JP7156483B2 - 電磁波減衰フィルム - Google Patents
電磁波減衰フィルム Download PDFInfo
- Publication number
- JP7156483B2 JP7156483B2 JP2021165145A JP2021165145A JP7156483B2 JP 7156483 B2 JP7156483 B2 JP 7156483B2 JP 2021165145 A JP2021165145 A JP 2021165145A JP 2021165145 A JP2021165145 A JP 2021165145A JP 7156483 B2 JP7156483 B2 JP 7156483B2
- Authority
- JP
- Japan
- Prior art keywords
- electromagnetic wave
- metal plate
- wave attenuation
- conductive layer
- dielectric substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
- Aerials With Secondary Devices (AREA)
- Laminated Bodies (AREA)
Description
さらに、より高い周波数帯域の電波を吸収できるようにすることを目的として、特許文献2には、偏平状の軟磁性粒子の長手方向をシートの面方向に揃えることで、20GHz以上の周波数帯域の電波を吸収可能な電波吸収シートが提案されている。
特許文献5には、個々の共振周波数を有する複数のパッチ導体を所定の周期パターンで配列した共振層と、共振層で共振した電波を多重反射させる誘電体層と、誘電体層から入射した電波を該誘電体層側へ反射する反射導体層を備えた電波吸収構造が開示されている。
電磁波ノイズ抑制の一つの方法として、上述したような電磁波吸収シートの利用が考えられるが、現時点では、20GHzから数十GHz程度の周波数に対応するものがほとんどであり、ミリ波帯に対応していない。
ミリ波帯域の電磁波を吸収する電磁波吸収シートは存在するものの、現在実用化されて
いるものは、吸収性能を維持するため、シートが厚い。したがって、高集積化が進むデバ
イスの筐体内に組み込んで電磁波ノイズを抑制することが困難である。
薄膜導電層は、複数の金属プレートを含み、金属プレートの厚さをT、表皮深さをd、としたときに周波数57GHz~90GHz帯域で下記式を満たすことを特徴とする電磁波減衰フィルムである。
-2.5 ≦ ln(T/d) ≦ -1.0
また、電磁波減衰フィルムで減衰される電磁波が単一の極小値となる周波数fを有する場合、この周波数fを、減衰中心周波数fとする。また、電磁波減衰フィルムで減衰される電磁波が複数の極小値を有する場合は、最も減衰の大きい極小値から-3dBとなる複数の周波数の平均値の周波数を減衰中心周波数とする。減衰中心波長は、誘電体基材中の光速を後述の減衰中心周波数fで除したものとできる。
また、電磁波減衰フィルム1は、空気とのインピーダンス整合を図り、シートの耐候性を高めるためのトップコート層200とを備えていてもよい。
誘電体基材10を構成する材料の代表例は合成樹脂である。合成樹脂の種類は、絶縁性とともに十分な強度、可撓性及び加工性を有する限り特に制限されない。この合成樹脂は熱可塑樹脂とできる。合成樹脂は、例えば、ポリエチレンテレフタレート(PET)等のポリエステル;ポリフェニレンサルファイド等のポリアリーレンサルファイド;ポリエチレン、ポリプロピレン等のポリオレフィン;ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルサルフォン、ポリエーテルエーテルケトン、ポリカーボネート、アクリル樹脂、ポリスチレン等が挙げられる。これらの材料を単体で用いてもよいし、2種類以上混合させても、積層体としてもよい。また、誘電体基材10は、導電性粒子、絶縁性粒子、磁性粒子、または、その混合を含有してもよい。
電磁波減衰フィルム1においては、前面10aの凹凸の態様により特性が変化する。この点については後述する。
薄膜導電層30の厚さは、10nm以上、1000nm以下とできる。10nm未満であると、電磁波を減衰させる機能が低下する可能性がある。1000nmを超えると、生産性が落ちる可能性がある。
平板インダクタ50は鋳物、圧延金属板、金属箔、蒸着膜、スパッタ膜およびめっきとできる。圧延金属板の厚さは、0.1mm以上5mm以下とできる。金属箔の厚さは5μm以上100μm未満とできる。平板インダクタ50が蒸着膜、スパッタ膜およびメッキ膜の場合は、0.5μm以上、5mm未満とできる。平板インダクタ50の厚さは、0.5μm~5mmとできる。また、平板インダクタ50が鋳物の場合は、厚さは特定されないが、最大寸法が10mm以上のものとできる。また、平板インダクタ50の厚さは、減衰中心波長により求められる表皮深さ以上とできる。また、平板インダクタ50の厚さは、薄膜導電層30の厚さより厚くできる。
薄膜導電層30と平板インダクタ50の材質は、同じ金属種とすることができる。この同じ金属種は、同じ純金属か同じ金属の合金(例えば、双方ともアルミニウム合金)とするか、薄膜導電層30を純金属とし平板インダクタ50を薄膜導電層30の金属の合金としてもよい。また、薄膜導電層30と平板インダクタ50の材質は、異なる金属種としてもよい。
薄膜導電層30は、誘電体基材の反対側の面にトップコート層200を有してもよい。図3は、トップコート層を設けた場合の図1のI-I線における断面の一部を示す模式図である。 平板インダクタ50も、誘電体基材の反対側の面にトップコート層200を有してもよい。トップコート層200の厚さは、0.1μm以上、50μm以下とできる。さらには、1μm以上、5μm以下とできる。トップコート層200は単層または多層である。トップコート層200の材質は、ウレタン樹脂、アクリル樹脂、ポリアミド、ポリイミド、ポリアミドイミド、エポキシ樹脂、シリコーン樹脂の単体、混合体、複合体とできる。また、絶縁性粒子、磁性粒子、導電性粒子、または、その混合を含有してもよい。粒子は、無機粒子とできる。トップコート層200を設けることで、電波が伝搬する空気とインピーダンスが整合し、薄膜導電層に対し、電波が効果的に減衰することが可能となる。また、薄膜導電層30、平板インダクタ50に、耐食性、耐薬品性、耐熱性、耐摩擦性、耐衝撃性等を付与することが出来る。例えば、架橋したアクリル樹脂、架橋したエポキシ樹脂、ポリアミド、ポリイミド、ポリアミドイミド、シリコーン樹脂等を用いることにより、耐溶剤性を向上させた上で、耐熱性を向上させることが可能となる。また、ウレタン樹脂等を用いることで耐衝撃性を、シリコーン樹脂を用いることで耐摩擦性を向上させることが可能となる。
第一領域121は、離散して配置されている。第一領域121は、所定のピッチで二次元マトリクス状に配置されている。第二領域122は、電磁波減衰フィルム1の平面視において第一領域121を取り囲んでいる。第一領域121上の薄膜導電層30に金属プレートを含む。つまり、第一領域121上に金属プレートを備える。言い換えると、金属プレートは、第一領域121上に位置する。金属プレートの平面視形状は、正方形、六角形、十字、その他の多角形、円形、楕円とできる。この正方形、六角形、十字、その他の多角形の角は丸い形状とできる。第二領域122は、第一領域121の上述した態様により、平面視において網目状や格子状に形成されている。
第一領域121および第二領域122の薄膜導電層30と接する面は、概ね背面と平行である。さらに、一部または全面に粗面を有してもよい。後述するが、第一領域121および第二領域122の薄膜導電層30と接する面を一部または全面を粗面とすることで、薄膜導電層30の電気抵抗を調整できる。
各第一領域の金属プレートは、第一領域121の平面視形状に沿った形状とできる。すなわち、第一領域121の平面視形状と同じか、相似形とできる。また、誘電体基材10は、複数の平面視形状が同形同大の複数の金属プレートを含んでもよい。さらに、第一領域121は互いに平行な状態を保って離散させることができ、前面における配置密度は概ね均一とできる。
平板インダクタ50により、平板インダクタ50の接線方向に磁束が入射波に誘導される。誘導された磁束により、第一領域121上の薄膜導電層30(すなわち、金属プレート)の対向する一対の辺から伸張する方向に、平板インダクタ50に対して垂直な方向に電場が発生する。次に、電磁波が平板インダクタに入射すると、変動する磁束により平板インダクタの表面近傍に近接するように電流が誘導される。平板インダクタ内に誘導された電流により、平板インダクタの表面近傍に近接する誘電体基材10に磁場が発生する。この電場と金属プレートと平板インダクタ50の電流は、金属プレートと平板インダクタ50との間に平板インダクタ50により誘導される磁束と同じ向きの磁場を発生させる。ここで、金属プレートの形状は、プレート状であり、その材質は金属である。誘電体基材内に発生した電界は、入射波の周期と同じ周期で変動している。磁界の周期的な変動は、薄膜導電層30と平板インダクタ50との間の電界を周期的に変動させる。その結果、薄膜導電層30と平板インダクタ50との間に進行しない周期的に変動する電磁場が発生する。後に電流密度のシミュレーションにより示すように、周期的に変動する電磁場中の磁場により金属プレートに交流電流が誘導される。また、周期的に変動する電場は金属プレートに周期的に変動する電位を発生させる。電磁場は進行せずその場に留まり、誘導された交流電流は電力損失し、結果として電磁場のエネルギーが熱に変換され、電磁波を吸収する。また、金属プレートに誘導された交流電流は、金属プレートの誘電体基材10と接している面とは反対側の面から電磁波を再放出すると考えられる。
つまり、電磁波減衰フィルムで捕捉された電磁波のエネルギーは、一部は、熱のエネルギーに変換され、残りは再放出すると考えらえる。また、マクスウェル方程式等で表される古典的な電磁気の理論によれば、誘導される交流電流の周波数は入射波と同じ周波数となるため、再放出される電磁波の周波数は、入射波の周波数と同じとなる。その結果、入射波と同じ周波数の電磁波が再放出される。また、振動する電磁場を量子として考えた場合、量子がエネルギーを失い、よりエネルギーの低い長波長の電磁波が再放出されることも考えられる。また、再放出は、入射した電磁波による誘導放出と自然放出があると考えられる。誘導放出は、入射波の反射方向、すなわち鏡面反射方向に入射波が反射する反射波とコヒーレントな電磁波が放出されると考えられる。自然放出は時間とともに減衰すると考えられる。また、自然放出の空間分布は、電磁波減衰フィルムが回折構造、干渉構造、屈折構造を有していない場合は、ランバート反射に近いと考えられる。
減衰中心波長は、図2に示す第一領域121上に形成された薄膜導電層30の面方向における寸法W1(図7参照。以下、「幅W1」と称することがある。)と相関する。すなわち、第一のメカニズムにより好適に減衰される電磁波の波長は、寸法W1を変更することにより変更でき、電磁波減衰フィルム1においては、電磁波の減衰を自由度高くかつ簡便に設定できる。したがって、容易に15GHz以上、150GHz以下の帯域における直線偏波の電磁波を捕捉可能な構成とすることができる。
薄膜導電層に含まれる複数の金属プレートは、寸法W1の異なるものが複数種類配置されてもよい。この場合、それぞれの電磁波の減衰ピークが重ね合わされ、減衰できる電磁波を広帯域化できる。
また、磁束は、この閉じ込められた電場の周期的な変動によっても、第一領域内に誘導されると考えられる。これにより、第一領域内に振動する電磁場が集積し、電磁場のエネルギー密度が高まる。一般的に、エネルギー密度が高いほど減衰しやすいため、このメカニズムにより電磁波は効率よく減衰される。また、第二のメカニズムでは、誘電体基材10の誘電正接が高いほど、誘電体基材内に蓄積された電磁場のエネルギー損失が大きくなる。また、誘電体基材に集積した磁場は、金属プレートに大きな電流を伴い、誘電体基材に集積した電場は大きな電位差を生じる。大きな電流と大きな電位差によりその積である電力損失を大きくすることができる。電力損失として、電磁波のエネルギーを消費し、その結果、電磁波が減衰する。
コンデンサの静電容量が大きいほど多くの電荷を蓄積することで蓄えられるエネルギーが増加するため、静電容量が大きいほど高エネルギーに対応しうる。
静電容量は誘電体基材10の厚さに反比例するため、この観点からは、誘電体基材10の厚さは薄いほうがより好ましい。また、薄膜導電層30と平板インダクタ50との距離は誘電体基材10の厚さで定まるため、薄膜導電層30と平板インダクタ50との間の電気抵抗は、誘電体基材10の厚さに比例する。誘電体基材10の抵抗が小さいと誘電体基材10でのリーク電流は増大し、薄膜導電層30と平板インダクタ50とのコンデンサを含む電気回路に流れる電流は増加する。このため、リーク電流による電力損失を増大しやすく、電力損失により電磁波のエネルギーを吸収しやすい。また、本発明の実施形態の電磁波減衰フィルム1では、金属プレートが配置された箇所の誘電体基材10の厚さを変更しても減衰する電磁場の波長はシフトしないため、コンデンサを含む電気回路の特性に合わせて、誘電体基材10の厚さを設計可能である。
図25のシミュレーションにおいて、金属プレートは正方形であり、W1は一辺の長さである。
さらに、発明者らの検討では、金属プレートの周縁部で電界が強くなっており、周縁部に近いサポートケージでも電位を生じていると考えられる。
図4(b)と図5(b)とを比較すると、図5(b)において金属プレートの周縁部における電界強度がより強くなっていることがわかる。すなわち、サポートケージに生じる上述の電位は、第一のメカニズムにおける電力損失をより大きくすることに寄与すると考えられる。
一方で、本発明において、金属プレートの表面は酸化、窒化または酸窒化していてもよい。金属プレートの表面の酸化金属、窒化金属は、表面処理で形成できる。表面処理は薬品を用いた化学処理、熱処理または、その双方とできる。また、金属プレート内に酸化金属膜が存在してもよいし、金属と金属酸化物とが混合している層があってもよい。このような構成では、金属プレートの抵抗値が上昇し、電圧降下が高まることで電力損失が大きくなり、電磁波の減衰性を向上することができる。
また、金属プレート30Aは、異なる材質の膜を積層した多層膜とすることができる。積層する膜の材質は、導電体または絶縁体とできる。
まず、誘電体基材10を形成する。キャリア11上に凹凸部を形成する樹脂を層状に配置し、表面に第一領域および第二領域を形成すると、下地層12を有する誘電体基材10が完成する。下地層12を形成する樹脂は感光性樹脂とできる。この場合は、フォトリソグラフィを利用できる。感光性樹脂は、ネガレジストや、ポジレジストとできる。光硬化性樹脂で下地層12を形成することもできる。熱可塑性樹脂で下地層12を形成することもできる。この場合は、熱転写を利用できる。熱硬化性樹脂で下地層12を形成することもできる。樹脂は、溶剤に可溶な可溶性樹脂(油性インキ)でもよい。また、樹脂は、水溶性樹脂(水性インキ)でもよい。
薄膜導電層30においては、金属プレートとそれ以外の部分とがつながっていないことが重要である。つながっていると上述した幅W1が変化してしまうため、電磁波の減衰性が想定と異なってしまう可能性がある。このため、第二領域の側面に形成された薄膜導電層30を除去する工程を追加してもよい。この工程には、レーザーエッチング等を利用できる。
この製造手順では、版に押された薄膜導電層30が伸展して金属プレートとそれ以外の部分とがつながった状態となりやすい。これを解消する方法としては、上述のレーザーエッチングの他に、版形状の工夫が挙げられる。例えば、版において、第一領域を形成する凸部の周辺を鋭利に形成しておくと、版が薄膜導電層30に押し当てられた際に金属プレートの周縁が切断される。これにより、転写時に金属プレートとそれ以外の部分とがつながっていない状態を確保できる。
電磁波減衰フィルム61は、誘電体基材62と、複数の金属プレート30Aと、平板インダクタ50とを備えている。金属プレート30Aの厚さは1000nm以下とできる。
金属プレートセットは、複数配置してもよい。ある金属プレートセットを構成する金属プレートの形状、大きさ、配置と同一形状、大きさ、配置、金属プレートから構成される金属プレートセットを複数配置してもよい。薄膜導電層に異なる複数の金属プレートを含むことにより、広帯域化、複数の周波数の電磁波を減衰すること、またはその双方が可能となる。
また、プラスチックフィルムのキャリア11をそのまま誘電体基材62とすることができるため、第二実施形態の電磁波減衰フィルムは、第一実施形態に係る電磁波減衰フィルムよりも簡便に製造できる。
前面62aおよび背面62bの一部または全面に粗面を有したキャリアを誘電体基材62とすることもできる。前面62aの一部または全面を粗面とすることで、金属プレート30Aのアドミタンスを調整できる。
なお、金属プレート30Aが導電層およびクラッドを備える場合、導電層とクラッドを合わせた金属プレート30Aの厚さが1000nm以下であれば、安定した成膜が可能である。
-2 ≦ ln(T/d) ≦ 0 …(2)
また、金属プレートにアドミタンスが低い金属を用いた場合は、下記式3の範囲でも電磁波の減衰が得られる。また、金属プレートの面積が誘電体基材の前面に占める割合が大きい場合、下記式3の範囲でも、電磁波の減衰が得られる。この面積比が大きい場合とする、金属プレートの面積が誘電体基材の前面に占める割合は50%以上、90%以下とできる。
0 < ln(T/d) ≦ 1 …(3)
式1および2を踏まえると、下記式4の範囲において、電磁波の減衰を得ることができる。
-2 ≦ ln(T/d) ≦ 1 …(4)
なお、本発明の実施形態では、この表皮深さは、減衰中心周波数fを用いて算出できる。つまり、減衰中心周波数fを用いると、表皮深さdは、周知のとおり下記式5のように計算される。
また、金属プレートと誘電性インダクタの間の誘電体基材の電場は、金属プレートと誘電性インダクタを引き付ける。電場が周期的に変動している場合は、金属プレートに引き付ける力も周期的に変動する。そのため、金属プレートと誘電性インダクタの間の誘電体基材の電場は、金属プレートを振動させる。この振動のエネルギーは熱に変換されて損失する。このため、電磁場が金属プレートに作用する力学も電磁波の減衰に寄与すると考えられる。
また、電磁場の進行しない周期的な変動を、量子として捉えた場合には、運動量がゼロの状態として電磁場に束縛され量子が捕捉されている状態にあると考えることができる。加えて金属プレートの厚さが数百nmのレベルとなるため、金属プレート内のエネルギー準位に影響を及ぼす可能性も考えられる。
このように、本発明の実施形態での現象に対する解釈は、古典的電磁としての解釈に加えて、古典力学や量子力学としての解釈も可能である。
そのため、式4を解釈するにあり、当該範囲は合理的に定められているが、すべての物理現象を加味し厳格に算出された範囲ではない。したがって、対象となる製品が上記式の範囲に該当するかを判断する場合には、発現している物理現象を考慮し解釈することが適切だと言える。
なお、従来技術において、表皮深さ程度から表皮深さより薄い導体を使用する例は、通常みられない。そのため、本発明の実施形態は、ミリ波帯での電磁波との相互作用のメカニズムそのものが従来とは異なると考えられる。
(第一実施形態に係る実施例)
まず、ニッケル電鋳用のマスター版を用意した。シリコンウェハ表面にフォトリソグラフィによりレジストパターンを形成した。使用したフォトレジストはポジ型であり、フォトレジストの膜厚は10μmとした。形成したレジストパターンは、XY座標系において、一辺14cmの正方形領域内に、正方形開口を、X座標、Y座標共に一定周期の正方格子配列となる座標に配置したパターンであり、i線を露光した領域は前記正方形の内側領域である。
さらに、このマスター版を用いてニッケル電鋳を行い、表面に平面視正方形の凸部が規則的に配列されたパターンを有するニッケルモールドを得た。
PETフィルムをニッケルモールドから離型し、紫外線硬化性樹脂からなる凹凸層とPETフィルムとからなる誘電体部を得た。
以上が第一実施形態に係る実施例の製造手順である。この手順において、凹凸層表面の各パラメータを変化させた複数のニッケルモールドを作製し、実施例1および2の電磁波減衰フィルムを作製した。
各実施例に係る電磁波減衰フィルムは、いずれも厚さ60μm程度、重量0.02g程度であり、薄くかつ軽量であった。
前記第一実施形態に係る実施例において、以下の手順で製造したトップコート層200を設け電磁波減衰フィルムを作成した。
メチルメタクリレートモノマー80質量部とシクロヘキシルメタクリレート20質量部の混合物からなるアクリル系樹脂組成物を主成分とし、ここに、そのアクリル系樹脂組成物の固形分を100質量部として、上記化学式Aに示す構造を有するヒドロキシフェニルトリアジン系の紫外線吸収剤((株)ADEKA製「アデカスタブLA-46」)を6質量部、上記化学式Aに示す構造とは別の組成のヒドロキシフェニルトリアジン系の紫外線吸収剤(チバスペシャルティケミカルズ(株)製「チヌビン479」)を6質量部、ベンゾトリアゾール系紫外線吸収剤(チバスペシャルティケミカルズ(株)製「チヌビン329」)を3質量部、ヒンダートアミン系ラジカル補足剤(チバスペシャルティケミカルズ(株)製「チヌビン292」)を5質量部添加し、さらに固形分調整用に酢酸エチル溶剤を添加した固形分量33質量部の主剤溶液と、固形分調整用に酢酸エチル溶剤を添加した固形分量75質量部ヘキサメチレンジイソシアネート型硬化剤溶液とを、主剤溶液と硬化剤溶液の比率が10:1(この時の主剤溶液中の水酸基数と硬化剤溶液中のイソシアネート基数の比率は1:2)となるように混合し、さらに溶剤成分として酢酸エチルを添加して固形分量を20質量部に調整した塗工液を、溶剤揮発後の厚さで6μmとなるように塗工し、トップコート層200を得た。作成した電磁波減衰フィルムは、厚さ70μm程度、重量0.02g程度であり、薄くかつ軽量であった。
[57GHz~90GHz]
(実施例1A)
式4で述べた一般論に対し、ミリ波帯中の特定の周波数帯において、好ましい電磁波の減衰を示す金属プレートの厚さTと表皮深さdの関係式ln(T/d)の範囲を見出すことができたので以下に説明する。
57GHz~90GHzの帯域で実施したシミュレーションについて説明する。誘電体基材として、厚さ(H1)50μmのPETフィルム、その一方の面に薄膜導電層である金属プレートをX座標、Y座標共に一定の間隔で設定した。さらに誘電体基材のもう一方の面には、厚さ(T2)約2mmのアルミニウムの平板インダクタを設定し、シミュレーションを行った。
周波数57GHz、66GHz、71GHz、81GHz、86GHz、90GHzに対して各金属種ごとに電磁波の減衰とln(T1/d)の関係についてシミュレーションを行った。
なお、10dB程度の良好な減衰特性は、実施例1Aで使用したパラメータの数値に限られるものでなく、ある程度の幅をもつ構成において実現し得ることは当然期待し得る。例えば金属プレートの幅W1として0.9mm~1.4mm、隣接する金属プレート間の距離W3として0.5mm~0.7mm、誘電体基材の厚さH1であれば5μm~300μm、平板インダクタの厚さT2であれば0.5μm~5mmの構成についても10dB程度の良好な減衰特性を期待し得る。
実施例1Aと同様に、誘電体基材として、厚さ(H1)50μmのPETフィルム、その一方の面に薄膜導電層である金属プレートの総面積が誘電体基材のXY平面の総面積に占める割合を変えて設定した。さらに誘電体基材のもう一方の面には、厚さ(T2)約2mmのアルミニウムの平板インダクタを設定し、シミュレーションを行った。金属プレートは、金属種としてアルミニウムを用い、幅W1は1.0mm、厚さT1は80nmに設定し、金属プレート間の距離W3を調節することで金属面積の割合を変更した。
シミュレーションの結果を表3および図16で説明する。図16は、実施例1Bの81GHzにおける金属面積の割合に応じた電磁波減衰特性を示すグラフである。(a)は電磁波減衰フィルムの構成を示し、(b)は減衰特性を示す。
実施例1Aと同様に、誘電体基材として、厚さ(H1)50μmのPETフィルム、その一方の面に薄膜導電層である金属プレートを図6と同様のパターン配列で配置し、その形状を正方形以外の形状に変え、さらに誘電体基材のもう一方の面には、厚さ(T2)約2mmのアルミニウムの平板インダクタを設定し、電磁波の減衰特性のシミュレーションを行った。金属プレートは、金属種としてアルミニウムを用い、厚さT1は80nmに設定した。
図17は、実施例1Cにおいて金属プレートが長方形状の電磁波減衰特性を示すグラフである。(a)は金属プレートの形状でW7は長方形状の長辺の長さ、W8は短辺の長さを表す。(b)は本実施例において図6のII-II線を通る配列パターン近傍の一部拡大図で、W4は長方形状の中心間の距離を表す。(c)はW7,W8とW4の寸法を表す。(d)は周波数を横軸にとった減衰特性を示す。
シミュレーション結果から、82.8GHz付近で吸収量が10dB以上の良好な減衰特性が表れた。
図18は、実施例1Cにおいて金属プレートが六角形状の電磁波減衰特性を示すグラフである。(a)は金属プレートの形状でW9は六角形状の一辺の長さを表す。(b)は本実施例において図6のII-II線を通る配列パターン近傍の一部拡大図で、W4は六角形状の中心間の距離を表す。(c)はW9とW4の寸法を表す。(d)は周波数を横軸にとった減衰特性を示す。
シミュレーション結果から、71.2GHz付近で吸収量が10dB以上の良好な減衰特性が表れた。
図19は、実施例1Cにおいて金属プレートが凸形状の電磁波減衰特性を示すグラフである。(a)は金属プレートの形状を表す。W10は凸形状の内突起している上部の上辺の長さ、W11は凸形状の下部の下辺の長さ、W15は前記上部の側辺の長さ、W16は前記下部の側辺の長さを表す。凸形状は前記上部の上辺と前記下部の下辺の中点を結ぶ直線に対し左右対称である。また前記下部の下辺と、前記下部の左右の側辺と、前記上部の上辺に接し、凸形状を囲む長方形状の中心を、本凸形状の中心とする。(b)は本実施例において図6のII-II線を通る配列パターン近傍の一部拡大図で、W4は凸形状の中心間の距離を表す。(c)はW10、W11、W15、W16とW4の寸法を表す。(d)は周波数を横軸にとった減衰特性を示す。
シミュレーション結果から、87GHz付近で吸収量が10dB以上の良好な減衰特性が表れた。
図20は、実施例1Cにおいて金属プレートが三角形状の電磁波減衰特性を示すグラフである。(a)は金属プレートの形状でW12は正三角形状の一辺の長さを表す。(b)は本実施例において図6のII-II線を通る配列パターン近傍の一部拡大図で、W4は三角形状の中心間の距離を表す。(c)はW12とW4の寸法を表す。(d)は周波数を横軸にとった減衰特性を示す。
シミュレーション結果から、80.8GHz付近で吸収量が10dB以上の良好な減衰特性が表れた。
図21は、実施例1Cにおいて金属プレートが十字形状の電磁波減衰特性を示すグラフである。(a)は金属プレートの形状を表す。十字形状は上下左右に対称で90度の回転に対しても対称である。W13は十字の外側の上下と左右で互いに対向する辺の長さ、W14は前記外側の上下と左右で互いに対向する辺に接して十字形状を囲む正方形の一辺の長さを表す。また当該正方形の中心を、本十字形状の中心とする。(b)は本実施例において図6のII-II線を通る配列パターン近傍の一部拡大図で、W4は十字形状の中心間の距離を表す。(c)はW13、W14とW4の寸法を表す。(d)は周波数を横軸にとった減衰特性を示す。
シミュレーション結果から、90GHz付近で吸収量が10dB以上の良好な減衰特性が表れた。
誘電体基材として、厚さ50μm、一辺14cmの正方形PETフィルムを準備した。誘電体基材の一方の面全体に真空蒸着法を用いて厚さ100nmのアルミニウムの薄膜導電層を形成した。その後、マスクを用いて、X座標、Y座標共に一定の間で金属プレートが形成されるよう薄膜導電層をエッチングした。もう一方の面には、接着層を用いてアルミニウムの平板インダクタを貼り合せた。また、この構成でシミュレーションを行った。
以上が第二実施形態に係る実施例2の製造手順である。実施例2のパラメータは以下の通りである。
金属プレートの幅W1:1.025mm~0.9mmの範囲を0.083mm毎に16等分した長さの幅の16種類の金属プレートを、同じ0.1mm間隔で同じ向きで4×4のマトリクス状に配置し、金属プレートセットとした。この金属プレートセットを0.1mmの間隔で、同じ向きで複数配置した。またそれぞれの金属プレートセットはすべて同じものとした。つまり、それぞれの金属プレートセットを構成する金属プレートは、それぞれの金属プレートセット間で差異はない。
隣接する金属プレート間の距離W3:0.1mm
金属プレートの厚さT1:80nm
平板インダクタの厚さT2:約2mm
誘電体基材の厚さH1:50μm
また、実験結果による減衰のメカニズムの妥当性を検討するため、この構成を用いてシミュレーションを行った。
シミュレーションでは、実施例1A~C、2のいずれも、ミリ波帯の電磁波に対して良好な減衰を示した。また、実測では減衰率が得られ、本構成の有効性が確認された。シミュレーションでの各種パラメータやマクスウェル方程式に基づく減衰以外の影響と考えられる実験結果との差異はあるものの、同様の減衰の傾向が見られることから、本発明の実施形態でのメカニズムは妥当と考えられる。また、シミュレーションと実測では、減衰率の差異はあるが同様の傾向が得られ、減衰中心周波数を適宜設定可能であることが示された。
実施例1A、2それぞれのシミュレーション結果および実測結果におけるモノスタティックRCS減衰特性を、それぞれ図22および図23示す。実施例1Aには、金属プレートの幅W1が1.0mm、隣接する金属プレート間の距離W3が0.5mm、金属プレートの厚さT1が100nmのアルミニウムを用いた。なお、実測の手順は以下の通りである。
同一寸法の金属板を2枚用意し、一方に各実施例の電磁波減衰フィルムを、全体を覆うように貼り付けた。電波暗室内で、電磁波減衰フィルムを貼り付けた金属板と、貼り付けない金属板とにそれぞれ電波を照射し、反射した電波の量をネットワークアナライザ(KEYSIGHT社製 Model E5071C)を用いて計測した。電磁波減衰フィルムを貼り付けない金属板の反射量を100(リファレンス)としてモノスタティックRCS減衰量を評価した。
前記第二実施形態に係る実施例1Aにおいて、アルミニウムを用い、金属プレートの厚さT1を80nmとしたものに、以下の手順で製造したトップコート層200を設け電磁波減衰フィルムを作成した。
メチルメタクリレートモノマー80質量部とシクロヘキシルメタクリレート20質量部の混合物からなるアクリル系樹脂組成物を主成分とし、ここに、そのアクリル系樹脂組成物の固形分を100質量部として、上記化学式Aに示す構造を有するヒドロキシフェニルトリアジン系の紫外線吸収剤((株)ADEKA製「アデカスタブLA-46」)を6質量部、上記化学式Aに示す構造とは別の組成のヒドロキシフェニルトリアジン系の紫外線吸収剤(チバスペシャルティケミカルズ(株)製「チヌビン479」)を6質量部、ベンゾトリアゾール系紫外線吸収剤(チバスペシャルティケミカルズ(株)製「チヌビン329」)を3質量部、ヒンダートアミン系ラジカル補足剤(チバスペシャルティケミカルズ(株)製「チヌビン292」)を5質量部添加し、さらに固形分調整用に酢酸エチル溶剤を添加した固形分量33質量部の主剤溶液と、固形分調整用に酢酸エチル溶剤を添加した固形分量75質量部ヘキサメチレンジイソシアネート型硬化剤溶液とを、主剤溶液と硬化剤溶液の比率が10:1(この時の主剤溶液中の水酸基数と硬化剤溶液中のイソシアネート基数の比率は1:2)となるように混合し、さらに溶剤成分として酢酸エチルを添加して固形分量を20質量部に調整した塗工液を、溶剤揮発後の厚さで6μmとなるように塗工し、トップコート層200を得た。トップコート層膜厚は6μmであった。
トップコート層を設けず、電磁波減衰フィルムを実施例1Aに準じて作成した。
また、前記変形例及び比較例1で得た電磁波減衰フィルムをステンレス板に粘着剤を介し圧着し、サンシャインウエザーメータにて屋外暴露10年間相当の暴露を行ったのち、電磁波減衰フィルムの表面を綿布にて払拭してトップコート層、電磁波減衰層の残存状態、モノスタティックRCS減衰特性変化を調べた。
その結果、変形例の構成ではトップコート層、電磁波減衰層ともに劣化がなく、トップコート層の形成により、インピーダンスが整合されモノスタティックRCS減衰特性が向上していることが図24のように確認できた。
前面の投影面積に占める金属プレートの総面積は、20%以上であることが好ましい。
このようにすると、効率良く電磁波を減衰することができる。
具体的には、支持基材の上に剥離層を塗布乾燥させた上に、下地層を設ける。第一実施形態の構成とする場合は、下地層に凹凸を付与し、薄膜導電層を蒸着にて設ける。その後、第二領域の側面に形成された薄膜導電層を除去し、誘電体基材となる層を設ける。誘電体基材の上に、平板インダクタ、接着剤の順に積層することで転写箔とすることができる。第二実施形態の構成とする場合には、下地層に薄膜導電層を設け、金属プレートの形状にマスク層をパターンで印刷する。その後、エッチングにより余分な薄膜導電層を除去することで金属プレートとすることができる。さらに、誘電体基材、平板インダクタ、接着剤の順に積層することで転写箔とすることができる。金属筐体等に転写する場合は、平板インダクタの層を省いても構わない。
転写箔とすることで、さらなる薄膜化をすることが可能となり、さらに追従性を向上させることが可能となり、複雑な形状にも転写することが可能であり、本発明の電磁波減衰フィルムの適用範囲を広くすることが可能となる。
[付記1]
前面および背面を有する誘電体基材と、
前記前面に配置された薄膜導電層と、
前記背面に配置された平板インダクタまたは貼合層と、
を備え、
前記薄膜導電層は、複数の金属プレートを含み、
前記金属プレートの厚さTが、1000nm以下である、
電磁波減衰フィルム。
[付記2]
前面および背面を有する誘電体基材と、
前記前面に配置された薄膜導電層と、
前記背面に配置された平板インダクタまたは貼合層と、
を備え、
前記薄膜導電層は、複数の金属プレートを含み、
前記金属プレートの厚さをT、表皮深さをd、としたときに下記式(2)を満たす、
電磁波減衰フィルム。
-2 ≦ ln(T/d) ≦ 0 …(2)
[付記3]
前面および背面を有する誘電体基材と、
前記前面に配置された薄膜導電層と、
前記背面に配置された平板インダクタまたは貼合層と、
を備え、
前記薄膜導電層は、複数の金属プレートを含み、
前記誘電体層は、前記前面に、相対的に低い凹の部分の第一領域と、相対的に高い第二
領域とからなる凹凸を有し、
前記第一領域は、離散して配置され、
前記第二領域は、複数の前記第一領域間に配置され、
前記金属プレートは、前記第一領域に配置され、
前記金属プレートの厚さをT、表皮深さをd、としたときに下記式(2)を満たす、
電磁波減衰フィルム。
-2 ≦ ln(T/d) ≦ 0 …(2)
[付記4]
前面および背面を有する誘電体基材と、
前記前面に配置された薄膜導電層と、
前記背面に配置された平板インダクタまたは貼合層と、
を備え、
前記誘電体層は、前記前面に、相対的に低い凹の部分の第一領域と、相対的に高い第二
領域とからなる凹凸を有し、
前記薄膜導電層は、前記第一領域に配置された複数の金属プレートと、前記第一領域に
配置されたサポートケージとを含み、
前記第一領域は、離散して配置され、
前記第二領域は、複数の前記第一領域間に配置されている、
電磁波減衰フィルム。
10、62 誘電体基材
10a、62a 前面
10b、62b 背面
30 薄膜導電層
30A 金属プレート
50 平板インダクタ
200 トップコート層
121 第一領域
122 第二領域
Claims (16)
- 前面および背面を有する誘電体基材と、
前記前面に配置された薄膜導電層と、
前記背面に配置された平板インダクタと、
を備え、
前記薄膜導電層は、複数の金属プレートを含み、
金属プレートは、離散して配置され、
前記金属プレートの厚さをT、表皮深さをd、としたときに下記式(1)を満たす、
周波数57GHz~90GHz帯域で用いる電磁波減衰フィルム。
-2.5 ≦ ln(T/d) ≦ -1.0 …(1) - 前面および背面を有する誘電体基材と、
前記前面に配置された薄膜導電層と、
前記背面に配置された平板インダクタと、
を備え、
前記誘電体基材は、前記前面に、相対的に低い凹の部分の第一領域と、相対的に高い第二領域とからなる凹凸を有し、
前記薄膜導電層は、前記第一領域に配置された複数の金属プレートを含み、かつ前記第二領域の上面に形成され、
前記第一領域は、離散して配置され、
前記第二領域は、複数の前記第一領域間に配置されている、
周波数57GHz~90GHz帯域で用いる電磁波減衰フィルム。 - 前面および背面を有する誘電体基材と、
前記前面に配置された薄膜導電層と、
前記背面に配置された貼合層と、
を備え、
前記薄膜導電層は、複数の金属プレートを含み、
金属プレートは、離散して配置され、
前記金属プレートの厚さをT、表皮深さをd、としたときに下記式(1)を満たす、
周波数57GHz~90GHz帯域で用いる電磁波減衰フィルム。
-2.5 ≦ ln(T/d) ≦ -1.0 …(1) - 前面および背面を有する誘電体基材と、
前記前面に配置された薄膜導電層と、
前記背面に配置された貼合層と、
を備え、
前記誘電体基材は、前記前面に、相対的に低い凹の部分の第一領域と、相対的に高い第二領域とからなる凹凸を有し、
前記薄膜導電層は、前記第一領域に配置された複数の金属プレートを含み、かつ前記第二領域の上面に形成され、
前記第一領域は、離散して配置され、
前記第二領域は、複数の前記第一領域間に配置されている、
周波数57GHz~90GHz帯域で用いる電磁波減衰フィルム。 - 前記薄膜導電層および前記平板インダクタは、前記誘電体基材の厚さ方向に離間している、請求項1または2に記載の電磁波減衰フィルム。
- 前記薄膜導電層上にトップコート層を備えていることを特徴とする、請求項1~5のいずれか一つに記載の電磁波減衰フィルム。
- 前記トップコート層が、電磁波が伝搬する空気層とインピーダンス整合がとられていることを特徴とする、請求項6に記載の電磁波減衰フィルム。
- 前記トップコート層はシクロヘキシル(メタ)アクリレートをモノマー成分として含有するアクリル系樹脂組成物を主成分とすることを特徴とする、請求項7に記載の電磁波減衰フィルム。
- 前記トップコート層はアクリル系樹脂組成物中に紫外線吸収剤、紫外線散乱剤を含有することを特徴とする、請求項8に記載の電磁波減衰フィルム。
- 前記金属プレートが、銀、銅、アルミニウムのいずれからなる、請求項1から9のいずれか一つに記載の電磁波減衰フィルム。
- 同形同大の複数の前記金属プレートが所定範囲の値の距離を空けて配置されている、請求項1から10のいずれか一項に記載の電磁波減衰フィルム。
- 前記薄膜導電層は、前記前面側から入射した電磁波を捕捉可能に構成されている、請求項1から11のいずれか一項に記載の電磁波減衰フィルム。
- 前記金属プレートは、対向する一対の辺を有する、請求項1から12のいずれか一項に記載の電磁波減衰フィルム。
- 前記金属プレートの、対向する一対の辺の長さは、0.25mm以上、4mm以下である、請求項13に記載の電磁波減衰フィルム。
- 前記誘電体基材の厚さは、減衰中心波長に対して十分薄い、請求項1から14のいずれか一項に記載の電磁波減衰フィルム。
- 前記誘電体基材の厚さは、減衰中心波長の1/10未満である、請求項1から15のいずれか一項に記載の電磁波減衰フィルム。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020237013634A KR20230109618A (ko) | 2020-11-18 | 2021-11-09 | 전자파 감쇠 필름 |
EP21894511.1A EP4250890A4 (en) | 2020-11-18 | 2021-11-09 | FILM FOR DAMPING ELECTROMAGNETIC WAVES |
PCT/JP2021/041096 WO2022107637A1 (ja) | 2020-11-18 | 2021-11-09 | 電磁波減衰フィルム |
TW110142716A TW202235266A (zh) | 2020-11-18 | 2021-11-17 | 電磁波衰減薄膜 |
JP2022055012A JP7231089B2 (ja) | 2020-11-18 | 2022-03-30 | 電磁波減衰フィルム |
JP2022155637A JP2022186724A (ja) | 2020-11-18 | 2022-09-29 | 電磁波減衰フィルム |
US18/196,819 US20230309282A1 (en) | 2020-11-18 | 2023-05-12 | Electromagnetic wave attenuation film |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020191772 | 2020-11-18 | ||
JP2020191772 | 2020-11-18 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022055012A Division JP7231089B2 (ja) | 2020-11-18 | 2022-03-30 | 電磁波減衰フィルム |
JP2022155637A Division JP2022186724A (ja) | 2020-11-18 | 2022-09-29 | 電磁波減衰フィルム |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022080843A JP2022080843A (ja) | 2022-05-30 |
JP7156483B2 true JP7156483B2 (ja) | 2022-10-19 |
Family
ID=81756982
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021165149A Active JP7156484B2 (ja) | 2020-11-18 | 2021-10-07 | 電磁波減衰フィルム |
JP2021165145A Active JP7156483B2 (ja) | 2020-11-18 | 2021-10-07 | 電磁波減衰フィルム |
JP2021165150A Active JP7156485B2 (ja) | 2020-11-18 | 2021-10-07 | 電磁波減衰フィルム |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021165149A Active JP7156484B2 (ja) | 2020-11-18 | 2021-10-07 | 電磁波減衰フィルム |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021165150A Active JP7156485B2 (ja) | 2020-11-18 | 2021-10-07 | 電磁波減衰フィルム |
Country Status (1)
Country | Link |
---|---|
JP (3) | JP7156484B2 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024135333A1 (ja) * | 2022-12-19 | 2024-06-27 | マクセル株式会社 | 電磁波吸収体 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001156491A (ja) | 1999-11-29 | 2001-06-08 | Mitsubishi Electric Corp | シールド部材およびそのシールド部材を用いた携帯無線装置、電子機器 |
JP2005012204A (ja) | 2003-05-28 | 2005-01-13 | Nitta Ind Corp | 電磁波吸収体 |
JP2007073662A (ja) | 2005-09-06 | 2007-03-22 | Mitsubishi Gas Chem Co Inc | 電波吸収体 |
CN206807974U (zh) | 2017-04-25 | 2017-12-26 | 大连东信微波技术有限公司 | 多层结构吸波橡胶材料 |
CN208029314U (zh) | 2018-04-11 | 2018-10-30 | 江西蓝沛泰和新材料有限公司 | 一种电磁屏蔽膜 |
CN110972459A (zh) | 2019-11-20 | 2020-04-07 | 中南林业科技大学 | 木塑复合吸波材料及其制备方法 |
CN111755837A (zh) | 2020-08-04 | 2020-10-09 | 重庆邮电大学 | 一种开口方环结构的太赫兹窄带吸收器及其制作方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07193387A (ja) * | 1993-12-27 | 1995-07-28 | Fuji Elelctrochem Co Ltd | 電波吸収建材 |
-
2021
- 2021-10-07 JP JP2021165149A patent/JP7156484B2/ja active Active
- 2021-10-07 JP JP2021165145A patent/JP7156483B2/ja active Active
- 2021-10-07 JP JP2021165150A patent/JP7156485B2/ja active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001156491A (ja) | 1999-11-29 | 2001-06-08 | Mitsubishi Electric Corp | シールド部材およびそのシールド部材を用いた携帯無線装置、電子機器 |
JP2005012204A (ja) | 2003-05-28 | 2005-01-13 | Nitta Ind Corp | 電磁波吸収体 |
JP2007073662A (ja) | 2005-09-06 | 2007-03-22 | Mitsubishi Gas Chem Co Inc | 電波吸収体 |
CN206807974U (zh) | 2017-04-25 | 2017-12-26 | 大连东信微波技术有限公司 | 多层结构吸波橡胶材料 |
CN208029314U (zh) | 2018-04-11 | 2018-10-30 | 江西蓝沛泰和新材料有限公司 | 一种电磁屏蔽膜 |
CN110972459A (zh) | 2019-11-20 | 2020-04-07 | 中南林业科技大学 | 木塑复合吸波材料及其制备方法 |
CN111755837A (zh) | 2020-08-04 | 2020-10-09 | 重庆邮电大学 | 一种开口方环结构的太赫兹窄带吸收器及其制作方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2022080845A (ja) | 2022-05-30 |
JP2022080844A (ja) | 2022-05-30 |
JP2022080843A (ja) | 2022-05-30 |
JP7156484B2 (ja) | 2022-10-19 |
JP7156485B2 (ja) | 2022-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022107637A1 (ja) | 電磁波減衰フィルム | |
Fallahi et al. | Thin wideband radar absorbers | |
Sheokand et al. | An optically transparent broadband microwave absorber using interdigital capacitance | |
Liu et al. | Wideband RCS reduction of a slot array antenna using a hybrid metasurface | |
KR101759580B1 (ko) | 다층형 전자기파 흡수체 및 다층형 전자기파 흡수체 제조방법 | |
Tirkey et al. | Broadband polarization-insensitive inkjet-printed conformal metamaterial absorber | |
KR20070046936A (ko) | 전파 흡수체 | |
JP7156483B2 (ja) | 電磁波減衰フィルム | |
KR20200019692A (ko) | 신규 중공 경량 렌즈 구조 | |
JP7231089B2 (ja) | 電磁波減衰フィルム | |
JP7231090B2 (ja) | 電磁波減衰フィルム | |
JP7231091B2 (ja) | 電磁波減衰フィルム | |
KR20220020743A (ko) | 초박막 전자파 완전 흡수체 | |
CN113054443A (zh) | 一种低频吸波体 | |
JP7473055B2 (ja) | 電磁波減衰フィルムの製造方法 | |
CN116457196A (zh) | 电磁波衰减膜 | |
JP7494894B2 (ja) | 電磁波減衰フィルム | |
JP7473054B2 (ja) | 電磁波減衰フィルム | |
JP7494893B2 (ja) | 電磁波減衰フィルム | |
JP7405222B1 (ja) | 電磁波減衰フィルム | |
WO2023228891A1 (ja) | 電磁波減衰フィルムおよびその製造方法 | |
JP7414116B1 (ja) | 電磁波減衰フィルム | |
WO2024053504A1 (ja) | 電磁波減衰フィルム | |
WO2024053503A1 (ja) | 電磁波減衰フィルム | |
CN113471714A (zh) | 一种基于3d打印的超宽带分形介质谐振吸波器及方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220301 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20220301 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220524 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220624 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220906 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220919 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7156483 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |