を容易に実現することができる。   According to the present invention, a quaternary phase modulation signal can be generated, and the transmission peak of the delay Mach-Zehnder interferometer used on the receiving side can be matched with the optical carrier frequency. Adjustment can be facilitated. Thereby, the DQPSK system can be easily realized.

第一実施例の光位相変調回路の構成図。The block diagram of the optical phase modulation circuit of a 1st Example. 直列型位相変調器による構成例を示す図。The figure which shows the structural example by a serial type phase modulator. 第一実施例の光位相変調回路の出力光信号コンスタレーションを示す図。The figure which shows the output optical signal constellation of the optical phase modulation circuit of a 1st Example. 第一実施例の受信回路の構成と遅延マッハツェンダ干渉計の透過特性を示す図。The figure which shows the transmission characteristic of the structure of the receiving circuit of a 1st Example, and a delay Mach-Zehnder interferometer. 従来のDQPSK用の遅延マッハツェンダ干渉計の透過特性を示す図。The figure which shows the transmission characteristic of the delay Mach-Zehnder interferometer for the conventional DQPSK. 第二実施例の光位相変調回路の構成図。The block diagram of the optical phase modulation circuit of a 2nd Example. 第二実施例におけるデュアル駆動型のマッハツェンダ変調器の出力信号の強度波形および位相波形を示す図。The figure which shows the intensity | strength waveform and phase waveform of the output signal of the dual drive type Mach-Zehnder modulator in a 2nd Example. 第二実施例の光位相変調回路の減衰器を用いた構成図。The block diagram using the attenuator of the optical phase modulation circuit of 2nd Example.

符号の説明Explanation of symbols

1 CW光源
2、4、5 位相変調器
3 光直交位相変調器
6 両電極駆動マッハツェンダ光変調器
7 位相シフタ
8 受信回路
9−1、9−2 バランスドレシーバ
10 光分岐回路
11 減衰器
MZI♯1、MZI♯2 遅延マッハツェンダ干渉計
DESCRIPTION OF SYMBOLS 1 CW light source 2, 4, 5 Phase modulator 3 Optical quadrature phase modulator 6 Double electrode drive Mach-Zehnder optical modulator 7 Phase shifter 8 Receiving circuit 9-1, 9-2 Balanced receiver 10 Optical branch circuit 11 Attenuator MZI # 1, MZI # 2 delay Mach-Zehnder interferometer

Claims (12)

パワー一定の連続光を発生するCW光源と、
入力された光信号に対してシンボルレートの半分の周波数で位相を0またはπ/4に変調するπ/4位相変調器と、
入力された光信号を2経路に分け、それぞれの光信号に対して位相を0またはπに変調し、一方の光信号の位相をπ/2だけずらして再び合波する光直交位相変調器とにより構成され、
CW光源−π/4位相変調器−光直交位相変調器、もしくはCW光源−光直交位相変調器−π/4位相変調器の順に直列に接続された
ことを特徴とする光位相変調回路。
A CW light source that generates continuous light of constant power;
A π / 4 phase modulator that modulates the phase to 0 or π / 4 at a frequency half the symbol rate with respect to the input optical signal;
An optical quadrature modulator that divides an input optical signal into two paths, modulates the phase of each optical signal to 0 or π, shifts the phase of one optical signal by π / 2, and combines the signals again; Consisting of
An optical phase modulation circuit comprising: a CW light source—π / 4 phase modulator—optical quadrature phase modulator or a CW light source—optical quadrature phase modulator—π / 4 phase modulator connected in series.
パワー一定の連続光を発生するCW光源と、
入力された光信号に対してシンボルレートの半分の周波数で位相を0または3π/4に変調する3π/4位相変調器と、
入力された光信号を2経路に分け、それぞれの光信号に対して位相を0またはπに変調し、一方の光信号の位相をπ/2だけずらして再び合波する光直交位相変調器とにより構成され、
CW光源−3π/4位相変調器−光直交位相変調器、もしくはCW光源−光直交位相変調器−3π/4位相変調器の順に直列に接続された
ことを特徴とする光位相変調回路。
A CW light source that generates continuous light of constant power;
A 3π / 4 phase modulator that modulates the phase to 0 or 3π / 4 at a frequency half the symbol rate with respect to the input optical signal;
An optical quadrature modulator that divides an input optical signal into two paths, modulates the phase of each optical signal to 0 or π, shifts the phase of one optical signal by π / 2, and combines the signals again; Consisting of
An optical phase modulation circuit comprising: a CW light source-3π / 4 phase modulator-optical quadrature phase modulator or a CW light source-optical quadrature phase modulator-3π / 4 phase modulator connected in series in this order.
パワー一定の連続光を発生するCW光源と、
入力された光信号に対してシンボルレートの半分の周波数で位相を0またはπ/4に変調するπ/4位相変調器と、
入力された光信号に対して位相を0またはπに変調するπ位相変調器と、
入力された光信号に対して位相を0またはπ/2に変調するπ/2位相変調器と
が、
CW光源を先頭にし、その後前記π/4位相変調器と前記π/2位相変調器と前記π位相変調器とが任意の順序で直列に接続された
ことを特徴とする光位相変調回路。
A CW light source that generates continuous light of constant power;
A π / 4 phase modulator that modulates the phase to 0 or π / 4 at a frequency half the symbol rate with respect to the input optical signal;
A π phase modulator that modulates the phase of the input optical signal to 0 or π;
A π / 2 phase modulator that modulates the phase of the input optical signal to 0 or π / 2,
An optical phase modulation circuit characterized in that a π / 4 phase modulator, the π / 2 phase modulator, and the π phase modulator are connected in series in an arbitrary order, starting with a CW light source.
パワー一定の連続光を発生するCW光源と、
入力された光信号に対してシンボルレートの半分の周波数で位相を0または3π/4に変調する3π/4位相変調器と、
入力された光信号に対して位相を0またはπに変調するπ位相変調器と、
入力された光信号に対して位相を0またはπ/2に変調するπ/2位相変調器と
が、
CW光源を先頭にし、その後前記3π/4位相変調器と前記π/2位相変調器と前記π位相変調器とが任意の順序で直列に接続された
ことを特徴とする光位相変調回路。
A CW light source that generates continuous light of constant power;
A 3π / 4 phase modulator that modulates the phase to 0 or 3π / 4 at a frequency half the symbol rate with respect to the input optical signal;
A π phase modulator that modulates the phase of the input optical signal to 0 or π;
A π / 2 phase modulator that modulates the phase of the input optical signal to 0 or π / 2,
An optical phase modulation circuit characterized in that a 3W / 4 phase modulator, the π / 2 phase modulator, and the π phase modulator are connected in series in an arbitrary order, starting with a CW light source.
シンボルレートと同じ周波数で光強度を変調する光強度変調器を任意の位置に挿入した請求項1ないし請求項4のいずれかに記載の光位相変調回路。   5. The optical phase modulation circuit according to claim 1, wherein a light intensity modulator that modulates light intensity at the same frequency as the symbol rate is inserted at an arbitrary position. 前記π/4位相変調器または3π/4位相変調器に代えて、シンボルレートの半分の周波数で、位相がシフトした正弦波駆動信号により駆動された両電極駆動マッハツェンダ光変調器を用いる請求項1ないし4のいずれかに記載の光位相変調回路。   2. A dual electrode drive Mach-Zehnder optical modulator driven by a sine wave drive signal whose phase is shifted at a frequency half the symbol rate is used in place of the π / 4 phase modulator or the 3π / 4 phase modulator. 5. The optical phase modulation circuit according to any one of 4 to 4. 前記正弦波駆動信号の各アーム間の位相差が約14°であり、振幅がそれぞれ半波長電圧の約0.51倍である請求項6記載の光位相変調回路。   7. The optical phase modulation circuit according to claim 6, wherein the phase difference between the arms of the sine wave drive signal is about 14 °, and the amplitude is about 0.51 times the half-wave voltage. 前記正弦波駆動信号の各アーム間の位相差が約37°であり、振幅がそれぞれ半波長電圧の約0.63倍である請求項6記載の光位相変調回路。   The optical phase modulation circuit according to claim 6, wherein the phase difference between the arms of the sine wave drive signal is about 37 °, and the amplitude is about 0.63 times the half-wave voltage. 前記π/4位相変調器または3π/4位相変調器に代えて、シンボルレートの半分の周波数で、位相が互いにπだけシフトしていて振幅の異なる正弦波駆動信号により駆動された両電極駆動マッハツェンダ光変調器を用いる請求項1ないし4のいずれかに記載の光位相変調回路。   Instead of the π / 4 phase modulator or the 3π / 4 phase modulator, a double-electrode drive Mach-Zehnder driven by a sinusoidal drive signal having a phase shifted by π and having a different amplitude at a frequency half the symbol rate. The optical phase modulation circuit according to claim 1, wherein an optical modulator is used. 前記正弦波駆動信号の振幅が半波長電圧の約0.875倍と半波長電圧の約0.125倍である請求項9記載の光位相変調回路。   10. The optical phase modulation circuit according to claim 9, wherein the amplitude of the sine wave drive signal is about 0.875 times the half-wave voltage and about 0.125 times the half-wave voltage. 前記正弦波駆動信号の振幅が半波長電圧の約0.625倍と半波長電圧の約0.375倍である請求項9記載の光位相変調回路。   The optical phase modulation circuit according to claim 9, wherein the amplitude of the sine wave drive signal is about 0.625 times the half-wave voltage and about 0.375 times the half-wave voltage. 差動直交位相シフトキーイングを用いた光変調方法において、
偶数シンボルの光位相が0、π/2、π、3π/2のいずれかの値をとり、奇数シンボルの光位相がπ/4、3π/4、5π/4、7π/4のいずれかの値をとり、
偶数シンボルと奇数シンボルでは取りうる位相点がπ/4シフトしている
ことを特徴とする光変調方法。
In an optical modulation method using differential quadrature phase shift keying,
The optical phase of the even symbol takes one of the values 0, π / 2, π, 3π / 2, and the optical phase of the odd symbol has one of π / 4, 3π / 4, 5π / 4, 7π / 4. Take the value,
An optical modulation method characterized in that the possible phase points are shifted by π / 4 between even symbols and odd symbols.
JP2006146456A 2006-05-26 2006-05-26 Optical phase modulation / demodulation circuit and optical phase modulation / demodulation method Expired - Fee Related JP4531010B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006146456A JP4531010B2 (en) 2006-05-26 2006-05-26 Optical phase modulation / demodulation circuit and optical phase modulation / demodulation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006146456A JP4531010B2 (en) 2006-05-26 2006-05-26 Optical phase modulation / demodulation circuit and optical phase modulation / demodulation method

Publications (2)

Publication Number Publication Date
JP2007318483A JP2007318483A (en) 2007-12-06
JP4531010B2 true JP4531010B2 (en) 2010-08-25

Family

ID=38851943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006146456A Expired - Fee Related JP4531010B2 (en) 2006-05-26 2006-05-26 Optical phase modulation / demodulation circuit and optical phase modulation / demodulation method

Country Status (1)

Country Link
JP (1) JP4531010B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2099186A1 (en) * 2008-03-06 2009-09-09 CoreOptics Inc. Phase control circuit and method for optical receivers
KR20120029654A (en) 2010-09-17 2012-03-27 삼성전자주식회사 Optical modulator for generating optical de-emphasis signal and method thereof
JP5304938B2 (en) * 2012-10-01 2013-10-02 日本電気株式会社 Optical modulator and optical modulation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004511128A (en) * 2000-09-26 2004-04-08 セライト、インコーポレーテッド System and method for code division multiplexed optical communication
JP2004516743A (en) * 2000-12-21 2004-06-03 ブッカム・テクノロジー・ピーエルシー Improvements in or related to optical communications
JP2007274235A (en) * 2006-03-30 2007-10-18 Fujitsu Ltd Optical dqpsk receiver

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4694573B2 (en) * 2005-10-31 2011-06-08 Nttエレクトロニクス株式会社 Optical receiver using Mach-Zehnder interferometer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004511128A (en) * 2000-09-26 2004-04-08 セライト、インコーポレーテッド System and method for code division multiplexed optical communication
JP2004516743A (en) * 2000-12-21 2004-06-03 ブッカム・テクノロジー・ピーエルシー Improvements in or related to optical communications
JP2007274235A (en) * 2006-03-30 2007-10-18 Fujitsu Ltd Optical dqpsk receiver

Also Published As

Publication number Publication date
JP2007318483A (en) 2007-12-06

Similar Documents

Publication Publication Date Title
US8676060B2 (en) Quadrature amplitude modulation signal generating device
JP4422661B2 (en) Driving voltage setting method for differential quadrature phase shift modulator
Sakamoto et al. 50-Gb/s 16 QAM by a quad-parallel Mach-Zehnder modulator
KR100703410B1 (en) Offset quadrature phase-shift-keying method and optical transmitter using the same
JP4884750B2 (en) Optical modulator and bias control method thereof
CN107005310B (en) Spectrum inversion detection for polarization division multiplexed optical transmission
EP2981005A1 (en) Optical transmitter and method for controlling bias of optical modulator
EP2154796A1 (en) Device and method for receiving a dopsk signal and method for obtaining a dopsk signal
US8373921B2 (en) Methods and systems for modulating and demodulating millimeter-wave signals
US8594512B2 (en) Method and apparatus for transmission of two modulated signals via an optical channel
EP2262132B1 (en) Optical communication system, optical communication method, and optical communication device
JP4531010B2 (en) Optical phase modulation / demodulation circuit and optical phase modulation / demodulation method
JP5212467B2 (en) Optical receiver
JP4893776B2 (en) Light modulator
JP4809270B2 (en) Optical transmission apparatus and method
JP2012039290A (en) Coherent optical time division multiplex transmission system
JP5131601B2 (en) Optical modulation signal generator
JP5907175B2 (en) Optical communication apparatus, optical transmitter, and optical transmission method
JP2009171363A (en) Optical dqpsk receiver and phase control method thereof
Lu et al. Generation of optical MSK using a monolithically integrated quad Mach-Zehnder IQ modulator
JP5215934B2 (en) Optical modulator, optical modulator control method, and optical transmitter
Sakamoto et al. Coherent demodulation of 10-Gb/s optical minimum-shift keying
Lu et al. Optical minimum-shift keying: property and implementation
Kawanishi High-speed integrated optical modulators for advanced modulation formats
Zou et al. All-optical format conversion from RZ-QPSK to NRZ-QPSK

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090311

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20090601

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090601

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100608

R150 Certificate of patent or registration of utility model

Ref document number: 4531010

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140618

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees