JP7154818B2 - Semiconductor device and method for manufacturing semiconductor device - Google Patents

Semiconductor device and method for manufacturing semiconductor device Download PDF

Info

Publication number
JP7154818B2
JP7154818B2 JP2018091208A JP2018091208A JP7154818B2 JP 7154818 B2 JP7154818 B2 JP 7154818B2 JP 2018091208 A JP2018091208 A JP 2018091208A JP 2018091208 A JP2018091208 A JP 2018091208A JP 7154818 B2 JP7154818 B2 JP 7154818B2
Authority
JP
Japan
Prior art keywords
substrate
semiconductor device
electrode
covering
exposed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018091208A
Other languages
Japanese (ja)
Other versions
JP2019197817A (en
Inventor
太郎 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP2018091208A priority Critical patent/JP7154818B2/en
Priority to US16/406,461 priority patent/US10930615B2/en
Publication of JP2019197817A publication Critical patent/JP2019197817A/en
Application granted granted Critical
Publication of JP7154818B2 publication Critical patent/JP7154818B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/561Batch processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/563Encapsulation of active face of flip-chip device, e.g. underfilling or underencapsulation of flip-chip, encapsulation preform on chip or mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49805Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers the leads being also applied on the sidewalls or the bottom of the substrate, e.g. leadless packages for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05573Single external layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/13111Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/13116Lead [Pb] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/1312Antimony [Sb] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13139Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/13198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/13199Material of the matrix
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/13198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/13298Fillers
    • H01L2224/13299Base material
    • H01L2224/133Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/13198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/13298Fillers
    • H01L2224/13299Base material
    • H01L2224/133Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16238Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bonding area protruding from the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]

Description

本発明は、半導体素子を搭載した半導体装置およびその製造方法に関する。 The present invention relates to a semiconductor device mounted with a semiconductor element and a manufacturing method thereof.

近年、Si(シリコン)基板を微細加工し、このSi基板に各種半導体素子を搭載した、いわゆるマイクロマシン(MEMS:Micro Electro Mechanical Systems)が普及しつつある。たとえば、特許文献1には、Si基板上に半導体素子を搭載した従来の半導体装置が開示されている。同文献に記載の半導体装置は、Si基板(基体)、半導体素子(発光素子)および配線層(配線パターン)を備えている。Si基板には、半導体素子が搭載されている。配線層は、Si基板上に形成されており、半導体素子に導通する。配線層は、半導体装置を電子機器などの回路基板に実装する際の端子となる。配線層は、Si基板の上面に形成されている。 In recent years, so-called micromachines (MEMS: Micro Electro Mechanical Systems), in which a Si (silicon) substrate is microfabricated and various semiconductor elements are mounted on the Si substrate, are becoming widespread. For example, Patent Document 1 discloses a conventional semiconductor device in which a semiconductor element is mounted on a Si substrate. The semiconductor device described in the document includes a Si substrate (substrate), a semiconductor element (light-emitting element), and a wiring layer (wiring pattern). A semiconductor element is mounted on the Si substrate. The wiring layer is formed on the Si substrate and electrically connected to the semiconductor element. The wiring layer serves as terminals when the semiconductor device is mounted on a circuit board of an electronic device or the like. The wiring layer is formed on the upper surface of the Si substrate.

上記のように構成された従来の半導体装置は、次のようにして製造されている。すなわち、従来の半導体装置の製造方法は、Siウエハに配線層を形成した後、Siウエハ上に複数の半導体素子を搭載する。そして、Siウエハをダイシングして、Siウエハを半導体素子ごとの個片に分割する。以上のようにして、従来の半導体装置が製造されている。 A conventional semiconductor device configured as described above is manufactured as follows. That is, in the conventional method of manufacturing a semiconductor device, after forming a wiring layer on a Si wafer, a plurality of semiconductor elements are mounted on the Si wafer. Then, the Si wafer is diced to divide the Si wafer into individual pieces for each semiconductor element. A conventional semiconductor device is manufactured as described above.

特開2009-94409号公報JP 2009-94409 A

従来の半導体装置の製造方法では、配線層の形成後に、半導体素子ごとの個片にダイシングしているので、ダイシングによって形成されるSi基板の側面には配線層が形成されなかった。そのため、はんだを用いて、半導体装置を電子機器などの回路基板に実装する際に、当該はんだの接合状態を確認するためには、X線検査装置などを用いる必要があった。 In the conventional method of manufacturing a semiconductor device, after the wiring layer is formed, the semiconductor element is diced into individual pieces, so the wiring layer is not formed on the side surface of the Si substrate formed by dicing. Therefore, when a semiconductor device is mounted on a circuit board of an electronic device or the like using solder, it is necessary to use an X-ray inspection device or the like in order to check the bonding state of the solder.

本開示は、このような事情のもとで考え出されたものであり、その目的は、電子機器などの回路基板に実装した際に、はんだの接合状態を容易に目視確認することができる半導体装置および当該半導体装置の製造方法を提供することにある。 The present disclosure has been invented under such circumstances, and an object of the present disclosure is to provide a semiconductor device that allows easy visual confirmation of the solder joint state when mounted on a circuit board such as an electronic device. An object of the present invention is to provide a device and a method of manufacturing the semiconductor device.

本開示の第1の側面によって提供される半導体装置は、第1方向において互いに反対側を向く基板主面および基板裏面と、前記第1方向に直交する第2方向を向く基板側面とを有する基板と、前記基板主面の一部を覆う主面電極、および、前記主面電極に繋がり、かつ、前記基板側面の一部を覆う側面電極を有する配線層と、前記主面電極に導通し、かつ、前記基板主面に対向して前記基板に搭載された半導体素子と、前記基板側面と同じ方向を向く樹脂側面を有し、前記半導体素子および前記主面電極を覆う封止樹脂と、を備えており、前記側面電極は、前記封止樹脂から露出し、かつ、前記基板側面と同じ方向を向く側面側露出面を有しており、前記側面側露出面と前記樹脂側面とは、面一であることを特徴とする。 A semiconductor device provided by a first aspect of the present disclosure is a substrate having a substrate main surface and a substrate back surface facing opposite to each other in a first direction, and a substrate side surface facing in a second direction perpendicular to the first direction. a main-surface electrode covering a portion of the substrate main surface, a wiring layer connected to the main-surface electrode and having a side-surface electrode covering a portion of the side surface of the substrate, and a wiring layer electrically connected to the main-surface electrode, and a semiconductor element mounted on the substrate facing the main surface of the substrate, and a sealing resin having a resin side surface facing the same direction as the side surface of the substrate and covering the semiconductor element and the main surface electrode. wherein the side electrode has a side exposed surface exposed from the sealing resin and facing in the same direction as the substrate side surface, and the side exposed surface and the resin side surface It is characterized by being one.

前記半導体装置の好ましい実施の形態においては、前記側面電極は、前記封止樹脂から露出し、かつ、前記基板裏面と同じ方向を向く裏面側露出面を有しており、前記裏面側露出面と前記基板裏面とは、面一である。 In a preferred embodiment of the semiconductor device, the side electrode has a rear surface side exposed surface exposed from the sealing resin and facing in the same direction as the substrate rear surface. The back surface of the substrate is flush with the substrate.

前記半導体装置の好ましい実施の形態においては、前記側面側露出面を覆う側面被覆部を含む外装めっきをさらに備える。 In a preferred embodiment of the semiconductor device, the semiconductor device further includes exterior plating including a side covering portion covering the exposed side surface.

前記半導体装置の好ましい実施の形態においては、前記外装めっきは、前記側面被覆部に繋がり、かつ、前記裏面側露出面および前記基板裏面の一部を覆う裏面被覆部をさらに含んでいる。 In a preferred embodiment of the semiconductor device, the exterior plating further includes a back surface covering portion connected to the side surface covering portion and covering the exposed back surface and part of the back surface of the substrate.

前記半導体装置の好ましい実施の形態においては、前記外装めっきは、互いに積層されたNi層、Pd層およびAu層から構成される。 In a preferred embodiment of the semiconductor device, the exterior plating is composed of a Ni layer, a Pd layer and an Au layer laminated to each other.

前記半導体装置の好ましい実施の形態においては、前記基板は、前記基板主面から前記基板裏面まで貫通し、かつ、前記封止樹脂が充填された溝を含む。 In a preferred embodiment of the semiconductor device, the substrate includes a groove penetrating from the main surface of the substrate to the rear surface of the substrate and filled with the sealing resin.

前記半導体装置の好ましい実施の形態においては、前記側面電極は、前記第2方向に見て、前記第1方向に延びる端縁が湾曲している。 In a preferred embodiment of the semiconductor device, the side electrode has a curved edge extending in the first direction when viewed in the second direction.

前記半導体装置の好ましい実施の形態においては、前記配線層は、互いに積層された下地層およびめっき層から構成されている。 In a preferred embodiment of the semiconductor device, the wiring layer is composed of a base layer and a plated layer which are laminated to each other.

前記半導体装置の好ましい実施の形態においては、前記配線層は、主な成分が銅である。 In a preferred embodiment of the semiconductor device, the wiring layer is mainly composed of copper.

前記半導体装置の好ましい実施の形態においては、前記主面電極と前記半導体素子との間に介在する導電性接合材をさらに備えている。 A preferred embodiment of the semiconductor device further comprises a conductive bonding material interposed between the main surface electrode and the semiconductor element.

前記半導体装置の好ましい実施の形態においては、前記基板は、主な成分が真性半導体材料からなる。 In a preferred embodiment of the semiconductor device, the substrate consists mainly of an intrinsic semiconductor material.

前記半導体装置の好ましい実施の形態においては、前記真性半導体材料は、シリコンである。 In a preferred embodiment of the semiconductor device, the intrinsic semiconductor material is silicon.

本開示の第2の側面によって提供される半導体装置の製造方法は、第1方向において互いに反対側を向く基板主面および基板裏面を有する基板を準備する工程と、前記基板主面から前記第1方向に窪んだ溝部を前記基板に形成する工程と、前記基板主面の一部を覆う主面電極、および、前記主面電極に繋がり、かつ、少なくとも前記溝部の一部を覆う溝内導電体を有する配線層を形成する工程と、前記主面電極に導通する半導体素子を、前記基板主面に対向した姿勢で搭載する工程と、前記半導体素子および前記主面電極を覆う封止樹脂を形成する工程と、前記封止樹脂および前記溝内導電体を切断することで、前記第1方向に直交する第2方向を向く樹脂側面を前記封止樹脂に形成するとともに、前記溝内導電体を、前記封止樹脂から露出し、かつ、前記樹脂側面と同じ方向を向く側面側露出面を有する側面電極にする切断工程と、を含んでおり、前記側面側露出面は、前記樹脂側面と面一である。 A method for manufacturing a semiconductor device provided by a second aspect of the present disclosure includes steps of preparing a substrate having a substrate main surface and a substrate back surface facing opposite sides in a first direction; a main-surface electrode covering a portion of a main surface of the substrate; and an in-groove conductor connected to the main-surface electrode and covering at least a portion of the groove. mounting a semiconductor element electrically connected to the main surface electrode in a posture facing the main surface of the substrate; forming a sealing resin covering the semiconductor element and the main surface electrode; and cutting the encapsulating resin and the in-groove conductor to form a side surface of the encapsulating resin facing a second direction orthogonal to the first direction, and to cut the in-groove conductor. and a cutting step of forming a side electrode having a side exposed surface exposed from the sealing resin and facing in the same direction as the resin side surface, wherein the side exposed surface is the same as the resin side surface. is one.

前記半導体装置の製造方法の好ましい実施の形態においては、前記切断工程の前に、前記基板裏面側から前記基板を研削して、前記溝内導電体を前記基板裏面から露出させる研削工程を、さらに含む。 In a preferred embodiment of the method for manufacturing a semiconductor device, before the cutting step, the substrate is ground from the back surface side of the substrate to expose the conductor in the groove from the back surface of the substrate. include.

前記半導体装置の製造方法の好ましい実施の形態においては、前記切断工程は、ブレードダイシングにより行い、前記ブレードダイシングにおいて、前記溝部の幅よりも小さい厚みのダイシングブレードを用いる。 In a preferred embodiment of the semiconductor device manufacturing method, the cutting step is performed by blade dicing, and in the blade dicing, a dicing blade having a thickness smaller than the width of the groove is used.

前記半導体装置の製造方法の好ましい実施の形態においては、前記側面電極は、前記第1方向において前記基板裏面と同じ方向を向く裏面側露出面を有しており、前記裏面側露出面と前記基板裏面とは、面一である。 In a preferred embodiment of the method for manufacturing a semiconductor device, the side electrode has a rear surface side exposed surface facing the same direction as the substrate rear surface in the first direction, and the rear surface side exposed surface and the substrate The back surface is flush.

前記半導体装置の製造方法の好ましい実施の形態においては、前記側面側露出面を覆う側面被覆部を含む外装めっきを形成する外装めっき形成工程を、さらに含む。 A preferred embodiment of the method for manufacturing a semiconductor device further includes an exterior plating forming step of forming an exterior plating including a side covering portion covering the side exposed surface.

前記半導体装置の製造方法の好ましい実施の形態においては、前記外装めっきは、前記側面被覆部に繋がり、かつ、前記裏面側露出面および前記基板裏面の一部を覆う裏面被覆部をさらに含んでおり、前記外装めっき形成工程において、前記側面被覆部とともに前記裏面被覆部を形成する。 In a preferred embodiment of the method for manufacturing a semiconductor device, the exterior plating further includes a back surface covering portion connected to the side surface covering portion and covering the exposed back surface and part of the back surface of the substrate. and forming the rear surface covering portion together with the side surface covering portion in the exterior plating forming step.

本開示の半導体装置によれば、電子機器などの回路基板に実装した際のはんだの接合状態を上方および側方からの目視確認を容易にすることができる。また、本開示の半導体装置の製造方法によれば、電子機器などの回路基板に実装した際のはんだの接合状態を上方および側方から目視確認することができる半導体装置を製造することができる。 According to the semiconductor device of the present disclosure, it is possible to easily visually confirm the solder joint state from above and from the side when mounted on a circuit board of an electronic device or the like. In addition, according to the manufacturing method of the semiconductor device of the present disclosure, it is possible to manufacture a semiconductor device in which the state of solder joints when mounted on a circuit board of an electronic device or the like can be visually confirmed from above and from the side.

第1実施形態にかかる半導体装置を示す斜視図(底面側から見た斜視図)である。1 is a perspective view (perspective view seen from the bottom side) showing a semiconductor device according to a first embodiment; FIG. 第1実施形態にかかる半導体装置を示す平面図である。1 is a plan view showing a semiconductor device according to a first embodiment; FIG. 第1実施形態にかかる半導体装置を示す底面図である。It is a bottom view showing the semiconductor device according to the first embodiment. 第1実施形態にかかる半導体装置を示す側面図である。1 is a side view showing a semiconductor device according to a first embodiment; FIG. 図2のV-V線に沿う断面図である。FIG. 3 is a cross-sectional view taken along line VV of FIG. 2; 図2のVI-VI線に沿う断面図である。3 is a cross-sectional view taken along line VI-VI of FIG. 2; FIG. 第1実施形態にかかる半導体装置の製造方法の一工程を示す斜視図である。1 is a perspective view showing one process of a method for manufacturing a semiconductor device according to a first embodiment; FIG. 第1実施形態にかかる半導体装置の製造方法の一工程を示す平面図である。FIG. 4 is a plan view showing one step of the method for manufacturing the semiconductor device according to the first embodiment; 第1実施形態にかかる半導体装置の製造方法の一工程を示す断面図である。FIG. 4 is a cross-sectional view showing one step of the method for manufacturing the semiconductor device according to the first embodiment; 第1実施形態にかかる半導体装置の製造方法の一工程を示す平面図である。FIG. 4 is a plan view showing one step of the method for manufacturing the semiconductor device according to the first embodiment; 第1実施形態にかかる半導体装置の製造方法の一工程を示す断面図である。FIG. 4 is a cross-sectional view showing one step of the method for manufacturing the semiconductor device according to the first embodiment; 第1実施形態にかかる半導体装置の製造方法の一工程を示す平面図である。FIG. 4 is a plan view showing one step of the method for manufacturing the semiconductor device according to the first embodiment; 第1実施形態にかかる半導体装置の製造方法の一工程を示す断面図である。FIG. 4 is a cross-sectional view showing one step of the method for manufacturing the semiconductor device according to the first embodiment; 第1実施形態にかかる半導体装置の製造方法の一工程を示す断面図である。FIG. 4 is a cross-sectional view showing one step of the method for manufacturing the semiconductor device according to the first embodiment; 第1実施形態にかかる半導体装置の製造方法の一工程を示す断面図である。FIG. 4 is a cross-sectional view showing one step of the method for manufacturing the semiconductor device according to the first embodiment; 第1実施形態にかかる半導体装置の製造方法の一工程を示す底面図である。It is a bottom view which shows 1 process of the manufacturing method of the semiconductor device concerning 1st Embodiment. 第1実施形態にかかる半導体装置の製造方法の一工程を示す平面図である。FIG. 4 is a plan view showing one step of the method for manufacturing the semiconductor device according to the first embodiment; 第1実施形態にかかる半導体装置の製造方法の一工程を示す断面図である。FIG. 4 is a cross-sectional view showing one step of the method for manufacturing the semiconductor device according to the first embodiment; 第1実施形態にかかる半導体装置の製造方法の一工程を示す平面図である。FIG. 4 is a plan view showing one step of the method for manufacturing the semiconductor device according to the first embodiment; 第1実施形態にかかる半導体装置の製造方法の一工程を示す断面図である。FIG. 4 is a cross-sectional view showing one step of the method for manufacturing the semiconductor device according to the first embodiment; 第1実施形態にかかる半導体装置の製造方法の一工程を示す平面図である。FIG. 4 is a plan view showing one step of the method for manufacturing the semiconductor device according to the first embodiment; 第1実施形態にかかる半導体装置の製造方法の一工程を示す断面図である。FIG. 4 is a cross-sectional view showing one step of the method for manufacturing the semiconductor device according to the first embodiment; 第1実施形態の変形例にかかる半導体装置の製造方法の一工程を示す断面図である。FIG. 11 is a cross-sectional view showing one step of a method for manufacturing a semiconductor device according to a modification of the first embodiment; 第1実施形態の変形例にかかる半導体装置の製造方法の一工程を示す断面図である。FIG. 11 is a cross-sectional view showing one step of a method for manufacturing a semiconductor device according to a modification of the first embodiment; 第1実施形態の変形例にかかる半導体装置を示す側面図である。It is a side view which shows the semiconductor device concerning the modification of 1st Embodiment. 第2実施形態にかかる半導体装置を示す斜視図(底面側から見た斜視図)である。FIG. 11 is a perspective view (perspective view seen from the bottom side) showing a semiconductor device according to a second embodiment; 第2実施形態にかかる半導体装置を示す底面図である。It is a bottom view showing a semiconductor device according to a second embodiment. 第2実施形態にかかる半導体装置を示す断面図である。It is a sectional view showing a semiconductor device concerning a 2nd embodiment. 第3実施形態にかかる半導体装置を示す平面図である。It is a top view which shows the semiconductor device concerning 3rd Embodiment. 第3実施形態にかかる半導体装置を示す断面図であって、図29のXXX-XXX線に沿う断面である。FIG. 30 is a cross-sectional view showing the semiconductor device according to the third embodiment, taken along line XXX-XXX in FIG. 29;

本開示の半導体装置および本開示の半導体装置の製造方法の好ましい実施の形態について、図面を参照して、以下に説明する。 Preferred embodiments of the semiconductor device of the present disclosure and the method of manufacturing the semiconductor device of the present disclosure will be described below with reference to the drawings.

図1~図6は、第1実施形態にかかる半導体装置を示している。第1実施形態の半導体装置A1は、基板10、配線層20、外装めっき30、半導体素子40、導電性接合材50および封止樹脂60を備えている。 1 to 6 show the semiconductor device according to the first embodiment. A semiconductor device A1 of the first embodiment includes a substrate 10, a wiring layer 20, an exterior plating 30, a semiconductor element 40, a conductive bonding material 50, and a sealing resin 60. As shown in FIG.

図1は、半導体装置A1を示す斜視図であって、底面側から見たときの状態を示している。図2は、半導体装置A1を示す平面図であって、封止樹脂60を想像線(二点鎖線)で示している。図3は、半導体装置A1を示す底面図である。図4は、半導体装置A1を示す側面図(正面図)である。図5は、図2のV-V線に沿う断面図である。図6は、図2のVI-VI線に沿う断面図である。説明の便宜上、これらの図において、互いに直交する3つの方向を、x方向、y方向、z方向とそれぞれ定義する。x方向は、半導体装置A1の平面図(図2参照)における左右方向である。y方向は、半導体装置A1の平面図(図2参照)における上下方向である。z方向は、半導体装置A1の厚さ方向である。x方向およびz方向が、特許請求の範囲に記載の「第2方向」および「第1方向」にそれぞれ相当する。 FIG. 1 is a perspective view showing a semiconductor device A1, showing a state when viewed from the bottom side. FIG. 2 is a plan view showing the semiconductor device A1, in which the sealing resin 60 is indicated by an imaginary line (chain double-dashed line). FIG. 3 is a bottom view showing the semiconductor device A1. FIG. 4 is a side view (front view) showing the semiconductor device A1. FIG. 5 is a cross-sectional view along line VV in FIG. FIG. 6 is a cross-sectional view taken along line VI-VI of FIG. For convenience of explanation, three mutually orthogonal directions are defined as the x-direction, the y-direction, and the z-direction in these figures, respectively. The x direction is the horizontal direction in the plan view (see FIG. 2) of the semiconductor device A1. The y direction is the vertical direction in the plan view (see FIG. 2) of the semiconductor device A1. The z direction is the thickness direction of the semiconductor device A1. The x-direction and z-direction respectively correspond to the "second direction" and the "first direction" described in the claims.

半導体装置A1は、様々な電子機器などの回路基板に表面実装する装置である。半導体装置A1は、回路基板に実装するための端子が封止樹脂60から突き出ていないリードレスパッケージ型であり、特に、封止樹脂60の各側面(後述する4つの樹脂側面63)に、それぞれ端子が配置されたQFNパッケージ型である。半導体装置A1は、z方向に見て(以下「平面視」ともいう。)、矩形状である。半導体装置A1の大きさは、特に限定されないが、平面視において0.5~10mm角である。 The semiconductor device A1 is a device surface-mounted on a circuit board of various electronic devices. The semiconductor device A1 is of a leadless package type in which terminals for mounting on a circuit board do not protrude from the sealing resin 60. In particular, on each side surface of the sealing resin 60 (four resin side surfaces 63 to be described later), It is a QFN package type in which terminals are arranged. The semiconductor device A1 has a rectangular shape when viewed in the z direction (hereinafter also referred to as “plan view”). The size of the semiconductor device A1 is not particularly limited, but is 0.5 to 10 mm square in plan view.

基板10は、単結晶の真性半導体材料から構成される。本実施形態においては、当該真性半導体材料は、Si(シリコン)である。基板10は、図2および図3に示すように、平面視矩形状である。基板10のz方向寸法(厚み)は、50~200μm程度である。基板10は、基板主面11、基板裏面12および複数の基板側面13を有する。 The substrate 10 is composed of a single crystal intrinsic semiconductor material. In this embodiment, the intrinsic semiconductor material is Si (silicon). The substrate 10 has a rectangular shape in plan view, as shown in FIGS. The z-direction dimension (thickness) of the substrate 10 is about 50 to 200 μm. The substrate 10 has a substrate main surface 11 , a substrate back surface 12 and a plurality of substrate side surfaces 13 .

基板主面11および基板裏面12は、図5および図6に示すように、z方向において、離間しており、かつ、互いに反対側を向く。基板主面11は、図5および図6に示す基板10の上面であり、基板裏面12は、図5および図6に示す基板10の下面である。基板裏面12は、半導体装置A1が回路基板に実装された際、当該回路基板に対向する。本実施形態においては、基板裏面12は、半導体装置A1の外部に露出している。複数の基板側面13の各々は、図5および図6に示すように、基板主面11と基板裏面12との間に挟まれている。各基板側面13は、図5および図6に示すz方向の上端が基板主面11に繋がり、図5および図6に示すz方向の下端が基板裏面12に繋がる。各基板側面13は、平坦であり、かつ、基板主面11および基板裏面12のそれぞれに直交する。本実施形態においては、基板10は、図2および図3に示すように、x方向およびy方向のそれぞれ別の方を向く4つの基板側面13を有する。各基板側面13は、配線層20に覆われた領域と封止樹脂60に覆われた領域とを含んでいる。 As shown in FIGS. 5 and 6, the substrate main surface 11 and the substrate back surface 12 are spaced apart in the z-direction and face opposite sides. The substrate principal surface 11 is the top surface of the substrate 10 shown in FIGS. 5 and 6, and the substrate rear surface 12 is the bottom surface of the substrate 10 shown in FIGS. The substrate rear surface 12 faces the circuit board when the semiconductor device A1 is mounted on the circuit board. In this embodiment, the substrate rear surface 12 is exposed to the outside of the semiconductor device A1. Each of the plurality of substrate side surfaces 13 is sandwiched between the substrate main surface 11 and the substrate back surface 12, as shown in FIGS. Each substrate side surface 13 is connected to the substrate main surface 11 at its upper end in the z direction shown in FIGS. 5 and 6, and is connected to the substrate rear surface 12 at its lower end in the z direction shown in FIGS. Each substrate side surface 13 is flat and perpendicular to each of the substrate main surface 11 and the substrate back surface 12 . In this embodiment, the substrate 10 has four substrate side surfaces 13 facing in different directions in the x-direction and the y-direction, respectively, as shown in FIGS. Each substrate side surface 13 includes a region covered with the wiring layer 20 and a region covered with the sealing resin 60 .

配線層20は、半導体装置A1の内部に配置される導電体である。配線層20は、半導体素子40に導通する。本実施形態においては、配線層20は、互いに積層された下地層およびめっき層から構成される。下地層は、互いに積層されたTi層およびCu層から構成され、その厚さは200~800nm程度である。めっき層は、下地層の外側に、下地層に接するように形成されている。めっき層は、主な成分がCuであり、その厚さは下地層よりも厚く設定されている。下地層とめっき層とは、一体となっているので、図5に示すように、区別せずに配線層20として示している。なお、配線層20の素材や膜厚は限定されない。本実施形態においては、配線層20は、図2および図5に示すように、主面電極21および側面電極22を含んでいる。主面電極21と側面電極22とは繋がっており、一体的に形成されている。 The wiring layer 20 is a conductor arranged inside the semiconductor device A1. The wiring layer 20 is electrically connected to the semiconductor element 40 . In this embodiment, the wiring layer 20 is composed of a base layer and a plated layer that are laminated to each other. The underlying layer is composed of a Ti layer and a Cu layer laminated to each other, and has a thickness of about 200 to 800 nm. The plating layer is formed outside the base layer so as to be in contact with the base layer. The plated layer is mainly composed of Cu, and its thickness is set to be thicker than that of the underlying layer. Since the underlying layer and the plated layer are integrated, they are shown as the wiring layer 20 without distinction as shown in FIG. The material and film thickness of the wiring layer 20 are not limited. In this embodiment, the wiring layer 20 includes main surface electrodes 21 and side electrodes 22, as shown in FIGS. The main surface electrode 21 and the side surface electrode 22 are connected and integrally formed.

主面電極21は、配線層20のうち基板10の基板主面11の一部を覆うように形成された部分である。本実施形態においては、主面電極21の厚みは、30~40μm程度である。 The principal surface electrode 21 is a portion of the wiring layer 20 formed so as to partially cover the substrate principal surface 11 of the substrate 10 . In this embodiment, the thickness of the principal surface electrode 21 is approximately 30 to 40 μm.

側面電極22は、配線層20のうち基板10の基板側面13の一部を覆うように形成された部分である。本実施形態においては、側面電極22の厚みは、10~30μm程度である。側面電極22は、図5に示すように、側面側露出面221および裏面側露出面222を有している。側面側露出面221は、基板側面13と同じ方向を向く。側面側露出面221は、封止樹脂60の側面(後述する樹脂側面63)と面一である。裏面側露出面222は、基板裏面12と同じ方向を向く。裏面側露出面222は、基板裏面12と面一である。 The side electrode 22 is a portion of the wiring layer 20 formed so as to partially cover the side surface 13 of the substrate 10 . In this embodiment, the thickness of the side electrode 22 is approximately 10 to 30 μm. The side electrode 22 has a side exposed surface 221 and a back surface exposed surface 222, as shown in FIG. The side exposed surface 221 faces the same direction as the substrate side surface 13 . The side exposed surface 221 is flush with the side surface of the sealing resin 60 (resin side surface 63 described later). The back surface side exposed surface 222 faces the same direction as the substrate back surface 12 . The back surface side exposed surface 222 is flush with the substrate back surface 12 .

外装めっき30は、配線層20に導通し、外部に露出する導電体である。外装めっき30は、半導体装置A1を回路基板に実装する際の端子となる。外装めっき30は、無電解めっきにより形成されている。本実施形態においては、外装めっき30は、互いに積層されたNi層、Pd層およびAu層から構成される。外装めっき30の厚みは、3~15μm程度である。なお、外装めっき30の厚み、素材および形成方法は限定されない。たとえば、外装めっき30は、Ni層およびAu層が積層されて構成されていてもよいし、Au層のみで構成されていてもよい。 The exterior plating 30 is a conductor that conducts to the wiring layer 20 and is exposed to the outside. The exterior plating 30 serves as terminals when the semiconductor device A1 is mounted on a circuit board. The exterior plating 30 is formed by electroless plating. In this embodiment, the exterior plating 30 is composed of a Ni layer, a Pd layer, and an Au layer laminated to each other. The thickness of the exterior plating 30 is approximately 3 to 15 μm. The thickness, material, and formation method of the exterior plating 30 are not limited. For example, the exterior plating 30 may be configured by laminating a Ni layer and an Au layer, or may be configured by an Au layer alone.

外装めっき30は、図3~図6に示すように、側面被覆部31および裏面被覆部32を含んでいる。側面被覆部31と裏面被覆部32とは繋がっている。側面被覆部31は、外装めっき30のうち半導体装置A1の側面に形成された部分であり、側面電極22の側面側露出面221を覆う。裏面被覆部32は、外装めっき30のうち半導体装置A1の裏面に形成された部分であり、裏面側露出面222および基板裏面12の一部を覆う。裏面被覆部32は、裏面側露出面222から基板裏面12の一部に跨って形成されている。 The exterior plating 30 includes a side surface covering portion 31 and a back surface covering portion 32, as shown in FIGS. The side covering portion 31 and the back covering portion 32 are connected. The side covering portion 31 is a portion of the exterior plating 30 formed on the side surface of the semiconductor device A1 and covers the side exposed surface 221 of the side electrode 22 . The backside covering portion 32 is a portion of the exterior plating 30 formed on the backside of the semiconductor device A1, and covers the backside exposed surface 222 and part of the substrate backside 12 . The back surface covering portion 32 is formed across a portion of the substrate back surface 12 from the back surface side exposed surface 222 .

半導体素子40は、半導体装置A1の機能中枢となる素子である。半導体素子40は、たとえばLSI(Large Scale Integration)などの集積回路(IC)である。また、半導体素子40は、LDO(Low Drop Out)などの電圧制御用素子や、オペアンプなどの増幅用素子、ダイオードなどのディスクリート半導体素子であってもよい。半導体素子40は、平面視矩形状である。半導体素子40は、基板10に搭載されている。半導体素子40は、フリップチップボンディングにより搭載される。半導体素子40は、平面視において基板10に重なる。半導体素子40は、図5および図6に示すように、素子主面41および素子裏面42を有する。 The semiconductor element 40 is an element serving as a functional core of the semiconductor device A1. Semiconductor element 40 is, for example, an integrated circuit (IC) such as an LSI (Large Scale Integration). The semiconductor element 40 may be a voltage control element such as an LDO (Low Drop Out), an amplification element such as an operational amplifier, or a discrete semiconductor element such as a diode. The semiconductor element 40 has a rectangular shape in plan view. A semiconductor element 40 is mounted on the substrate 10 . The semiconductor element 40 is mounted by flip chip bonding. The semiconductor element 40 overlaps the substrate 10 in plan view. The semiconductor element 40 has an element main surface 41 and an element rear surface 42, as shown in FIGS.

素子主面41および素子裏面42は、z方向において、離間しており、かつ、互いに反対側を向く。素子主面41は、基板10の基板主面11と同じ方向を向く。素子裏面42は、基板10の基板裏面12と同じ方向を向く。素子裏面42は、基板主面11に対向する。素子裏面42には、複数の電極パッド(図示略)が形成されている。当該電極パッドは、たとえばAl(アルミニウム)から構成される。 The element main surface 41 and the element back surface 42 are spaced apart in the z-direction and face opposite sides. The element main surface 41 faces the same direction as the substrate main surface 11 of the substrate 10 . The element back surface 42 faces the same direction as the substrate back surface 12 of the substrate 10 . The device rear surface 42 faces the substrate main surface 11 . A plurality of electrode pads (not shown) are formed on the element back surface 42 . The electrode pad is made of Al (aluminum), for example.

導電性接合材50は、図5に示すように、配線層20の主面電極21と半導体素子40の電極パッドとの間に介在する導電部材である。本実施形態においては、導電性接合材50を介して、半導体素子40の電極パッドと主面電極21とが接続されている。導電性接合材50の素材は、特に限定されないが、本実施形態においては、Sn(スズ)を含む合金からなる。このような合金を例示すると、Sn-Sb系合金またはSn-Ag系合金などの鉛フリーはんだ、あるいは、Pb(鉛)含有のはんだなどがある。導電性接合材50は、はんだペーストやAgペーストなどであってもよい。本実施形態においては、半導体素子40は、導電性接合材50により主面電極21(配線層20)に固着されている。 The conductive bonding material 50 is a conductive member interposed between the main surface electrode 21 of the wiring layer 20 and the electrode pad of the semiconductor element 40, as shown in FIG. In this embodiment, the electrode pads of the semiconductor element 40 and the principal surface electrodes 21 are connected via the conductive bonding material 50 . Although the material of the conductive bonding material 50 is not particularly limited, it is made of an alloy containing Sn (tin) in the present embodiment. Examples of such alloys include lead-free solders such as Sn--Sb alloys or Sn--Ag alloys, and Pb (lead)-containing solders. The conductive bonding material 50 may be solder paste, Ag paste, or the like. In the present embodiment, the semiconductor element 40 is fixed to the principal surface electrode 21 (wiring layer 20) with a conductive bonding material 50. As shown in FIG.

封止樹脂60は、たとえば黒色のエポキシ樹脂を主剤とした合成樹脂である。封止樹脂60は、図5および図6に示すように、半導体素子40および配線層20の一部を覆っている。封止樹脂60は、平面視矩形状である。封止樹脂60は、平面視において基板10よりも大きい。封止樹脂60は、樹脂主面61、樹脂裏面62および複数の樹脂側面63を有している。 The encapsulating resin 60 is a synthetic resin containing, for example, a black epoxy resin as a main component. The sealing resin 60 partially covers the semiconductor element 40 and the wiring layer 20, as shown in FIGS. The sealing resin 60 has a rectangular shape in plan view. The sealing resin 60 is larger than the substrate 10 in plan view. The sealing resin 60 has a resin main surface 61 , a resin back surface 62 and a plurality of resin side surfaces 63 .

樹脂主面61および樹脂裏面62は、図4および図6に示すように、z方向において離間しており、互いに反対側を向く。図6に示すように、樹脂主面61は、素子主面41と同じ方向を向き、樹脂裏面62は、素子裏面42と同じ方向を向く。複数の樹脂側面63はそれぞれ、図6に示すように、各基板側面13と同じ方向を向く。また、図5に示すように、各樹脂側面63から配線層20(側面電極22)が露出している。各樹脂側面63は、側面電極22の側面側露出面221と面一である。 As shown in FIGS. 4 and 6, the resin main surface 61 and the resin back surface 62 are spaced apart in the z-direction and face opposite sides. As shown in FIG. 6 , the resin main surface 61 faces the same direction as the element main surface 41 , and the resin rear surface 62 faces the same direction as the element rear surface 42 . Each of the plurality of resin side surfaces 63 faces the same direction as each substrate side surface 13, as shown in FIG. Further, as shown in FIG. 5, the wiring layer 20 (side electrode 22) is exposed from each resin side surface 63. As shown in FIG. Each resin side surface 63 is flush with the side exposed surface 221 of the side electrode 22 .

次に、半導体装置A1の製造方法の一例について、図7~図22を参照して説明する。図7は、半導体装置A1の製造方法にかかる一工程を示す斜視図である。図8、図10、図12、図17、図19および図21は、半導体装置A1の製造方法にかかる一工程を示す平面図である。図9、図11、図13~図15、図18、図20および図22は、半導体装置A1の製造方法にかかる一工程を示す断面図である。これらの断面図は、図5に示す断面に対応する。図16は、半導体装置A1の製造方法にかかる一工程を示す底面図である。 Next, an example of a method for manufacturing the semiconductor device A1 will be described with reference to FIGS. 7 to 22. FIG. FIG. 7 is a perspective view showing one step in the method of manufacturing the semiconductor device A1. 8, 10, 12, 17, 19 and 21 are plan views showing one step in the method of manufacturing the semiconductor device A1. 9, 11, 13 to 15, 18, 20 and 22 are cross-sectional views showing one step in the method of manufacturing the semiconductor device A1. These cross-sectional views correspond to the cross-section shown in FIG. FIG. 16 is a bottom view showing a step in the method of manufacturing the semiconductor device A1.

まず、図7に示すように、z方向において互いに反対側を向く主面801および裏面802を有する基材800を準備する。基材800は、半導体装置A1の基板10に対応する部分の集合体である。本実施形態においては、基材800の素材は、Siの真性半導体材料である。基材800を準備する工程(基材準備工程)では、図7に示すように、たとえば基材800としてシリコンウエハを準備する。なお、図7に示すシリコンウエハ(基材800)には、オリフラが形成されているが、これの代わりにノッチが形成されていてもよいし、オリフラもノッチも形成されていなくてもよい。 First, as shown in FIG. 7, a substrate 800 having a main surface 801 and a back surface 802 facing opposite to each other in the z-direction is prepared. The base material 800 is an assembly of parts corresponding to the substrate 10 of the semiconductor device A1. In this embodiment, the material of the substrate 800 is an intrinsic semiconductor material of Si. In the step of preparing the substrate 800 (substrate preparation step), as shown in FIG. 7, a silicon wafer is prepared as the substrate 800, for example. Although the orientation flat is formed on the silicon wafer (base material 800) shown in FIG. 7, a notch may be formed instead, or neither the orientation flat nor the notch may be formed.

次いで、図8および図9に示すように、基材800に主面801からz方向に窪んだ溝部803を形成する。溝部803を形成する工程(溝部形成工程)では、たとえばブレードダイシングによるハーフカットダイシングを行う。本実施形態においては、図7に示すダイシング線DLに沿って、ハーフカットダイシングを行い、基材800を切断することなく、主面801から深さが50~200μm程度の溝(溝部803)を形成する。ハーフカットダイシング(ブレードダイシング)時に用いるダイシングブレードの厚さはおよそ80~120μm程度である。よって、溝部803は、その幅がおよそ80~120μm程度である。本実施形態においては、溝部803は、図8に示すように、各々がx方向に沿って延びる複数の筋と、各々がy方向に沿って延びる複数の筋とが交差した格子状に形成される。また、溝部803は、底面804および起立面805を有する。起立面805は、図9に示すz方向上端が基板主面811に繋がり、図9に示すz方向下端が底面804に繋がる。起立面805は、底面804から起立しており、本実施形態においては、底面804に直交する。また、溝部形成工程によって、主面801が複数の基板主面811に分割される。基板主面811が半導体装置A1の基板10の基板主面11に対応する。 Next, as shown in FIGS. 8 and 9, grooves 803 recessed in the z-direction from the main surface 801 are formed in the base material 800 . In the step of forming the groove portion 803 (groove portion forming step), for example, half-cut dicing by blade dicing is performed. In this embodiment, half-cut dicing is performed along the dicing line DL shown in FIG. Form. The thickness of the dicing blade used for half-cut dicing (blade dicing) is about 80 to 120 μm. Therefore, the groove portion 803 has a width of approximately 80 to 120 μm. In this embodiment, as shown in FIG. 8, the grooves 803 are formed in a grid pattern in which a plurality of stripes each extending along the x direction intersect with a plurality of stripes each extending along the y direction. be. Also, the groove portion 803 has a bottom surface 804 and an upright surface 805 . The upright surface 805 is connected to the substrate main surface 811 at the z-direction upper end shown in FIG. 9, and is connected to the bottom surface 804 at the z-direction lower end shown in FIG. The standing surface 805 stands up from the bottom surface 804 and is orthogonal to the bottom surface 804 in this embodiment. Further, the main surface 801 is divided into a plurality of substrate main surfaces 811 by the groove forming step. The substrate main surface 811 corresponds to the substrate main surface 11 of the substrate 10 of the semiconductor device A1.

次いで、図10および図11に示すように、基材800上に配線層820を形成する。当該配線層820が、後に半導体装置A1の配線層20に対応する。配線層820を形成する工程(配線層形成工程)においては、図10および図11に示すように、各基板主面811の一部と溝部803の一部とを覆う導電体の膜を形成する。本実施形態においては、当該配線層820は、互いに積層された下地層およびめっき層から構成される。配線層形成工程の具体的な処理は、特に限定されないが、たとえば次のように行われる。下地層の形成は、たとえばスパッタリングやCVDなどを用いる。そして、下地層の全面を覆うように、感光性レジストを塗布し、当該感光性レジストに対して露光・現像を行うことによってパターニングを行う。このパターニングにより、下地層の一部(めっき層を形成する部分)を露出させ、下地層を導電経路とした電解めっきにより、露出した下地層の上にめっき層を形成する。当該めっき層は、主な成分がCuである。その後、レジスト層の除去およびめっき層から露出した下地層の除去を行うことで、図10および図11に示す配線層820が形成される。配線層形成工程によって形成された配線層820は、基板主面811の一部を覆うように形成された主面電極821、および、溝部803の一部を覆うように形成された溝内導電体823を含んでいる。 Next, as shown in FIGS. 10 and 11, wiring layer 820 is formed on base material 800 . The wiring layer 820 will later correspond to the wiring layer 20 of the semiconductor device A1. In the step of forming the wiring layer 820 (wiring layer forming step), as shown in FIGS. 10 and 11, a conductor film is formed to cover a portion of each substrate main surface 811 and a portion of the groove portion 803 . . In this embodiment, the wiring layer 820 is composed of a base layer and a plated layer that are laminated to each other. Although specific processing of the wiring layer forming step is not particularly limited, it is performed, for example, as follows. Sputtering, CVD, or the like, for example, is used to form the underlying layer. Then, a photosensitive resist is applied so as to cover the entire surface of the underlying layer, and patterning is performed by exposing and developing the photosensitive resist. This patterning exposes a portion of the underlying layer (the portion where the plating layer is to be formed), and electroplating is performed using the underlying layer as a conductive path to form a plating layer on the exposed underlying layer. A main component of the plating layer is Cu. After that, the wiring layer 820 shown in FIGS. 10 and 11 is formed by removing the resist layer and removing the underlying layer exposed from the plating layer. The wiring layer 820 formed by the wiring layer forming step includes a main surface electrode 821 formed to cover a portion of the substrate main surface 811 and an in-groove conductor formed to cover a portion of the groove 803. 823 included.

次いで、図12および図13に示すように、基材800に半導体素子840を搭載する。半導体素子840が、半導体装置A1の半導体素子40に対応する。半導体素子840を搭載する工程(素子搭載工程)は、フリップチップボンディングにより行う。具体的には、配線層820の主面電極821上の一部に導電性接合材850を形成した後、半導体素子840の電極バンプ(図示略)にフラックスを塗布する。導電性接合材850の形成方法および素材は特に限定されない。本実施形態においては、導電性接合材850として、たとえばSn-Ag系合金またはSn-Sb系合金などの鉛フリーはんだを電解めっきにより形成する。この場合、スパッタリングやCVDにより、配線層820および各基板主面811の全面を覆う導電性の下地層を形成した後、当該下地層上にレジストをパターン形成する。そして、下地層を導電経路とした電解めっきにより、レジストから露出した下地層に導電性接合材850を形成した後、レジストと導電性接合材850に覆われていない下地層とを除去する。これにより、図12および図13に示す導電性接合材850が形成される。あるいは、導電性接合材850として、たとえばはんだペーストやAgペーストをスクリーン印刷により形成してもよい。そして、フリップチップボンダを用いて、素子裏面842を基材800(基板主面811)に対向させて、半導体素子840を導電性接合材850に仮付けする。導電性接合材850によって半導体素子840が仮付けされた状態では、導電性接合材850は、配線層820(主面電極821)と半導体素子840とに挟まれている。次いで、リフローにより導電性接合材850を溶融させた後、冷却により固化させることで、半導体素子840の搭載が完了する。 Next, as shown in FIGS. 12 and 13, a semiconductor element 840 is mounted on the substrate 800. Next, as shown in FIG. A semiconductor element 840 corresponds to the semiconductor element 40 of the semiconductor device A1. The process of mounting the semiconductor element 840 (element mounting process) is performed by flip chip bonding. Specifically, after forming the conductive bonding material 850 on a portion of the main surface electrode 821 of the wiring layer 820 , flux is applied to electrode bumps (not shown) of the semiconductor element 840 . The forming method and material of the conductive bonding material 850 are not particularly limited. In this embodiment, the conductive bonding material 850 is formed by electroplating lead-free solder such as Sn--Ag alloy or Sn--Sb alloy. In this case, after forming a conductive base layer covering the entire surface of the wiring layer 820 and each substrate main surface 811 by sputtering or CVD, a resist is patterned on the base layer. After forming the conductive bonding material 850 on the underlying layer exposed from the resist by electroplating using the underlying layer as a conductive path, the resist and the underlying layer not covered with the conductive bonding material 850 are removed. Thereby, the conductive bonding material 850 shown in FIGS. 12 and 13 is formed. Alternatively, as the conductive bonding material 850, for example, solder paste or Ag paste may be formed by screen printing. Then, using a flip chip bonder, the semiconductor element 840 is temporarily attached to the conductive bonding material 850 with the element rear surface 842 facing the base material 800 (substrate main surface 811). In the state where the semiconductor element 840 is temporarily attached by the conductive bonding material 850 , the conductive bonding material 850 is sandwiched between the wiring layer 820 (main surface electrode 821 ) and the semiconductor element 840 . Next, after the conductive bonding material 850 is melted by reflow, it is solidified by cooling, thereby completing the mounting of the semiconductor element 840 .

次いで、図14に示すように、半導体素子840および配線層820の一部(主面電極821)を覆う封止樹脂860を形成する。当該封止樹脂860が、後に半導体装置A1の封止樹脂60に対応する。本実施形態にかかる封止樹脂860は、電気絶縁性を有しており、たとえば黒色のエポキシ樹脂を主剤とした合成樹脂である。封止樹脂860を形成する工程(封止樹脂形成工程)においては、半導体素子840を露出させることなく完全に覆うように、基材800の主面801側の全面にわたって封止樹脂860を形成する。このとき、封止樹脂860は、基材800の主面801と同じ方向を向く樹脂主面861を有するとともに、溝部803にも充填された部分を有する。 Next, as shown in FIG. 14, a sealing resin 860 is formed to cover the semiconductor element 840 and part of the wiring layer 820 (main surface electrodes 821). The sealing resin 860 will later correspond to the sealing resin 60 of the semiconductor device A1. The sealing resin 860 according to this embodiment has electrical insulation, and is a synthetic resin containing, for example, a black epoxy resin as a main component. In the process of forming the sealing resin 860 (sealing resin forming process), the sealing resin 860 is formed over the entire main surface 801 side of the base material 800 so as to completely cover the semiconductor element 840 without exposing it. . At this time, the sealing resin 860 has a resin principal surface 861 facing in the same direction as the principal surface 801 of the base material 800 and also has a portion filled with the groove portion 803 .

次いで、図15および図16に示すように、基材800を裏面802側から研削する。基材800を研削する工程(研削工程)においては、溝内導電体823が基材800から露出するまで研削する。研削工程により、溝部803よりもz方向下方に位置した基材800は削り取られ、溝部803に形成された溝内導電体823および封止樹脂860が、裏面802から露出する。また、研削工程により、基材800が半導体素子840ごとに分割され、複数の基板810が形成される。複数の基板810はそれぞれ、上記基板主面811、基板裏面812および複数の基板側面813を有している。各基板側面813は、封止樹脂860に覆われた部分と配線層820(溝内導電体823)に覆われた部分とを有している。また、研削工程によって、封止樹脂860に樹脂裏面862が形成される。樹脂裏面862は、基板裏面812と面一である。 Next, as shown in FIGS. 15 and 16, the base material 800 is ground from the rear surface 802 side. In the step of grinding the substrate 800 (grinding step), the substrate 800 is ground until the in-groove conductors 823 are exposed from the substrate 800 . By the grinding process, the base material 800 positioned below the groove 803 in the z direction is scraped off, and the in-groove conductor 823 and the sealing resin 860 formed in the groove 803 are exposed from the rear surface 802 . In addition, the grinding process divides the base material 800 into semiconductor elements 840 to form a plurality of substrates 810 . Each of the plurality of substrates 810 has the substrate principal surface 811 , the substrate back surface 812 and the plurality of substrate side surfaces 813 . Each substrate side surface 813 has a portion covered with the sealing resin 860 and a portion covered with the wiring layer 820 (in-groove conductor 823). Further, a resin rear surface 862 is formed on the sealing resin 860 by the grinding process. The resin back surface 862 is flush with the substrate back surface 812 .

次いで、図17~図20に示すように、封止樹脂860および配線層820(溝内導電体823)の一部を切断する。切断する工程(切断工程)は、ブレードダイシングにより行う。本実施形態においては、図17および図18に示す切断線CLに沿って、フルカットダイシングを行うことで、半導体素子840ごとの個片に分割する。当該切断線CLは、溝部803に沿っている。当該フルカットダイシングにおいては、上記溝部形成工程で用いたダイシングブレードよりも厚さが薄いダイシングブレードを用いる。たとえば、厚さが60~80μm程度のダイシングブレードを用いる。切断工程によって、図19および図20に示すように、溝内導電体823が分割され、基板側面813を覆う側面電極822が形成される。当該側面電極822は、封止樹脂860の樹脂側面863から露出する側面側露出面822aおよび封止樹脂860の樹脂裏面862から露出する裏面側露出面822bを有する。また、図19および図20に示すように、側面側露出面822aと樹脂側面863とは面一である。裏面側露出面822bと樹脂裏面862と基板裏面812とは面一である。なお、封止樹脂形成工程と切断工程との間において、樹脂主面861側からダイシングテープを貼り付けておき、当該ダイシングテープを切断しないように切断工程(ダイシング)を行うことで、切断工程後に半導体素子840ごとの個片がバラバラにならないようにできる。 Next, as shown in FIGS. 17 to 20, part of the sealing resin 860 and wiring layer 820 (in-groove conductor 823) is cut. The cutting step (cutting step) is performed by blade dicing. In this embodiment, full-cut dicing is performed along cutting lines CL shown in FIGS. The cutting line CL is along the groove portion 803 . In the full-cut dicing, a dicing blade thinner than the dicing blade used in the groove forming step is used. For example, a dicing blade with a thickness of about 60-80 μm is used. The cutting process divides the in-groove conductors 823 to form side electrodes 822 covering the substrate side surfaces 813, as shown in FIGS. The side electrode 822 has a side exposed surface 822 a exposed from the resin side surface 863 of the sealing resin 860 and a back surface side exposed surface 822 b exposed from the resin back surface 862 of the sealing resin 860 . Further, as shown in FIGS. 19 and 20, the side exposed surface 822a and the resin side surface 863 are flush with each other. The exposed back surface 822b, the resin back surface 862, and the substrate back surface 812 are flush with each other. Between the encapsulation resin forming process and the cutting process, a dicing tape is attached from the resin main surface 861 side, and the cutting process (dicing) is performed so as not to cut the dicing tape. It is possible to prevent individual pieces of each semiconductor element 840 from being separated.

次いで、図21および図22に示すように、外装めっき830を形成する。当該外装めっき830が半導体装置A1の外装めっき30に対応する。外装めっき830を形成する工程(外装めっき形成工程)は、無電解めっきによる。本実施形態においては、無電解めっきにより、Ni層、Pd層、Au層の順に各々を析出させる。このとき、封止樹脂860から露出する配線層820に接し、これを覆うようにNi層が形成される。そして、Ni層上にPd層、Pd層上にAu層が形成される。これにより、図21および図22に示す外装めっき830が形成される。なお、素材がシリコンである基材800(基板810)には、Ni層が析出されないので、基板裏面812には外装めっき830が形成されない。外装めっき形成工程で形成された外装めっき830は、配線層820の側面電極822を覆うように形成される。外装めっき830は、側面側露出面822aを覆う側面被覆部831と裏面側露出面822bを覆う裏面被覆部832とを含む。 Next, as shown in FIGS. 21 and 22, exterior plating 830 is formed. The exterior plating 830 corresponds to the exterior plating 30 of the semiconductor device A1. The step of forming the outer plating 830 (the outer plating forming step) is by electroless plating. In this embodiment, the Ni layer, the Pd layer, and the Au layer are deposited in this order by electroless plating. At this time, a Ni layer is formed so as to contact and cover the wiring layer 820 exposed from the sealing resin 860 . A Pd layer is formed on the Ni layer, and an Au layer is formed on the Pd layer. As a result, exterior plating 830 shown in FIGS. 21 and 22 is formed. Since the Ni layer is not deposited on the base material 800 (substrate 810 ) made of silicon, the exterior plating 830 is not formed on the back surface 812 of the substrate. The exterior plating 830 formed in the exterior plating forming step is formed so as to cover the side electrode 822 of the wiring layer 820 . The exterior plating 830 includes a side covering portion 831 covering the side exposed surface 822a and a back covering portion 832 covering the back exposed surface 822b.

以上の工程を経ることで、図1~図6に示す半導体装置A1が製造される。なお、上記した半導体装置A1の製造方法は一例であって、これに限定されない。 Through the above steps, the semiconductor device A1 shown in FIGS. 1 to 6 is manufactured. The method for manufacturing the semiconductor device A1 described above is an example, and the present invention is not limited to this.

次に、半導体装置A1および半導体装置A1の製造方法の作用効果について説明する。 Next, the effects of the semiconductor device A1 and the method for manufacturing the semiconductor device A1 will be described.

半導体装置A1によれば、配線層20は、基板10の基板側面13を覆う側面電極22を含んでいる。そして、側面電極22の側面側露出面221は、樹脂側面63と面一であり、封止樹脂60の樹脂側面63から露出している。このような構成をとることで、はんだを用いて、半導体装置A1を回路基板に実装した際、当該はんだが半導体装置A1の側面に形成される。したがって、はんだの接合状態を、上方および側方から容易に目視確認することができる。 According to the semiconductor device A<b>1 , the wiring layer 20 includes the side electrode 22 covering the side surface 13 of the substrate 10 . A side exposed surface 221 of the side electrode 22 is flush with the resin side surface 63 and is exposed from the resin side surface 63 of the sealing resin 60 . With such a configuration, when the semiconductor device A1 is mounted on the circuit board using solder, the solder is formed on the side surface of the semiconductor device A1. Therefore, the joint state of the solder can be easily visually confirmed from above and from the side.

半導体装置A1によれば、配線層20の側面電極22を覆う外装めっき30を備えている。外装めっき30は、配線層20よりもはんだ濡れ性が高い素材からなる。したがって、半導体装置A1を回路基板に実装する際、はんだが外装めっき30の表面に均一に広がる。そのため、当該はんだの接合強度を高めることができるので、半導体装置A1の回路基板への実装強度を高めることができる。また、配線層20の素材がCuであり、Cuは大気中での酸化によって表面に酸化膜が形成される。当該酸化膜は、Cuよりも、はんだの濡れ性が低く、かつ、導電性が低い。したがって、外装めっき30によって、配線層20(側面電極22)を覆うことで、はんだの濡れ性の低下および導電性の低下を抑制することができる。 According to the semiconductor device A1, the exterior plating 30 covering the side electrodes 22 of the wiring layer 20 is provided. The exterior plating 30 is made of a material having higher solder wettability than the wiring layer 20 . Therefore, when the semiconductor device A1 is mounted on the circuit board, the solder spreads uniformly over the surface of the exterior plating 30. As shown in FIG. Therefore, since the bonding strength of the solder can be increased, the mounting strength of the semiconductor device A1 to the circuit board can be increased. The material of the wiring layer 20 is Cu, and an oxide film is formed on the surface of Cu by oxidation in the atmosphere. The oxide film has lower solder wettability and lower electrical conductivity than Cu. Therefore, by covering the wiring layer 20 (side electrode 22) with the exterior plating 30, it is possible to suppress the deterioration of solder wettability and conductivity.

半導体装置A1の製造方法によれば、切断工程時のブレードダイシングにおいて、封止樹脂860および配線層820の一部を切断している。よって、当該ブレードダイシングにおいて、基材800(基板810)を切断していない。基材800は、真性半導体材料であるシリコンからなり、比較的硬い素材であるので、当該基材800をブレードダイシングすると、チッピングが発生しうる。しかしながら、本実施形態においては、当該基材800を切断しないため、上記チッピングの発生を抑制することができる。 According to the manufacturing method of the semiconductor device A1, the sealing resin 860 and part of the wiring layer 820 are cut in blade dicing during the cutting process. Therefore, in the blade dicing, the base material 800 (substrate 810) is not cut. Since the base material 800 is made of silicon, which is an intrinsic semiconductor material, and is a relatively hard material, chipping may occur when the base material 800 is diced with a blade. However, in this embodiment, since the base material 800 is not cut, the occurrence of chipping can be suppressed.

上記した製造方法においては、配線層形成工程によって形成される配線層820は、図11に示す断面形状となる場合を示したが、これに限定されない。たとえば、配線層形成工程における処理方法の違いや下地層およびめっき層の析出量のばらつきなどによって、図23に示すように、溝内導電体823(配線層820)の厚みにばらつきが生じる場合もある。また、図24に示すように、溝部803が溝内導電体823で充填される場合もある。これらの場合であっても、後の切断工程によって溝内導電体823が切断されて、図20に示すように側面側露出面822aを有する側面電極822が形成される。また、配線形成工程によって形成される配線層820は、その厚みにばらつきが生じるだけでなく、幅方向の寸法にもばらつきが生じうる。このように、配線層820の幅方向寸法にばらつきが生じた場合、たとえば図25に示すように、配線層20の側面電極22において、z方向に延びる端縁221aが曲線状になる。また、外装めっき30は、側面電極22を覆うように形成されるので、図25に示すように側面電極22の側面側露出面221に応じた形状となっている。なお、図25においては、側面電極22は、z方向中央部の幅方向寸法d1が大きく、かつ、z方向外方部の幅方向寸法d2が小さくなるように、端縁221aが湾曲している場合を示しているが、反対に、z方向中央部の幅方向寸法が小さく、かつ、z方向外方部の幅方向寸法が大きくなるように、端縁221aが湾曲していてもよい。あるいは、端縁221aが波のように曲がっていてもよい。 In the manufacturing method described above, the wiring layer 820 formed in the wiring layer forming step has a cross-sectional shape shown in FIG. 11, but is not limited to this. For example, the thickness of the in-groove conductor 823 (wiring layer 820) may vary, as shown in FIG. be. Also, as shown in FIG. 24, the groove 803 may be filled with an in-groove conductor 823 . Even in these cases, the in-groove conductor 823 is cut in a later cutting step to form a side electrode 822 having a side exposed surface 822a as shown in FIG. In addition, the wiring layer 820 formed by the wiring forming process may not only vary in thickness, but may also vary in dimension in the width direction. In this way, when the wiring layer 820 varies in width, the side electrode 22 of the wiring layer 20 has a curved edge 221a extending in the z-direction, as shown in FIG. In addition, since the exterior plating 30 is formed so as to cover the side electrode 22, it has a shape corresponding to the side exposed surface 221 of the side electrode 22 as shown in FIG. In FIG. 25, the side electrode 22 has a curved edge 221a such that the width dimension d1 of the central portion in the z direction is large and the width dimension d2 of the outer portion in the z direction is small. Although a case is shown, the edge 221a may be curved such that the widthwise dimension of the z-direction central portion is small and the widthwise dimension of the z-direction outer portion is large. Alternatively, edge 221a may be curved like a wave.

図26~図30は、本開示の半導体装置およびその製造方法の他の実施の形態を示している。なお、これらの図において、上記実施形態と同一または類似の要素には、上記実施形態と同一の符号を付している。 26 to 30 show another embodiment of the disclosed semiconductor device and its manufacturing method. In these figures, the same or similar elements as in the above embodiment are denoted by the same reference numerals as in the above embodiment.

図26~図28は、第2実施形態にかかる半導体装置を示している。第2実施形態の半導体装置A2は、半導体装置A1と比較して、外装めっき30の裏面被覆部32が、裏面側露出面222から基板裏面12の一部に跨って形成されている点で主に異なる。 26 to 28 show the semiconductor device according to the second embodiment. The semiconductor device A2 of the second embodiment is different from the semiconductor device A1 in that the back surface covering portion 32 of the exterior plating 30 is formed over a part of the substrate back surface 12 from the back surface side exposed surface 222. different.

図26は、半導体装置A2を示す斜視図であって、半導体装置A2の底面側から見たときの状態を示している。図27は、半導体装置A2を示す底面図である。図28は、半導体装置A2を示す断面図であり、第1実施形態の図5に対応する断面である。 FIG. 26 is a perspective view showing the semiconductor device A2, showing the state when viewed from the bottom side of the semiconductor device A2. FIG. 27 is a bottom view showing the semiconductor device A2. FIG. 28 is a cross-sectional view showing the semiconductor device A2, which corresponds to FIG. 5 of the first embodiment.

本実施形態においては、外装めっき30は、上記するように、裏面被覆部32が、裏面側露出面222から基板裏面12の一部に跨って形成されている。この裏面被覆部32は、図27および図28に示すように、裏面側露出面被覆部321および基板裏面被覆部322を含んでいる。裏面側露出面被覆部321は、配線層20の側面電極22の裏面側露出面222を覆う。基板裏面被覆部322は、基板10の基板裏面12の一部を覆う。 In the present embodiment, the exterior plating 30 has the back covering portion 32 formed over a portion of the substrate back surface 12 from the back surface side exposed surface 222 as described above. 27 and 28, the rear surface covering portion 32 includes a rear surface side exposed surface covering portion 321 and a substrate rear surface covering portion 322. As shown in FIGS. The back-side exposed surface covering portion 321 covers the back-side exposed surface 222 of the side electrode 22 of the wiring layer 20 . The substrate rear surface covering portion 322 covers a portion of the substrate rear surface 12 of the substrate 10 .

本実施形態においては、外装めっき30の裏面被覆部32は、平面視において矩形状である。平面視において、裏面被覆部32の長手方向の寸法は、50~200μm程度である。また、裏面被覆部32は、互いに積層されたシード層および金属層から構成される。シード層は、基板裏面12の一部および裏面側露出面222に接しており、たとえばTi層およびCu層が積層されて構成されている。この場合、Ti層が基板裏面12の一部および裏面側露出面222に接しており、Ti層上にCu層が形成されている。金属層は、シード層に接しており、たとえばNi層、Pd層およびAu層が積層されて構成されている。なお、金属層の素材は、これに限定されず、Ni層およびAu層が積層されて構成されていてもよいし、Au層のみで構成されていてもよい。 In this embodiment, the back covering portion 32 of the exterior plating 30 has a rectangular shape in plan view. In plan view, the longitudinal dimension of the back surface covering portion 32 is about 50 to 200 μm. Further, the back surface covering portion 32 is composed of a seed layer and a metal layer that are laminated to each other. The seed layer is in contact with part of the substrate rear surface 12 and the rear surface side exposed surface 222, and is configured by laminating a Ti layer and a Cu layer, for example. In this case, the Ti layer is in contact with part of the substrate rear surface 12 and the rear surface side exposed surface 222, and the Cu layer is formed on the Ti layer. The metal layer is in contact with the seed layer, and is configured by laminating, for example, a Ni layer, a Pd layer and an Au layer. In addition, the material of the metal layer is not limited to this, and may be configured by laminating a Ni layer and an Au layer, or may be configured by an Au layer alone.

本実施形態における外装めっき30の形成方法は、特に限定されないが、たとえば次のようにして行われる。それは、研削工程後であって切断工程前に、外装めっき30を形成する部分にシード層を形成する。シード層の形成領域は、たとえば基板裏面812から露出した溝内導電体823の全面とこれに繋がる基板裏面812の一部とである。シード層の形成は、たとえば、図15に示す状態において、スパッタリングやCVDなどより、基板810の基板裏面812側の全面に、Ti層およびCu層を形成する。そして、フォトリソグラフィにより、パターニングされた感光性レジストを形成する。そして、感光性レジストから露出するTiおよびCu層をエッチングにより除去した後、感光性レジストを除去する。これにより、基板裏面812から露出した溝内導電体823の全面とこれに繋がる基板裏面812の一部とにシード層が形成される。シード層の形成後は、上記切断工程および上記外装めっき形成工程を行うことで、図26~図28に示す外装めっき30が形成される。 Although the method of forming the exterior plating 30 in this embodiment is not particularly limited, it is performed, for example, as follows. After the grinding process and before the cutting process, it forms a seed layer on the portion where the exterior plating 30 is to be formed. The formation region of the seed layer is, for example, the entire surface of the in-groove conductor 823 exposed from the substrate back surface 812 and part of the substrate back surface 812 connected thereto. For example, in the state shown in FIG. 15, a Ti layer and a Cu layer are formed on the entire surface of the substrate 810 on the substrate back surface 812 side by sputtering, CVD, or the like. Then, a patterned photosensitive resist is formed by photolithography. After removing the Ti and Cu layers exposed from the photosensitive resist by etching, the photosensitive resist is removed. As a result, a seed layer is formed on the entire surface of the in-groove conductor 823 exposed from the substrate back surface 812 and part of the substrate back surface 812 connected thereto. After forming the seed layer, the cutting step and the exterior plating forming step are performed to form the exterior plating 30 shown in FIGS.

半導体装置A2によれば、半導体装置A1と同様に、封止樹脂60から露出する配線層20(側面電極22)を備えている。これにより、はんだを用いて、半導体装置A2を回路基板に実装した際、当該はんだが半導体装置A2の側面に形成される。したがって、はんだの接合状態を、上方および側方から容易に目視確認することができる。 The semiconductor device A2 includes the wiring layer 20 (side electrode 22) exposed from the sealing resin 60, like the semiconductor device A1. As a result, when the semiconductor device A2 is mounted on the circuit board using solder, the solder is formed on the side surface of the semiconductor device A2. Therefore, the joint state of the solder can be easily visually confirmed from above and from the side.

半導体装置A2によれば、外装めっき30の裏面被覆部32が、第1実施形態における裏面被覆部32よりも大きい。これにより、はんだを用いて、半導体装置A2を回路基板に実装する際に、当該はんだを接合させる面積を大きくすることができる。したがって、はんだの接合強度を高めることができるので、半導体装置A2の回路基板への実装強度を高めることができる。また、半導体装置A2においては、側面被覆部31および裏面被覆部32に跨るようにはんだフィレットが形成されやすい。 According to the semiconductor device A2, the back covering portion 32 of the exterior plating 30 is larger than the back covering portion 32 in the first embodiment. As a result, when the semiconductor device A2 is mounted on the circuit board using solder, the solder bonding area can be increased. Therefore, since the bonding strength of the solder can be increased, the mounting strength of the semiconductor device A2 to the circuit board can be increased. Further, in the semiconductor device A2, a solder fillet is likely to be formed so as to straddle the side surface covering portion 31 and the back surface covering portion 32 .

図29および図30は、第3実施形態にかかる半導体装置を示している。第3実施形態の半導体装置A3は、半導体装置A1と比較して、基板10において、基板主面11から基板裏面12まで貫通する溝15が形成されている点で主に異なる。 29 and 30 show the semiconductor device according to the third embodiment. The semiconductor device A3 of the third embodiment differs from the semiconductor device A1 mainly in that a groove 15 penetrating from the substrate main surface 11 to the substrate back surface 12 is formed in the substrate 10 .

図29は、半導体装置A3を示す平面図である。図29においては、封止樹脂60を想像線(二点鎖線)で示している。図30は、図29のXXX-XXX線に沿う断面図であって、第1実施形態の図5に示す断面に対応する。 FIG. 29 is a plan view showing the semiconductor device A3. In FIG. 29, the encapsulating resin 60 is indicated by imaginary lines (double-dot chain lines). FIG. 30 is a cross-sectional view taken along line XXX-XXX in FIG. 29 and corresponds to the cross-section shown in FIG. 5 of the first embodiment.

本実施形態においては、図29および図30に示すように、基板10の基板主面11には、複数の溝15が形成されている。本実施形態においては、1つのy方向に沿って延びる溝15と3つのx方向に沿って延びる溝15が形成されている。複数の溝15の各々は、基板主面11から基板裏面12まで貫通しており、封止樹脂60が充填されている。複数の溝15によって、基板10は、複数の基板10’に分割されている。各基板10’には、配線層20がそれぞれ形成されている。各配線層20は、導電性接合材50を介して、半導体素子40に導通している。複数の基板10’は、溝15に充填された封止樹脂60によって互いに絶縁されている。なお、溝15の配置および形状は限定されない。 In this embodiment, as shown in FIGS. 29 and 30, a plurality of grooves 15 are formed in the main surface 11 of the substrate 10 . In this embodiment, one groove 15 extending along the y direction and three grooves 15 extending along the x direction are formed. Each of the plurality of grooves 15 penetrates from the substrate main surface 11 to the substrate back surface 12 and is filled with the sealing resin 60 . A plurality of grooves 15 divide the substrate 10 into a plurality of substrates 10'. A wiring layer 20 is formed on each substrate 10'. Each wiring layer 20 is electrically connected to the semiconductor element 40 via the conductive bonding material 50 . The plurality of substrates 10 ′ are insulated from each other by the sealing resin 60 filled in the grooves 15 . Note that the arrangement and shape of the groove 15 are not limited.

本実施形態における溝15の形成方法は、特に限定されないが、たとえば次のようにして行われる。それは、図8および図9に示す溝部形成工程において、溝部803を形成するときに、溝15に対応する溝を形成する。当該溝の形成では、溝部803と同様に、ブレードダイシングによるハーフカットダイシングを行う。当該ハーフカットダイシングにおける溝の深さは、溝部803の深さと同じである。なお、溝15を形成するためのハーフカットダイシングに用いるダイシングブレードの厚さは、溝部803を形成するときに用いるダイシングブレードの厚さと同じであってもよいし、異なっていてもよい。その後は、上記第1実施形態と同じである。 A method for forming the grooves 15 in the present embodiment is not particularly limited, but is performed, for example, as follows. 8 and 9, a groove corresponding to the groove 15 is formed when the groove 803 is formed. In forming the groove, half-cut dicing by blade dicing is performed in the same manner as the groove portion 803 . The depth of the groove in the half-cut dicing is the same as the depth of the groove portion 803 . The thickness of the dicing blade used for half-cut dicing for forming the grooves 15 may be the same as or different from the thickness of the dicing blade used for forming the grooves 803 . After that, the process is the same as the first embodiment.

半導体装置A3によれば、半導体装置A1と同様に、封止樹脂60から露出する配線層20(側面電極22)を備えている。これにより、はんだを用いて、半導体装置A3を回路基板に実装した際、当該はんだが半導体装置A3の側面に形成される。したがって、はんだの接合状態を、上方および側方から容易に目視確認することができる。 The semiconductor device A3 includes the wiring layer 20 (side electrode 22) exposed from the sealing resin 60, like the semiconductor device A1. As a result, when the semiconductor device A3 is mounted on the circuit board using solder, the solder is formed on the side surface of the semiconductor device A3. Therefore, the joint state of the solder can be easily visually confirmed from above and from the side.

半導体装置A3によれば、基板10が、溝15によって、互いに絶縁された領域(複数の基板10’)に分割されている。したがって、各領域間で、基板10を介して電流経路が発生しない。これにより、半導体素子40の端子間での意図せぬ短絡を防止することができ、また、リーク電流に対するロバスト性を高めることができる。 According to the semiconductor device A3, the substrate 10 is divided by the grooves 15 into mutually insulated regions (a plurality of substrates 10'). Therefore, no current path occurs through the substrate 10 between the regions. As a result, it is possible to prevent an unintended short circuit between the terminals of the semiconductor element 40, and to improve the robustness against leakage current.

第1実施形態ないし第3実施形態においては、配線層20が基板10に接している場合を示したが、これに限定されず、配線層20と基板10との間に絶縁層が介在していてもよい。このような絶縁層としては、SiO2やポリイミド樹脂、フェノール樹脂などがある。たとえば、SiO2の場合、溝部形成工程後であって配線層形成工程前に、基材800を熱酸化することによって、形成することができる。よって、SiO2からなる絶縁層は、基板10の基板主面11および基板側面13を少なくとも覆っている。 Although the wiring layer 20 is in contact with the substrate 10 in the first to third embodiments, the present invention is not limited to this, and an insulating layer is interposed between the wiring layer 20 and the substrate 10. may Such insulating layers include SiO 2 , polyimide resin, phenol resin, and the like. For example, in the case of SiO 2 , it can be formed by thermally oxidizing the base material 800 after the groove forming process and before the wiring layer forming process. Therefore, the insulating layer made of SiO 2 covers at least the main surface 11 and the side surface 13 of the substrate 10 .

第1実施形態ないし第3実施形態においては、4つの樹脂側面63からそれぞれ配線層20(側面電極22)を露出させることで、各樹脂側面63に、端子となる外装めっき30が形成される場合を示したが、これに限定されない。たとえば、x方向を向く一対の樹脂側面63のそれぞれあるいはy方向を向く一対の樹脂側面63のそれぞれにおいて、配線層20(側面電極22)を露出させるようにしてもよい。すなわち、半導体装置A1~A3においては、いわゆるQFNパッケージ型である場合を示したが、いわゆるSONパッケージ型であってもよい。 In the first to third embodiments, by exposing the wiring layer 20 (side electrode 22) from each of the four resin side surfaces 63, the external plating 30 that becomes a terminal is formed on each resin side surface 63. is shown, but is not limited to this. For example, the wiring layer 20 (side electrode 22) may be exposed on each of the pair of resin side surfaces 63 facing the x direction or each of the pair of resin side surfaces 63 facing the y direction. That is, although the semiconductor devices A1 to A3 are of the so-called QFN package type, they may be of the so-called SON package type.

第1実施形態ないし第3実施形態においては、1つの樹脂側面63から2つの側面電極22が露出している場合を示したが、1つの樹脂側面63から露出する側面電極22の数はこれに限定されない。すなわち、1つの樹脂側面63から露出する側面電極22の数は、1つであってもよいし、3つであってもよいし、それ以上であってもよい。さらに、各樹脂側面63から露出する側面電極22の数は、樹脂側面63ごとに異なっていてもよい。 In the first to third embodiments, two side electrodes 22 are exposed from one resin side surface 63, but the number of side electrodes 22 exposed from one resin side surface 63 is Not limited. That is, the number of side electrodes 22 exposed from one resin side surface 63 may be one, three, or more. Furthermore, the number of side electrodes 22 exposed from each resin side surface 63 may be different for each resin side surface 63 .

本開示にかかる半導体装置およびその製造方法は、上記した実施形態に限定されるものではない。本開示の半導体装置の各部の具体的な構成および本開示の半導体装置の製造方法の各工程の具体的な処理は、種々に設計変更自在である。 The semiconductor device and manufacturing method thereof according to the present disclosure are not limited to the above-described embodiments. The specific configuration of each part of the semiconductor device of the present disclosure and the specific processing of each step of the manufacturing method of the semiconductor device of the present disclosure can be changed in design in various ways.

A1~A3:半導体装置
10,10’:基板
11 :基板主面
12 :基板裏面
13 :基板側面
15 :溝
20 :配線層
21 :主面電極
22 :側面電極
221 :側面側露出面
221a :端縁
222 :裏面側露出面
30 :外装めっき
31 :側面被覆部
32 :裏面被覆部
321 :裏面側露出面被覆部
322 :基板裏面被覆部
40 :半導体素子
41 :素子主面
42 :素子裏面
50 :導電性接合材
60 :封止樹脂
61 :樹脂主面
62 :樹脂裏面
63 :樹脂側面
800 :基材
801 :主面
802 :裏面
803 :溝部
804 :底面
805 :起立面
810 :基板
811 :基板主面
812 :基板裏面
813 :基板側面
820 :配線層
821 :主面電極
822 :側面電極
822a :側面側露出面
822b :裏面側露出面
823 :溝内導電体
830 :外装めっき
831 :側面被覆部
832 :裏面被覆部
840 :半導体素子
842 :素子裏面
850 :導電性接合材
860 :封止樹脂
861 :樹脂主面
862 :樹脂裏面
863 :樹脂側面
CL :切断線
DL :ダイシング線
A1 to A3: Semiconductor device 10, 10': Substrate 11: Main surface 12: Back surface 13: Side surface 15: Groove 20: Wiring layer 21: Main surface electrode 22: Side electrode 221: Side exposed surface 221a: Edge Edge 222 : Backside exposed surface 30 : Exterior plating 31 : Side covering portion 32 : Backside covering portion 321 : Backside exposed surface covering portion 322 : Substrate backside covering portion 40 : Semiconductor element 41 : Element main surface 42 : Element back surface 50 : Conductive bonding material 60 : Sealing resin 61 : Resin main surface 62 : Resin back surface 63 : Resin side surface 800 : Base material 801 : Main surface 802 : Back surface 803 : Groove 804 : Bottom surface 805 : Upright surface 810 : Substrate 811 : Substrate main Surface 812: substrate back surface 813: substrate side surface 820: wiring layer 821: main surface electrode 822: side electrode 822a: side exposed surface 822b: back surface side exposed surface 823: in-groove conductor 830: exterior plating 831: side covering portion 832 : Back surface coating part 840 : Semiconductor element 842 : Element back surface 850 : Conductive bonding material 860 : Sealing resin 861 : Resin main surface 862 : Resin back surface 863 : Resin side surface CL : Cutting line DL : Dicing line

Claims (19)

第1方向において互いに反対側を向く基板主面および基板裏面と、前記第1方向に直交する第2方向を向く基板側面とを有する基板と、
前記基板主面の一部を覆う主面電極、および、前記主面電極に繋がり、かつ、前記基板側面の一部を覆う側面電極を有する配線層と、
前記主面電極に導通し、かつ、前記基板主面に対向して前記基板に搭載された半導体素子と、
前記基板側面と同じ方向を向く樹脂側面を有し、前記半導体素子および前記主面電極を覆う封止樹脂と、
を備えており、
前記側面電極は、前記封止樹脂から露出し、かつ、前記基板側面と同じ方向を向く側面側露出面を有しており、
前記側面側露出面と前記樹脂側面とは、面一であり、
前記側面電極は、前記封止樹脂から露出し、かつ、前記基板裏面と同じ方向を向く裏面側露出面を有しており、
前記裏面側露出面と前記基板裏面とは、面一である、
ことを特徴とする半導体装置。
a substrate having a substrate main surface and a substrate back surface facing opposite to each other in a first direction, and a substrate side surface facing in a second direction orthogonal to the first direction;
a wiring layer having a main-surface electrode covering a portion of the substrate main surface and a side-surface electrode connected to the main-surface electrode and covering a portion of the side surface of the substrate;
a semiconductor element electrically connected to the principal surface electrode and mounted on the substrate so as to face the principal surface of the substrate;
a sealing resin having a resin side surface facing the same direction as the side surface of the substrate and covering the semiconductor element and the main surface electrode;
and
the side electrode has a side exposed surface that is exposed from the sealing resin and faces in the same direction as the side surface of the substrate;
The side exposed surface and the resin side surface are flush with each other,
the side electrode has a back side exposed surface that is exposed from the sealing resin and faces the same direction as the back side of the substrate;
The exposed back surface and the back surface of the substrate are flush with each other,
A semiconductor device characterized by:
前記側面側露出面を覆う側面被覆部を含む外装めっきをさらに備える、
請求項1に記載の半導体装置。
Further comprising an exterior plating including a side covering portion covering the side exposed surface,
2. The semiconductor device according to claim 1 .
前記外装めっきは、前記側面被覆部に繋がり、かつ、前記裏面側露出面および前記基板裏面の一部を覆う裏面被覆部をさらに含んでいる、
請求項2に記載の半導体装置。
The exterior plating further includes a back surface covering portion connected to the side surface covering portion and covering the exposed back surface and part of the back surface of the substrate.
3. The semiconductor device according to claim 2 .
前記外装めっきは、互いに積層されたNi層、Pd層およびAu層から構成される、
請求項2または請求項3のいずれかに記載の半導体装置。
The exterior plating is composed of a Ni layer, a Pd layer and an Au layer laminated to each other,
4. The semiconductor device according to claim 2 or 3.
前記基板は、前記基板主面から前記基板裏面まで貫通し、かつ、前記封止樹脂が充填された溝を含む、
請求項1ないし請求項4のいずれか一項に記載の半導体装置。
the substrate includes a groove penetrating from the main surface of the substrate to the back surface of the substrate and filled with the sealing resin;
5. The semiconductor device according to claim 1 .
第1方向において互いに反対側を向く基板主面および基板裏面と、前記第1方向に直交する第2方向を向く基板側面とを有する基板と、 a substrate having a substrate main surface and a substrate back surface facing opposite to each other in a first direction, and a substrate side surface facing in a second direction orthogonal to the first direction;
前記基板主面の一部を覆う主面電極、および、前記主面電極に繋がり、かつ、前記基板側面の一部を覆う側面電極を有する配線層と、 a wiring layer having a main-surface electrode covering a portion of the substrate main surface and a side-surface electrode connected to the main-surface electrode and covering a portion of the side surface of the substrate;
前記主面電極に導通し、かつ、前記基板主面に対向して前記基板に搭載された半導体素子と、 a semiconductor element electrically connected to the principal surface electrode and mounted on the substrate so as to face the principal surface of the substrate;
前記基板側面と同じ方向を向く樹脂側面を有し、前記半導体素子および前記主面電極を覆う封止樹脂と、 a sealing resin having a resin side surface facing the same direction as the side surface of the substrate and covering the semiconductor element and the main surface electrode;
を備えており、and
前記側面電極は、前記封止樹脂から露出し、かつ、前記基板側面と同じ方向を向く側面側露出面を有しており、 the side electrode has a side exposed surface that is exposed from the sealing resin and faces in the same direction as the side surface of the substrate;
前記側面側露出面と前記樹脂側面とは、面一であり、 The side exposed surface and the resin side surface are flush with each other,
前記基板は、前記基板主面から前記基板裏面まで貫通し、かつ、前記封止樹脂が充填された溝を含む、 the substrate includes a groove penetrating from the main surface of the substrate to the back surface of the substrate and filled with the sealing resin;
ことを特徴とする半導体装置。A semiconductor device characterized by:
前記側面電極は、前記第2方向に見て、前記第1方向に延びる端縁が湾曲している、
請求項1ないし請求項6のいずれか一項に記載の半導体装置。
The side electrode has a curved edge extending in the first direction when viewed in the second direction.
7. The semiconductor device according to claim 1.
第1方向において互いに反対側を向く基板主面および基板裏面と、前記第1方向に直交する第2方向を向く基板側面とを有する基板と、 a substrate having a substrate main surface and a substrate back surface facing opposite to each other in a first direction, and a substrate side surface facing in a second direction orthogonal to the first direction;
前記基板主面の一部を覆う主面電極、および、前記主面電極に繋がり、かつ、前記基板側面の一部を覆う側面電極を有する配線層と、 a wiring layer having a main-surface electrode covering a portion of the substrate main surface and a side-surface electrode connected to the main-surface electrode and covering a portion of the side surface of the substrate;
前記主面電極に導通し、かつ、前記基板主面に対向して前記基板に搭載された半導体素子と、 a semiconductor element electrically connected to the principal surface electrode and mounted on the substrate so as to face the principal surface of the substrate;
前記基板側面と同じ方向を向く樹脂側面を有し、前記半導体素子および前記主面電極を覆う封止樹脂と、 a sealing resin having a resin side surface facing the same direction as the side surface of the substrate and covering the semiconductor element and the main surface electrode;
を備えており、and
前記側面電極は、前記封止樹脂から露出し、かつ、前記基板側面と同じ方向を向く側面側露出面を有しており、 the side electrode has a side exposed surface that is exposed from the sealing resin and faces in the same direction as the side surface of the substrate;
前記側面側露出面と前記樹脂側面とは、面一であり、 The side exposed surface and the resin side surface are flush with each other,
前記側面電極は、前記第2方向に見て、前記第1方向に延びる端縁が湾曲している、 The side electrode has a curved edge extending in the first direction when viewed in the second direction.
ことを特徴とする半導体装置。A semiconductor device characterized by:
前記配線層は、互いに積層された下地層およびめっき層から構成されている、
請求項1ないし請求項8のいずれか一項に記載の半導体装置。
The wiring layer is composed of a base layer and a plating layer that are laminated to each other,
9. The semiconductor device according to claim 1 .
前記配線層は、主な成分が銅である、
請求項1ないし請求項9のいずれか一項に記載の半導体装置。
The wiring layer is mainly composed of copper,
10. The semiconductor device according to claim 1 .
前記主面電極と前記半導体素子との間に介在する導電性接合材をさらに備えている、
請求項1ないし請求項10のいずれか一項に記載の半導体装置。
further comprising a conductive bonding material interposed between the principal surface electrode and the semiconductor element;
11. The semiconductor device according to claim 1 .
前記基板は、主な成分が真性半導体材料からなる、
請求項1ないし請求項11のいずれか一項に記載の半導体装置。
The substrate is mainly composed of an intrinsic semiconductor material,
12. The semiconductor device according to claim 1 .
前記真性半導体材料は、シリコンである、
請求項12に記載の半導体装置。
wherein the intrinsic semiconductor material is silicon;
13. The semiconductor device according to claim 12 .
第1方向において互いに反対側を向く基板主面および基板裏面を有する基板を準備する工程と、
前記基板主面から前記第1方向に窪んだ溝部を前記基板に形成する工程と、
前記基板主面の一部を覆う主面電極、および、前記主面電極に繋がり、かつ、少なくとも前記溝部の一部を覆う溝内導電体を有する配線層を形成する工程と、
前記主面電極に導通する半導体素子を、前記基板主面に対向した姿勢で搭載する工程と、
前記半導体素子および前記主面電極を覆う封止樹脂を形成する工程と、
前記封止樹脂および前記溝内導電体を切断することで、前記第1方向に直交する第2方向を向く樹脂側面を前記封止樹脂に形成するとともに、前記溝内導電体を、前記封止樹脂から露出し、かつ、前記樹脂側面と同じ方向を向く側面側露出面を有する側面電極にする切断工程と、
を含んでおり、
前記側面側露出面は、前記樹脂側面と面一である、
ことを特徴とする半導体装置の製造方法。
preparing a substrate having a substrate main surface and a substrate back surface facing opposite to each other in a first direction;
forming a groove in the substrate recessed in the first direction from the main surface of the substrate;
forming a wiring layer having a main surface electrode covering a portion of the main surface of the substrate and an in-groove conductor connected to the main surface electrode and covering at least a portion of the groove;
a step of mounting a semiconductor element electrically connected to the main surface electrode in a posture facing the main surface of the substrate;
forming a sealing resin covering the semiconductor element and the main surface electrode;
By cutting the encapsulating resin and the in-groove conductor, the encapsulating resin is formed with a resin side surface facing a second direction perpendicular to the first direction, and the in-groove conductor is cut into the encapsulating resin. a step of cutting into a side electrode having a side exposed surface exposed from the resin and facing in the same direction as the resin side surface;
contains
The side exposed surface is flush with the resin side surface,
A method of manufacturing a semiconductor device, characterized by:
前記切断工程の前に、前記基板裏面側から前記基板を研削して、前記溝内導電体を前記基板裏面から露出させる研削工程を、さらに含む、
請求項14に記載の半導体装置の製造方法。
Further comprising, prior to the cutting step, grinding the substrate from the back surface side of the substrate to expose the in-groove conductor from the back surface of the substrate,
15. The method of manufacturing a semiconductor device according to claim 14 .
前記切断工程は、ブレードダイシングにより行い、
前記ブレードダイシングにおいて、前記溝部の幅よりも小さい厚みのダイシングブレードを用いる、
請求項14または請求項15に記載の半導体装置の製造方法。
The cutting step is performed by blade dicing,
In the blade dicing, using a dicing blade with a thickness smaller than the width of the groove,
16. The method of manufacturing a semiconductor device according to claim 14 or 15.
前記側面電極は、前記第1方向において前記基板裏面と同じ方向を向く裏面側露出面を有しており、
前記裏面側露出面と前記基板裏面とは、面一である、
請求項14ないし請求項16のいずれか一項に記載の半導体装置の製造方法。
the side electrode has a rear surface side exposed surface facing the same direction as the substrate rear surface in the first direction;
The exposed back surface and the back surface of the substrate are flush with each other,
17. The method of manufacturing a semiconductor device according to claim 14 .
前記側面側露出面を覆う側面被覆部を含む外装めっきを形成する外装めっき形成工程を、さらに含む、
請求項17に記載の半導体装置の製造方法。
further comprising an exterior plating forming step of forming an exterior plating including a side covering portion covering the side exposed surface;
18. The method of manufacturing a semiconductor device according to claim 17 .
前記外装めっきは、前記側面被覆部に繋がり、かつ、前記裏面側露出面および前記基板裏面の一部を覆う裏面被覆部をさらに含んでおり、
前記外装めっき形成工程において、前記側面被覆部とともに前記裏面被覆部を形成する、
請求項18に記載の半導体装置の製造方法。
The exterior plating further includes a back surface covering portion connected to the side surface covering portion and covering a part of the back side exposed surface and the back surface of the substrate,
forming the rear surface covering portion together with the side surface covering portion in the exterior plating forming step;
19. The method of manufacturing a semiconductor device according to claim 18 .
JP2018091208A 2018-05-10 2018-05-10 Semiconductor device and method for manufacturing semiconductor device Active JP7154818B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018091208A JP7154818B2 (en) 2018-05-10 2018-05-10 Semiconductor device and method for manufacturing semiconductor device
US16/406,461 US10930615B2 (en) 2018-05-10 2019-05-08 Semiconductor device and method of manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018091208A JP7154818B2 (en) 2018-05-10 2018-05-10 Semiconductor device and method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JP2019197817A JP2019197817A (en) 2019-11-14
JP7154818B2 true JP7154818B2 (en) 2022-10-18

Family

ID=68464135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018091208A Active JP7154818B2 (en) 2018-05-10 2018-05-10 Semiconductor device and method for manufacturing semiconductor device

Country Status (2)

Country Link
US (1) US10930615B2 (en)
JP (1) JP7154818B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP1695980S (en) * 2021-03-09 2021-09-27

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017199897A (en) 2016-04-20 2017-11-02 ローム株式会社 Semiconductor device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69207507T2 (en) * 1991-02-25 1996-09-12 Sumitomo Electric Industries PCB
JP2009094409A (en) 2007-10-11 2009-04-30 Shinko Electric Ind Co Ltd Semiconductor package and its manufacturing method
JP6210777B2 (en) * 2013-07-26 2017-10-11 新光電気工業株式会社 Bump structure, wiring board, semiconductor device, and bump structure manufacturing method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017199897A (en) 2016-04-20 2017-11-02 ローム株式会社 Semiconductor device

Also Published As

Publication number Publication date
JP2019197817A (en) 2019-11-14
US10930615B2 (en) 2021-02-23
US20190348391A1 (en) 2019-11-14

Similar Documents

Publication Publication Date Title
US7504722B2 (en) Semiconductor device with slanting side surface for external connection
JP7179526B2 (en) Semiconductor device and method for manufacturing semiconductor device
US11004782B2 (en) Semiconductor device with internal and external electrode and method of manufacturing
JP6100480B2 (en) Semiconductor device and manufacturing method thereof
JP4828261B2 (en) Semiconductor device and manufacturing method thereof
KR100611291B1 (en) Circuit device, circuit module, and manufacturing method of the circuit device
JP2009194079A (en) Wiring substrate for use in semiconductor apparatus, method for fabricating the same, and semiconductor apparatus using the same
JP7012489B2 (en) Semiconductor device
JP7154818B2 (en) Semiconductor device and method for manufacturing semiconductor device
US11869844B2 (en) Semiconductor device
US11764130B2 (en) Semiconductor device
JP3957928B2 (en) Semiconductor device and manufacturing method thereof
JP4282514B2 (en) Manufacturing method of semiconductor device
JP4611871B2 (en) Semiconductor device, manufacturing method thereof, and electronic device
JP7269756B2 (en) Semiconductor device and method for manufacturing semiconductor device
JP7382175B2 (en) semiconductor equipment
JP7430988B2 (en) electronic equipment
JP7245037B2 (en) semiconductor equipment
JP7382167B2 (en) Electronic device and method for manufacturing electronic device
JP4518995B2 (en) Semiconductor device and manufacturing method thereof
CN116615800A (en) Semiconductor device with a semiconductor layer having a plurality of semiconductor layers
JP2008078327A (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221005

R150 Certificate of patent or registration of utility model

Ref document number: 7154818

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150