JP7162747B2 - DC power supplies, motor drives, blowers, compressors and air conditioners - Google Patents

DC power supplies, motor drives, blowers, compressors and air conditioners Download PDF

Info

Publication number
JP7162747B2
JP7162747B2 JP2021541952A JP2021541952A JP7162747B2 JP 7162747 B2 JP7162747 B2 JP 7162747B2 JP 2021541952 A JP2021541952 A JP 2021541952A JP 2021541952 A JP2021541952 A JP 2021541952A JP 7162747 B2 JP7162747 B2 JP 7162747B2
Authority
JP
Japan
Prior art keywords
power supply
voltage
switching
current
switching element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021541952A
Other languages
Japanese (ja)
Other versions
JPWO2021038868A1 (en
JPWO2021038868A5 (en
Inventor
和徳 畠山
啓介 植村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2021038868A1 publication Critical patent/JPWO2021038868A1/ja
Publication of JPWO2021038868A5 publication Critical patent/JPWO2021038868A5/ja
Application granted granted Critical
Publication of JP7162747B2 publication Critical patent/JP7162747B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Description

本発明は、交流電源から出力される交流電圧を直流電圧に変換して負荷に印加する直流電源装置、負荷であるモータを駆動するモータ駆動装置、モータ駆動装置を備えた送風機及び圧縮機、並びに、送風機又は圧縮機を備えた空気調和機に関する。 The present invention provides a DC power supply device that converts an AC voltage output from an AC power supply into a DC voltage and applies it to a load, a motor drive device that drives a motor that is the load, a blower and a compressor that include the motor drive device, and , air conditioners with blowers or compressors.

下記特許文献1には、第1のダイオードと第2のダイオードとの接続点と、第1の金属酸化物半導体電界効果トランジスタ(Metal Oxide Semiconductor Field Effect Transistor:MOSFET)と第2のMOSFETとの接続点とに、リアクトルを介して交流電源が接続され、第1のMOSFET及び第2のMOSFETのスイッチングにより、交流電源の交流電圧を直流電圧に変換する直流電源装置が開示されている。第1のダイオード及び第1のMOSFETは平滑コンデンサの正極側に接続される素子であり、第2のダイオード及び第2のMOSFETは平滑コンデンサの負極側に接続される素子である。 Patent Document 1 below describes a connection point between a first diode and a second diode, and a connection between a first metal oxide semiconductor field effect transistor (MOSFET) and a second MOSFET. A DC power supply is disclosed in which an AC power supply is connected to points and via a reactor, and the AC voltage of the AC power supply is converted into a DC voltage by switching a first MOSFET and a second MOSFET. The first diode and the first MOSFET are elements connected to the positive side of the smoothing capacitor, and the second diode and the second MOSFET are elements connected to the negative side of the smoothing capacitor.

特許文献1に記載の直流電源装置は、第1のMOSFETの寄生ダイオードに電流が流れるタイミングで第1のMOSFETをオン動作させ、第2のMOSFETの寄生ダイオードに電流が流れるタイミングで第2のMOSFETをオン動作させる。この技術は、同期整流と呼ばれる。同期整流によって、直流電源装置は高効率に制御される。 In the DC power supply device described in Patent Document 1, the first MOSFET is turned on at the timing when the current flows through the parasitic diode of the first MOSFET, and the second MOSFET is turned on at the timing when the current flows through the parasitic diode of the second MOSFET. turn on. This technique is called synchronous rectification. Synchronous rectification controls the DC power supply with high efficiency.

特開2016-220378号公報JP 2016-220378 A

特許文献1に記載の同期整流では、第1及び第2のMOSFETの寄生ダイオードに電流が流れるタイミングでは、常にそれぞれのMOSFETをオン動作させている。ここで、同期整流の動作が高効率化されるのは、MOSFETのオン電圧よりも、並列に接続される寄生ダイオードの電圧降下の方が高い状態であることが前提である。しかしながら、MOSFETの動作状態によっては、並列に接続される寄生ダイオードの電圧降下よりも、MOSFETのオン電圧の方が高い場合もある。従って、特許文献1に記載の同期整流は、同期整流の動作が最適化されているとは言い難い。このため、特許文献1の技術には、同期整流を適用する際の効率に関して改善の余地がある。 In the synchronous rectification described in Patent Literature 1, each MOSFET is always turned on at the timing when the current flows through the parasitic diodes of the first and second MOSFETs. Here, the high efficiency of the synchronous rectification operation is based on the premise that the voltage drop of the parasitic diode connected in parallel is higher than the ON voltage of the MOSFET. However, depending on the operating state of the MOSFET, the on-voltage of the MOSFET may be higher than the voltage drop of the parasitic diode connected in parallel. Therefore, it is difficult to say that the synchronous rectification described in Patent Document 1 is optimized for synchronous rectification. Therefore, the technique of Patent Document 1 has room for improvement in terms of efficiency when applying synchronous rectification.

本発明は、上記に鑑みてなされたものであって、同期整流の適用に際し、更なる効率化を図ることができる直流電源装置を得ることを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a direct-current power supply device capable of further improving efficiency when applying synchronous rectification.

上述した課題を解決し、目的を達成するため、本発明に係る直流電源装置は、リアクトルと、ブリッジ接続される4つの一方向性素子を備え、リアクトルを介して交流電源に接続され、交流電源から出力される交流電圧である電源電圧を直流電圧に変換して負荷に印加するコンバータと、コンバータの出力端子間に接続される平滑コンデンサと、を備える。また、直流電源装置は、コンバータの出力側の動作状態を表す第1の物理量を検出する第1の物理量検出部と、コンバータの入力側の動作状態を表す第2の物理量を検出する第2の物理量検出部と、第1及び第2の物理量が入力され、コンバータの動作を制御する制御部と、を備える。コンバータにおける、4つの一方向性素子のうちの2つの一方向性素子は直列に接続されて第1のレグを構成し、残りの2つの一方向性素子は直列に接続されて第2のレグを構成し、少なくとも、平滑コンデンサの正側に接続される第1及び第2のレグにおける2つの一方向性素子、又は平滑コンデンサの負側に接続される第1及び第2のレグにおける2つの一方向性素子、又は、第1のレグにおける2つの一方向性素子、又は第2のレグにおける2つの一方向性素子のそれぞれにはスイッチング素子が並列に接続される。制御部は、更にスイッチング素子の周囲温度、コンバータの外気温度、又はコンバータへの動作指令に応じてスイッチング素子の導通を制御して、コンバータを異なる動作態様で動作させる動作モードを複数有する。 In order to solve the above-described problems and achieve the object, a DC power supply device according to the present invention includes a reactor and four unidirectional elements that are bridge-connected, and is connected to an AC power supply via the reactor. a converter that converts a power supply voltage, which is an AC voltage output from the converter, into a DC voltage and applies it to a load; and a smoothing capacitor that is connected between output terminals of the converter. Further, the DC power supply includes a first physical quantity detection unit that detects a first physical quantity representing an operating state on the output side of the converter, and a second physical quantity detecting unit that detects a second physical quantity representing the operating state on the input side of the converter. A physical quantity detection unit, and a control unit to which the first and second physical quantities are input and which controls the operation of the converter. Two of the four unidirectional elements in the converter are connected in series to form a first leg, and the remaining two unidirectional elements are connected in series to form a second leg. and at least two unidirectional elements in the first and second legs connected to the positive side of the smoothing capacitor, or two unidirectional elements in the first and second legs connected to the negative side of the smoothing capacitor A switching element is connected in parallel to each of the unidirectional element or the two unidirectional elements in the first leg or the two unidirectional elements in the second leg. The control unit further has a plurality of operation modes for operating the converter in different operation modes by controlling the conduction of the switching elements according to the ambient temperature of the switching elements, the outside air temperature of the converter, or an operation command to the converter.

本発明に係る直流電源装置によれば、同期整流の適用に際し、更なる効率化を図ることができるという効果を奏する。 Advantageous Effects of Invention According to the DC power supply device of the present invention, it is possible to achieve further efficiency improvement when applying synchronous rectification.

実施の形態1に係る直流電源装置を含むモータ駆動装置の構成例を示す図1 is a diagram showing a configuration example of a motor drive device including a DC power supply device according to Embodiment 1; FIG. 実施の形態1のコンバータに用いられるMOSFETの概略構造を示す模式的断面図Schematic cross-sectional view showing a schematic structure of a MOSFET used in the converter of Embodiment 1. FIG. 実施の形態1におけるコンバータに流れる電流の経路を示す第1の図A first diagram showing paths of currents flowing through the converter in the first embodiment 実施の形態1におけるコンバータに流れる電流の経路を示す第2の図A second diagram showing paths of currents flowing through the converter in the first embodiment 実施の形態1におけるコンバータに流れる電流の経路を示す第3の図A third diagram showing paths of currents flowing through the converter in the first embodiment 実施の形態1におけるコンバータに流れる電流の経路を示す第4の図A fourth diagram showing paths of currents flowing through the converter in the first embodiment 実施の形態1における動作モードの特徴を説明する図A diagram for explaining features of operation modes according to the first embodiment. 図7に示す動作モードで動作させたときの動作波形を示す図A diagram showing operation waveforms when operated in the operation mode shown in FIG. 実施の形態1に係るモータ駆動装置で使用されるMOSFETの損失特性を示す図FIG. 4 shows loss characteristics of MOSFETs used in the motor drive device according to the first embodiment; 実施の形態1に係る直流電源装置において制御部がスイッチング素子をオンするタイミングを示す図FIG. 4 is a diagram showing timings at which a control unit turns on switching elements in the DC power supply device according to Embodiment 1; 実施の形態1における要部の動作説明に使用するフローチャートFlowchart used to explain the operation of the main part in Embodiment 1 一般的なMOSFETにおける寄生ダイオードの順方向電流の温度特性を示す図A diagram showing the temperature characteristics of the forward current of a parasitic diode in a general MOSFET 一般的なMOSFETのオン抵抗の温度特性を示す図A diagram showing the temperature characteristics of the on-resistance of a general MOSFET 図9に示されるクロスポイントが温度によって変動する様子を示す図A diagram showing how the cross points shown in FIG. 9 vary with temperature. 実施の形態1における制御部の機能を具現するハードウェア構成の一例を示すブロック図FIG. 2 is a block diagram showing an example of a hardware configuration that implements the functions of the control unit according to Embodiment 1; 実施の形態1における制御部の機能を具現するハードウェア構成の他の例を示すブロック図FIG. 4 is a block diagram showing another example of the hardware configuration that implements the functions of the control unit according to Embodiment 1; 実施の形態2におけるゲート駆動回路の構成例を示す図A diagram showing a configuration example of a gate driver circuit in Embodiment 2 図8に対応する実施の形態2における動作波形を示す図A diagram showing operation waveforms in the second embodiment corresponding to FIG. 実施の形態3に係る空気調和機の構成を示す図A diagram showing the configuration of an air conditioner according to Embodiment 3 実施の形態3における動作モードの特徴を示す図A diagram showing features of operation modes in Embodiment 3

以下に添付図面を参照し、本発明の実施の形態に係る直流電源装置、モータ駆動装置、送風機、圧縮機及び空気調和機について説明する。なお、以下に示す実施の形態により本発明が限定されるものではない。また、以下では、電気的な接続を単に「接続」と称して説明する。 A DC power supply device, a motor drive device, a blower, a compressor, and an air conditioner according to embodiments of the present invention will be described below with reference to the accompanying drawings. It should be noted that the present invention is not limited by the embodiments shown below. Also, hereinafter, the electrical connection will be simply referred to as "connection".

実施の形態1.
図1は、実施の形態1に係る直流電源装置50を含むモータ駆動装置100の構成例を示す図である。実施の形態1に係る直流電源装置50は、単相の交流電源1から出力される交流電圧である電源電圧を直流電圧に変換して負荷12に印加する電源装置である。また、実施の形態1に係るモータ駆動装置100は、直流電源装置50から出力される直流電力を交流電力に変換し、変換した交流電力をモータ500に供給してモータ500を駆動する駆動装置である。
Embodiment 1.
FIG. 1 is a diagram showing a configuration example of a motor drive device 100 including a DC power supply device 50 according to Embodiment 1. As shown in FIG. A DC power supply device 50 according to Embodiment 1 is a power supply device that converts a power supply voltage, which is an AC voltage output from a single-phase AC power supply 1 , into a DC voltage and applies the DC voltage to a load 12 . Further, the motor drive device 100 according to the first embodiment is a drive device that converts the DC power output from the DC power supply device 50 into AC power and supplies the converted AC power to the motor 500 to drive the motor 500. be.

実施の形態1に係るモータ駆動装置100は、図1に示すように、主たる構成部として、直流電源装置50と、制御部10と、負荷12とを備える。 A motor drive device 100 according to Embodiment 1 includes, as main components, a DC power supply device 50, a control unit 10, and a load 12, as shown in FIG.

直流電源装置50は、リアクトル2と、コンバータ3と、第1の駆動回路であるゲート駆動回路15と、平滑コンデンサ4と、電圧検出部5と、電流検出部6と、電圧検出部7と、制御電源である電源回路14とを備える。リアクトル2の一端は、交流電源1に接続され、リアクトル2の他端は、コンバータ3に接続される。リアクトル2は、交流電源1から供給される電力を一時的に蓄積する。コンバータ3は、交流電源1から出力される交流電圧を直流電圧に変換して直流母線16a,16bに出力する。直流母線16a,16bは、コンバータ3と負荷12とを接続する電気配線である。直流母線16aと直流母線16bとの間の電圧は「母線電圧」と呼ばれる。 The DC power supply device 50 includes a reactor 2, a converter 3, a gate drive circuit 15 which is a first drive circuit, a smoothing capacitor 4, a voltage detection unit 5, a current detection unit 6, a voltage detection unit 7, and a power supply circuit 14 that is a control power supply. One end of reactor 2 is connected to AC power supply 1 , and the other end of reactor 2 is connected to converter 3 . Reactor 2 temporarily stores power supplied from AC power supply 1 . The converter 3 converts the AC voltage output from the AC power supply 1 into a DC voltage and outputs the DC voltage to the DC buses 16a and 16b. DC buses 16 a and 16 b are electrical wiring that connects converter 3 and load 12 . The voltage between the DC bus 16a and the DC bus 16b is called "bus voltage".

負荷12は、第2の駆動回路であるゲート駆動回路17と、インバータ18と、電流検出部9と、モータ500と、を備える。負荷12の構成要素のうち、モータ500を除く、ゲート駆動回路17、インバータ18及び電流検出部9がモータ駆動装置100の構成要素である。インバータ18は、直流電源装置50から出力される直流電圧をモータ500に印加する交流電圧に変換して出力する。モータ500が搭載される機器の例は、送風機、圧縮機又は空気調和機である。 The load 12 includes a gate drive circuit 17 as a second drive circuit, an inverter 18 , a current detector 9 and a motor 500 . Of the components of the load 12 , the gate drive circuit 17 , the inverter 18 and the current detector 9 are components of the motor drive device 100 except for the motor 500 . Inverter 18 converts the DC voltage output from DC power supply 50 into AC voltage to be applied to motor 500 and outputs the AC voltage. Examples of equipment in which the motor 500 is mounted are blowers, compressors, or air conditioners.

なお、図1では、インバータ18に接続される機器がモータ500である例を示したが、これに限定されない。インバータ18に接続される機器は、交流電力が入力される機器であればよく、モータ500以外の機器でもよい。 Although FIG. 1 shows an example in which the device connected to the inverter 18 is the motor 500, the device is not limited to this. A device connected to the inverter 18 may be a device to which AC power is input, and may be a device other than the motor 500 .

コンバータ3は、第1のレグ31と、第2のレグ32とを備える。第1のレグ31と第2のレグ32とは、並列に接続されている。第1のレグ31では、第1の上アーム素子311と、第1の下アーム素子312とが直列に接続されている。第2のレグ32では、第2の上アーム素子321と、第2の下アーム素子322とが直列に接続されている。リアクトル2の他端は、第1のレグ31における第1の上アーム素子311と第1の下アーム素子312との接続点3aに接続されている。第2の上アーム素子321と第2の下アーム素子322との接続点3bは、交流電源1の他端に接続されている。コンバータ3において、接続点3a,3bは、交流端子を構成する。 Converter 3 comprises a first leg 31 and a second leg 32 . The first leg 31 and the second leg 32 are connected in parallel. In the first leg 31, a first upper arm element 311 and a first lower arm element 312 are connected in series. In the second leg 32, a second upper arm element 321 and a second lower arm element 322 are connected in series. The other end of the reactor 2 is connected to a connection point 3 a between the first upper arm element 311 and the first lower arm element 312 on the first leg 31 . A connection point 3 b between the second upper arm element 321 and the second lower arm element 322 is connected to the other end of the AC power supply 1 . In converter 3, connection points 3a and 3b form AC terminals.

なお、図1において、リアクトル2は、交流電源1の一端と、接続点3aとの間に接続されているが、交流電源1の別の一端と、接続点3bとの間に接続されていてもよい。 In FIG. 1, the reactor 2 is connected between one end of the AC power supply 1 and the connection point 3a, but is connected between another end of the AC power supply 1 and the connection point 3b. good too.

コンバータ3において、接続点3a,3bがある側を「交流側」と呼び、交流電源1から出力される交流電圧を「電源電圧」と呼び、電源電圧の周期を「電源周期」と呼ぶ場合がある。 In the converter 3, the side on which the connection points 3a and 3b are located may be called the "AC side", the AC voltage output from the AC power supply 1 may be called the "power supply voltage", and the cycle of the power supply voltage may be called the "power cycle". be.

第1の上アーム素子311は、スイッチング素子Q1と、スイッチング素子Q1に並列に接続されるダイオードD1とを含む。第1の下アーム素子312は、スイッチング素子Q2と、スイッチング素子Q2に並列に接続されるダイオードD2とを含む。第2の上アーム素子321は、スイッチング素子Q3と、スイッチング素子Q3に並列に接続されるダイオードD3とを含む。第2の下アーム素子322は、スイッチング素子Q4と、スイッチング素子Q4に並列に接続されるダイオードD4とを含む。 First upper arm element 311 includes switching element Q1 and diode D1 connected in parallel with switching element Q1. First lower arm element 312 includes switching element Q2 and diode D2 connected in parallel with switching element Q2. Second upper arm element 321 includes switching element Q3 and diode D3 connected in parallel to switching element Q3. The second lower arm element 322 includes a switching element Q4 and a diode D4 connected in parallel with the switching element Q4.

ダイオードD1,D4は、電源電圧の極性が正、即ちリアクトル2に接続される側がリアクトル2に接続されない側よりも高電位であるときに、順方向の電流が流れるように配置された一方向性素子である。ダイオードD2,D3は、電源電圧の極性が負、即ちリアクトル2に接続されない側がリアクトル2に接続される側よりも高電位であるときに、順方向の電流が流れるように配置された一方向性素子である。 The diodes D1 and D4 are unidirectional diodes arranged so that forward current flows when the polarity of the power supply voltage is positive, that is, when the side connected to the reactor 2 has a higher potential than the side not connected to the reactor 2. element. The diodes D2 and D3 are unidirectional diodes arranged so that forward current flows when the polarity of the power supply voltage is negative, that is, when the side not connected to the reactor 2 has a higher potential than the side connected to the reactor 2. element.

なお、図1では、ダイオードD1,D2,D3,D4のそれぞれにスイッチング素子Q1,Q2,Q3,Q4が並列に接続される構成を開示しているが、これに限定されない。平滑コンデンサ4の正側に接続される2つのダイオード、即ち第1のレグ31におけるダイオードD1及び第2のレグ32におけるダイオードD3のそれぞれにスイッチング素子が接続されていればよい。或いは、平滑コンデンサ4の負側に接続される2つのダイオード、即ち第1のレグ31におけるダイオードD2及び第2のレグ32におけるダイオードD4のそれぞれにスイッチング素子が接続されていればよい。或いは、第1のレグ31における2つのダイオード、即ちダイオードD1,D2のそれぞれにスイッチング素子が接続されていればよい。或いは、第2のレグ32における2つのダイオード、即ちダイオードD3,D4のそれぞれにスイッチング素子が接続されていればよい。 Although FIG. 1 discloses a configuration in which switching elements Q1, Q2, Q3, and Q4 are connected in parallel to diodes D1, D2, D3, and D4, respectively, the configuration is not limited to this. A switching element may be connected to each of the two diodes connected to the positive side of the smoothing capacitor 4, that is, the diode D1 in the first leg 31 and the diode D3 in the second leg 32. Alternatively, a switching element may be connected to each of the two diodes connected to the negative side of the smoothing capacitor 4, that is, the diode D2 in the first leg 31 and the diode D4 in the second leg 32. Alternatively, a switching element may be connected to each of the two diodes in the first leg 31, namely the diodes D1 and D2. Alternatively, a switching element may be connected to each of the two diodes in the second leg 32, namely diodes D3 and D4.

また、図1では、スイッチング素子Q1,Q2,Q3,Q4のそれぞれにMOSFETを例示しているが、MOSFETに限定されない。MOSFETは、ドレインとソースとの間で双方向に電流を流すことができるスイッチング素子である。ドレインに相当する第1端子とソースに相当する第2端子との間で双方向に電流を流すことができるスイッチング素子、即ち双方向素子であれば、どのようなスイッチング素子でもよい。 Also, in FIG. 1, MOSFETs are illustrated as the switching elements Q1, Q2, Q3, and Q4, respectively, but they are not limited to MOSFETs. A MOSFET is a switching element that allows current to flow bidirectionally between a drain and a source. Any switching element may be used as long as it is a switching element that allows current to flow bidirectionally between a first terminal corresponding to the drain and a second terminal corresponding to the source, that is, a bidirectional element.

また、ここで言う「並列」とは、MOSFETのドレインに相当する第1端子とダイオードのカソードとが接続され、MOSFETのソースに相当する第2端子とダイオードのアノードとが接続されることを意味する。なお、ダイオードは、MOSFET自身が内部に有する寄生ダイオードを用いてもよい。寄生ダイオードは、ボディダイオードとも呼ばれる。 The term "parallel" used herein means that the first terminal corresponding to the drain of the MOSFET is connected to the cathode of the diode, and the second terminal corresponding to the source of the MOSFET is connected to the anode of the diode. do. A parasitic diode that the MOSFET itself has inside may be used as the diode. A parasitic diode is also called a body diode.

また、スイッチング素子Q1,Q2,Q3,Q4は、シリコン系材料により形成されたMOSFETに限定されず、炭化珪素(SiC)、窒化ガリウム(GaN)、酸化ガリウム(Ga)又はダイヤモンドといったワイドバンドギャップ(Wide Band Gap:WBG)半導体により形成されたMOSFETでもよい。Further, the switching elements Q1, Q2, Q3, Q4 are not limited to MOSFETs made of a silicon-based material, and may be made of silicon carbide (SiC), gallium nitride (GaN), gallium oxide (Ga 2 O 3 ), or diamond. A MOSFET made of a wide band gap (WBG) semiconductor may also be used.

一般的にWBG半導体は、シリコン半導体に比べて耐電圧及び耐熱性が高い。このため、スイッチング素子Q1,Q2,Q3,Q4のうちの少なくとも1つにWBG半導体を用いることにより、スイッチング素子の耐電圧性及び許容電流密度が高くなり、スイッチング素子を組み込んだ半導体モジュールを小型化できる。 In general, WBG semiconductors have higher withstand voltage and heat resistance than silicon semiconductors. Therefore, by using a WBG semiconductor for at least one of the switching elements Q1, Q2, Q3, and Q4, the voltage resistance and allowable current density of the switching elements are increased, and the semiconductor module incorporating the switching elements is miniaturized. can.

また、スイッチング素子Q1,Q2,Q3,Q4は、WBG半導体に代えて、スーパージャンクション(Super Junction:SJ)構造のMOSFETを用いてもよい。SJ-MOSFETを用いることにより、SJ-MOSFETのメリットである低オン抵抗を生かしつつ、静電容量が高くリカバリが発生しやすいというWBG半導体のデメリットを抑制できる。 Also, the switching elements Q1, Q2, Q3, and Q4 may use MOSFETs with a super junction (SJ) structure instead of the WBG semiconductors. By using the SJ-MOSFET, it is possible to take advantage of the low on-resistance which is an advantage of the SJ-MOSFET, while suppressing the disadvantage of the WBG semiconductor that the electrostatic capacity is high and recovery is likely to occur.

図1の説明に戻る。平滑コンデンサ4の正側は、高電位側の直流母線16aに接続されている。直流母線16aは、第1のレグ31における第1の上アーム素子311と、第2のレグ32における第2の上アーム素子321との接続点3cから引き出されている。平滑コンデンサ4の負側は、低電位側の直流母線16bに接続されている。直流母線16bは、第1のレグ31における第1の下アーム素子312と、第2のレグ32における第2の下アーム素子322との接続点3dから引き出されている。コンバータ3において、接続点3c,3dは、直流端子を構成する。また、コンバータ3において、接続点3c,3dがある側を「直流側」と呼ぶ場合がある。 Returning to the description of FIG. The positive side of the smoothing capacitor 4 is connected to the DC bus 16a on the high potential side. The DC bus 16 a is drawn out from a connection point 3 c between the first upper arm element 311 on the first leg 31 and the second upper arm element 321 on the second leg 32 . The negative side of the smoothing capacitor 4 is connected to the DC bus 16b on the low potential side. The DC bus 16b is drawn out from a connection point 3d between the first lower arm element 312 on the first leg 31 and the second lower arm element 322 on the second leg 32 . In converter 3, connection points 3c and 3d form DC terminals. In addition, in the converter 3, the side on which the connection points 3c and 3d are located may be referred to as the "direct current side".

コンバータ3の出力電圧は、平滑コンデンサ4の両端に印加される。平滑コンデンサ4は、直流母線16a,16bに接続されている。平滑コンデンサ4は、コンバータ3の出力電圧を平滑する。平滑コンデンサ4によって平滑された電圧は、インバータ18に印加される。 The output voltage of converter 3 is applied across smoothing capacitor 4 . The smoothing capacitor 4 is connected to DC buses 16a and 16b. Smoothing capacitor 4 smoothes the output voltage of converter 3 . The voltage smoothed by smoothing capacitor 4 is applied to inverter 18 .

電圧検出部5は、電源電圧を検出し、電源電圧の検出値Vsを制御部10に出力する。電源電圧は、交流電源1の瞬時電圧の絶対値である。なお、瞬時電圧の実効値を、電源電圧としてもよい。 The voltage detection unit 5 detects the power supply voltage and outputs the detected value Vs of the power supply voltage to the control unit 10 . The power supply voltage is the absolute value of the instantaneous voltage of the AC power supply 1 . Note that the effective value of the instantaneous voltage may be used as the power supply voltage.

電流検出部6は、交流電源1とコンバータ3との間に流れる交流電流である電源電流を検出し、電源電流の検出値Isを制御部10に出力する。電流検出部6に用いる電流検出器の一例は、交流変流器(Alternating Current Current Transformer:ACCT)である。電圧検出部7は、母線電圧を検出し、母線電圧の検出値Vdcを制御部10に出力する。 Current detection unit 6 detects a power supply current, which is an alternating current flowing between AC power supply 1 and converter 3 , and outputs a detected value Is of the power supply current to control unit 10 . An example of a current detector used in the current detector 6 is an alternating current current transformer (ACCT). The voltage detection unit 7 detects a bus voltage and outputs a detected value Vdc of the bus voltage to the control unit 10 .

母線電圧は、コンバータ3の直流側、即ち出力側の動作状態を表す物理量である。また、電源電圧は、コンバータ3の交流側、即ち入力側の動作状態を表す物理量である。なお、これらの2つの物理量を区別するため、母線電圧を「第1の物理量」と呼び、電源電圧を「第2の物理量」と呼ぶ場合がある。また、母線電圧を検出する電圧検出部7を「第1の物理量検出部」と呼び、電源電圧を検出する電圧検出部5を「第2の物理量検出部」と呼ぶ場合がある。 The bus voltage is a physical quantity representing the operating state of the DC side of the converter 3, that is, the output side. Also, the power supply voltage is a physical quantity representing the operating state of the AC side of the converter 3, that is, the input side. In order to distinguish between these two physical quantities, the bus voltage may be called the "first physical quantity" and the power supply voltage may be called the "second physical quantity". In addition, the voltage detection unit 7 that detects the bus voltage may be called the "first physical quantity detection unit", and the voltage detection unit 5 that detects the power supply voltage may be called the "second physical quantity detection unit".

電源回路14は、平滑コンデンサ4の両端に接続される。電源回路14は、平滑コンデンサ4の電圧を利用して、5V、12V、15V、24Vといった低圧の直流電圧を生成する。低圧の直流電圧は、平滑コンデンサ4に蓄積された電荷を利用して生成される。低圧の直流電圧は、動作電圧として供給先の各部に付与される。電源回路14は、例えば5Vの直流電圧を制御部10、電流検出部6などに出力する。制御部10において、5Vの直流電圧は、図1では不図示のプロセッサに印加される。 The power supply circuit 14 is connected across the smoothing capacitor 4 . The power supply circuit 14 uses the voltage of the smoothing capacitor 4 to generate low-voltage DC voltages of 5V, 12V, 15V, and 24V. A low-voltage DC voltage is generated using the charge accumulated in the smoothing capacitor 4 . A low-voltage DC voltage is applied to each part of the supply destination as an operating voltage. The power supply circuit 14 outputs, for example, a DC voltage of 5V to the control section 10, the current detection section 6, and the like. In the control unit 10, a DC voltage of 5V is applied to a processor (not shown in FIG. 1).

インバータ18は、上アーム素子18UPと下アーム素子18UNとが直列に接続されたレグ18Aと、上アーム素子18VPと下アーム素子18VNとが直列に接続されたレグ18Bと、上アーム素子18WPと下アーム素子18WNとが直列に接続されたレグ18Cと、を備える。レグ18A、レグ18B及びレグ18Cは、互いに並列に接続されている。 The inverter 18 includes a leg 18A in which an upper arm element 18UP and a lower arm element 18UN are connected in series, a leg 18B in which an upper arm element 18VP and a lower arm element 18VN are connected in series, an upper arm element 18WP and a lower arm element 18WP. and a leg 18C to which the arm element 18WN is connected in series. Leg 18A, leg 18B and leg 18C are connected in parallel with each other.

図1では、上アーム素子18UP,18VP,18WP及び下アーム素子18UN,18VN,18WNが絶縁ゲートバイポーラトランジスタ(Insulated Gate Bipolar Transistor:IGBT)である場合を例示しているが、これに限定されない。IGBTに代えて、MOSFET、又は集積化ゲート転流型サイリスタ(Integrated Gate Commutated Thyristor:IGCT)を用いてもよい。 FIG. 1 exemplifies the case where the upper arm elements 18UP, 18VP, 18WP and the lower arm elements 18UN, 18VN, 18WN are insulated gate bipolar transistors (IGBT), but the present invention is not limited to this. A MOSFET or an integrated gate commutated thyristor (IGCT) may be used instead of the IGBT.

上アーム素子18UPは、トランジスタ18aと、トランジスタ18aに並列に接続されるダイオード18bとを含む。他の上アーム素子18VP,18WP、及び下アーム素子18UN,18VN,18WNについても同様の構成である。ここで言う「並列」とは、IGBTのエミッタに相当する第1端子にダイオードのアノード側が接続され、IGBTのコレクタに相当する第2端子にダイオードのカソード側が接続されることを意味する。 Upper arm element 18UP includes transistor 18a and diode 18b connected in parallel with transistor 18a. Other upper arm elements 18VP, 18WP and lower arm elements 18UN, 18VN, 18WN have the same configuration. "Parallel" here means that the anode side of the diode is connected to the first terminal corresponding to the emitter of the IGBT, and the cathode side of the diode is connected to the second terminal corresponding to the collector of the IGBT.

なお、図1は、上アーム素子と下アーム素子とが直列に接続されるレグを3つ備える構成であるが、この構成に限定されない。レグの数は4つ以上でもよい。また、図1に示す回路構成は、三相モータであるモータ500に合わせたものである。モータ500が単相モータの場合、インバータ18も単相モータに対応した構成とされる。具体的には、上アーム素子と下アーム素子とが直列に接続されるレグを2つ備える構成となる。なお、モータ500が単相モータ及び三相モータの何れの場合も、1つのレグが複数対の上下アーム素子で構成されていてもよい。 Although FIG. 1 shows a configuration including three legs in which the upper arm element and the lower arm element are connected in series, the configuration is not limited to this. The number of legs may be four or more. Also, the circuit configuration shown in FIG. 1 is adapted to the motor 500 which is a three-phase motor. When the motor 500 is a single-phase motor, the inverter 18 is also configured to correspond to the single-phase motor. Specifically, it is configured to have two legs in which the upper arm element and the lower arm element are connected in series. It should be noted that one leg may be composed of a plurality of pairs of upper and lower arm elements regardless of whether the motor 500 is a single-phase motor or a three-phase motor.

上アーム素子18UP,18VP,18WP及び下アーム素子18UN,18VN,18WNのトランジスタ18aがMOSFETである場合、上アーム素子18UP,18VP,18WP及び下アーム素子18UN,18VN,18WNは、炭化珪素、窒化ガリウム系材料又はダイヤモンドといったWBG半導体により形成されていてもよい。WBG半導体により形成されたMOSFETを用いれば、耐電圧性及び耐熱性の効果を享受することができる。 When the transistors 18a of the upper arm elements 18UP, 18VP, 18WP and the lower arm elements 18UN, 18VN, 18WN are MOSFETs, the upper arm elements 18UP, 18VP, 18WP and the lower arm elements 18UN, 18VN, 18WN are silicon carbide and gallium nitride. It may be formed of a WBG semiconductor such as a base material or diamond. By using a MOSFET formed of a WBG semiconductor, it is possible to enjoy the effects of withstand voltage and heat resistance.

上アーム素子18UPと下アーム素子18UNとの接続点26aはモータ500の第1の相(例えばU相)に接続され、上アーム素子18VPと下アーム素子18VNとの接続点26bはモータ500の第2の相(例えばV相)に接続され、上アーム素子18WPと下アーム素子18WNとの接続点26cはモータ500の第3の相(例えばW相)に接続されている。インバータ18において、接続点26a,26b,26cは、交流端子を構成する。 A connection point 26a between the upper arm element 18UP and the lower arm element 18UN is connected to the first phase (for example, U phase) of the motor 500, and a connection point 26b between the upper arm element 18VP and the lower arm element 18VN is connected to the first phase of the motor 500. 2 (eg, V phase), and the connection point 26c between the upper arm element 18WP and the lower arm element 18WN is connected to the third phase (eg, W phase) of the motor 500. FIG. In the inverter 18, the connection points 26a, 26b, 26c form AC terminals.

電流検出部9は、インバータ18とモータ500との間に流れるモータ電流を検出し、モータ電流の検出値Iuvwを制御部10に出力する。 The current detection unit 9 detects motor current flowing between the inverter 18 and the motor 500 and outputs a detected value Iuvw of the motor current to the control unit 10 .

制御部10は、電圧検出部5の検出値Vs、電流検出部6の検出値Is、及び電圧検出部7の検出値Vdcに基づいて、コンバータ3内の各スイッチング素子を制御するための制御信号S311~S322を生成する。制御信号S311は、スイッチング素子Q1を制御するための制御信号であり、制御信号S322は、スイッチング素子Q4を制御するための制御信号である。スイッチング素子Q2,Q3も制御部10からの制御信号によって制御される。以下では、制御信号S311~S322に従った各アーム素子の動作を適宜「スイッチング動作」と呼ぶ。制御部10によって生成された制御信号S311~S322は、ゲート駆動回路15に入力される。 The control unit 10 generates a control signal for controlling each switching element in the converter 3 based on the detection value Vs of the voltage detection unit 5, the detection value Is of the current detection unit 6, and the detection value Vdc of the voltage detection unit 7. S311 to S322 are generated. The control signal S311 is a control signal for controlling the switching element Q1, and the control signal S322 is a control signal for controlling the switching element Q4. The switching elements Q2 and Q3 are also controlled by the control signal from the control section 10. FIG. Hereinafter, the operation of each arm element in accordance with the control signals S311 to S322 will be appropriately referred to as "switching operation". Control signals S 311 to S 322 generated by the control section 10 are input to the gate drive circuit 15 .

また、制御部10は、電圧検出部7の検出値Vdc及び電流検出部9の検出値Iuvwに基づいて、モータ500が所望の回転数で回転するように、インバータ18に具備される各スイッチング素子を制御するための制御信号S1~S6を生成する。インバータ18は三相の回路構成であり、三相の回路構成に対応して6つのスイッチング素子を有する。また、6つのスイッチング素子に対応して、6つの制御信号S1~S6が生成される。制御部10によって生成された制御信号S1~S6は、ゲート駆動回路17に入力される。 Based on the detected value Vdc of the voltage detector 7 and the detected value Iuvw of the current detector 9, the controller 10 controls each switching element provided in the inverter 18 so that the motor 500 rotates at a desired rotation speed. to generate control signals S1 to S6 for controlling the The inverter 18 has a three-phase circuit configuration and has six switching elements corresponding to the three-phase circuit configuration. Also, six control signals S1 to S6 are generated corresponding to the six switching elements. Control signals S 1 to S 6 generated by the control section 10 are input to the gate drive circuit 17 .

ゲート駆動回路15は、制御信号S311~S322に基づいて、コンバータ3内の各スイッチング素子を駆動するための駆動パルスG311~G322を生成する。駆動パルスG311は、スイッチング素子Q1を駆動するための駆動パルスであり、駆動パルスG322は、スイッチング素子Q4を駆動するための駆動パルスである。スイッチング素子Q2,Q3もゲート駆動回路15からの駆動パルスによって駆動される。 Gate drive circuit 15 generates drive pulses G311-G322 for driving respective switching elements in converter 3 based on control signals S311-S322. The drive pulse G311 is a drive pulse for driving the switching element Q1, and the drive pulse G322 is a drive pulse for driving the switching element Q4. The switching elements Q2 and Q3 are also driven by drive pulses from the gate drive circuit 15. FIG.

ゲート駆動回路17は、制御信号S1~S6に基づいて、インバータ18内の各スイッチング素子を駆動するための駆動パルスG1~G6を生成する。 Gate drive circuit 17 generates drive pulses G1 to G6 for driving respective switching elements in inverter 18 based on control signals S1 to S6.

なお、図1では、制御部10は、直流電源装置50及び負荷12を制御する共通の制御部としてモータ駆動装置100の内部に設けられているが、この構成に限定されない。直流電源装置50及び負荷12のそれぞれを制御する個別の制御部を構成し、それぞれの制御部が、直流電源装置50及び負荷12のそれぞれの内部に設けられていてもよい。 In FIG. 1, the controller 10 is provided inside the motor drive device 100 as a common controller that controls the DC power supply 50 and the load 12, but the configuration is not limited to this. Separate control units may be configured to control the DC power supply 50 and the load 12 , and the respective control units may be provided inside the DC power supply 50 and the load 12 .

次に、実施の形態1に係るモータ駆動装置100の基本的な動作を説明する。まず、第1のレグ31では、第1の上アーム素子311及び第1の下アーム素子312は相補的、又は同時にオン状態とならないように動作する。即ち、第1の上アーム素子311及び第1の下アーム素子312のうち、一方がオンの場合には他方はオフである。前述したように、第1の上アーム素子311及び第1の下アーム素子312は、制御部10により生成される制御信号S311,S312により制御される。制御信号S311,S312の一例は、パルス幅変調(Pulse Width Modulation:PWM)信号である。 Next, basic operation of the motor drive device 100 according to Embodiment 1 will be described. First, in the first leg 31, the first upper arm element 311 and the first lower arm element 312 operate in a complementary manner or in such a manner that they are not turned on at the same time. That is, when one of the first upper arm element 311 and the first lower arm element 312 is on, the other is off. As described above, the first upper arm element 311 and the first lower arm element 312 are controlled by control signals S311 and S312 generated by the control section 10. FIG. An example of the control signals S311 and S312 is a pulse width modulation (PWM) signal.

交流電源1及びリアクトル2を介した平滑コンデンサ4の短絡を防ぐため、交流電源1から出力される電源電流の検出値Isの絶対値が電流閾値以下の場合には、第1の上アーム素子311及び第1の下アーム素子312は、共にオフとなる。以下では、平滑コンデンサ4の短絡を「コンデンサ短絡」と呼ぶ。コンデンサ短絡は、平滑コンデンサ4に蓄えられたエネルギーが放出され、交流電源1に電流が回生される状態である。 In order to prevent a short circuit of the smoothing capacitor 4 via the AC power supply 1 and the reactor 2, when the absolute value of the detected value Is of the power supply current output from the AC power supply 1 is equal to or less than the current threshold, the first upper arm element 311 and the first lower arm element 312 are both turned off. Below, the short circuit of the smoothing capacitor 4 is called "capacitor short circuit." A capacitor short-circuit is a state in which the energy stored in the smoothing capacitor 4 is released and current is regenerated in the AC power supply 1 .

前述したように、第2のレグ32を構成する第2の上アーム素子321及び第2の下アーム素子322は、制御部10により生成される制御信号S321,S322により制御される。第2の上アーム素子321及び第2の下アーム素子322は、基本的には、電源電圧の極性である電源電圧極性に応じてオン又はオフの状態となる。具体的には、電源電圧極性が正の場合、第2の下アーム素子322はオンであり、且つ、第2の上アーム素子321はオフである。また、電源電圧極性が負の場合、第2の上アーム素子321はオンであり、且つ、第2の下アーム素子322はオフである。 As described above, the second upper arm element 321 and the second lower arm element 322 forming the second leg 32 are controlled by the control signals S321 and S322 generated by the control section 10. FIG. The second upper arm element 321 and the second lower arm element 322 are basically turned on or off according to the polarity of the power supply voltage. Specifically, when the power supply voltage polarity is positive, the second lower arm element 322 is on and the second upper arm element 321 is off. Also, when the power supply voltage polarity is negative, the second upper arm element 321 is on and the second lower arm element 322 is off.

次に、実施の形態1におけるコンバータ3の各アーム素子の状態と実施の形態1に係るモータ駆動装置100に流れる電流の経路との関係を説明する。なお、以下の説明では、コンバータ3の各アーム素子はMOSFETであり、各アーム素子のダイオードは、MOSFET自身が内部に有する寄生ダイオードであるとする。 Next, the relationship between the state of each arm element of converter 3 in the first embodiment and the path of the current flowing through motor drive device 100 in the first embodiment will be described. In the following description, each arm element of converter 3 is a MOSFET, and the diode of each arm element is a parasitic diode that the MOSFET itself has inside.

まず、MOSFETの構造について、図2を参照して説明する。図2は、実施の形態1のコンバータ3に用いられるMOSFETの概略構造を示す模式的断面図である。図2には、n型MOSFETが例示されている。 First, the structure of the MOSFET will be described with reference to FIG. FIG. 2 is a schematic cross-sectional view showing a schematic structure of a MOSFET used in converter 3 of the first embodiment. FIG. 2 illustrates an n-type MOSFET.

n型MOSFETの場合、図2に示すように、p型の半導体基板600が用いられる。半導体基板600には、ソース電極S、ドレイン電極D及びゲート電極Gが形成される。ソース電極S及びドレイン電極Dと接する部位には、高濃度の不純物がイオン注入されてn型の領域601が形成される。また、半導体基板600において、n型の領域601が形成されない部位とゲート電極Gとの間には、酸化絶縁膜602が形成される。即ち、ゲート電極Gと、半導体基板600におけるp型の領域603との間には、酸化絶縁膜602が介在している。 For an n-type MOSFET, a p-type semiconductor substrate 600 is used, as shown in FIG. A source electrode S, a drain electrode D and a gate electrode G are formed on the semiconductor substrate 600 . An n-type region 601 is formed in a portion in contact with the source electrode S and the drain electrode D by ion-implanting a high-concentration impurity. In addition, an oxide insulating film 602 is formed between the portion of the semiconductor substrate 600 where the n-type region 601 is not formed and the gate electrode G. As shown in FIG. That is, an oxide insulating film 602 is interposed between the gate electrode G and the p-type region 603 in the semiconductor substrate 600 .

ゲート電極Gに正電圧が印加されると、半導体基板600におけるp型の領域603と酸化絶縁膜602との間の境界面に電子が引き寄せられ、当該境界面が負に帯電する。電子が集まった所は、電子の密度がホール密度よりも高くなりn型化する。このn型化した部分は電流の通り道となりチャネル604と呼ばれる。チャネル604は、図2の例では、n型チャネルである。MOSFETがオンに制御されることにより、通流する電流は、p型の領域603に形成される寄生ダイオードよりも、チャネル604に多く流れる。 When a positive voltage is applied to the gate electrode G, electrons are attracted to the interface between the p-type region 603 and the oxide insulating film 602 in the semiconductor substrate 600, and the interface is negatively charged. Where electrons gather, the electron density is higher than the hole density and the area becomes n-type. This n-type portion is called a channel 604 and serves as a passage for current. Channel 604 is an n-type channel in the example of FIG. By turning on the MOSFET, more current flows through the channel 604 than through the parasitic diode formed in the p-type region 603 .

図3は、実施の形態1におけるコンバータ3に流れる電流の経路を示す第1の図である。図3には、電源電圧極性が正であり、且つ、電源電流の検出値Isの絶対値が電流閾値よりも大きい状態が示されている。この状態では、第1の上アーム素子311及び第2の下アーム素子322はオンであり、第1の下アーム素子312及び第2の上アーム素子321はオフである。このとき、交流電源1、リアクトル2、スイッチング素子Q1、平滑コンデンサ4、スイッチング素子Q4、交流電源1の順序で電流が流れる。このように、実施の形態1では、ダイオードD1及びダイオードD4に電流を流すのではなく、スイッチング素子Q1,Q4のそれぞれのチャネルに電流を流す動作モードを有している。この動作は「同期整流」と呼ばれる。なお、図3では、オンしているMOSFETを丸印で示している。以降の図においても同様である。動作モードの詳細については、後述する。 FIG. 3 is a first diagram showing paths of current flowing through converter 3 in the first embodiment. FIG. 3 shows a state in which the polarity of the power supply voltage is positive and the absolute value of the detected value Is of the power supply current is greater than the current threshold. In this state, the first upper arm element 311 and the second lower arm element 322 are on and the first lower arm element 312 and the second upper arm element 321 are off. At this time, current flows in the order of the AC power supply 1, the reactor 2, the switching element Q1, the smoothing capacitor 4, the switching element Q4, and the AC power supply 1. As described above, the first embodiment has an operation mode in which the current is passed through the respective channels of the switching elements Q1 and Q4, rather than through the diodes D1 and D4. This operation is called "synchronous rectification". Note that in FIG. 3, the MOSFETs that are turned on are indicated by circles. The same applies to subsequent figures. Details of the operation modes will be described later.

図4は、実施の形態1におけるコンバータ3に流れる電流の経路を示す第2の図である。図4には、電源電圧極性が負であり、且つ、電源電流の検出値Isの絶対値が電流閾値よりも大きい状態が示されている。この状態では、第1の下アーム素子312及び第2の上アーム素子321はオンであり、第1の上アーム素子311及び第2の下アーム素子322はオフである。このとき、交流電源1、スイッチング素子Q3、平滑コンデンサ4、スイッチング素子Q2、リアクトル2、交流電源1の順序で電流が流れる。このように、実施の形態1では、ダイオードD3及びダイオードD2に電流を流すのではなく、スイッチング素子Q3,Q2のそれぞれのチャネルに電流を流す同期整流動作が行われる場合がある。 FIG. 4 is a second diagram showing paths of current flowing through converter 3 in the first embodiment. FIG. 4 shows a state in which the polarity of the power supply voltage is negative and the absolute value of the detected value Is of the power supply current is greater than the current threshold. In this state, the first lower arm element 312 and the second upper arm element 321 are on and the first upper arm element 311 and the second lower arm element 322 are off. At this time, current flows in the order of AC power supply 1, switching element Q3, smoothing capacitor 4, switching element Q2, reactor 2, and AC power supply 1. As described above, in Embodiment 1, synchronous rectification may be performed in which current is passed through the respective channels of the switching elements Q3 and Q2 instead of passing the current through the diodes D3 and D2.

図5は、実施の形態1におけるコンバータ3に流れる電流の経路を示す第3の図である。図5には、電源電圧極性が正であり、且つ、電源電流の検出値Isの絶対値が電流閾値より大きい状態が示されている。この状態では、第1の下アーム素子312及び第2の下アーム素子322はオンであり、第1の上アーム素子311及び第2の上アーム素子321はオフである。このとき、交流電源1、リアクトル2、スイッチング素子Q2、スイッチング素子Q4、交流電源1の順序で電流が流れる。これにより、平滑コンデンサ4を経由しない電源短絡経路が形成される。図5に示す電源短絡経路を形成する場合、第1の下アーム素子312をオンすることは必須であるが、第2の下アーム素子322はオン又はオフの何れでもよい。実施の形態1では、図5に示されるように、ダイオードD4に電流を流すのではなく、スイッチング素子Q4のチャネルに電流を流すことで電源短絡経路を形成するモードを用意している。 FIG. 5 is a third diagram showing paths of current flowing through converter 3 in the first embodiment. FIG. 5 shows a state in which the polarity of the power supply voltage is positive and the absolute value of the detected value Is of the power supply current is greater than the current threshold. In this state, the first lower arm element 312 and the second lower arm element 322 are on and the first upper arm element 311 and the second upper arm element 321 are off. At this time, current flows in the order of the AC power supply 1, the reactor 2, the switching element Q2, the switching element Q4, and the AC power supply 1. As a result, a power supply short-circuit path that does not pass through the smoothing capacitor 4 is formed. When forming the power supply short-circuit path shown in FIG. 5, it is essential to turn on the first lower arm element 312, but the second lower arm element 322 may be either on or off. In the first embodiment, as shown in FIG. 5, a mode is prepared in which a current is passed through the channel of the switching element Q4 instead of through the diode D4 to form a power supply short-circuit path.

図6は、実施の形態1におけるコンバータ3に流れる電流の経路を示す第4の図である。図6には、電源電圧極性が負であり、且つ、電源電流の検出値Isの絶対値が電流閾値より大きい状態が示されている。この状態では、第1の上アーム素子311及び第2の上アーム素子321はオンであり、第1の下アーム素子312及び第2の下アーム素子322はオフである。このとき、交流電源1、スイッチング素子Q3、スイッチング素子Q1、リアクトル2、交流電源1の順序で電流が流れる。これにより、平滑コンデンサ4を経由しない電源短絡経路が形成される。図6に示す電源短絡経路を形成する場合、第1の上アーム素子311をオンすることは必須であるが、第2の上アーム素子321はオン又はオフの何れでもよい。実施の形態1では、図6に示されるように、ダイオードD3に電流を流すのではなく、スイッチング素子Q3のチャネルに電流を流すことで電源短絡経路を形成するモードを用意している。 FIG. 6 is a fourth diagram showing paths of current flowing through converter 3 in the first embodiment. FIG. 6 shows a state in which the polarity of the power supply voltage is negative and the absolute value of the detected value Is of the power supply current is greater than the current threshold. In this state, the first upper arm element 311 and the second upper arm element 321 are on, and the first lower arm element 312 and the second lower arm element 322 are off. At this time, current flows in the order of AC power supply 1, switching element Q3, switching element Q1, reactor 2, and AC power supply 1. As a result, a power supply short-circuit path that does not pass through the smoothing capacitor 4 is formed. When forming the power supply short-circuit path shown in FIG. 6, it is essential to turn on the first upper arm element 311, but the second upper arm element 321 may be turned on or off. In Embodiment 1, as shown in FIG. 6, a mode is provided in which a current is passed through the channel of the switching element Q3 instead of through the diode D3 to form a power supply short-circuit path.

制御部10は、以上に述べた電流経路の切り替えを制御することで、電源電流及び母線電圧の値を制御できる。モータ駆動装置100は、電源電圧極性が正のときは、図3に示す動作と図5に示す動作とを連続的に切り替える。また、モータ駆動装置100は、電源電圧極性が負のときは、図4に示す動作と図6に示す動作とを連続的に切り替える。これにより、母線電圧の上昇を抑制する制御、力率を改善するための電流制御、及び運転効率を改善するための同期整流を実現することができる。 The control unit 10 can control the values of the power supply current and the bus voltage by controlling the switching of the current paths described above. Motor drive device 100 continuously switches between the operation shown in FIG. 3 and the operation shown in FIG. 5 when the polarity of the power supply voltage is positive. Further, when the polarity of the power supply voltage is negative, motor drive device 100 continuously switches between the operation shown in FIG. 4 and the operation shown in FIG. As a result, it is possible to realize control for suppressing the rise of the bus voltage, current control for improving the power factor, and synchronous rectification for improving the operating efficiency.

次に、図7及び図8を参照して、実施の形態1の直流電源装置50において使用する動作モードについて説明する。図7は、実施の形態1における動作モードの特徴を説明する図である。図8は、図7に示す動作モードで動作させたときの動作波形を示す図である。 Next, operation modes used in the DC power supply device 50 of the first embodiment will be described with reference to FIGS. 7 and 8. FIG. FIG. 7 is a diagram for explaining features of operation modes according to the first embodiment. FIG. 8 is a diagram showing operation waveforms when operated in the operation mode shown in FIG.

図7には、(a)整流モード、(b)同期整流モード、(c)低速スイッチングモード、(d)高速スイッチングモードという4つの動作モードが記載されている。それぞれの動作モードは、同期整流、電流制御及び母線電圧制御という3つの制御の実施の有無の組合せで区分される。同期整流は、前述した通りであり、運転効率改善のために行う。母線電圧制御は、母線電圧の上昇を抑制する制御である。電流制御は、コンバータ3に流出入する電流の力率改善、及び高調波抑制のための制御である。なお、低速スイッチングモードを「第1のスイッチングモード」と呼び、高速スイッチングモードを「第2のスイッチングモード」と呼ぶ場合がある。 FIG. 7 describes four modes of operation: (a) rectification mode, (b) synchronous rectification mode, (c) slow switching mode, and (d) fast switching mode. Each operation mode is classified by a combination of whether three controls, synchronous rectification, current control, and bus voltage control, are performed or not. Synchronous rectification is as described above and is performed to improve operational efficiency. Bus voltage control is control for suppressing an increase in bus voltage. Current control is control for improving the power factor of the current flowing in and out of the converter 3 and suppressing harmonics. The low-speed switching mode may be called "first switching mode", and the high-speed switching mode may be called "second switching mode".

実施の形態1における直流電源装置50は、整流モードを有し、更に、同期整流モード、低速スイッチングモード及び高速スイッチングモードのうちの少なくとも1つの動作モードを有する。なお、昇圧動作が必要とされない用途又は製品では、低速スイッチングモード及び高速スイッチングモードを有していなくてもよい場合がある。 The DC power supply device 50 in Embodiment 1 has a rectification mode, and further has at least one operation mode of a synchronous rectification mode, a slow switching mode, and a high speed switching mode. Applications or products that do not require the boost operation may not necessarily have the slow switching mode and the fast switching mode.

図8(a)には、整流モードで動作させたときの動作波形が示されている。具体的には、上部側から、電源電圧、電源電流、及びスイッチング素子Q1~Q4のそれぞれを制御する制御信号S321~S322の波形が示されている。他の動作モードも同様である。整流モードにおいては、スイッチング素子を制御する必要がないため、ゲート駆動回路15を動作させる電源回路14の消費が抑えられるという利点がある。また、スイッチング素子を制御する必要がないため、制御が容易であるという利点がある。 FIG. 8(a) shows operating waveforms when operated in the rectification mode. Specifically, the waveforms of the power supply voltage, the power supply current, and the control signals S321 to S322 for controlling the switching elements Q1 to Q4 are shown from the top side. Other operating modes are similar. Since there is no need to control the switching elements in the rectification mode, there is an advantage that the power consumption of the power supply circuit 14 that operates the gate drive circuit 15 can be suppressed. In addition, there is an advantage that control is easy because there is no need to control switching elements.

図8(b)には、同期整流モードで動作させたときの動作波形が示されている。同期整流モードにおいては、寄生ダイオードに通流するタイミングで対応するスイッチング素子をオン状態として、スイッチング素子のチャネル側に通流させる動作モードである。図8(b)の例では、寄生ダイオードに通流するタイミングでスイッチング素子Q1,Q4、又はスイッチング素子Q2,Q3をオンに制御している。同期整流モードを使用すると、特に流れる電流が小さい場合に、高効率化を図ることが可能である。なお、同期整流モードは、通流する素子を寄生ダイオードからスイッチング素子に置き換えただけである。このため、図7に示されるように、電流制御及び母線電圧制御は実施されない。 FIG. 8B shows operating waveforms when operating in the synchronous rectification mode. The synchronous rectification mode is an operation mode in which the corresponding switching element is turned on at the timing when the parasitic diode is energized, and current is energized on the channel side of the switching element. In the example of FIG. 8B, the switching elements Q1 and Q4 or the switching elements Q2 and Q3 are controlled to be ON at the timing when the parasitic diode is energized. A synchronous rectification mode can be used to achieve high efficiency, especially when the currents flowing are small. In the synchronous rectification mode, the parasitic diode is replaced with a switching element as the energized element. Therefore, as shown in FIG. 7, current control and bus voltage control are not implemented.

図8(c)には、低速スイッチングモードで動作させたときの動作波形が示されている。低速スイッチングモードは、電源電圧の半周期に1回以上、リアクトル2を介して電源電圧を短絡させる動作モードである。図8(c)の例では、電源電圧の半周期ごとに、2回の短絡動作が行われている。短絡動作を行うことで、リアクトル2にエネルギーが蓄積される。エネルギーの蓄積後に短絡動作を解除すると、リアクトル2に蓄積されたエネルギーが平滑コンデンサ4に移送されて蓄積される。これにより、平滑コンデンサ4の電圧、即ち母線電圧の昇圧が可能となる。 FIG. 8(c) shows operation waveforms when operating in the low-speed switching mode. The low-speed switching mode is an operation mode in which the power supply voltage is short-circuited via the reactor 2 once or more per half cycle of the power supply voltage. In the example of FIG. 8C, two short-circuit operations are performed for each half cycle of the power supply voltage. Energy is stored in the reactor 2 by performing the short-circuit operation. When the short-circuit operation is released after the energy is accumulated, the energy accumulated in the reactor 2 is transferred to the smoothing capacitor 4 and accumulated. This makes it possible to boost the voltage of the smoothing capacitor 4, that is, the bus voltage.

母線電圧の昇圧量については、母線電圧制御によって調整される。母線電圧制御には、比例積分制御器などが用いられる。母線電圧制御では、母線電圧の検出値Vdcが目標電圧に近づくようにコンバータ3の動作が制御される。また、母線電圧制御では、リアクトル2を介して電源電圧を短絡させるときの短絡時間が制御される。また、母線電圧制御では、比例積分制御器の応答時間を変化させることにより、負荷変動の発生に起因して生じ得る母線電圧の過大な上昇を抑制することができる。 The boost amount of the bus voltage is adjusted by bus voltage control. A proportional integral controller or the like is used for bus voltage control. In the bus voltage control, the operation of converter 3 is controlled so that the detected value Vdc of the bus voltage approaches the target voltage. Also, in the bus voltage control, the short-circuit time when the power supply voltage is short-circuited via the reactor 2 is controlled. Further, in the bus voltage control, by changing the response time of the proportional-integral controller, it is possible to suppress an excessive rise in the bus voltage that may occur due to the occurrence of load fluctuations.

低速スイッチングモードでは、短絡動作によって短絡電流を流すことができる。これにより、電源電流の通流幅の拡大によって、力率の改善及び高調波電流の抑制を図ることができる。電流波形の改善に関しては、電源電圧のゼロクロス点を基準にして短絡動作を行わせるタイミングを予め決めておき、負荷に応じて参照する形をとってもよい。或いは、電源電流を検出し、検出した電流波形が正弦波に近づくように短絡時間を制御してもよい。なお、低速スイッチングモードにおいては短絡動作させる動作時間が短いため、高調波ノイズの発生を抑制することが可能である。 In the slow switching mode, the short circuit action allows the short circuit current to flow. As a result, it is possible to improve the power factor and suppress the harmonic current by expanding the flow width of the power supply current. As for the improvement of the current waveform, it is also possible to predetermine the timing for performing the short-circuit operation with reference to the zero crossing point of the power supply voltage, and refer to it according to the load. Alternatively, the power supply current may be detected and the short-circuit time may be controlled so that the detected current waveform approaches a sine wave. In the low-speed switching mode, since the operation time for short-circuiting is short, it is possible to suppress the occurrence of harmonic noise.

図8(d)には、高速スイッチングモードで動作させたときの動作波形が示されている。高速スイッチングモードは、電源電圧の1周期の全域に亘り、リアクトル2を介して電源電圧を複数回短絡させる動作モードである。短絡動作させる意義は、低速スイッチングモードと同じである。即ち、短絡動作を行うことでリアクトル2にエネルギーを蓄積し、エネルギーの蓄積後に短絡動作を解除することで、リアクトル2に蓄積されたエネルギーを平滑コンデンサ4に移送する。これにより、母線電圧の昇圧が可能である。母線電圧の昇圧量の制御についても、低速スイッチングモードと同様な制御で実現することができる。 FIG. 8(d) shows operation waveforms when operated in the high-speed switching mode. The high-speed switching mode is an operation mode in which the power supply voltage is short-circuited multiple times via the reactor 2 over the entire period of the power supply voltage. The significance of the short-circuit operation is the same as in the slow switching mode. That is, energy is accumulated in the reactor 2 by performing the short-circuit operation, and the energy accumulated in the reactor 2 is transferred to the smoothing capacitor 4 by canceling the short-circuit operation after the energy is accumulated. This makes it possible to boost the bus voltage. Control of the boost amount of the bus voltage can also be realized by the same control as in the low-speed switching mode.

前述したように、高速スイッチングモードでは、電源電圧の1周期の全域に亘って短絡動作が行われるので、低速スイッチングモードよりも電流の通流幅が拡大する。これにより、低速スイッチングモードに比して、更なる力率改善及び高調波電流の抑制を図ることができる。また、高速スイッチングモードにおいては、力率を1近くの値に制御可能である。これにより、特に高負荷側において、ブレーカ容量の限界まで負荷を駆動することができ、装置のハイパワー化を図ることができる。 As described above, in the high-speed switching mode, the short-circuiting operation is performed over the entire period of one cycle of the power supply voltage, so the width of the current flow is wider than in the low-speed switching mode. As a result, compared to the low-speed switching mode, it is possible to further improve the power factor and suppress the harmonic current. Also, in the fast switching mode, the power factor can be controlled to a value close to unity. As a result, especially on the high load side, the load can be driven up to the limit of the breaker capacity, and the power of the device can be increased.

次に、直流電源装置50で使用されるMOSFETの損失特性について説明する。図9は、実施の形態1に係る直流電源装置50で使用されるMOSFETの損失特性を示す図である。図9において、横軸はオン状態のMOSFETに流れる電流、及び寄生ダイオードに流れる電流を示している。また、縦軸はオン状態のスイッチング素子に電流を流すために必要な電圧、及び寄生ダイオードに電流を流すために必要な電圧を示している。 Next, loss characteristics of the MOSFET used in the DC power supply device 50 will be described. FIG. 9 is a diagram showing loss characteristics of MOSFETs used in the DC power supply device 50 according to the first embodiment. In FIG. 9, the horizontal axis indicates the current flowing through the MOSFET in the ON state and the current flowing through the parasitic diode. Also, the vertical axis indicates the voltage required to cause current to flow through the switching element in the ON state and the voltage required to cause current to flow to the parasitic diode.

図9において、実線K1は寄生ダイオード順方向電圧を表している。寄生ダイオード順方向電圧は、寄生ダイオードで生じる損失を表す電流電圧特性の例である。一般的に、ダイオードは、電流値が小さいときは損失が大きいため大きな電圧が必要であるが、電流値がある値より大きくなると損失の変化率が改善されて電流電圧特性の傾きが緩和される。図9の実線K1で示される波形には、この特性が現れている。 In FIG. 9, the solid line K1 represents the parasitic diode forward voltage. A parasitic diode forward voltage is an example of a current-voltage characteristic that represents the losses that occur in a parasitic diode. Diodes generally require a large voltage when the current value is small because the loss is large, but when the current value exceeds a certain value, the change rate of the loss is improved and the slope of the current-voltage characteristics is relaxed. . This characteristic appears in the waveform indicated by the solid line K1 in FIG.

また、破線K2は、MOSFETのドレインとソースとの間の電圧であるMOSFETドレイン-ソース電圧を表している。MOSFETドレイン-ソース電圧は、スイッチング素子のキャリアに流れる電流と、当該電流が流れることによりスイッチング素子のオン抵抗に起因して生じる損失を表す電流電圧特性の例である。MOSFETなどのスイッチング素子においては、電流を流すために必要な電圧は、電流値に対して2次曲線的に増加する。図9の破線K2で示される波形には、この特性が現れている。 Also, dashed line K2 represents the MOSFET drain-source voltage, which is the voltage between the drain and source of the MOSFET. A MOSFET drain-source voltage is an example of a current-voltage characteristic that represents current flowing in carriers of a switching element and loss caused by the on-resistance of the switching element due to the flow of the current. In a switching element such as a MOSFET, the voltage required to allow current to flow increases quadratically with respect to the current value. This characteristic appears in the waveform indicated by the dashed line K2 in FIG.

図9において、実線K1と破線K2とが交差するクロスポイントは、寄生ダイオードに流れる電流及び当該電流を流すために必要な電圧と、MOSFETに流れる電流及び当該電流を流すために必要な電圧と、が等しくなるポイントである。実施の形態1では、寄生ダイオード及びスイッチング素子の2つの電流電圧特性が交差するクロスポイントにおける電流値を「第2の電流閾値」とする。なお、前述した電流閾値、即ち電源電流の検出値Isの絶対値を比較する際に用いる電流閾値を「第1の電流閾値」と呼ぶ。図9では、第2の電流閾値を「Ith2」で表している。第2の電流閾値は、第1の電流閾値よりも大きい値である。 In FIG. 9, the cross points where the solid line K1 and the dashed line K2 intersect are the current flowing through the parasitic diode and the voltage required to cause the current to flow, the current flowing to the MOSFET and the voltage required to cause the current to flow, is the point at which are equal. In Embodiment 1, the current value at the cross point where the two current-voltage characteristics of the parasitic diode and the switching element intersect is the "second current threshold". Note that the above-described current threshold, that is, the current threshold used when comparing the absolute values of the detected value Is of the power supply current is called the "first current threshold". In FIG. 9, the second current threshold is represented by "Ith2". The second current threshold is a value greater than the first current threshold.

次に、制御部10が、同期整流モードにおいて、第1の電流閾値及び第2の電流閾値を用いてスイッチング素子をオンオフするタイミングについて説明する。図10は、実施の形態1に係る直流電源装置50において制御部10がスイッチング素子をオンするタイミングを示す図である。図10において、横軸は時間である。図10の上段部には、電源電圧及び電源電流の波形が示されている。図10の下段部には、スイッチング素子Q1,Q2が電源電流の極性に応じてオンオフが制御される電流同期のスイッチング素子であること、及びスイッチング素子Q3,Q4が電源電圧の極性に応じてオンオフが制御される電圧同期のスイッチング素子であることが示されている。また、図10には、電源電流の波形と共に、第1の電流閾値Ith1及び第2の電流閾値Ith2の値が示されている。なお、図10では交流電源1から出力される交流電力の1周期を示しているが、制御部10は、他の周期においても図10に示す制御と同様の制御を行うものとする。 Next, the timing at which the control unit 10 turns on and off the switching element using the first current threshold and the second current threshold in the synchronous rectification mode will be described. FIG. 10 is a diagram showing timings at which the control unit 10 turns on the switching elements in the DC power supply device 50 according to the first embodiment. In FIG. 10, the horizontal axis is time. The upper part of FIG. 10 shows the waveforms of the power supply voltage and the power supply current. In the lower part of FIG. 10, the switching elements Q1 and Q2 are current synchronous switching elements whose ON/OFF is controlled according to the polarity of the power supply current, and the switching elements Q3 and Q4 are ON/OFF according to the polarity of the power supply voltage. is a controlled voltage synchronous switching element. FIG. 10 also shows the values of the first current threshold Ith1 and the second current threshold Ith2 along with the waveform of the power supply current. Although FIG. 10 shows one cycle of the AC power output from the AC power supply 1, the control unit 10 performs control similar to that shown in FIG. 10 also in other cycles.

制御部10は、電源電圧極性が正の場合、スイッチング素子Q4をオンし、スイッチング素子Q3をオフする。また、制御部10は、電源電圧極性が負の場合、スイッチング素子Q3をオンし、スイッチング素子Q4をオフする。なお、図10では、スイッチング素子Q4がオンからオフになるタイミングと、スイッチング素子Q3がオフからオンになるタイミングとが同じタイミングであるが、これに限定されない。制御部10は、スイッチング素子Q4がオンからオフになるタイミングと、スイッチング素子Q3がオフからオンになるタイミングとの間に、スイッチング素子Q3,Q4がともにオフになるデッドタイムを設けてもよい。同様に、制御部10は、スイッチング素子Q3がオンからオフになるタイミングと、スイッチング素子Q4がオフからオンになるタイミングとの間に、スイッチング素子Q3,Q4がともにオフになるデッドタイムを設けてもよい。 When the polarity of the power supply voltage is positive, the control unit 10 turns on the switching element Q4 and turns off the switching element Q3. Further, when the polarity of the power supply voltage is negative, the control unit 10 turns on the switching element Q3 and turns off the switching element Q4. In FIG. 10, the timing when the switching element Q4 turns off from on and the timing when the switching element Q3 turns on from off are the same timing, but the timing is not limited to this. The control unit 10 may provide a dead time during which both the switching elements Q3 and Q4 are turned off between the timing when the switching element Q4 is turned off from on and the timing when the switching element Q3 is turned on from off. Similarly, the control unit 10 provides a dead time during which both the switching elements Q3 and Q4 are turned off between the timing when the switching element Q3 is turned off from on and the timing when the switching element Q4 is turned on from off. good too.

制御部10は、電源電圧極性が正の場合、電源電流の絶対値が第1の電流閾値Ith1以上になると、スイッチング素子Q1をオンする。更に、電源電流の絶対値が第2の電流閾値Ith2を超えると、スイッチング素子Q1をオフする。その後、制御部10は、電源電流の絶対値が小さくなり、電源電流の絶対値が第2の電流閾値Ith2以下になると、スイッチング素子Q1をオンする。更に、電源電流の絶対値が第1の電流閾値Ith1より小さくなると、スイッチング素子Q1をオフする。また、制御部10は、電源電圧極性が負の場合、電源電流の絶対値が第1の電流閾値Ith1以上になると、スイッチング素子Q2をオンする。更に、電源電流の絶対値が第2の電流閾値Ith2を超えると、スイッチング素子Q2をオフする。その後、制御部10は、電源電流の絶対値が小さくなり、電源電流の絶対値が第2の電流閾値Ith2以下になると、スイッチング素子Q2をオンする。更に、電源電流の絶対値が第1の電流閾値Ith1より小さくなると、スイッチング素子Q2をオフする。 When the polarity of the power supply voltage is positive, the control unit 10 turns on the switching element Q1 when the absolute value of the power supply current becomes equal to or greater than the first current threshold value Ith1. Furthermore, when the absolute value of the power supply current exceeds the second current threshold Ith2, the switching element Q1 is turned off. After that, when the absolute value of the power supply current becomes smaller and the absolute value of the power supply current becomes equal to or less than the second current threshold Ith2, the control unit 10 turns on the switching element Q1. Furthermore, when the absolute value of the power supply current becomes smaller than the first current threshold Ith1, the switching element Q1 is turned off. Further, when the polarity of the power supply voltage is negative, the control unit 10 turns on the switching element Q2 when the absolute value of the power supply current becomes equal to or greater than the first current threshold value Ith1. Furthermore, when the absolute value of the power supply current exceeds the second current threshold Ith2, the switching element Q2 is turned off. After that, when the absolute value of the power supply current becomes smaller and the absolute value of the power supply current becomes equal to or less than the second current threshold Ith2, the control unit 10 turns on the switching element Q2. Furthermore, when the absolute value of the power supply current becomes smaller than the first current threshold Ith1, the switching element Q2 is turned off.

制御部10は、電源電流の絶対値が第1の電流閾値Ith1以下の場合には、スイッチング素子Q1,Q3が同時にオンしないように制御し、スイッチング素子Q2,Q4が同時にオンしないように制御する。これにより、制御部10は、モータ駆動装置100においてコンデンサ短絡を防止できる。 When the absolute value of the power supply current is equal to or less than the first current threshold Ith1, the control unit 10 controls the switching elements Q1 and Q3 so as not to turn on simultaneously, and controls the switching elements Q2 and Q4 not to turn on simultaneously. . Thereby, the control unit 10 can prevent a capacitor short circuit in the motor drive device 100 .

以上の制御部10の制御によって、モータ駆動装置100は、第1のレグ31のスイッチング素子Q1,Q2による同期整流を実現できる。具体的には、制御部10は、電源電流の絶対値が第1の電流閾値Ith1以上、且つ第2の電流閾値Ith2以下の場合、この範囲で損失の小さいスイッチング素子Q1又はスイッチング素子Q2に電流を流す。また、制御部10は、電源電流の絶対値が第2の電流閾値Ith2より大きい場合、この範囲で損失の小さいダイオードD1又はダイオードD2に電流を流す。これにより、モータ駆動装置100は、電流値に応じて損失の小さい素子に電流を流すことができるので、効率の低下を抑制し、損失を低減した高効率な装置とすることができる。 With the control of the control unit 10 as described above, the motor drive device 100 can realize synchronous rectification by the switching elements Q1 and Q2 of the first leg 31 . Specifically, when the absolute value of the power supply current is greater than or equal to the first current threshold value Ith1 and less than or equal to the second current threshold value Ith2, the control unit 10 allows the current to flow through the switching element Q1 or the switching element Q2, which has a small loss within this range. flow. Further, when the absolute value of the power supply current is greater than the second current threshold Ith2, the control unit 10 causes the current to flow through the diode D1 or the diode D2, which has a small loss within this range. As a result, the motor drive device 100 can pass a current through an element with a small loss according to the current value, so that a decrease in efficiency can be suppressed, and a highly efficient device with a reduced loss can be obtained.

なお、制御部10は、スイッチング素子Q1をオンする期間において、相補的にスイッチング素子Q1,Q2をオンオフするスイッチング制御をして昇圧動作を行ってもよい。同様に、制御部10は、スイッチング素子Q2をオンする期間において、相補的にスイッチング素子Q1,Q2をオンオフするスイッチング制御をして昇圧動作を行ってもよい。 Note that the control unit 10 may perform the step-up operation by performing switching control to complementarily turn on and off the switching elements Q1 and Q2 during the period in which the switching element Q1 is turned on. Similarly, the control unit 10 may perform switching control to complementarily turn on and off the switching elements Q1 and Q2 during the period in which the switching element Q2 is turned on to perform the boosting operation.

即ち、制御部10は、電源電流の絶対値が第1の電流閾値Ith1以上、且つ第2の電流閾値Ith2以下の場合、電源電流の極性に応じて、第1のレグ31及び第2のレグ32のうちの一方の第1のレグ31を構成するスイッチング素子Q1,Q2のうちの1つのスイッチング素子のオンを許可する。また、制御部10は、電源電流の絶対値が第1の電流閾値Ith1より小さい、又は第2の電流閾値Ith2より大きい場合、スイッチング素子Q1,Q2のうちの前述のものと同じ1つのスイッチング素子のオンを禁止する。 That is, when the absolute value of the power supply current is greater than or equal to the first current threshold Ith1 and less than or equal to the second current threshold Ith2, the control unit 10 controls the first leg 31 and the second leg according to the polarity of the power supply current. One of the switching elements Q1 and Q2 forming the first leg 31 of 32 is permitted to be turned on. Further, when the absolute value of the power supply current is smaller than the first current threshold Ith1 or larger than the second current threshold Ith2, the control unit 10 selects one switching element out of the switching elements Q1 and Q2 as described above. turn on is prohibited.

具体的には、制御部10は、電源電流の極性が正であって、電源電流の絶対値が第1の電流閾値Ith1以上、且つ第2の電流閾値Ith2以下の場合、スイッチング素子Q1のオンを許可する。電源電流の絶対値が第1の電流閾値Ith1より小さい、又は第2の電流閾値Ith2より大きい場合、スイッチング素子Q1のオンを禁止する。制御部10は、電源電流の極性が正であって、電源電流の絶対値が第1の電流閾値Ith1以上、且つ第2の電流閾値Ith2以下の場合、スイッチング素子Q1がオフの期間でスイッチング素子Q2をオンする。電源電流の絶対値が第1の電流閾値Ith1より小さい、又は第2の電流閾値Ith2より大きい場合、スイッチング素子Q2のオンも禁止する。 Specifically, when the polarity of the power supply current is positive and the absolute value of the power supply current is equal to or greater than the first current threshold Ith1 and equal to or less than the second current threshold Ith2, the control unit 10 turns on the switching element Q1. allow When the absolute value of the power supply current is smaller than the first current threshold Ith1 or larger than the second current threshold Ith2, the switching element Q1 is prohibited from being turned on. When the polarity of the power supply current is positive and the absolute value of the power supply current is equal to or greater than the first current threshold Ith1 and equal to or less than the second current threshold Ith2, the control unit 10 turns off the switching element Q1 during the OFF period. Turn on Q2. If the absolute value of the power supply current is smaller than the first current threshold Ith1 or larger than the second current threshold Ith2, the switching element Q2 is also prohibited from being turned on.

また、制御部10は、電源電流の極性が負であって、電源電流の絶対値が第1の電流閾値Ith1以上、且つ第2の電流閾値Ith2以下の場合、スイッチング素子Q2のオンを許可する。電源電流の絶対値が第1の電流閾値Ith1より小さい、又は第2の電流閾値Ith2より大きい場合、スイッチング素子Q2のオンを禁止する。また、制御部10は、電源電流の極性が負であって、電源電流の絶対値が第1の電流閾値Ith1以上、且つ第2の電流閾値Ith2以下の場合、スイッチング素子Q2がオフの期間でスイッチング素子Q1をオンする。電源電流の絶対値が第1の電流閾値Ith1より小さい、又は第2の電流閾値Ith2より大きい場合、スイッチング素子Q1のオンも禁止する。 Further, when the polarity of the power supply current is negative and the absolute value of the power supply current is equal to or greater than the first current threshold Ith1 and equal to or less than the second current threshold Ith2, the control unit 10 permits turning on of the switching element Q2. . If the absolute value of the power supply current is smaller than the first current threshold Ith1 or larger than the second current threshold Ith2, the switching element Q2 is prohibited from being turned on. Further, when the polarity of the power supply current is negative and the absolute value of the power supply current is equal to or greater than the first current threshold Ith1 and equal to or less than the second current threshold Ith2, the control unit 10 controls Switching element Q1 is turned on. When the absolute value of the power supply current is smaller than the first current threshold Ith1 or larger than the second current threshold Ith2, the switching element Q1 is also prohibited from being turned on.

このように、制御部10は、電源電流の絶対値が第1の電流閾値Ith1以上であって、スイッチング素子の損失が寄生ダイオードの損失よりも小さい領域でスイッチング素子のオンを許可する。また、制御部10は、スイッチング素子の損失が寄生ダイオードの損失よりも大きい領域でスイッチング素子のオンを禁止する。 Thus, the control unit 10 allows the switching element to be turned on in a region where the absolute value of the power supply current is equal to or greater than the first current threshold Ith1 and the loss of the switching element is smaller than the loss of the parasitic diode. Further, the control unit 10 prohibits the switching element from turning on in a region where the loss of the switching element is greater than the loss of the parasitic diode.

なお、図10の例では、制御部10は、電源電圧の極性に応じてスイッチング素子Q3,Q4のオンオフを制御し、電源電流の極性に応じてスイッチング素子Q1,Q2のオンオフを制御していたが、これに限定されない。制御部10は、電源電圧の極性に応じてスイッチング素子Q1,Q2のオンオフを制御し、電源電流の極性に応じてスイッチング素子Q3,Q4のオンオフを制御してもよい。 In the example of FIG. 10, the control unit 10 controls on/off of the switching elements Q3 and Q4 according to the polarity of the power supply voltage, and controls on/off of the switching elements Q1 and Q2 according to the polarity of the power supply current. but not limited to this. The control unit 10 may control on/off of the switching elements Q1 and Q2 according to the polarity of the power supply voltage, and may control on/off of the switching elements Q3 and Q4 according to the polarity of the power supply current.

また、第2の電流閾値Ith2は、前述のように、寄生ダイオード及びスイッチング素子に電流を流すために必要な電圧が同じ値になるときの電流値であるが、これに限定されない。第2の電流閾値Ith2は、寄生ダイオードに電流を流すために必要な電圧の特性と、スイッチング素子に電流を流すために必要な電圧の特性とに応じて決定された値であってもよい。 Also, the second current threshold Ith2 is, as described above, the current value when the voltage required to cause the current to flow through the parasitic diode and the switching element have the same value, but is not limited to this. The second current threshold Ith2 may be a value determined according to the characteristics of the voltage required to pass the current through the parasitic diode and the characteristics of the voltage required to pass the current through the switching element.

例えば、第2の電流閾値Ith2を、寄生ダイオード及びスイッチング素子に電流を流すために必要な電圧が同じ値になるときの電流値より、スイッチング素子で発生するスイッチング損失分に応じて値を大きくした値にしてもよい。これにより、スイッチング素子をオンからオフに切り替える際に発生するスイッチング素子を考慮した第2の電流閾値Ith2を決定することができる。この場合、制御部10は、スイッチング素子をオンしている状態でさらに電源電流の絶対値が大きくなっても、スイッチング素子をオフすることで損失の低減が見込めないときはスイッチング素子をオンのままにする。これにより、モータ駆動装置100は、更に、効率の低下を抑制することができる。 For example, the second current threshold Ith2 is set to a value larger than the current value when the voltage necessary for the current to flow through the parasitic diode and the switching element are the same, according to the switching loss generated in the switching element. can be a value. This makes it possible to determine the second current threshold Ith2 in consideration of the switching element generated when switching the switching element from on to off. In this case, even if the absolute value of the power supply current increases while the switching element is on, if the loss cannot be reduced by turning off the switching element, the control unit 10 keeps the switching element on. to As a result, the motor drive device 100 can further suppress a decrease in efficiency.

また、第2の電流閾値Ith2を、寄生ダイオード及びスイッチング素子に電流を流すために必要な電圧が同じ値になるときの電流値に対して規定された値を加算又は減算した値にしてもよい。これにより、各素子の部品のばらつきによる特性の違いを考慮した第2の電流閾値Ith2を決定することができる。この場合、制御部10は、第2の電流閾値Ith2が寄生ダイオード及びスイッチング素子に電流を流すために必要な電圧が同じ値になるときの電流値の場合と比較して、損失の低減を改善できない可能性はある。しかしながら、制御部10は、スイッチング素子をオンしている状態で、更に電源電流の絶対値が大きくなってもスイッチング素子をオンし続ける場合よりも、損失を低減することができる。 Further, the second current threshold Ith2 may be a value obtained by adding or subtracting a specified value to the current value when the voltage required to flow the current to the parasitic diode and the switching element have the same value. . This makes it possible to determine the second current threshold value Ith2 in consideration of the difference in characteristics due to variations in the components of each element. In this case, the control unit 10 improves the reduction of loss compared to the case where the second current threshold Ith2 is the current value when the voltage required to flow the current to the parasitic diode and the switching element are the same. It may not be possible. However, the control unit 10 can reduce the loss more than the case where the switching element is kept on even if the absolute value of the power supply current increases while the switching element is on.

図11は、実施の形態1における要部の動作説明に使用するフローチャートである。図11には、モータ駆動装置100の制御部10がスイッチング素子Q1,Q2をオンオフ制御する処理フローが示されている。なお、ここでは一例として、電源電流の極性が正の場合について説明する。 FIG. 11 is a flow chart used for explaining the operation of the main part in Embodiment 1. FIG. FIG. 11 shows a processing flow in which the control unit 10 of the motor drive device 100 controls the switching elements Q1 and Q2 to turn on and off. Here, as an example, a case where the polarity of the power supply current is positive will be described.

制御部10は、電源電流の検出値Isの絶対値|Is|と、第1の電流閾値とを比較する(ステップS21)。制御部10は、絶対値|Is|が第1の電流閾値より小さい場合(ステップS21,No)、スイッチング素子Q1のオンを禁止する(ステップS22)。制御部10は、絶対値|Is|が第1の電流閾値以上の場合(ステップS21,Yes)、絶対値|Is|と第2の電流閾値とを比較する(ステップS23)。制御部10は、絶対値|Is|が第2の電流閾値以下の場合(ステップS23,No)、スイッチング素子Q1のオンを許可する(ステップS24)。制御部10は、絶対値|Is|が第2の電流閾値より大きい場合(ステップS23,Yes)、スイッチング素子Q1のオンを禁止する(ステップS22)。制御部10は、ステップS22又はステップS24の後、ステップS21に戻って上記処理を繰り返し行う。制御部10は、電源電流の極性が負の場合、スイッチング素子Q2を対象にして、上記同様の処理を行う。 The control unit 10 compares the absolute value |Is| of the detected value Is of the power supply current with the first current threshold (step S21). When the absolute value |Is| is smaller than the first current threshold (step S21, No), the control unit 10 prohibits turning on the switching element Q1 (step S22). When the absolute value |Is| is greater than or equal to the first current threshold (step S21, Yes), the controller 10 compares the absolute value |Is| with the second current threshold (step S23). When the absolute value |Is| is equal to or less than the second current threshold (step S23, No), the control unit 10 permits turning on of the switching element Q1 (step S24). When the absolute value |Is| is greater than the second current threshold (step S23, Yes), the control unit 10 prohibits turning on the switching element Q1 (step S22). After step S22 or step S24, the control unit 10 returns to step S21 and repeats the above process. When the polarity of the power supply current is negative, the control unit 10 performs the same processing as described above for the switching element Q2.

なお、上記のステップS21では、絶対値|Is|と第1の電流閾値とが等しい場合を“Yes”で判定しているが、“No”で判定してもよい。即ち、絶対値|Is|と第1の電流閾値とが等しい場合を“Yes”、又は“No”の何れで判定してもよい。また、上記のステップS23では、絶対値|Is|と第2の電流閾値とが等しい場合を“No”で判定しているが、“Yes”で判定してもよい。即ち、絶対値|Is|と第2の電流閾値とが等しい場合を“Yes”、又は“No”の何れで判定してもよい。 In step S21 above, the determination is "Yes" when the absolute value |Is| is equal to the first current threshold value, but the determination may be "No". That is, if the absolute value |Is| is equal to the first current threshold value, the determination may be either "Yes" or "No". Further, in step S23 above, the case where the absolute value |Is| is equal to the second current threshold is determined as "No", but it may be determined as "Yes". That is, if the absolute value |Is| is equal to the second current threshold value, the determination may be either "Yes" or "No".

ところで、[発明が解決しようとする課題」の項でも説明したが、同期整流の動作が高効率化されるのは、MOSFETのオン電圧、即ちMOSFETがオンするときのドレイン-ソース電圧よりも、並列に接続される寄生ダイオードの電圧降下の方が高い状態であることが前提である。一方、MOSFETの動作状態によっては、並列に接続される寄生ダイオードの電圧降下よりも、MOSFETのオン電圧の方が高い場合もある。以下、この点について、図12から図14を参照して説明する。図12は、一般的なMOSFETにおける寄生ダイオードの順方向電流の温度特性を示す図である。図13は、一般的なMOSFETのオン抵抗の温度特性を示す図である。図14は、図9に示されるクロスポイントが温度によって変動する様子を示す図である。なお、図14において、実線K1は図9に示される実線K1を示したものであり、破線K2は図9に示される破線K2を示したものである。 By the way, as explained in the section [Problems to be Solved by the Invention], the efficiency of the synchronous rectification operation is improved by the on-voltage of the MOSFET, that is, the drain-source voltage when the MOSFET is turned on. It is assumed that the parasitic diode connected in parallel has a higher voltage drop. On the other hand, depending on the operating state of the MOSFET, the on-voltage of the MOSFET may be higher than the voltage drop of the parasitic diode connected in parallel. This point will be described below with reference to FIGS. 12 to 14. FIG. FIG. 12 is a diagram showing temperature characteristics of forward current of a parasitic diode in a general MOSFET. FIG. 13 is a diagram showing temperature characteristics of on-resistance of a general MOSFET. FIG. 14 is a diagram showing how the cross points shown in FIG. 9 vary with temperature. 14, the solid line K1 indicates the solid line K1 shown in FIG. 9, and the broken line K2 indicates the broken line K2 shown in FIG.

一般的なMOSFETにおける寄生ダイオードのソース-ドレイン電圧VSDは、図12に示されるように、同一の順方向電流Iに対し、温度Tが高くなれば小さくなる方向に推移する。従って、図14に示される実線K1は、温度Tが上昇すると、実線K1’のように紙面の右下方向に移動する。また、一般的なMOSFETのオン抵抗RDSは、図13に示されるように、同一のドレイン電流Iに対し、温度Tが高くなれば大きくなる方向に推移する。従って、図14に示される破線K2は、温度Tが上昇すると、破線K2’のように紙面の左上方向に移動する。この特性により、クロスポイントにおける電流値である第2の電流閾値Ith2は、温度が上昇すると、紙面の左側、即ち電流値が小さくなる方向に移動する。温度を条件としない場合、図11のフローチャートでは、図14における第2の電流閾値Ith2と、第2の電流閾値Ith2’との間は同期整流が行われる範囲であるが、同期整流を行わない方が損失が小さく、効率がよくなる。このため、図11のフローチャートにおける第2の電流閾値Ith2をスイッチング素子の周囲温度、もしくはスイッチング素子が搭載される機器の外気温度に基づいて修正するようにすれば、直流電源装置50の効率を更に高めることが可能となる。As shown in FIG. 12, the source-drain voltage V SD of the parasitic diode in a general MOSFET decreases as the temperature T a rises with respect to the same forward current I S . Therefore, the solid line K1 shown in FIG. 14 moves downward and to the right in the paper surface like the solid line K1' when the temperature Ta rises. Also, as shown in FIG. 13, the on-resistance RDS of a general MOSFET tends to increase as the temperature Ta increases with respect to the same drain current ID . Therefore, the dashed line K2 shown in FIG. 14 moves to the upper left direction of the paper surface like the dashed line K2' when the temperature Ta rises. Due to this characteristic, the second current threshold Ith2, which is the current value at the cross point, moves to the left side of the paper, that is, in the direction in which the current value decreases as the temperature rises. When the temperature is not a condition, in the flowchart of FIG. 11, synchronous rectification is performed between the second current threshold Ith2 and the second current threshold Ith2′ in FIG. 14, but synchronous rectification is not performed. less loss and better efficiency. Therefore, if the second current threshold value Ith2 in the flowchart of FIG. 11 is corrected based on the ambient temperature of the switching element or the ambient temperature of the device in which the switching element is mounted, the efficiency of the DC power supply 50 can be further improved. can be increased.

次に、スイッチング素子の構成について説明する。モータ駆動装置100において、スイッチング素子のスイッチング速度を速くする方法の1つに、スイッチング素子のゲート抵抗を小さくする方法が挙げられる。ゲート抵抗が小さくなる程、ゲート入力容量への充放電時間が短くなり、ターンオン期間及びターンオフ期間が短くなるため、スイッチング速度が速くなる。 Next, the configuration of the switching element will be described. In the motor drive device 100, one method of increasing the switching speed of the switching element is to reduce the gate resistance of the switching element. As the gate resistance becomes smaller, the charging and discharging time of the gate input capacitance becomes shorter, and the turn-on period and the turn-off period become shorter, so that the switching speed becomes faster.

しかしながら、ゲート抵抗を小さくすることでスイッチング損失を低減するには限界がある。そこで、スイッチング素子を、GaN又はSiCといったWBG半導体で構成することを例示する。スイッチング素子にWBG半導体を用いることにより、1回のスイッチング当りの損失を更に抑制することができ、より一層効率が向上し、且つ高周波スイッチングが可能となる。また、高周波スイッチングが可能となることで、リアクトル2の小型化が可能となり、モータ駆動装置100の小型化及び軽量化が可能となる。また、スイッチング素子にWBG半導体を用いることにより、スイッチング速度が向上して、スイッチング損失が抑制される。これにより、スイッチング素子が正常な動作を継続できるような放熱対策を簡素化できる。また、スイッチング素子にWBG半導体を用いることにより、スイッチング周波数を十分に高い値、例えば16kHz以上にすることができる。これにより、スイッチングに起因する騒音を抑制できる。 However, there is a limit to reducing the switching loss by reducing the gate resistance. Therefore, an example of configuring the switching element with a WBG semiconductor such as GaN or SiC will be described. By using a WBG semiconductor for the switching element, the loss per switching can be further suppressed, the efficiency is further improved, and high-frequency switching becomes possible. In addition, since high-frequency switching becomes possible, the size of the reactor 2 can be reduced, and the size and weight of the motor drive device 100 can be reduced. Also, by using a WBG semiconductor for the switching element, the switching speed is improved and the switching loss is suppressed. As a result, it is possible to simplify measures for heat dissipation so that the switching elements can continue to operate normally. Moreover, by using a WBG semiconductor for the switching element, the switching frequency can be set to a sufficiently high value, for example, 16 kHz or higher. Thereby, noise caused by switching can be suppressed.

また、GaN半導体は、GaN層と窒化アルミニウムガリウム層との界面に2次元電子ガスが生じ、この2次元電子ガスにより、キャリアの移動度が高い。このため、GaN半導体を用いたスイッチング素子は、高速スイッチングを実現可能である。ここで、交流電源1が、50Hz又は60Hzの商用電源である場合、可聴域周波数は、16kHzから20kHzまでの範囲、即ち商用電源の周波数の266倍から400倍までの範囲となる。GaN半導体は、この可聴域周波数より高い周波数でスイッチングする場合に好適である。半導体材料として主流である珪素(Si)で構成されたスイッチング素子Q1~Q4を、数十kHz以上のスイッチング周波数で駆動した場合、スイッチング損失の比率が大きくなり、放熱対策が必須となる。これに対して、GaN半導体で構成されたスイッチング素子Q1~Q4は、数十kHz以上のスイッチング周波数、具体的には20kHzより高いスイッチング周波数で駆動した場合でも、スイッチング損失が非常に小さい。そのため、放熱対策が不要になり、又は放熱対策のために利用される放熱部材のサイズを小型化でき、モータ駆動装置100の小型化及び軽量化が可能となる。また、高周波スイッチングが可能となることで、リアクトル2の小型化が可能になる。なお、雑音端子電圧規格の測定範囲にスイッチング周波数の1次成分が入らないようにするため、スイッチング周波数は、150kHz以下とすることが好ましい。 In addition, in the GaN semiconductor, a two-dimensional electron gas is generated at the interface between the GaN layer and the aluminum gallium nitride layer, and this two-dimensional electron gas provides high carrier mobility. Therefore, a switching element using a GaN semiconductor can realize high-speed switching. Here, if the AC power supply 1 is a commercial power supply of 50 Hz or 60 Hz, the audible frequency ranges from 16 kHz to 20 kHz, that is, from 266 times to 400 times the frequency of the commercial power supply. GaN semiconductors are suitable for switching at frequencies above this audible range. When the switching elements Q1 to Q4 made of silicon (Si), which is the mainstream semiconductor material, are driven at a switching frequency of several tens of kHz or higher, the ratio of switching loss increases and heat dissipation measures are essential. On the other hand, the switching elements Q1 to Q4 made of GaN semiconductor have a very small switching loss even when driven at a switching frequency of several tens of kHz or higher, more specifically, at a switching frequency higher than 20 kHz. Therefore, heat dissipation measures are not required, or the size of a heat dissipation member used for heat dissipation measures can be reduced, and the motor drive device 100 can be made smaller and lighter. In addition, since high-frequency switching becomes possible, the size of the reactor 2 can be reduced. In order to prevent the primary component of the switching frequency from entering the measurement range of the noise terminal voltage standard, the switching frequency is preferably 150 kHz or less.

また、WBG半導体は、Si半導体に比べて静電容量が小さいため、スイッチングに起因するリカバリ電流の発生が少なく、リカバリ電流に起因する損失及びノイズの発生を抑制できる。このため、WBG半導体は、高周波スイッチングに適している。 In addition, since the WBG semiconductor has a smaller electrostatic capacity than the Si semiconductor, less recovery current is generated due to switching, and loss and noise due to the recovery current can be suppressed. Therefore, WBG semiconductors are suitable for high frequency switching.

なお、SiC半導体はGaN半導体に比べてオン抵抗が小さい。このため、第2のレグ32よりもスイッチング回数が多い第1のレグ31の第1の上アーム素子311及び第1の下アーム素子312は、GaN半導体で構成し、スイッチング回数が少ない第2のレグ32の第2の上アーム素子321及び第2の下アーム素子322は、SiC半導体で構成してもよい。これにより、SiC半導体及びGaN半導体のそれぞれの特性を最大限に生かすことができる。また、SiC半導体を、第1のレグ31よりも、スイッチング回数が少ない第2のレグ32の第2の上アーム素子321及び第2の下アーム素子322に利用することで、第2の上アーム素子321及び第2の下アーム素子322の損失のうち、導通損失が占める割合が多くなり、ターンオン損失及びターンオフ損失が小さくなる。従って、第2の上アーム素子321及び第2の下アーム素子322のスイッチングに伴う発熱の上昇が抑制され、第2のレグ32を構成する第2の上アーム素子321及び第2の下アーム素子322のチップ面積を相対的に小さくできる。これにより、チップ製造時の歩留まりが低いSiC半導体を有効に活用できる。 SiC semiconductors have a lower on-resistance than GaN semiconductors. For this reason, the first upper arm element 311 and the first lower arm element 312 of the first leg 31 having a higher switching frequency than the second leg 32 are made of GaN semiconductor, and the second leg 31 having a lower switching frequency is used. The second upper arm element 321 and the second lower arm element 322 of the leg 32 may be made of SiC semiconductor. This makes it possible to make the most of the respective characteristics of the SiC semiconductor and the GaN semiconductor. In addition, by using a SiC semiconductor for the second upper arm element 321 and the second lower arm element 322 of the second leg 32 having a smaller number of switching times than the first leg 31, the second upper arm Among the losses of the element 321 and the second lower arm element 322, the percentage of conduction loss increases, and turn-on loss and turn-off loss decrease. Therefore, an increase in heat generation due to switching of the second upper arm element 321 and the second lower arm element 322 is suppressed, and the second upper arm element 321 and the second lower arm element constituting the second leg 32 are suppressed. 322 chip area can be relatively small. As a result, the SiC semiconductor, which has a low yield in chip manufacturing, can be effectively used.

また、スイッチング回数が少ない第2のレグ32の第2の上アーム素子321及び第2の下アーム素子322には、スーパージャンクション構造のSJ-MOSFETを用いてもよい。SJ-MOSFETを用いることにより、SJ-MOSFETのメリットである低オン抵抗を生かしつつ、静電容量が高くリカバリが発生しやすいというデメリットを抑制できる。また、SJ-MOSFETを用いることにより、WBG半導体を用いる場合に比べて、第2のレグ32の製造コストを低減できる。 Also, the second upper arm element 321 and the second lower arm element 322 of the second leg 32 having a low switching frequency may be SJ-MOSFETs with a super junction structure. By using the SJ-MOSFET, it is possible to take advantage of the low on-resistance which is an advantage of the SJ-MOSFET, while suppressing the demerit of high electrostatic capacity and easy occurrence of recovery. Also, by using the SJ-MOSFET, the manufacturing cost of the second leg 32 can be reduced as compared with the case of using the WBG semiconductor.

また、WBG半導体は、Si半導体に比べて耐熱性が高く、ジャンクション温度が高温でも動作が可能である。そのため、WBG半導体を用いることにより、第1のレグ31及び第2のレグ32を、熱抵抗が大きい小型のチップでも構成できる。特に、チップ製造時の歩留まりが低いSiC半導体は、小型のチップに利用した方が低コスト化を実現できる。 Moreover, the WBG semiconductor has higher heat resistance than the Si semiconductor, and can operate even at high junction temperatures. Therefore, by using a WBG semiconductor, the first leg 31 and the second leg 32 can be configured with small chips having high thermal resistance. In particular, SiC semiconductors, which have a low yield during chip manufacturing, can be used for small chips to achieve cost reduction.

また、WBG半導体は、100kHz程度の高周波で駆動した場合でも、スイッチング素子で発生する損失の増加が抑制されるため、リアクトル2の小型化による損失低減効果が大きくなり、広い出力帯域、即ち広い負荷条件において、高効率なコンバータを実現できる。 In addition, even when the WBG semiconductor is driven at a high frequency of about 100 kHz, the increase in loss generated in the switching element is suppressed, so the loss reduction effect due to the miniaturization of the reactor 2 is increased, and a wide output band, that is, a wide load range. Under these conditions, a highly efficient converter can be realized.

また、WBG半導体は、Si半導体に比べて耐熱性が高く、アーム間の損失の偏りによるスイッチングの発熱許容レベルが高いため、高周波駆動によるスイッチング損失が発生する第1のレグ31に好適である。 In addition, the WBG semiconductor has higher heat resistance than the Si semiconductor, and has a high allowable level of heat generation due to switching loss imbalance between the arms.

以上説明したように、実施の形態1によれば、第1の物理量検出部である電圧検出部7は、コンバータ3の出力側の動作状態を表す第1の物理量である母線電圧を検出し、第2の物理量検出部である電圧検出部5は、コンバータ3の入力側の動作状態を表す第2の物理量である電源電圧を検出する。第1及び第2の物理量は、制御部10に入力される。制御部10は、第1及び第2の物理量に基づいてコンバータ3の動作を制御する。制御部10は、更にスイッチング素子の周囲温度、コンバータの外気温度、又はコンバータ3への動作指令に応じてコンバータ3の各スイッチング素子の導通を制御して、コンバータ3を異なる動作態様で動作させる動作モードを複数有する。これにより、同期整流の適用に際し、更なる効率化を図ることができる。 As described above, according to Embodiment 1, the voltage detection unit 7, which is the first physical quantity detection unit, detects the bus voltage, which is the first physical quantity representing the operating state of the output side of the converter 3, Voltage detector 5 , which is a second physical quantity detector, detects power supply voltage, which is a second physical quantity representing the operating state of the input side of converter 3 . The first and second physical quantities are input to the controller 10 . Control unit 10 controls the operation of converter 3 based on the first and second physical quantities. The control unit 10 further controls the conduction of each switching element of the converter 3 according to the ambient temperature of the switching element, the outside air temperature of the converter, or an operation command to the converter 3, thereby operating the converter 3 in different operation modes. It has multiple modes. This makes it possible to achieve further efficiency in applying synchronous rectification.

また、実施の形態1によれば、制御部10は、電源電流の絶対値が第1の電流閾値以上、且つ、第2の電流閾値以下の場合、この範囲で寄生ダイオードより損失の小さいスイッチング素子のオンを許可する。また、制御部10は、電源電流の絶対値が第2の電流閾値より大きい場合、この範囲で寄生ダイオードより損失の大きいスイッチング素子のオンを禁止する。これにより、コンバータ3において、電流値に応じて損失の小さい素子に電流を流すことができる。これにより、効率の低下と損失とを低減した、高効率な直流電源装置50を得ることができる。なお、本制御において、第2の電流閾値は、スイッチング素子の周囲温度又はスイッチング素子が搭載される機器の外気温度に基づいて修正することが好ましい。これにより、更に高効率な直流電源装置50を得ることができる。 Further, according to Embodiment 1, when the absolute value of the power supply current is equal to or greater than the first current threshold and equal to or less than the second current threshold, the control unit 10 controls the switching element having a smaller loss than the parasitic diode within this range. turn on. Further, when the absolute value of the power supply current is larger than the second current threshold, the control unit 10 prohibits turning on the switching element whose loss is larger than that of the parasitic diode within this range. As a result, in the converter 3, the current can flow through an element with a small loss according to the current value. As a result, it is possible to obtain a highly efficient DC power supply device 50 with reduced efficiency drop and loss. In addition, in this control, it is preferable to correct the second current threshold value based on the ambient temperature of the switching element or the outside air temperature of the equipment in which the switching element is mounted. As a result, a DC power supply device 50 with even higher efficiency can be obtained.

次に、実施の形態1における制御部10の機能を実現するためのハードウェア構成について、図15及び図16の図面を参照して説明する。図15は、実施の形態1における制御部10の機能を具現するハードウェア構成の一例を示すブロック図である。図16は、実施の形態1における制御部10の機能を具現するハードウェア構成の他の例を示すブロック図である。 Next, a hardware configuration for realizing the functions of the control unit 10 according to Embodiment 1 will be described with reference to FIGS. 15 and 16. FIG. FIG. 15 is a block diagram showing an example of a hardware configuration that implements the functions of the control section 10 according to Embodiment 1. As shown in FIG. FIG. 16 is a block diagram showing another example of the hardware configuration that implements the functions of the control section 10 according to the first embodiment.

実施の形態1における制御部10の機能を実現する場合には、図15に示すように、演算を行うプロセッサ300、プロセッサ300によって読みとられるプログラムが保存されるメモリ302、及び信号の入出力を行うインタフェース304を含む構成とすることができる。 When realizing the function of the control unit 10 in Embodiment 1, as shown in FIG. It can be configured to include an interface 304 for performing.

プロセッサ300は、演算装置、マイクロプロセッサ、マイクロコンピュータ、CPU(Central Processing Unit)、又はDSP(Digital Signal Processor)といった演算手段であってもよい。また、メモリ302には、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(登録商標)(Electrically EPROM)といった不揮発性又は揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD(Digital Versatile Disc)を例示することができる。 The processor 300 may be an arithmetic means such as an arithmetic unit, a microprocessor, a microcomputer, a CPU (Central Processing Unit), or a DSP (Digital Signal Processor). The memory 302 includes non-volatile or volatile semiconductor memories such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable ROM), EEPROM (registered trademark) (Electrically EPROM), Examples include magnetic discs, flexible discs, optical discs, compact discs, mini discs, and DVDs (Digital Versatile Discs).

メモリ302には、実施の形態1における制御部10の機能を実行するプログラムが格納されている。プロセッサ300は、インタフェース304を介して必要な情報を授受し、メモリ302に格納されたプログラムをプロセッサ300が実行し、メモリ302に格納されたテーブルをプロセッサ300が参照することにより、上述した処理を行うことができる。プロセッサ300による演算結果は、メモリ302に記憶することができる。 The memory 302 stores programs for executing the functions of the control unit 10 according to the first embodiment. Processor 300 performs the above-described processing by exchanging necessary information via interface 304, executing programs stored in memory 302, and referring to tables stored in memory 302 by processor 300. It can be carried out. Results of operations by processor 300 may be stored in memory 302 .

また、実施の形態1における制御部10の機能を実現する場合には、図16に示す処理回路305を用いることもできる。処理回路305は、単一回路、複合回路、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又は、これらを組み合わせたものが該当する。処理回路305に入力する情報、及び処理回路305から出力する情報は、インタフェース306を介して入手することができる。なお、処理回路305を用いる構成でも、制御部10における一部の処理は、図15に示す構成のプロセッサ300で実施してもよい。 Further, when realizing the function of the control unit 10 in Embodiment 1, the processing circuit 305 shown in FIG. 16 can also be used. The processing circuit 305 corresponds to a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof. Information to be input to the processing circuit 305 and information to be output from the processing circuit 305 can be obtained via the interface 306 . Even in the configuration using the processing circuit 305, part of the processing in the control unit 10 may be performed by the processor 300 configured as shown in FIG.

実施の形態2.
実施の形態2では、コンバータ3の各スイッチング素子を駆動するゲート駆動回路15がブートストラップ回路を備える場合の制御について説明する。
Embodiment 2.
In the second embodiment, control when gate drive circuit 15 that drives each switching element of converter 3 includes a bootstrap circuit will be described.

図17は、実施の形態2におけるゲート駆動回路15の構成例を示す図である。図17において、ゲート駆動回路15は、駆動回路51,52と、ブートストラップ回路54とを備える。駆動回路51は、第1のレグ31の第1の上アーム素子311を駆動する際に用いられる駆動回路である。駆動回路52は、第1のレグ31の第1の下アーム素子312を駆動する際に用いられる駆動回路である。第2のレグ32の第2の上アーム素子321及び第2の下アーム素子322も同様な2つの駆動回路で駆動される。 FIG. 17 is a diagram showing a configuration example of the gate drive circuit 15 according to the second embodiment. In FIG. 17, the gate drive circuit 15 includes drive circuits 51 and 52 and a bootstrap circuit 54 . The drive circuit 51 is a drive circuit used when driving the first upper arm element 311 of the first leg 31 . The drive circuit 52 is a drive circuit used when driving the first lower arm element 312 of the first leg 31 . The second upper arm element 321 and the second lower arm element 322 of the second leg 32 are also driven by two similar drive circuits.

ブートストラップ回路54は、抵抗54aと、ダイオード54bと、ブートストラップコンデンサであるコンデンサ54cとを備えている。コンデンサ54cには、抵抗54aとダイオード54bとによる直列回路を介して駆動電源55から駆動電圧が印加される。このように構成されたブートストラップ回路54において、下アームのスイッチング素子Q2,Q4がオン動作すると、抵抗54a、ダイオード54b、コンデンサ54c、下アームのスイッチング素子Q2,Q4によって電流が流れ、コンデンサ54cが充電される。コンデンサ54cの充電電圧は、上アームのスイッチング素子Q1,Q3を駆動するためのゲート駆動電圧となる。 The bootstrap circuit 54 includes a resistor 54a, a diode 54b, and a capacitor 54c, which is a bootstrap capacitor. A driving voltage is applied to the capacitor 54c from the driving power supply 55 through a series circuit of the resistor 54a and the diode 54b. In the bootstrap circuit 54 configured as described above, when the lower arm switching elements Q2 and Q4 are turned on, a current flows through the resistor 54a, the diode 54b, the capacitor 54c, and the lower arm switching elements Q2 and Q4, and the capacitor 54c is turned on. charged. The charging voltage of the capacitor 54c becomes a gate drive voltage for driving the upper arm switching elements Q1 and Q3.

図17の例のように、ブートストラップ回路54を備えたゲート駆動回路15では、上アームのスイッチング素子Q1,Q3を駆動するためのゲート駆動電圧は、下アームのスイッチング素子Q2,Q4をオン動作させることで得られる。図8のような制御信号S311~S322とすれば、上アームのスイッチング素子を駆動するためのゲート駆動電圧を確実に生成することが可能となる。 As in the example of FIG. 17, in the gate drive circuit 15 including the bootstrap circuit 54, the gate drive voltage for driving the upper arm switching elements Q1 and Q3 turns on the lower arm switching elements Q2 and Q4. obtained by letting With the control signals S311 to S322 as shown in FIG. 8, it is possible to reliably generate the gate drive voltage for driving the switching elements of the upper arm.

一方、ゲート駆動回路15がブートストラップ回路54を備えている場合、上アームのスイッチング素子Q1,Q3を駆動する駆動回路51の消費電力は、スイッチング回数に比例して増加する。このため、実施の形態2では、図8に示した制御信号S311~S322の一部の波形を、ブートストラップ回路54を備えた構成に適した図18に示すものに変更する。図18は、図8に対応する実施の形態2における動作波形を示す図である。 On the other hand, when the gate drive circuit 15 includes the bootstrap circuit 54, the power consumption of the drive circuit 51 that drives the upper arm switching elements Q1 and Q3 increases in proportion to the number of switching times. Therefore, in the second embodiment, the waveforms of some of the control signals S311 to S322 shown in FIG. 8 are changed to those shown in FIG. 18 suitable for the configuration including the bootstrap circuit . FIG. 18 is a diagram showing operation waveforms in the second embodiment corresponding to FIG.

図18には、図7に示す動作モードにおいて、制御信号S311~S322の一部が変更された動作波形が示されている。図18に示される動作波形と図8に示される動作波形との差異点は、以下の通りである。 FIG. 18 shows operation waveforms obtained by partially changing the control signals S311 to S322 in the operation mode shown in FIG. Differences between the operating waveforms shown in FIG. 18 and the operating waveforms shown in FIG. 8 are as follows.

まず、整流モードにおいては、各スイッチング素子はオン動作しないので動作波形は同じである。また、同期整流モードにおいても動作波形は同じである。同期整流モードにおいては、電源短絡経路を形成するスイッチング制御を行う必要がなく、上アームのスイッチング素子のスイッチング回数も電源周期の半周期に1回であり、スイッチングパターンの変更による効果は小さい。このため、図8(b)のスイッチングパターンを変更せずに使用する。 First, in the rectification mode, the operating waveforms are the same because each switching element does not turn on. Also, the operating waveforms are the same in the synchronous rectification mode. In the synchronous rectification mode, there is no need to perform switching control to form a power supply short-circuit path, and the number of times of switching of the switching element in the upper arm is once per half cycle of the power supply cycle, so the effect of changing the switching pattern is small. Therefore, the switching pattern of FIG. 8B is used without change.

一方、低速スイッチングモードにおいて、図8(c)は図18(c)のように変更される。図18(c)においても、上アームのスイッチング素子Q1,Q3は動作しないので、ブートストラップ回路54における損失分が低減される。なお、高速スイッチングモードについては、図8(d)と図18(d)との比較から分かるように、動作波形は同じである。図8(d)を参照すると、上アームのスイッチング素子Q1,Q3は動作しておらず、元々の動作波形によって、ブートストラップ回路54における損失分が低減されていることが分かる。なお、図8のスイッチングパターンを選択するのか、図18のスイッチングパターンを選択するのかは、負荷条件に基づいて行う。負荷条件の詳細については、後述の実施の形態3で説明する。 On the other hand, in slow switching mode, FIG. 8(c) is changed to FIG. 18(c). Also in FIG. 18(c), since the upper arm switching elements Q1 and Q3 do not operate, the loss in the bootstrap circuit 54 is reduced. As can be seen from the comparison between FIG. 8(d) and FIG. 18(d), the high-speed switching mode has the same operating waveforms. Referring to FIG. 8(d), it can be seen that the switching elements Q1 and Q3 of the upper arm are not operating, and the loss in the bootstrap circuit 54 is reduced by the original operating waveforms. Whether to select the switching pattern of FIG. 8 or the switching pattern of FIG. 18 is determined based on the load condition. Details of the load condition will be described in a third embodiment described later.

以上説明したように、実施の形態2によれば、コンバータ3を駆動する駆動回路であるゲート駆動回路15は、平滑コンデンサ4の正側に接続される上アームのスイッチング素子Q1,Q3を駆動するための駆動電源であるブートストラップ回路54を備える。制御部10は、動作モードとして、低速スイッチングモードを有し、低速スイッチングモードで動作しているときには、負荷条件に基づいてブートストラップ回路54に接続されたスイッチング素子の動作を停止させる。これにより、ブートストラップ回路54を備えた構成において、直流電源装置50を効率的に動作させることができる。 As described above, according to the second embodiment, gate drive circuit 15, which is a drive circuit for driving converter 3, drives upper-arm switching elements Q1 and Q3 connected to the positive side of smoothing capacitor 4. A bootstrap circuit 54 is provided as a drive power supply for the. The control unit 10 has a low-speed switching mode as an operation mode, and stops the operation of the switching elements connected to the bootstrap circuit 54 based on the load conditions when operating in the low-speed switching mode. Thereby, in the configuration including the bootstrap circuit 54, the DC power supply device 50 can be operated efficiently.

また、実施の形態2によれば、コンバータ3を駆動する駆動回路であるゲート駆動回路15は、平滑コンデンサ4の正側に接続される上アームのスイッチング素子Q1,Q3を駆動するための駆動電源であるブートストラップ回路54を備える。制御部10は、動作モードとして、高速スイッチングモードを有し、高速スイッチングモードでは、ブートストラップ回路54に接続されたスイッチング素子はオン動作しない。これにより、ブートストラップ回路54を備えた構成において、直流電源装置50を効率的に動作させることができる。 Further, according to the second embodiment, the gate drive circuit 15, which is a drive circuit for driving the converter 3, is a drive power source for driving the switching elements Q1 and Q3 of the upper arm connected to the positive side of the smoothing capacitor 4. A bootstrap circuit 54 is provided. The control unit 10 has a high-speed switching mode as an operation mode, and the switching element connected to the bootstrap circuit 54 does not turn on in the high-speed switching mode. Thereby, in the configuration including the bootstrap circuit 54, the DC power supply device 50 can be operated efficiently.

実施の形態3.
実施の形態3では、実施の形態1で説明したモータ駆動装置100の応用例について説明する。図19は、実施の形態3に係る空気調和機400の構成を示す図である。実施の形態1及び実施の形態2で説明したモータ駆動装置100は、送風機、圧縮機及び空気調和機といった製品に適用することが可能である。実施の形態3では、実施の形態1及び実施の形態2に係るモータ駆動装置100の応用例として、モータ駆動装置100を空気調和機400に適用した例について説明する。
Embodiment 3.
Embodiment 3 describes an application example of motor drive device 100 described in Embodiment 1. FIG. FIG. 19 is a diagram showing the configuration of air conditioner 400 according to Embodiment 3. As shown in FIG. Motor drive device 100 described in Embodiments 1 and 2 can be applied to products such as fans, compressors, and air conditioners. In Embodiment 3, as an application example of the motor drive device 100 according to Embodiments 1 and 2, an example in which the motor drive device 100 is applied to an air conditioner 400 will be described.

図19において、モータ駆動装置100の出力側には、モータ500が接続されており、モータ500は、圧縮要素504に連結されている。圧縮機505は、モータ500と圧縮要素504とを備える。冷凍サイクル部506は、四方弁506a、室内熱交換器506b、膨張弁506c及び室外熱交換器506dを含む態様で構成されている。 In FIG. 19 , a motor 500 is connected to the output side of the motor driving device 100 and the motor 500 is connected to a compression element 504 . Compressor 505 comprises motor 500 and compression element 504 . The refrigerating cycle section 506 is configured to include a four-way valve 506a, an indoor heat exchanger 506b, an expansion valve 506c, and an outdoor heat exchanger 506d.

空気調和機400の内部を循環する冷媒の流路は、圧縮要素504から、四方弁506a、室内熱交換器506b、膨張弁506c、室外熱交換器506dを経由し、再び四方弁506aを経由して、圧縮要素504へ戻る態様で構成されている。モータ駆動装置100は、交流電源1より交流電力の供給を受け、モータ500を回転させる。圧縮要素504は、モータ500が回転することによって、冷媒の圧縮動作を実行し、冷媒を冷凍サイクル部506の内部で循環させることができる。 The flow path of the refrigerant circulating inside the air conditioner 400 passes from the compression element 504, the four-way valve 506a, the indoor heat exchanger 506b, the expansion valve 506c, the outdoor heat exchanger 506d, and again through the four-way valve 506a. , and return to the compression element 504 . The motor drive device 100 receives supply of AC power from the AC power supply 1 and rotates the motor 500 . The compression element 504 can compress the refrigerant by rotating the motor 500 and circulate the refrigerant inside the refrigeration cycle section 506 .

空気調和機400では、出力が定格出力の半分以下である中間条件、即ち低出力条件での運転が年間を通じて支配的である。このため、年間の消費電力への寄与度は、中間条件において高くなる。また、空気調和機400では、モータ500の回転数は低く、モータ500の駆動に必要な母線電圧は低い傾向にある。このため、空気調和機400に用いられるスイッチング素子は、パッシブな状態で動作させることがシステム効率の面から有効である。従って、パッシブな状態から高周波スイッチング状態までの幅広い運転モードで損失の低減が可能な直流電源装置50は、空気調和機400にとって有用である。 In the air conditioner 400, operation under an intermediate condition in which the output is less than half of the rated output, that is, under a low output condition is dominant throughout the year. Therefore, the degree of contribution to annual power consumption is high under intermediate conditions. In addition, in air conditioner 400, motor 500 rotates at a low speed, and the bus voltage required to drive motor 500 tends to be low. Therefore, it is effective in terms of system efficiency to operate the switching elements used in air conditioner 400 in a passive state. Therefore, the DC power supply 50 capable of reducing loss in a wide range of operation modes from passive state to high frequency switching state is useful for the air conditioner 400.

また、直流電源装置50は、スイッチング損失を抑制できるため、直流電源装置50の温度上昇が抑制され、不図示の室外機送風機のサイズを小型化しても、直流電源装置50に搭載される基板の冷却能力を確保できる。従って、直流電源装置50は、高効率であると共に4.0kW以上の高出力の空気調和機400に好適である。 In addition, since the DC power supply 50 can suppress the switching loss, the temperature rise of the DC power supply 50 is suppressed. Cooling capacity can be secured. Therefore, the DC power supply device 50 is highly efficient and suitable for the air conditioner 400 with a high output of 4.0 kW or more.

また、実施の形態3によれば、スイッチング素子の高周波駆動により、スイッチング損失が低減され、エネルギー消費率が低く、高効率の空気調和機400を実現できる。 Further, according to Embodiment 3, switching loss is reduced by high-frequency driving of the switching elements, the energy consumption rate is low, and highly efficient air conditioner 400 can be realized.

更に、実施の形態3に係る空気調和機400は、図20に示す動作モードで動作するように構成される。図20は、実施の形態3における動作モードの特徴を示す図である。 Furthermore, air conditioner 400 according to Embodiment 3 is configured to operate in the operation mode shown in FIG. FIG. 20 is a diagram showing features of operation modes in the third embodiment.

図20には、空気調和機400を動作させるときの温度条件及び負荷条件に対応する動作モードと、当該動作モードで動作させたときの上アームのスイッチング素子の動作が示されている。 FIG. 20 shows operation modes corresponding to temperature conditions and load conditions when the air conditioner 400 is operated, and operations of switching elements of the upper arm when the air conditioner 400 is operated in the operation modes.

まず、起動時及び異常時において、空気調和機400は、制御的に安定して動作していないため、整流モードを使用することが望ましい。空気調和機の温度条件の一例は、スイッチング素子が搭載される機器の外気温度である。 First, it is desirable to use the rectification mode because the air conditioner 400 does not operate stably in terms of control during start-up and in the event of an abnormality. An example of the temperature condition of the air conditioner is the ambient temperature of the device in which the switching element is mounted.

空気調和機400において、冷房運転は外気温度が高いときに使用される。この冷房運転においては、冷房中間、冷房定格、冷房過負荷といった負荷条件がある。外気温度が高いときには、スイッチング素子の周囲温度も高くなる傾向にある。 In air conditioner 400, the cooling operation is used when the outside air temperature is high. In this cooling operation, there are load conditions such as cooling intermediate, cooling rated, and cooling overload. When the outside air temperature is high, the ambient temperature around the switching element tends to be high.

ダイオードにおける損失は、順方向電流と、順方向電流による順方向の電圧降下である順電圧降下との積により求まる。また、MOSFETの損失は、MOSFETのオン抵抗にMOSFETに流れる電流の二乗積により求まる。また、前述したように、ダイオードは、温度が高くなると順電圧降下は低くなる傾向があり、MOSFETは、温度が高くなるとオン抵抗は高くなる傾向にある。損失で言い替えると、ダイオードは、温度が高くなると損失は改善され、MOSFETは、温度が高くなると損失は悪化する。 The loss in the diode is obtained by multiplying the forward current by the forward voltage drop, which is the forward voltage drop due to the forward current. Also, the loss of the MOSFET is found by the square product of the current flowing through the MOSFET and the ON resistance of the MOSFET. Further, as described above, diodes tend to have a lower forward voltage drop as the temperature rises, and MOSFETs tend to have a higher on-resistance as the temperature rises. In other words, the loss of a diode improves as the temperature rises, and the loss of a MOSFET worsens as the temperature rises.

また、空気調和機400においては、上述したブートストラップ回路54が広く用いられている。上アームのMOSFETを駆動する駆動回路51に損失が発生し、駆動回路51の損失はMOSFETをスイッチング制御するスイッチング回数に比例して増加する。このため、負荷条件によっては、上アームのMOSFETの損失と駆動回路51の損失を含めた損失よりも、寄生ダイオードの損失の方が小さくなる場合が想定される。特に、コンバータ3の周囲温度が高く、電流が大きい場合には顕著に効果が表れる。このため、上アームのMOSFETのスイッチング動作を停止させて、寄生ダイオードを積極的に導通させる制御を考慮した動作モードとする。 Also, in the air conditioner 400, the bootstrap circuit 54 described above is widely used. A loss occurs in the drive circuit 51 that drives the MOSFETs of the upper arm, and the loss of the drive circuit 51 increases in proportion to the number of times of switching the MOSFETs. Therefore, depending on the load conditions, the loss of the parasitic diode may be smaller than the loss including the loss of the upper arm MOSFET and the loss of the drive circuit 51 . In particular, when the ambient temperature of the converter 3 is high and the current is large, the effect is remarkable. For this reason, the switching operation of the upper arm MOSFET is stopped, and an operation mode considering control to positively conduct the parasitic diode is set.

上記の点を踏まえ、以下の動作モードを構築する。まず、空気調和機400を冷房運転するときは外気温度が高いため、スイッチング素子の周囲温度も高くなる。また、スイッチング素子自体の発熱による温度上昇もあるため、特に、電流が大きくなる低速スイッチングモード及び高速スイッチングモードにおいては、上アームのスイッチング素子の動作を停止させ、ダイオードを導通させることで、運転効率の改善を図る。 Based on the above points, the following operation modes are constructed. First, when the air conditioner 400 is in cooling operation, the outside temperature is high, so the ambient temperature of the switching element is also high. In addition, since the temperature rises due to heat generation of the switching element itself, especially in the low-speed switching mode and high-speed switching mode where the current is large, the operation efficiency of the upper arm switching element is stopped and the diode is made conductive. to improve

具体的に、図20の例では、軽負荷である冷房中間では、上アームのスイッチング素子を動作させた同期整流モードが選択される。高負荷である冷房定格では、上アームのスイッチング素子を動作させない低速スイッチングモードが選択される。過負荷である冷房過負荷では、上アームのスイッチング素子を動作させない高速スイッチングモードが選択される。 Specifically, in the example of FIG. 20, the synchronous rectification mode in which the upper arm switching element is operated is selected in the middle of cooling with a light load. For a high-load cooling rating, a low-speed switching mode is selected in which the upper arm switching element is not operated. In a cooling overload, which is an overload, a high-speed switching mode is selected in which the upper arm switching element is not operated.

一方、暖房運転するときは外気温度が低いため、スイッチング素子の周囲温度も冷房運転時に比べて低くなる。このため、暖房運転時においては、上アームのスイッチング素子を動作させた同期整流を積極的に行い、運転効率の改善を図る。 On the other hand, since the outside air temperature is low during the heating operation, the ambient temperature of the switching element is also lower than during the cooling operation. Therefore, during heating operation, synchronous rectification is positively performed by operating the switching element of the upper arm to improve the operation efficiency.

具体的に、図20の例では、軽負荷である暖房中間では、上アームのスイッチング素子を動作させた同期整流モードが選択される。高負荷である暖房定格では、上アームのスイッチング素子を動作させた低速スイッチングモードが選択される。過負荷である暖房過負荷では、上アームのスイッチング素子を動作させた高速スイッチングモードが選択される。即ち、軽負荷である暖房中間、高負荷である暖房定格、及び過負荷である暖房過負荷の何れにおいても、上アームのスイッチング素子を動作させた動作モードが選択される。 Specifically, in the example of FIG. 20, the synchronous rectification mode in which the switching element of the upper arm is operated is selected in the middle of heating with a light load. At the high load heating rating, the low speed switching mode with the upper arm switching element operated is selected. In a heating overload, which is an overload, a high-speed switching mode in which the upper arm switching element is operated is selected. In other words, the operation mode in which the switching element of the upper arm is operated is selected in any of the heating intermediate load which is light load, the heating rated load which is high load, and the heating overload which is overload.

以上の制御のように、冷房運転又は暖房運転、詳細には冷房中間又は暖房中間といったコンバータ3への動作指令に応じて、コンバータ3のスイッチング素子の導通が制御される。これらの制御において、上アームのスイッチング素子を駆動しない場合、上アームのスイッチング素子の駆動電圧の確保を考慮して、下アームのスイッチング素子を駆動する必要がなくなる。これにより、コンバータ3に対する制御を簡略化することができる。 As described above, the conduction of the switching element of the converter 3 is controlled according to the operation command to the converter 3 such as the cooling operation or the heating operation, more specifically, the intermediate cooling operation or the intermediate heating operation. In these controls, when the upper arm switching element is not driven, it is not necessary to drive the lower arm switching element in consideration of securing the drive voltage for the upper arm switching element. Thereby, control over the converter 3 can be simplified.

また、図18のスイッチングパターンから理解できるように、上アームのMOSFETと下アームのMOSFETとが同時にオン状態となることを防止するデッドタイムを設ける必要がなくなる。デッドタイムは、上アームのMOSFETと下アームのMOSFETとが同時にオン状態とならないノンオーバラップ時間であり、短絡防止時間とも呼ばれる。デッドタイムを設けない制御とすれば、制御による指令値と実際の指令値とが一致する一致性が高められる。これにより、制御性が向上し、高効率且つ制御安定性の高い空気調和機400を実現できる。 Further, as can be understood from the switching pattern of FIG. 18, there is no need to provide a dead time to prevent the upper arm MOSFET and the lower arm MOSFET from being turned on at the same time. The dead time is a non-overlapping time during which the upper arm MOSFET and the lower arm MOSFET are not turned on at the same time, and is also called short-circuit prevention time. If control is performed without dead time, the degree of matching between the control command value and the actual command value is enhanced. As a result, controllability is improved, and the air conditioner 400 with high efficiency and high control stability can be realized.

なお、MOSFETにおける図12及び図13の特性は現状の特性であり、将来的には、改善される可能性もある。このため、上アームのスイッチング素子を動作させるか否かの判断は、図20において括弧書きで示されているように、MOSFETの技術動向に応じて柔軟に実施してもよい。 Note that the characteristics of the MOSFET shown in FIGS. 12 and 13 are current characteristics, and may be improved in the future. Therefore, the determination as to whether or not to operate the switching element of the upper arm may be made flexibly in accordance with the technical trends of MOSFETs, as shown in parentheses in FIG.

なお、以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 It should be noted that the configuration shown in the above embodiment shows an example of the contents of the present invention, and it is possible to combine it with another known technique, and the configuration can be changed without departing from the gist of the present invention. It is also possible to omit or change part of

1 交流電源、2 リアクトル、3 コンバータ、3a,3b,3c,3d,26a,26b,26c 接続点、4 平滑コンデンサ、5,7 電圧検出部、6,9 電流検出部、10 制御部、12 負荷、14 電源回路、15,17 ゲート駆動回路、16a,16b 直流母線、18 インバータ、18A,18B,18C レグ、18a トランジスタ、18b,54b,D1,D2,D3,D4 ダイオード、18UN,18VN,18WN 下アーム素子、18UP,18VP,18WP 上アーム素子、31 第1のレグ、32 第2のレグ、50 直流電源装置、51,52 駆動回路、54 ブートストラップ回路、54a 抵抗、54c コンデンサ、55 駆動電源、100 モータ駆動装置、300 プロセッサ、302 メモリ、304,306 インタフェース、305 処理回路、311 第1の上アーム素子、312 第1の下アーム素子、321 第2の上アーム素子、322 第2の下アーム素子、400 空気調和機、500 モータ、504 圧縮要素、505 圧縮機、506 冷凍サイクル部、506a 四方弁、506b 室内熱交換器、506c 膨張弁、506d 室外熱交換器、600 半導体基板、601,603 領域、602 酸化絶縁膜、604 チャネル、D ドレイン電極、G ゲート電極、Q1,Q2,Q3,Q4 スイッチング素子、S ソース電極。 1 AC power supply 2 Reactor 3 Converter 3a, 3b, 3c, 3d, 26a, 26b, 26c Connection point 4 Smoothing capacitor 5, 7 Voltage detection unit 6, 9 Current detection unit 10 Control unit 12 Load , 14 power supply circuit, 15, 17 gate drive circuit, 16a, 16b DC bus, 18 inverter, 18A, 18B, 18C leg, 18a transistor, 18b, 54b, D1, D2, D3, D4 diode, 18UN, 18VN, 18WN Bottom arm element, 18UP, 18VP, 18WP upper arm element, 31 first leg, 32 second leg, 50 DC power supply, 51, 52 drive circuit, 54 bootstrap circuit, 54a resistor, 54c capacitor, 55 drive power supply, REFERENCE SIGNS LIST 100 motor drive device, 300 processor, 302 memory, 304, 306 interface, 305 processing circuit, 311 first upper arm element, 312 first lower arm element, 321 second upper arm element, 322 second lower arm Element 400 Air conditioner 500 Motor 504 Compression element 505 Compressor 506 Refrigeration cycle unit 506a Four-way valve 506b Indoor heat exchanger 506c Expansion valve 506d Outdoor heat exchanger 600 Semiconductor substrate 601,603 Region, 602 oxide insulating film, 604 channel, D drain electrode, G gate electrode, Q1, Q2, Q3, Q4 switching element, S source electrode.

Claims (13)

リアクトルと、
ブリッジ接続される4つの一方向性素子を備え、前記リアクトルを介して交流電源に接続され、前記交流電源から出力される交流電圧である電源電圧を直流電圧に変換して負荷に印加するコンバータと、
前記コンバータの出力端子間に接続される平滑コンデンサと、
前記コンバータの出力側の動作状態を表す第1の物理量を検出する第1の物理量検出部と、
前記コンバータの入力側の動作状態を表す第2の物理量を検出する第2の物理量検出部と、
前記第1及び第2の物理量が入力され、前記コンバータの動作を制御する制御部と、
を備え、
前記コンバータにおける、4つの前記一方向性素子のうちの2つの前記一方向性素子は直列に接続されて第1のレグを構成し、残りの2つの前記一方向性素子は直列に接続されて第2のレグを構成し、
少なくとも、前記平滑コンデンサの正側に接続される前記第1及び第2のレグにおける2つの一方向性素子、又は前記平滑コンデンサの負側に接続される前記第1及び第2のレグにおける2つの一方向性素子、又は、前記第1のレグにおける2つの一方向性素子、又は前記第2のレグにおける2つの一方向性素子のそれぞれにはスイッチング素子が並列に接続され、
前記制御部は、前記コンバータを異なる動作態様で動作させる動作モードとして、前記一方向性素子に通流させる整流モード及び前記一方向性素子に通流させるタイミングで対応するスイッチング素子のチャネルに通流させる同期整流モードを有すると共に、
前記交流電源の電圧である電源電圧の半周期に1回以上、前記リアクトルを介して前記電源電圧を短絡させる第1のスイッチングモード、及び前記電源電圧の1周期の全域に亘り、前記リアクトルを介して前記電源電圧を複数回短絡させる第2のスイッチングモードのうちの少なくとも1つを前記動作モードとして有し、
前記制御部は、更に前記スイッチング素子の周囲温度又は前記コンバータの外気温度、及び前記負荷を駆動する際の負荷条件に基づいて前記動作モードを選択する
流電源装置。
a reactor;
A converter comprising four bridge-connected unidirectional elements, connected to an AC power supply via the reactor, and converting a power supply voltage, which is an AC voltage output from the AC power supply, into a DC voltage and applying it to a load. ,
a smoothing capacitor connected between output terminals of the converter;
a first physical quantity detector that detects a first physical quantity representing an operating state of the output side of the converter;
a second physical quantity detector that detects a second physical quantity representing an operating state of the input side of the converter;
a control unit to which the first and second physical quantities are input and which controls the operation of the converter;
with
Two of the four unidirectional elements in the converter are connected in series to form a first leg, and the remaining two unidirectional elements are connected in series. constitute the second leg,
At least two unidirectional elements in the first and second legs connected to the positive side of the smoothing capacitor, or two unidirectional elements in the first and second legs connected to the negative side of the smoothing capacitor. A switching element is connected in parallel to each of the unidirectional element, or the two unidirectional elements in the first leg, or the two unidirectional elements in the second leg,
As operation modes for operating the converter in different operation modes, the control unit controls a rectification mode in which the unidirectional element is energized and a channel of the corresponding switching element at the timing at which the unidirectional element is energized. and has a synchronous rectification mode that allows
A first switching mode in which the power supply voltage is short-circuited via the reactor at least once every half cycle of the power supply voltage, which is the voltage of the AC power supply; at least one of a second switching mode in which the power supply voltage is short-circuited multiple times as the operation mode;
The control unit further selects the operation mode based on an ambient temperature of the switching element or an outside air temperature of the converter, and a load condition when driving the load .
DC power supply.
前記制御部から出力される制御信号に基づいて前記コンバータを駆動する駆動回路を備え、
前記駆動回路は、前記平滑コンデンサの正側に接続される前記スイッチング素子を駆動するための電源回路であるブートストラップ回路を備え、
前記動作モードとして、前記第2のスイッチングモードを有し、
前記第2のスイッチングモードでは、前記ブートストラップ回路に接続されたスイッチング素子はオン動作しない
請求項に記載の直流電源装置。
A drive circuit that drives the converter based on a control signal output from the control unit,
The drive circuit includes a bootstrap circuit, which is a power supply circuit for driving the switching element connected to the positive side of the smoothing capacitor,
Having the second switching mode as the operation mode,
The DC power supply device according to claim 1 , wherein in the second switching mode, the switching element connected to the bootstrap circuit does not turn on.
前記制御部から出力される制御信号に基づいて前記コンバータを駆動する駆動回路を備え、
前記駆動回路は、前記平滑コンデンサの正側に接続される前記スイッチング素子を駆動するための電源回路であるブートストラップ回路を備え、
前記動作モードとして、前記第1のスイッチングモードを有し、
前記第1のスイッチングモードで動作しているときに、前記負荷条件に基づいて前記ブートストラップ回路に接続されたスイッチング素子の動作を停止させる
請求項又はに記載の直流電源装置。
A drive circuit that drives the converter based on a control signal output from the control unit,
The drive circuit includes a bootstrap circuit, which is a power supply circuit for driving the switching element connected to the positive side of the smoothing capacitor,
Having the first switching mode as the operation mode,
3. The DC power supply device according to claim 1 , wherein the operation of the switching element connected to the bootstrap circuit is stopped based on the load condition when operating in the first switching mode.
前記スイッチング素子は、ワイドバンドギャップ半導体により形成された金属酸化物半導体電界効果トランジスタである
請求項1から3の何れか1項に記載の直流電源装置。
The DC power supply device according to any one of claims 1 to 3, wherein the switching element is a metal oxide semiconductor field effect transistor made of a wide bandgap semiconductor.
前記ワイドバンドギャップ半導体は、炭化珪素、窒化ガリウム、酸化ガリウム又はダイヤモンドである
請求項に記載の直流電源装置。
The DC power supply device according to claim 4 , wherein the wide bandgap semiconductor is silicon carbide, gallium nitride, gallium oxide, or diamond.
前記スイッチング素子は、スーパージャンクション構造の金属酸化物半導体電界効果トランジスタである
請求項1から3の何れか1項に記載の直流電源装置。
The DC power supply device according to any one of claims 1 to 3, wherein the switching element is a metal oxide semiconductor field effect transistor with a super junction structure.
前記一方向性素子は、属酸化物半導体電界効果トランジスタの寄生ダイオードである
請求項からの何れか1項に記載の直流電源装置。
The direct-current power supply device according to any one of claims 1 to 6 , wherein the unidirectional element is a parasitic diode of a metal oxide semiconductor field effect transistor.
前記一方向性素子は、ダイオードである
請求項からの何れか1項に記載の直流電源装置。
The DC power supply device according to any one of claims 1 to 7 , wherein the unidirectional element is a diode.
請求項からの何れか1項に記載の直流電源装置と、
前記直流電源装置の出力電圧を交流電圧に変換して前記負荷に備えられるモータに印加するインバータと、
を備えたモータ駆動装置。
A DC power supply device according to any one of claims 1 to 8 ;
an inverter that converts the output voltage of the DC power supply into an AC voltage and applies the AC voltage to a motor provided in the load;
A motor drive device with
請求項に記載のモータ駆動装置を備える
送風機。
A blower comprising the motor drive device according to claim 9 .
請求項に記載のモータ駆動装置を備える
圧縮機。
A compressor comprising the motor drive device according to claim 9 .
請求項10に記載の送風機及び請求項11に記載の圧縮機の少なくとも一方を備える
空気調和機。
An air conditioner comprising at least one of the blower according to claim 10 and the compressor according to claim 11 .
前記負荷条件は、前記空気調和機の起動時、異常時及び前記空気調和機を冷房又は暖房運転するときのうちの少なくとも1つである
請求項12に記載の空気調和機。
13. The air conditioner according to claim 12 , wherein the load condition is at least one of startup of the air conditioner, an abnormality, and cooling or heating operation of the air conditioner.
JP2021541952A 2019-08-30 2019-08-30 DC power supplies, motor drives, blowers, compressors and air conditioners Active JP7162747B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/034262 WO2021038868A1 (en) 2019-08-30 2019-08-30 Dc power supply device, motor drive device, blower, compressor, and air conditioner

Publications (3)

Publication Number Publication Date
JPWO2021038868A1 JPWO2021038868A1 (en) 2021-03-04
JPWO2021038868A5 JPWO2021038868A5 (en) 2022-03-02
JP7162747B2 true JP7162747B2 (en) 2022-10-28

Family

ID=74685390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021541952A Active JP7162747B2 (en) 2019-08-30 2019-08-30 DC power supplies, motor drives, blowers, compressors and air conditioners

Country Status (2)

Country Link
JP (1) JP7162747B2 (en)
WO (1) WO2021038868A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016220378A (en) 2015-05-19 2016-12-22 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Dc power supply device and air conditioner using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6107469B2 (en) * 2013-06-27 2017-04-05 株式会社デンソー Power converter
JP2017055475A (en) * 2015-09-07 2017-03-16 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Dc power supply unit and air conditioner
JP6712104B2 (en) * 2015-09-10 2020-06-17 日立ジョンソンコントロールズ空調株式会社 DC power supply and air conditioner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016220378A (en) 2015-05-19 2016-12-22 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Dc power supply device and air conditioner using the same

Also Published As

Publication number Publication date
WO2021038868A1 (en) 2021-03-04
JPWO2021038868A1 (en) 2021-03-04

Similar Documents

Publication Publication Date Title
CN110915119B (en) Power conversion device, motor drive device, and air conditioner
JP2022118033A (en) air conditioner
JP7080381B2 (en) Power converter, motor drive and air conditioner
KR102507936B1 (en) Power converters, motor drives and air conditioners
WO2020066033A1 (en) Power conversion apparatus, motor drive apparatus, and air conditioner
JP7118284B2 (en) DC power supplies, motor drives, blowers, compressors and air conditioners
JP7162747B2 (en) DC power supplies, motor drives, blowers, compressors and air conditioners
WO2020066034A1 (en) Power conversion apparatus, motor drive apparatus, and air conditioner
JP7162746B2 (en) DC power supplies, motor drives, blowers, compressors and air conditioners
JP7072729B2 (en) Power converter, motor drive and air conditioner
JP7101898B2 (en) Motor drive, blower, compressor and air conditioner
JP7325516B2 (en) Power conversion device, motor drive device and air conditioner
WO2020066035A1 (en) Power conversion device, motor drive device, and air conditioner

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211202

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221018

R150 Certificate of patent or registration of utility model

Ref document number: 7162747

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150