JP7156220B2 - Heavy steel plate with excellent toughness, its manufacturing method, and steel slab used as raw material for thick steel plate - Google Patents

Heavy steel plate with excellent toughness, its manufacturing method, and steel slab used as raw material for thick steel plate Download PDF

Info

Publication number
JP7156220B2
JP7156220B2 JP2019166759A JP2019166759A JP7156220B2 JP 7156220 B2 JP7156220 B2 JP 7156220B2 JP 2019166759 A JP2019166759 A JP 2019166759A JP 2019166759 A JP2019166759 A JP 2019166759A JP 7156220 B2 JP7156220 B2 JP 7156220B2
Authority
JP
Japan
Prior art keywords
slab
steel plate
thickness
thick steel
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019166759A
Other languages
Japanese (ja)
Other versions
JP2021041446A (en
Inventor
隆志 平出
茂樹 木津谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2019166759A priority Critical patent/JP7156220B2/en
Publication of JP2021041446A publication Critical patent/JP2021041446A/en
Application granted granted Critical
Publication of JP7156220B2 publication Critical patent/JP7156220B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は、船舶、海洋構造物、橋梁、建築物等に使用する構造用材料として好適な厚鋼板およびその製造方法、ならびに厚鋼板の素材となる鋼片に関するものである。本発明は、特に、板厚が50~150mmかつ引張強さが490~720MPaである厚鋼板の靭性の改善、とりわけ-45℃以下の極低温における靭性の改善に有効である。 TECHNICAL FIELD The present invention relates to a thick steel plate suitable as a structural material for use in ships, marine structures, bridges, buildings, and the like, a method for producing the same, and a steel slab as a raw material for the thick steel plate. The present invention is particularly effective in improving the toughness of steel plates having a thickness of 50 to 150 mm and a tensile strength of 490 to 720 MPa, especially at extremely low temperatures of -45°C or lower.

近年、船舶や海洋構造物、橋梁、建築物等の構造物が大型化していくに連れて、使用される厚鋼板の強度と板厚の増加が求められている。大型の構造物の信頼性および健全性を確保する観点から、脆性破壊を防止するための靭性の向上は最も重要な課題の一つであり、溶接部のみならず厚鋼板自体の靭性を向上する技術が検討されている。 In recent years, as structures such as ships, offshore structures, bridges, and buildings have become larger, there has been a demand for increased strength and thickness of thick steel plates used. From the perspective of ensuring the reliability and soundness of large structures, improving toughness to prevent brittle fracture is one of the most important issues. technology is being considered.

一般に、高強度の厚鋼板では、厚鋼板の組織(以下、母相という)中に存在する非金属介在物等を起点として亀裂が発生し易いことが知られている(非特許文献1参照)。つまり、割れ易い非金属介在物が亀裂を発生させて、靭性を低下させる原因となっている。 Generally, in high-strength steel plates, it is known that cracks are likely to occur starting from non-metallic inclusions or the like present in the structure of the steel plate (hereinafter referred to as the parent phase) (see Non-Patent Document 1). . In other words, fragile non-metallic inclusions cause cracks and lower toughness.

この現象を詳しく研究すると、高強度の厚鋼板が優れた靭性を発揮するためには、母相を均一で非金属介在物(たとえばMnS等)のない組織とする必要があることが分かる。 A detailed study of this phenomenon reveals that in order for a high-strength steel plate to exhibit excellent toughness, it is necessary to make the matrix phase uniform and free of non-metallic inclusions (such as MnS).

しかし、従来の厚鋼板の製造技術、とりわけ板厚50~150mmかつ引張強さ490~720MPaである厚鋼板の製造技術では、素材となるスラブを連続鋳造する工程にて中心偏析(すなわち合金元素が中心部で濃化する現象)が発生し、非金属介在物の生成を助長するという問題、および、スラブを圧延する工程にてスラブ表面とスラブ内部の温度や塑性変形量に差が生じるという問題が残されており、その問題を解消する技術は確立されていない。 However, with conventional steel plate manufacturing technology, especially steel plate manufacturing technology with a thickness of 50 to 150 mm and a tensile strength of 490 to 720 MPa, center segregation (that is, alloying elements are Phenomenon of thickening in the center) occurs, promoting the formation of non-metallic inclusions, and the problem of differences in temperature and plastic deformation between the slab surface and the inside of the slab during the slab rolling process. remains, and no technology has been established to solve the problem.

つまり、従来の技術では、圧延された厚鋼板の板厚方向の中央部にも合金元素の濃化領域が形成されるのを防止できず、その領域にて濃化した合金元素が非金属介在物となって析出し、厚鋼板の靭性を低下させる原因となっている。 In other words, with the conventional technology, it is not possible to prevent the formation of a concentrated region of alloying elements also in the central portion of the rolled steel plate in the plate thickness direction, and the concentrated alloying elements in that region cannot be prevented by non-metallic intervening. It precipitates as a substance and causes a decrease in the toughness of the steel plate.

村上敬宜著「金属疲労 微小欠陥と介在物の影響」養賢堂出版、1993年3月8日Takanobu Murakami, "Metal Fatigue: Effect of Micro Defects and Inclusions," Yokendo Publishing, March 8, 1993

本発明は、従来の技術の問題点を解消し、優れた靭性を有する厚鋼板およびその製造方法、ならびに厚鋼板の素材となる鋼片を提供することを目的とする。 SUMMARY OF THE INVENTION An object of the present invention is to solve the problems of the prior art and to provide a thick steel plate having excellent toughness, a method for manufacturing the same, and a steel slab as a raw material for the thick steel plate.

本発明者は、スラブを連続鋳造する工程で不可避的に発生する中心偏析と、スラブを圧延する工程を経て得られた厚鋼板に残留する合金元素の濃化領域との関係について調査した。その結果、スラブの圧延工程において板厚方向中央部に加えられる塑性変形が不十分な場合に、スラブの中心偏析に起因する合金元素の濃化領域が厚鋼板にも残留することが分かった。そして、厚鋼板に残留する合金元素の濃化領域にて非金属介在物が生成され、その非金属介在物を起点とした脆性亀裂が発生することが明らかになった。したがって、厚鋼板の靭性を向上するためには、圧延工程にて合金元素の濃化領域を消滅させる、あるいは、非金属介在物を微小化する必要がある。 The present inventor investigated the relationship between the center segregation that inevitably occurs in the process of continuously casting slabs and the concentrated region of alloying elements remaining in the steel plate obtained through the process of rolling the slabs. As a result, it was found that when the plastic deformation applied to the central part in the plate thickness direction in the slab rolling process is insufficient, the enriched region of the alloying elements due to the central segregation of the slab remains even in the steel plate. Then, it became clear that non-metallic inclusions are generated in regions where the alloying elements remaining in the steel plate are concentrated, and brittle cracks originate from the non-metallic inclusions. Therefore, in order to improve the toughness of the steel plate, it is necessary to eliminate the enriched regions of the alloying elements or reduce the size of the non-metallic inclusions in the rolling process.

次に、本発明者は、合金元素の濃化領域を消滅するための圧延技術について詳細に研究した。その結果、板厚方向中央部は圧延工程における塑性変形が加わり難いので、スラブを圧延した後も中心偏析が厚鋼板の板厚方向中央部に合金元素の濃化領域となって残留することを見出した。 Next, the present inventor conducted detailed research on rolling techniques for eliminating regions of concentrated alloying elements. As a result, plastic deformation during the rolling process is less likely to be applied to the central portion in the thickness direction of the steel plate. Found it.

ところが、板厚が小さいスラブ、すなわち板厚方向中央部がスラブ表面に近くなるものを圧延した場合は、得られる厚鋼板の板厚方向中央部における合金元素の濃化が軽減される現象が認められた。これは、圧延工程において圧延ロールによって付与される剪断ひずみが、スラブの板厚方向中央部に強く作用し、合金元素が濃化した領域に塑性加工が加えられたためである。 However, when rolling a slab with a small thickness, that is, a slab whose center in the thickness direction is close to the surface of the slab, a phenomenon is observed in which the concentration of alloying elements in the center in the thickness direction of the resulting steel plate is reduced. was taken. This is because the shear strain imparted by the rolling rolls in the rolling process strongly acts on the central portion in the thickness direction of the slab, and plastic working is applied to the region where the alloying elements are concentrated.

つまり、板厚が大きいスラブに対しても、連続鋳造されたスラブに不可避的に発生する中心偏析をスラブの板厚方向中央部から外れた位置に移動させた後、圧延工程に供することによって、圧延工程にて十分な塑性変形が合金元素の濃化領域に加わり、合金元素の濃化領域が消滅するという知見を得た。 In other words, even for a slab with a large plate thickness, by moving the center segregation that inevitably occurs in a continuously cast slab to a position away from the center in the plate thickness direction of the slab and then subjecting it to the rolling process, It was found that sufficient plastic deformation is applied to the alloying element enriched region in the rolling process, and the alloying element enriched region disappears.

本発明は、このような知見に基づいてなされたものである。
すなわち本発明は、連続鋳造によって得られた板厚TCASTED(mm)のスラブを熱間圧延することによって製造される厚鋼板であって、スラブの板厚方向に対向する互いに平行な2面のうちの片面から層状に一定の厚みΔT(mm)≧TCASTED/100を取り除く除去加工を施してスラブの板厚を減少させた後に、熱間圧延を行なって製造された厚鋼板である。
The present invention has been made based on such findings.
That is, the present invention provides a steel plate manufactured by hot-rolling a slab having a thickness of T CASTED (mm) obtained by continuous casting, the steel plate having two surfaces parallel to each other and facing each other in the thickness direction of the slab. This is a thick steel plate manufactured by hot rolling after reducing the thickness of the slab by removing a layer of a constant thickness ΔT (mm)≧T CASTED /100 from one side of the slab.

本発明の厚鋼板においては、厚みΔTを取り除く除去加工が、スラブを層状に切り取る切削加工、スラブを層状に削り取る研削加工、または、スラブを層状に溶かして除去する溶削加工であることが好ましい。厚鋼板の板厚は50~150mm、引張強さは490~720MPaであることが好ましい。 In the thick steel plate of the present invention, the removal processing for removing the thickness ΔT is preferably cutting processing for cutting out the slab in layers, grinding processing for scraping the slab in layers, or cutting processing for melting and removing the slabs in layers. . The thick steel plate preferably has a thickness of 50 to 150 mm and a tensile strength of 490 to 720 MPa.

また本発明は、連続鋳造によって得られた板厚TCASTED(mm)のスラブを熱間圧延して厚鋼板を製造する厚鋼板の製造方法において、スラブを冷却した後、スラブの板厚方向に対向する互いに平行な2面のうちの片面から層状に一定の厚みΔT(mm)≧TCASTED/100を取り除く除去加工を施し、次いでスラブを加熱し、引き続きスラブを熱間圧延して厚鋼板とする厚鋼板の製造方法である。 The present invention also provides a method for producing a thick steel plate by hot-rolling a slab having a thickness T CASTED (mm) obtained by continuous casting to produce a thick steel plate. A removal process is performed to remove a constant thickness ΔT (mm) ≥ T CASTED /100 in layers from one of the two opposing parallel surfaces, then the slab is heated, and the slab is hot rolled to form a thick steel plate. It is a method for manufacturing a thick steel plate to be used.

本発明の厚鋼板の製造方法においては、厚みΔTを取り除く除去加工として、スラブを層状に切り取る切削加工、スラブを層状に削り取る研削加工、または、スラブを層状に溶かして除去する溶削加工を行なうことが好ましい。厚鋼板の板厚は50~150mm、引張強さが490~720MPaであることが好ましい。 In the method for manufacturing a thick steel plate according to the present invention, as the removing process for removing the thickness ΔT, a cutting process for cutting the slab in layers, a grinding process for scraping the slab in layers, or a cutting process for melting and removing the slabs in layers is performed. is preferred. The thick steel plate preferably has a thickness of 50 to 150 mm and a tensile strength of 490 to 720 MPa.

さらに本発明は、連続鋳造によって得られたスラブの片面または両面について除去加工を施した鋼片であって、鋼片の偏析が鋼片中心からΔT/2以上離れている鋼片である。 Further, the present invention is a billet obtained by subjecting one side or both sides of a slab obtained by continuous casting to removal processing, wherein the segregation of the billet is separated from the center of the billet by ΔT/2 or more.

なお、本発明において除去加工を施した後のスラブの板厚をTREMOVED(mm)とすれば、
ΔT=TCASTED-TREMOVED
である。
In addition, if the plate thickness of the slab after the removal processing is applied in the present invention is T REMOVED (mm),
ΔT = T CASTED - T REMOVED
is.

本発明によれば、優れた靭性を有する厚鋼板を得ることができる。特に板厚が50~150mm、引張強さが490~720MPaの厚鋼板においても、-45℃以下の極低温における靭性を向上することができるので、産業上格段の効果を奏する。また、副次的効果として疲労特性の向上も期待できる。 According to the present invention, a thick steel plate having excellent toughness can be obtained. In particular, even steel plates with a thickness of 50 to 150 mm and a tensile strength of 490 to 720 MPa can be improved in toughness at extremely low temperatures of -45°C or lower, which is a significant industrial effect. In addition, as a secondary effect, an improvement in fatigue characteristics can also be expected.

連続鋳造によって得られたスラブの板厚TCASTEDと、除去加工を施した後のスラブの板厚TPLANEDとを示す断面図である。FIG. 4 is a cross-sectional view showing a thickness T CASTED of a slab obtained by continuous casting and a thickness T PLANED of the slab after removal processing. 試験片の形状を示す斜視図である。It is a perspective view which shows the shape of a test piece.

図1は、連続鋳造によって得られたスラブの板厚TCASTED(mm)と、除去加工(たとえばスラブを層状に切り取る切削加工、スラブを層状に削り取る研削加工、スラブを層状に溶かして除去する溶削加工等)を施した後のスラブの板厚TREMOVED(mm)とを示す断面図である。 Figure 1 shows the thickness T CASTED (mm) of the slab obtained by continuous casting, removal processing (for example, cutting to cut the slab in layers, grinding to scrape the slab in layers, and melting and removing the slab in layers). FIG. 10 is a cross-sectional view showing the plate thickness T REMOVED (mm) of the slab after machining, etc.).

図1に示すように、連続鋳造によって得られたスラブ1の板厚はTCASTEDである。スラブ1の、板厚方向に対向する互いに平行な2面のうちの片面に除去加工を施すことによって、板厚はTREMOVEDとなる。以下では、除去加工を施した後のスラブの符号を3とする。 As shown in FIG. 1, the plate thickness of the slab 1 obtained by continuous casting is T CASTED . The thickness of the slab 1 becomes T REMOVED by removing one of the two parallel surfaces facing each other in the thickness direction. In the following, the reference number of the slab after removal processing is 3.

連続鋳造に起因する中心偏析は、スラブ1の板厚方向の中心線2近辺に発生する。そのスラブ1を圧延工程に供すると、板厚方向の中心線2近辺に塑性変形が加わり難いので、圧延工程を終了した厚鋼板(図示せず)の板厚方向の中心線近辺に合金元素の濃化領域が残存する。 Center segregation due to continuous casting occurs near the center line 2 in the plate thickness direction of the slab 1 . When the slab 1 is subjected to a rolling process, it is difficult for plastic deformation to occur in the vicinity of the center line 2 in the plate thickness direction. A thickened area remains.

ところがスラブ1を圧延に供する前に除去加工すると、得られたスラブ3の板厚方向の中心線4は、中心偏析が残留する中心線2とは異なる位置に移動する。そのスラブ3を圧延工程に供すると、板厚方向の中心線4には塑性変形が加わり難いが、中心偏析が残留する中心線2には十分な塑性変形を加えることができる。 However, if the slab 1 is removed before being subjected to rolling, the center line 4 in the plate thickness direction of the obtained slab 3 moves to a position different from the center line 2 where the center segregation remains. When the slab 3 is subjected to a rolling process, plastic deformation is hardly applied to the center line 4 in the plate thickness direction, but sufficient plastic deformation can be applied to the center line 2 where the center segregation remains.

したがって圧延工程にて、十分な塑性変形を中心偏析の部位に加えることが可能となり、合金元素の濃化領域を消滅させることができる。こうして非金属介在物の生成を防止し、ひいては脆性亀裂の発生を防止できる。 Therefore, in the rolling process, it becomes possible to apply sufficient plastic deformation to the center segregation region, and to eliminate the region in which the alloy elements are concentrated. In this way, it is possible to prevent the formation of non-metallic inclusions and thus the occurrence of brittle cracks.

スラブ1の板厚TCASTED(mm)とスラブ3の板厚TREMOVED(mm)との差ΔT(=TCASTED-TREMOVED)が小さすぎる場合は、スラブ3の中心線4に極めて近い位置に中心偏析が存在することになるので、スラブ3を圧延する工程において塑性変形を中心偏析の部位に加えることが困難になる。そのため、ΔTはTCASTED/100以上(ΔT≧TCASTED/100)が必要である。 If the difference ΔT (=T CASTED −T REMOVED ) between the thickness T CASTED (mm) of slab 1 and the thickness T REMOVED (mm) of slab 3 is too small, the Since the center segregation will be present, it becomes difficult to apply plastic deformation to the center segregation site in the process of rolling the slab 3 . Therefore, ΔT needs to be T CASTED /100 or more (ΔT≧T CASTED /100).

また、ΔTが大きすぎる場合は、除去加工に長時間を要するので、加工コストの上昇を招く。したがって、TCASTED/10≧ΔT≧TCASTED/100が好ましい。 On the other hand, if ΔT is too large, it takes a long time to process the removal, resulting in an increase in processing cost. Therefore, T CASTED /10≧ΔT≧T CASTED /100 is preferred.

連続鋳造によって得られたスラブ1(板厚TCASTED)の表面を層状に除去する除去加工は、板厚方向に対向する互いに平行な2面の片方に施しても良いし、両方に施してもよい。除去加工を両面に施す場合は、層状に除去する厚さに差を設けることによって、除去加工したスラブ3(板厚TREMOVED)の中心線4をスラブ1(板厚TCASTED)の中心線2とは異なる位置に移動させることができる。つまり、スラブ1の両面または片面に除去加工を施して得た鋼片に残留する偏析が、鋼片の中心からΔT/2以上離れるように除去加工を施す。 The removal process for removing the surface of the slab 1 (thickness T CASTED ) obtained by continuous casting in a layered manner may be performed on one of the two parallel surfaces facing each other in the thickness direction, or may be performed on both. good. When removal processing is applied to both sides, the center line 4 of the removed slab 3 (thickness T REMOVED ) is aligned with the center line 2 of the slab 1 (thickness T CASTED ) by providing a difference in the thickness of the layers to be removed. can be moved to different positions. That is, the removal processing is performed so that the segregation remaining in the steel slab obtained by performing the removal processing on both sides or one side of the slab 1 is separated from the center of the steel slab by ΔT/2 or more.

このようにしてスラブ1の両面または片面に除去加工を施した鋼片を熱間圧延に供して、厚鋼板を製造する。 The steel slab, from which both sides or one side of the slab 1 has been removed in this manner, is subjected to hot rolling to manufacture a thick steel plate.

ただし、スラブ1の両面に除去加工を施す場合は、除去加工のコストが倍増し、ひいては厚鋼板の製造コストの上昇を招く。したがって、スラブ1の片面に除去加工を施すことが好ましい。 However, if both sides of the slab 1 are subjected to the removal process, the cost of the removal process is doubled, resulting in an increase in the manufacturing cost of the thick steel plate. Therefore, it is preferable to apply removal processing to one side of the slab 1 .

本発明によれば、厚鋼板の鋼種や寸法に関わらず、厚鋼板の靭性を向上する効果が得られる。特に、板厚が50~150mmかつ引張強さが490~720MPaである厚鋼板(たとえばC:0.05~0.18質量%、Mn:0.9~2.0質量%、Si:0.10~0.55質量%、P:0.005~0.035質量%、S:0.001~0.035質量%を含有し、さらにCu、Cr、TI、Niの中の1種以上を含有する厚鋼板)では、靭性を向上する技術、とりわけ-45℃以下の極低温における靭性を向上する技術が確立されておらず、本発明を適用することによって多大な効果を発揮することが可能となる。 ADVANTAGE OF THE INVENTION According to this invention, the effect which improves the toughness of a thick steel plate is acquired regardless of the steel grade and the dimension of a thick steel plate. In particular, thick steel plates with a thickness of 50 to 150 mm and a tensile strength of 490 to 720 MPa (for example, C: 0.05 to 0.18 mass%, Mn: 0.9 to 2.0 mass%, Si: 0.10 to 0.55 mass%, P: 0.005 to 0.035% by mass, S: 0.001 to 0.035% by mass, and containing one or more of Cu, Cr, TI, and Ni), technologies to improve toughness, especially extreme temperatures below -45°C. Techniques for improving toughness at low temperatures have not been established, and the application of the present invention makes it possible to exhibit a great effect.

連続鋳造によって製造した板厚310mmのスラブを用いて、発明の効果を調査した。スラブの成分は、C:0.06質量%、Mn:1.91質量%、Si:0.15質量%、P:0.005質量%、S:0.002質量%、Cu:0.35質量%、Cr:0.21質量%、Ti:0.01質量%、であった。 The effect of the invention was investigated using a 310 mm thick slab manufactured by continuous casting. The components of the slab are C: 0.06% by mass, Mn: 1.91% by mass, Si: 0.15% by mass, P: 0.005% by mass, S: 0.002% by mass, Cu: 0.35% by mass, Cr: 0.21% by mass, Ti: 0.01% % by mass.

本調査で利用した圧延機に圧延可能な板厚の制約があったため、まずスラブの両面を65mmずつ切削加工し、板厚180mmの加工スラブを得た。続いて、加工スラブに除去加工として片面切削加工を施して、板厚120mmの素材鋼板とした。これによりスラブの中心偏析を厚鋼板の板厚方向60mm(すなわち板厚方向の中心線)の位置から30mmずらすことができた。その素材鋼板を圧延に供して板厚60mmの厚鋼板を得た。圧延に際しては、スラブを1050℃に加熱し、1時間以上均熱保持したものを圧延に供した。また、圧延パス数は13とし、それぞれのパスにおける圧下率は4~6%とした。最終圧延パスの後、水冷による加速冷却を行ない、鋼板温度の制御冷却を行なった。これを発明例とする。 Since the rolling mill used in this study was limited in the thickness that can be rolled, first, both sides of the slab were machined by 65 mm each to obtain a machined slab with a thickness of 180 mm. Subsequently, the processed slab was subjected to single-sided cutting as removal processing to obtain a material steel plate with a thickness of 120 mm. As a result, the center segregation of the slab could be shifted by 30 mm from the position of 60 mm in the plate thickness direction of the steel plate (that is, the center line in the plate thickness direction). The material steel plate was subjected to rolling to obtain a thick steel plate with a thickness of 60 mm. For rolling, the slab was heated to 1050° C. and soaked for 1 hour or more before rolling. The number of rolling passes was 13, and the reduction in each pass was 4 to 6%. After the final rolling pass, accelerated cooling by water cooling was performed to control the temperature of the steel sheet. Let this be an invention example.

また比較のために、同じ成分のスラブ(板厚310mm)を従来の方法で圧延し、板厚70mmの厚鋼板を得た。これを比較例とする。 For comparison, a slab (thickness: 310 mm) of the same composition was rolled by the conventional method to obtain a thick steel plate with a thickness of 70 mm. This is a comparative example.

これらの厚鋼板の中心偏析領域から、夫々、Vノッチシャルピー衝撃試験の試験片(図2参照)を採取し、Vノッチシャルピー衝撃試験を-75℃で行なった。その結果を表1に示す。なお、図2中の数値の単位はmmである。 V-notch Charpy impact test specimens (see FIG. 2) were taken from the center segregation regions of these steel plates, respectively, and V-notch Charpy impact tests were performed at -75°C. Table 1 shows the results. The unit of numerical values in FIG. 2 is mm.

Figure 0007156220000001
Figure 0007156220000001

表1から明らかなように、発明例の厚鋼板は、比較例の厚鋼板よりも吸収エネルギーが向上し、脆性破面率が減少していることから、靭性が優れていることが分かる。つまり、スラブの板厚方向の中心線に加わる塑性変形が、厚鋼板内部の中心偏析領域の靭性に影響を及ぼしたと考えられる。 As is clear from Table 1, the steel plates of the invention examples have higher absorbed energy and a lower brittle fracture surface ratio than the steel plates of the comparative examples, indicating that the steel plates have excellent toughness. In other words, it is considered that the plastic deformation applied to the centerline of the slab in the plate thickness direction affected the toughness of the central segregation region inside the steel plate.

1 連続鋳造によって得られたスラブ
2 スラブ1の板厚方向の中心線
3 除去加工を施した後のスラブ
4 スラブ3の板厚方向の中心線
1 Slab obtained by continuous casting 2 Center line in thickness direction of slab 1 3 Slab after removal processing 4 Center line in thickness direction of slab 3

Claims (4)

連続鋳造によって得られた板厚TCASTED(mm)のスラブを熱間圧延して厚鋼板を製造する厚鋼板の製造方法において、前記スラブを冷却した後、前記スラブの板厚方向に対向する互いに平行な2面のうちの片面から層状に一定の厚みΔT(mm)≧TCASTED/100を取り除く除去加工を施し、次いで前記スラブを加熱し、引き続き前記スラブを前記熱間圧延して前記厚鋼板とすることを特徴とする厚鋼板の製造方法。 In a method for manufacturing a thick steel plate by hot-rolling a slab having a thickness T CASTED (mm) obtained by continuous casting to manufacture a thick steel plate, after cooling the slab, the slabs facing each other in the thickness direction A removal process is performed to remove a constant thickness ΔT (mm) ≧ T CASTED /100 from one of the two parallel surfaces in a layered manner, then the slab is heated, and the slab is hot-rolled to form the thick steel plate. A method for manufacturing a thick steel plate, characterized by: 前記厚みΔTを取り除く前記除去加工として、前記スラブを層状に切り取る切削加工、前記スラブを層状に削り取る研削加工、または、前記スラブを層状に溶かして除去する溶削加工を行なうことを特徴とする請求項に記載の厚鋼板の製造方法。 The removal process for removing the thickness ΔT is performed by cutting the slab in layers, grinding the slab in layers, or melting and removing the slab in layers. Item 1. A method for manufacturing a thick steel plate according to Item 1. 前記厚鋼板の板厚が50~150mmかつ引張強さが490~720MPaであることを特徴とする請求項1または2に記載の厚鋼板の製造方法。 3. The method for producing a thick steel plate according to claim 1 , wherein the thick steel plate has a thickness of 50 to 150 mm and a tensile strength of 490 to 720 MPa. 連続鋳造によって得られたスラブの片面または両面について層状に一定の厚みΔT(mm)≧T CASTED /100を取り除く除去加工を施し鋼片とする鋼片の製造方法であって、該鋼片の偏析が鋼片中心からΔT/2以上離れていることを特徴とする鋼片の製造方法 A method for producing a steel slab by removing a constant thickness ΔT (mm)≧T CASTED /100 in layers from one side or both sides of a slab obtained by continuous casting, wherein the steel slab is produced. A method for producing a billet, characterized in that segregation is separated from the center of the billet by ΔT/2 or more.
JP2019166759A 2019-09-13 2019-09-13 Heavy steel plate with excellent toughness, its manufacturing method, and steel slab used as raw material for thick steel plate Active JP7156220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019166759A JP7156220B2 (en) 2019-09-13 2019-09-13 Heavy steel plate with excellent toughness, its manufacturing method, and steel slab used as raw material for thick steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019166759A JP7156220B2 (en) 2019-09-13 2019-09-13 Heavy steel plate with excellent toughness, its manufacturing method, and steel slab used as raw material for thick steel plate

Publications (2)

Publication Number Publication Date
JP2021041446A JP2021041446A (en) 2021-03-18
JP7156220B2 true JP7156220B2 (en) 2022-10-19

Family

ID=74862857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019166759A Active JP7156220B2 (en) 2019-09-13 2019-09-13 Heavy steel plate with excellent toughness, its manufacturing method, and steel slab used as raw material for thick steel plate

Country Status (1)

Country Link
JP (1) JP7156220B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015140846A1 (en) 2014-03-20 2015-09-24 Jfeスチール株式会社 High toughness and high tensile strength thick steel plate and production method therefor
JP2016074034A (en) 2014-10-02 2016-05-12 Jfeスチール株式会社 Steel material forging method and steel material produced thereby
WO2016079978A1 (en) 2014-11-18 2016-05-26 Jfeスチール株式会社 Thick, high toughness, high tension steel sheet with excellent material uniformity and manufacturing method therefor
US20180363091A1 (en) 2015-12-22 2018-12-20 Baoshan Iron & Steel Co., Ltd. Thick steel plate for high heat input welding and having great heat-affected area toughness and manufacturing method therefor
CN109897928A (en) 2019-03-25 2019-06-18 江阴兴澄特种钢铁有限公司 A kind of manufacturing method of the big thickness steel plate of the continuous casting billet production guarantee anti-lamellar tearing performance of core

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5947050A (en) * 1982-09-10 1984-03-16 Sumitomo Metal Ind Ltd Method and device for horizontal continuous casting
JPS6167543A (en) * 1984-09-11 1986-04-07 Sumitomo Metal Ind Ltd Casting method of steel
JPS6427714A (en) * 1987-07-21 1989-01-30 Nippon Steel Corp Wire rod excellent in wire drawing workability
JPH02182347A (en) * 1989-01-07 1990-07-17 Nippon Steel Corp Steel material having sound center part and production thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015140846A1 (en) 2014-03-20 2015-09-24 Jfeスチール株式会社 High toughness and high tensile strength thick steel plate and production method therefor
JP2016074034A (en) 2014-10-02 2016-05-12 Jfeスチール株式会社 Steel material forging method and steel material produced thereby
WO2016079978A1 (en) 2014-11-18 2016-05-26 Jfeスチール株式会社 Thick, high toughness, high tension steel sheet with excellent material uniformity and manufacturing method therefor
US20180363091A1 (en) 2015-12-22 2018-12-20 Baoshan Iron & Steel Co., Ltd. Thick steel plate for high heat input welding and having great heat-affected area toughness and manufacturing method therefor
CN109897928A (en) 2019-03-25 2019-06-18 江阴兴澄特种钢铁有限公司 A kind of manufacturing method of the big thickness steel plate of the continuous casting billet production guarantee anti-lamellar tearing performance of core

Also Published As

Publication number Publication date
JP2021041446A (en) 2021-03-18

Similar Documents

Publication Publication Date Title
KR101838424B1 (en) High toughness and high tensile strength thick steel plate and production method therefor
KR101988144B1 (en) High toughness and high tensile strength thick steel plate with excellent material homogeneity and production method for same
KR101896852B1 (en) Hot-rolled steel sheet
JP5888476B2 (en) Material for stainless cold-rolled steel sheet and manufacturing method thereof
KR101897932B1 (en) Hot-rolled steel sheet
JP5565531B2 (en) High strength extra thick H-section steel
WO2008007572A1 (en) ROLLED AUSTENITE STAINLESS STEEL PLATE HAVING THICHKESS OF 100 mm OR MORE AND METHOD FOR PRODUCTION THEREOF
KR102319210B1 (en) High formability steel sheet and manufacturing method for manufacturing lightweight structural parts
JP2006291294A (en) Ferritic stainless steel sheet superior in spinning formability, and spinning method
CN107109597B (en) High-strength steel material having excellent brittle crack growth resistance and method for producing same
WO2017002147A1 (en) Ferritic stainless steel sheet and method for manufacturing same
CN104630627A (en) Steel plate for DH36 ship structure and low-cost production method thereof
WO2015194619A1 (en) High-strength steel plate and process for producing same
HUO et al. Corrugated interface structure and formation mechanism of Al/Mg/Al laminate rolled by hard plate
JP7156220B2 (en) Heavy steel plate with excellent toughness, its manufacturing method, and steel slab used as raw material for thick steel plate
US3721587A (en) Low carbon,niobium and aluminum containing steel sheets and plates and process
RU2500820C1 (en) Production method of rolled metal from low-alloy steel for manufacture of structural members of oil and gas lines
JP6879323B2 (en) Manufacturing method of thick steel sheet with excellent fatigue characteristics
JP7425372B2 (en) steel plate
JP5667502B2 (en) Friction welding machine structural steel and friction welding parts
JP6179609B2 (en) Manufacturing method of thick high-strength steel sheet with excellent cold workability
KR20130125832A (en) Stainless-steel sheet for metal mask
JP7442270B2 (en) Clad steel plate and its manufacturing method
JP2014034695A (en) Thick high-strength steel plate having excellent cold workability and production method thereof
JP2953304B2 (en) Roll outer tube material for continuous sheet casting machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220919

R150 Certificate of patent or registration of utility model

Ref document number: 7156220

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150