JP7152635B1 - Treatment system and process for waste acid-containing wastewater in copper smelting - Google Patents

Treatment system and process for waste acid-containing wastewater in copper smelting Download PDF

Info

Publication number
JP7152635B1
JP7152635B1 JP2022063470A JP2022063470A JP7152635B1 JP 7152635 B1 JP7152635 B1 JP 7152635B1 JP 2022063470 A JP2022063470 A JP 2022063470A JP 2022063470 A JP2022063470 A JP 2022063470A JP 7152635 B1 JP7152635 B1 JP 7152635B1
Authority
JP
Japan
Prior art keywords
waste acid
treatment system
circulation
communicating
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022063470A
Other languages
Japanese (ja)
Other versions
JP2023143552A (en
Inventor
張愛国
孔徳洋
何健
張孝飛
余佳
李菊穎
許静
豆葉枝
張悦清
曹莉
Original Assignee
生態環境部南京環境科学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 生態環境部南京環境科学研究所 filed Critical 生態環境部南京環境科学研究所
Application granted granted Critical
Publication of JP7152635B1 publication Critical patent/JP7152635B1/en
Publication of JP2023143552A publication Critical patent/JP2023143552A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/24Treatment of water, waste water, or sewage by flotation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/463Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrocoagulation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F2001/007Processes including a sedimentation step
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/12Halogens or halogen-containing compounds
    • C02F2101/14Fluorine or fluorine-containing compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/16Nature of the water, waste water, sewage or sludge to be treated from metallurgical processes, i.e. from the production, refining or treatment of metals, e.g. galvanic wastes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

【課題】銅製錬における廃酸含有廃水の効率的な処理システム及びプロセスを提供する。【解決手段】処理システムは、廃酸含有廃水を順次処理するための、一次処理システム、二次処理システムを含み、プロセスは、脱ヒ素処理のステップS1と、脱フッ素-中和処理のステップS2と、電解高度処理のステップS3とを含む。【選択図】図1A system and process for efficiently treating waste acid-containing wastewater in copper smelting. A treatment system includes a primary treatment system and a secondary treatment system for sequentially treating waste acid-containing wastewater, the process comprising a dearsenication step S1 and a defluoridation-neutralization step S2. and step S3 of electrolytic advanced treatment. [Selection drawing] Fig. 1

Description

本発明は廃酸含有廃水処理の技術分野に関し、具体的には、銅製錬における廃酸含有廃水
の効率的な処理システム及びプロセスに関する。
TECHNICAL FIELD The present invention relates to the technical field of waste acid-containing wastewater treatment, and in particular to an efficient treatment system and process for waste acid-containing wastewater in copper smelting.

銅製錬による廃酸原液は、主に硫酸排煙浄化工程で発生するものであり、酸度が高く、し
かもCu、As、Zn、Pb、Fなどの有害物質の含有量が高く、腐食性が強く、液中の
成分が複雑であるなどの特徴がある。従来の処理方法は、運行コストが高く、総合的な回
収率が低いだけではなく、処理効果が不十分である。
The waste acid stock solution from copper smelting is mainly generated in the sulfuric acid flue gas purification process. , and the components in the liquid are complex. The conventional treatment method not only has high operating cost and low overall recovery rate, but also has insufficient treatment effect.

従来、銅製錬における廃酸含有廃水の処理システムでは、ヒ素硫化沈殿プロセスを利用し
て、廃酸溶液中のヒ素を沈降し、大量のヒ素による汚染を解消できるが、他の重金属元素
に対する除去効果が劣り、従来技術では、廃酸含有廃水処理装置の処理効率が低いことか
ら、単位時間内の処理量が少なく、生産のニーズに答えられず、従来技術における廃酸含
有廃水処理システムは、廃酸溶液を高度処理できないため、廃酸溶液への処理品質が劣る
Conventionally, in the treatment system of waste acid-containing wastewater in copper smelting, the arsenic sulfide precipitation process is used to precipitate arsenic in the waste acid solution, which can eliminate the pollution caused by a large amount of arsenic, but the removal effect on other heavy metal elements In the conventional technology, the treatment efficiency of the waste acid-containing wastewater treatment equipment is low, so the treatment amount in a unit time is small, and the needs of production cannot be met. Since the acid solution cannot be treated at a high level, the treatment quality of the waste acid solution is inferior.

上記の背景技術に記載の課題に対して、本発明は、
廃酸含有廃水を順次処理するための、一次処理システム、二次処理システムを含み、
前記一次処理システムは、循環反応装置と、前記循環反応装置の下方に設けられ、且つ循
環反応装置の排水口と連通している沈殿反応装置とを含み、
前記循環反応装置は、並設された2つの循環反応室と、前記循環反応室の内部に可動に設
けられる第1撹拌器と、前記循環反応室の上部に設けられ、且つ2つの循環反応室を連通
させる上部連通手段と、前記循環反応室の下部に設けられ、且つ2つの循環反応室を連通
させる下部連通手段と、前記上部連通手段に取り付けられ、且つ循環反応室に対応する2
つの排気ターボファンと、負圧配管を介して前記排気ターボファンと連通している硫化水
素ガス回収装置とを含み、
前記上部連通手段には、2つの循環反応室、上部連通手段及び下部連通手段の間で廃酸含
有廃水を循環させる負圧装置が設けられ、前記下部連通手段は沈殿反応装置と連通してお
り、
前記二次処理システムは、沈殿反応装置と連通しているサイクロン電解凝集装置と、前記
サイクロン電解凝集装置と連通している凝集沈殿池とを含み、
前記サイクロン電解凝集装置は、両端の給水口が沈殿反応装置と連通しているサイクロン
電解槽と、前記サイクロン電解槽の中心に設けられる中央回転軸と、前記中央回転軸に設
けられ、且つサイクロン電解槽の給水口に近い2組のハイドロボルテックスファンと、前
記中央回転軸に取り付けられ、且つ2つのハイドロボルテックスファンの間に位置する動
的電解装置と、前記サイクロン電解槽の側壁に水平に設けられ、且つ凝集沈殿池と連通し
ている排水ユニットとを含み、
前記動的電解装置は、中央回転軸に可動に設けられる陽極コアと、陰極コアとを含み、
前記陽極コアは中央回転軸(41)に近く、前記陰極コアは陽極コア外に移動可能に周設
される、銅製錬における廃酸含有廃水の効率的な処理システムを提供する。
In response to the problems described in the background art above, the present invention provides
including a primary treatment system, a secondary treatment system for the sequential treatment of waste acid-containing wastewater,
The primary treatment system comprises a circulation reactor and a precipitation reactor provided below the circulation reactor and in communication with an outlet of the circulation reactor,
The circulation reactor comprises two circulation reaction chambers arranged side by side, a first stirrer movably provided inside the circulation reaction chamber, and two circulation reaction chambers provided above the circulation reaction chamber. upper communication means for communicating with the circulation reaction chamber; lower communication means provided in the lower part of the circulation reaction chamber and communicating the two circulation reaction chambers;
an exhaust turbofan and a hydrogen sulfide gas recovery device in communication with the exhaust turbofan via a negative pressure pipe,
The upper communication means is provided with a negative pressure device for circulating the waste acid-containing wastewater between two circulation reaction chambers, the upper communication means and the lower communication means, and the lower communication means communicates with the precipitation reactor. ,
said secondary treatment system comprising a cyclone flocculation device in communication with a precipitation reactor and a flocculation tank in communication with said cyclone flocculation device;
The cyclone electrolysis flocculation device comprises a cyclone electrolytic cell having water inlets at both ends communicating with the precipitation reaction device, a central rotating shaft provided at the center of the cyclone electrolytic cell, and a cyclone electrolyzing device provided on the central rotating shaft. Two sets of hydrovortex fans close to the water inlet of the tank, a dynamic electrolysis device mounted on the central rotating shaft and positioned between the two hydrovortex fans, and a cyclone electrolysis tank horizontally mounted on the side wall and a drainage unit in communication with the coagulation basin;
The dynamic electrolysis device includes an anode core and a cathode core movably mounted on a central rotating shaft,
The anode core is close to the central rotating shaft (41), and the cathode core is movably mounted around the outside of the anode core, providing an efficient treatment system for waste acid-containing wastewater in copper smelting.

本発明の一態様によれば、前記陽極コアは、前記中央回転軸上に套設される接続軸と、前
記接続軸の両端に設けられる第1接続枠と、前記第1接続枠に取り付けられ、且つ中央回
転軸の径方向に均等に配置されている複数組の電極板マウントと、電極板マウントに取り
付けられ、中央回転軸の軸方向に均等に配置されている複数組の三日月状電極板とを含み

前記三日月状電極板は、鉄電極板、アルミ電極板を含み、前記鉄電極板と、アルミ電極板
は間隔をあけて配置されており、
前記陰極コアは、前記中央回転軸に設けられる第2接続枠と、前記第2接続枠に取り付け
られ、且つ中央回転軸の径方向に均等に配置されている複数組の陰極電極板とを含み、
前記陰極電極板は、三日月状電極板と、サイクロン電解槽の内側壁との間に位置する。
複数の三日月状鉄電極板、アルミ電極板が設けられることにより、廃酸溶液との電極板の
面積が効果的に大きくなり、鉄やアルミの消耗量が増大し、水酸化第二鉄、水酸化アルミ
ニウムコロイドがより多く生じて、マイクロ凝集剤として機能し、水中の懸濁顆粒やコロ
イド汚染物質がマイクロ凝集剤により吸着されて被覆され,安定性が損なわれ、最終的に
沈殿物が形成される。
According to one aspect of the present invention, the anode core includes a connection shaft mounted on the central rotating shaft, first connection frames provided at both ends of the connection shaft, and attached to the first connection frames. and a plurality of sets of electrode plate mounts arranged evenly in the radial direction of the central rotation shaft, and a plurality of sets of crescent-shaped electrode plates attached to the electrode plate mounts and arranged evenly in the axial direction of the central rotation shaft. and
The crescent-shaped electrode plate includes an iron electrode plate and an aluminum electrode plate, and the iron electrode plate and the aluminum electrode plate are spaced apart,
The cathode core includes a second connection frame provided on the central rotating shaft, and a plurality of sets of cathode electrode plates attached to the second connecting frame and evenly arranged in a radial direction of the central rotating shaft. ,
The cathode electrode plate is located between the crescent electrode plate and the inner wall of the cyclone electrolytic cell.
By providing a plurality of crescent-shaped iron electrode plates and aluminum electrode plates, the area of the electrode plates with the waste acid solution is effectively increased, the consumption of iron and aluminum increases, and the ferric hydroxide, water Aluminum oxide colloids are produced more and act as micro-flocculants, suspended granules and colloidal contaminants in water are adsorbed and coated by the micro-flocculants, resulting in loss of stability and finally formation of sediment. be.

本発明の一態様によれば、前記サイクロン電解槽の側壁において複数組の環状ダクトが軸
方向に均等に配置されており、前記環状ダクトにはサイクロン電解槽と連通しているジェ
ットノズルが均等に配置されている。
環状ダクトが設けられることによって、サイクロン電解槽の内圧が増大し、マイクロバブ
ルと組み合わせて空気浮上が実現され、処理効果がさらに向上する。
本発明の一態様によれば、前記下部連通手段は、循環反応室の下部に設けられる連通キャ
ビティと、前記連通キャビティの上部の中央部に設けられる接続カバーと、前記連通キャ
ビティの内部に設けられ、且つ接続カバーの下方に位置するろ過遮断ユニットとを含み、
前記ろ過遮断ユニットは、連通キャビティを排水室とろ滓貯蔵室に仕切り、前記接続カバ
ーには、ろ滓貯蔵室と連通している第1ろ液螺旋搬送機が傾斜して設けられる。
循環反応装置内にろ過遮断ユニットが設けられることによって、循環水流中の沈殿物がろ
過され、また、第1ろ液螺旋搬送機で沈殿物を除去することにより、反応の進行がより十
分になり、脱ヒ素の品質が効果的に向上する。
According to one aspect of the present invention, a plurality of sets of annular ducts are evenly arranged in the axial direction on the side wall of the cyclone electrolytic bath, and jet nozzles communicating with the cyclone electrolytic bath are evenly distributed in the annular ducts. are placed.
By providing the annular duct, the internal pressure of the cyclone electrolytic cell increases, and in combination with the microbubbles, air levitation is realized, further improving the treatment effect.
According to one aspect of the present invention, the lower communication means includes a communication cavity provided in the lower part of the circulation reaction chamber, a connection cover provided in the upper central portion of the communication cavity, and a connection cover provided inside the communication cavity. , and a filtration blocking unit located below the connection cover,
The filtration blocking unit divides the communication cavity into a drain chamber and a cake storage chamber, and the connecting cover is provided with a first filtrate spiral conveyer communicating with the cake storage chamber at an angle.
By installing a filter blocking unit in the circulation reactor, the sediment in the circulating water stream is filtered, and the sediment is removed by the first filtrate spiral conveyer, so that the reaction progresses more fully. , the quality of dearsenicing is effectively improved.

本発明の一態様によれば、前記沈殿反応装置は、連通キャビティの真下に設けられ、且つ
排水室と連通している混合反応室と、前記混合反応室の内部に設けられる第2撹拌器と、
混合反応室の側壁に設けられる石灰石スラリー入り口と、前記混合反応室の下部に設けら
れる石膏沈殿室と、石膏沈殿室に設けられるフィルタプレスとを含み、
フィルタプレスは、石膏沈殿室の内部に対して垂直に可動に設けられる2つの石膏ろ過プ
レス板と、前記石膏沈殿室に設けられ、前記石膏ろ過プレス板を駆動する動力モジュール
と、傾斜して設けられ、且つ石膏沈殿室の中央部空間と連通している第2ろ液螺旋搬送機
とを含む。
According to one aspect of the present invention, the precipitation reactor comprises a mixing reaction chamber provided directly below a communicating cavity and communicating with a drain chamber, and a second stirrer provided inside the mixing reaction chamber. ,
a limestone slurry inlet provided in the side wall of the mixing reaction chamber; a gypsum settling chamber provided in the lower portion of the mixing reaction chamber; and a filter press provided in the gypsum settling chamber;
The filter press includes two gypsum filter press plates that are vertically movable with respect to the interior of the gypsum settling chamber, a power module that is provided in the gypsum settling chamber and drives the gypsum filter press plates, and an inclined gypsum filter press plate. and a second filtrate helical transporter in communication with the central space of the gypsum settling chamber.

フィルタプレスにより沈殿物とろ液が効率的に分離され、処理効率の向上に有利である。
本発明の一態様によれば、前記硫化水素ガス回収装置は、密閉反応槽と、前記密閉反応槽
の上部に設けられる霧化アルカリ液スプレーディスクと、前記密閉反応槽の外壁に套設さ
れる硫化水素ガスジェットリングと、高圧配管を介して硫化水素ガスジェットリングと排
気ターボファンを接続する接続口と、密閉反応槽の下部に設けられ、且つ循環反応室と連
通している硫化ナトリウム溶液補充配管とを含む。
生成した硫化水素ガスが水酸化ナトリウムと硫化ナトリウムを生成することができ、この
ように、有害なガスが回収されて再利用されながら、硫化ナトリウムの使用量が減少し、
このため、コストダウンに有利である。
The filter press efficiently separates the sediment from the filtrate, which is advantageous for improving treatment efficiency.
According to one aspect of the present invention, the hydrogen sulfide gas recovery device comprises a closed reaction vessel, an atomized alkaline solution spray disk provided in the upper part of the closed reaction vessel, and an outer wall of the closed reaction vessel. A hydrogen sulfide gas jet ring, a connection port that connects the hydrogen sulfide gas jet ring and the exhaust turbofan via a high-pressure pipe, and a sodium sulfide solution replenishment provided at the bottom of the closed reaction vessel and communicating with the circulation reaction chamber. including plumbing.
The generated hydrogen sulfide gas can generate sodium hydroxide and sodium sulfide, thus reducing the amount of sodium sulfide used while the harmful gas is recovered and reused,
Therefore, it is advantageous for cost reduction.

銅製錬における廃酸含有廃水の効率的な処理プロセスであって、
まず、廃酸含有廃水と濃度35~45%の硫化ナトリウム溶液とを1:0.08~0.3
の体積比で循環反応室に投入し、第1撹拌器を用いて600~2000r/minの回転
数で持続的に撹拌し、負圧装置によって廃酸含有廃水と硫化ナトリウム溶液を2つの循環
反応室、上部連通手段及び下部連通手段内を循環させ、次に、生成した沈殿物を分離して
、ろ過して排出し、生成した硫化水素廃気を排気ターボファンによって効率的に排気し、
硫化水素ガス回収装置に送る、脱ヒ素処理のステップS1と、
次に、循環反応室内の廃酸含有廃水を沈殿反応装置に入れて、石灰石スラリーを1500
~2800g/L加え、撹拌しながら反応させ、廃酸含有廃水と石灰石を反応させて石膏
及びフッ化カルシウム沈殿を生成し、ろ過プレスをした後、沈殿物を除去し、一次ろ液を
分離し、次に、pHが6~7となるまで一次ろ液に水酸化ナトリウムを加え、撹拌しなが
ら反応させた後、二次ろ過プレスをして、沈殿物を除去し、二次ろ液を分離する、脱フッ
素-中和処理のステップS2と、
サイクロン電解槽の両端から二次ろ液を投入し、ハイドロボルテックスファンの高速回転
によって二次ろ液を渦流とし、陽極コア、陰極コアを回転させて、二次ろ液を電流密度3
30~600A/mで30~60min電解し、水酸化物コロイドを形成し、残りの重
金属汚染物質を吸着し、最後に、水酸化物コロイドを生成した二次ろ液を凝集沈殿池に送
り、空気浮上・沈降分離を行う、電解高度処理のステップS3とを含む。
本発明の有益な効果は以下のとおりである。本発明で提供される銅製錬における廃酸含有
廃水の効率的な処理システムでは、廃酸含有廃水が循環反応装置内を循環的に流れて、硫
化ナトリウムと反応し、循環中に生成した沈殿物がろ過されて排出され、廃酸の上液面の
上方に設けられた排気ターボファンは硫化水素ガスを素早く排出し、繰り返して循環させ
ることにより、反応速度を向上るだけでなく、処理品質を向上できる。
A process for efficient treatment of waste acid-containing wastewater in copper smelting, comprising:
First, waste acid-containing wastewater and a sodium sulfide solution with a concentration of 35 to 45% are mixed at a ratio of 1:0.08 to 0.3.
into the circulation reaction chamber at a volume ratio of , continuously stirred at a rotation speed of 600-2000 r/min using the first stirrer, and the waste acid-containing wastewater and the sodium sulfide solution are subjected to two circulation reactions by a negative pressure device. circulating in the chamber, the upper communication means and the lower communication means, then separating and filtering out the produced precipitate, and efficiently exhausting the produced hydrogen sulfide waste gas by means of an exhaust turbofan;
Step S1 of the arsenic removal treatment to send to the hydrogen sulfide gas recovery device;
Next, the waste acid-containing waste water in the circulation reaction chamber is put into the precipitation reactor, and the limestone slurry is added to 1500
Add up to 2800 g/L, react while stirring, react waste acid-containing wastewater and limestone to produce gypsum and calcium fluoride precipitates, filter and press, remove precipitates, and separate the primary filtrate. Next, sodium hydroxide is added to the primary filtrate until the pH reaches 6 to 7, reacted with stirring, and then subjected to a secondary filtration press to remove precipitates and separate the secondary filtrate. Then, step S2 of the defluorination-neutralization treatment,
The secondary filtrate is charged from both ends of the cyclone electrolytic cell, the secondary filtrate is turned into a vortex by high-speed rotation of the hydrovortex fan, the anode core and cathode core are rotated, and the secondary filtrate is brought to a current density of 3.
Electrolyze at 30-600 A/m 2 for 30-60 minutes to form hydroxide colloids, adsorb remaining heavy metal contaminants, and finally send the secondary filtrate with hydroxide colloids to the coagulation sedimentation tank. , and step S3 of electrolysis high-level processing in which air flotation/sedimentation separation is performed.
Beneficial effects of the present invention are as follows. In the efficient treatment system of waste acid-containing wastewater in copper smelting provided by the present invention, waste acid-containing wastewater circulates in a circulation reactor, reacts with sodium sulfide, and precipitates generated during circulation is filtered and discharged, and the exhaust turbofan installed above the upper liquid level of the waste acid quickly discharges the hydrogen sulfide gas and circulates it repeatedly, not only improving the reaction rate but also improving the processing quality. can improve.

本発明では、サイクロン電解槽、ハイドロボルテックスファン、動的電解装置を設けるこ
とで廃酸含有廃水を効率的且つ動的に電解し、水酸化ナトリウムが過剰に添加されるため
、設けられた鉄電極板、アルミ電極板によって水酸化第二鉄、水酸化アルミニウムコロイ
ドが生成され、マイクロ凝集剤と機能し、水中の懸濁顆粒やコロイド汚染物質がマイクロ
凝集剤により吸着されて被覆され、これにより、処理品質がさらに向上し、Cu、As、
Zn、Pb、Fなどの有害物質への高度処理が達成される。
In the present invention, a cyclone electrolyzer, a hydrovortex fan, and a dynamic electrolyzer are provided to efficiently and dynamically electrolyze the waste water containing waste acid, and the iron electrode provided because sodium hydroxide is excessively added. Ferric hydroxide and colloidal aluminum hydroxide are generated by the plates and aluminum electrode plates, and function as micro-flocculants. The processing quality is further improved, Cu, As,
Advanced treatment to harmful substances such as Zn, Pb, F is achieved.

本発明の実施例1の全体構造模式図である。1 is a schematic diagram of the overall structure of Embodiment 1 of the present invention; FIG. 本発明の実施例1の硫化水素ガス回収装置の構造模式図である。1 is a structural schematic diagram of a hydrogen sulfide gas recovery apparatus according to Example 1 of the present invention; FIG. 本発明の実施例1の下部連通手段の構造模式図である。FIG. 4 is a structural schematic diagram of the lower communication means of Embodiment 1 of the present invention; 本発明の実施例1の沈殿反応装置の構造模式図である。1 is a structural schematic diagram of a precipitation reactor of Example 1 of the present invention; FIG. 本発明の実施例2のサイクロン電解凝集装置の構造模式図である。FIG. 2 is a structural schematic diagram of a cyclone electrocoagulation apparatus according to Example 2 of the present invention; 本発明の実施例2の陽極電極板の構造模式図である。FIG. 4 is a structural schematic diagram of an anode electrode plate according to Example 2 of the present invention; 本発明の実施例2の陰極電極板の構造模式図である。FIG. 4 is a structural schematic diagram of the cathode electrode plate of Example 2 of the present invention; 本発明の実施例3の環状ダクトの構造模式図である。FIG. 4 is a structural schematic diagram of an annular duct according to Embodiment 3 of the present invention;

実施例1
銅製錬における廃酸含有廃水の効率的な処理システムは、廃酸含有廃水を処理する一次処
理システムを含み、
図1に示すように、一次処理システムは、循環反応装置1と、循環反応装置1の下方に設
けられ、且つ循環反応装置1の排水口と連通している沈殿反応装置2とを含み、
循環反応装置1は、並設された2つの循環反応室10と、循環反応室10の内部に可動に
設けられる第1撹拌器14と、循環反応室10の上部に設けられ、且つ2つの循環反応室
10を連通させる上部連通手段11と、循環反応室10の下部に設けられ、且つ2つの循
環反応室10を連通させる下部連通手段12と、上部連通手段11に設けられ、且つ循環
反応室10に対応する2つの排気ターボファン13と、負圧配管を介して排気ターボファ
ン13と連通している硫化水素ガス回収装置3とを含み、
図2に示すように、硫化水素ガス回収装置3は、密閉反応槽30と、密閉反応槽30の上
部に設けられる霧化アルカリ液スプレーディスク31と、密閉反応槽30の外壁に套設さ
れる硫化水素ガスジェットリング32と、高圧配管を介して硫化水素ガスジェットリング
32と排気ターボファン13を接続する接続口33と、密閉反応槽30の下部に設けられ
、且つ循環反応室10と連通している硫化ナトリウム溶液補充配管34とを含む。
上部連通手段11には、2つの循環反応室10、上部連通手段11及び下部連通手段12
の間で廃酸含有廃水を循環させる負圧装置110が設けられ、下部連通手段12は沈殿反
応装置2と連通しており、
図3に示すように、下部連通手段12は、循環反応室10の下部に設けられる連通キャビ
ティ120と、連通キャビティ120の上部の中央部に設けられる接続カバー121と、
連通キャビティ120の内部に設けられ、且つ接続カバー121の下方に位置するろ過遮
断ユニット122とを含み、
ろ過遮断ユニット122は、連通キャビティ120を排水室123とろ滓貯蔵室124に
仕切り、接続カバー121には、ろ滓貯蔵室124と連通している第1ろ液螺旋搬送機1
25が傾斜して設けられる。
図4に示すように、沈殿反応装置2は、連通キャビティ120の真下に設けられ、且つ排
水室123と連通している混合反応室20と、混合反応室20の内部に設けられる第2撹
拌器21と、混合反応室20の側壁に設けられる石灰石スラリー入り口22と、混合反応
室20の下部に設けられる石膏沈殿室23と、石膏沈殿室23に設けられるフィルタプレ
ス24とを含む。
フィルタプレス24は、石膏沈殿室23の内部に垂直に可動に設けられる2つの石膏ろ過
プレス板240と、石膏沈殿室23に設けられ、石膏ろ過プレス板240を駆動する動力
モジュール241と、傾斜して設けられ、且つ石膏沈殿室23の中央部空間と連通してい
る第2ろ液螺旋搬送機242とを含む。
これらのうち、第2ろ液螺旋搬送機242、動力モジュール241、第2撹拌器21、第
1ろ液螺旋搬送機125、負圧装置110、排気ターボファン13、第1撹拌器14は全
て従来技術により製品を採用し、具体的な製品番号は当業者が必要に応じて決定してもよ
い。
Example 1
An efficient treatment system for waste acid-containing wastewater in copper smelting includes a primary treatment system for treating waste acid-containing wastewater,
As shown in FIG. 1, the primary treatment system includes a circulation reactor 1 and a precipitation reactor 2 provided below the circulation reactor 1 and communicating with the outlet of the circulation reactor 1,
The circulation reaction apparatus 1 includes two circulation reaction chambers 10 arranged in parallel, a first stirrer 14 movably provided inside the circulation reaction chamber 10, and a upper communication means 11 for communicating the reaction chambers 10; lower communication means 12 provided in the lower part of the circulation reaction chamber 10 and communicating the two circulation reaction chambers 10; and upper communication means 11 provided in the circulation reaction chambers. including two exhaust turbofans 13 corresponding to 10 and a hydrogen sulfide gas recovery device 3 communicating with the exhaust turbofans 13 via negative pressure piping,
As shown in FIG. 2, the hydrogen sulfide gas recovery device 3 includes a closed reaction tank 30, an atomized alkaline liquid spray disk 31 provided in the upper part of the closed reaction tank 30, and an outer wall of the closed reaction tank 30. A hydrogen sulfide gas jet ring 32, a connection port 33 that connects the hydrogen sulfide gas jet ring 32 and the exhaust turbofan 13 via a high-pressure pipe, and a connection port 33 that is provided at the bottom of the closed reaction tank 30 and communicates with the circulation reaction chamber 10. and a sodium sulfide solution replenishment line 34.
The upper communication means 11 includes two circulation reaction chambers 10, an upper communication means 11 and a lower communication means 12.
A negative pressure device 110 is provided for circulating the waste acid-containing waste water between, and the lower communication means 12 communicates with the precipitation reactor 2,
As shown in FIG. 3, the lower communication means 12 includes a communication cavity 120 provided in the lower part of the circulation reaction chamber 10, a connection cover 121 provided in the upper central part of the communication cavity 120,
a filtration blocking unit 122 provided inside the communication cavity 120 and positioned below the connection cover 121;
The filter blocking unit 122 partitions the communication cavity 120 into a drain chamber 123 and a filter cake storage chamber 124 , and the connection cover 121 includes the first filtrate spiral conveying machine 1 communicating with the filter cake storage chamber 124 .
25 are slanted.
As shown in FIG. 4, the precipitation reactor 2 includes a mixing reaction chamber 20 provided directly below a communicating cavity 120 and communicating with a drain chamber 123, and a second stirrer provided inside the mixing reaction chamber 20. 21, a limestone slurry inlet 22 provided in the side wall of the mixing reaction chamber 20, a gypsum settling chamber 23 provided in the lower portion of the mixing reaction chamber 20, and a filter press 24 provided in the gypsum settling chamber 23.
The filter press 24 includes two gypsum filter press plates 240 vertically movable inside the gypsum settling chamber 23, a power module 241 provided in the gypsum settling chamber 23 for driving the gypsum filter press plates 240, and an inclined gypsum filter press plate 241. and a second filtrate spiral conveyer 242 provided at the end of the gypsum settling chamber 23 and communicating with the central space of the gypsum settling chamber 23 .
Among these, the second filtrate spiral conveying machine 242, the power module 241, the second agitator 21, the first filtrate spiral conveying machine 125, the negative pressure device 110, the exhaust turbofan 13, and the first agitator 14 are all conventional Products are adopted by technology, and specific product numbers may be determined by those skilled in the art according to their needs.

実施例2
実施例1と比較して、以下の点が異なる。
銅製錬における廃酸含有廃水の効率的な処理システムは、廃酸含有廃水を順次処理するた
めの、一次処理システム、二次処理システムを含み、
二次処理システムは、沈殿反応装置2と連通しているサイクロン電解凝集装置4と、サイ
クロン電解凝集装置4と連通している凝集沈殿池5とを含み、
図5に示すように、サイクロン電解凝集装置4は、両端の給水口が沈殿反応装置2と連通
しているサイクロン電解槽40と、サイクロン電解槽40の中心に設けられる中央回転軸
41と、中央回転軸41に設けられ、且つサイクロン電解槽40の給水口に近い2組のハ
イドロボルテックスファン42と、中央回転軸41に取り付けられ、且つ2つのハイドロ
ボルテックスファン42の間に位置する動的電解装置43と、サイクロン電解槽40の側
壁に水平に設けられ、且つ凝集沈殿池5と連通している排水ユニット44とを含み、
動的電解装置43は、中央回転軸41に可動に設けられる陽極コア430、陰極コア43
1を含み、
陽極コア430は中央回転軸41に近く、陰極コア431は陽極コア430外に周設され
る。
図6に示すように、陽極コア430は、中央回転軸41に套設される接続軸432と、接
続軸432の両端に設けられる第1接続枠433と、第1接続枠433に取り付けられ、
且つ中央回転軸41の径方向に均等に配置されている複数組の電極板マウント434と、
電極板マウント434に取り付けられ、中央回転軸41の軸方向に均等に配置されている
複数組の三日月状電極板437とを含み、
三日月状電極板437は、鉄電極板、アルミ電極板を含み、鉄電極板、アルミ電極板は間
隔をあけて配置されている。
図7に示すように、陰極コア431は、中央回転軸41に設けられる第2接続枠435と
、第2接続枠435に取り付けられ、且つ中央回転軸41の径方向に均等に配置されてい
る複数組の陰極電極板436とを含み、
陰極電極板436は、三日月状電極板437と、サイクロン電解槽40の内側壁との間に
位置する。
これらのうち、ハイドロボルテックスファン42は従来技術による製品を採用し、具体的
な製品番号は当業者が必要に応じて決定してもよい。
Example 2
Compared with Example 1, the following points are different.
An efficient treatment system for waste acid-containing wastewater in copper smelting includes a primary treatment system, a secondary treatment system for sequentially treating waste acid-containing wastewater,
The secondary treatment system includes a cyclone flocculation device 4 in communication with the precipitation reactor 2 and a flocculation tank 5 in communication with the cyclone flocculation device 4,
As shown in FIG. 5, the cyclone electrolytic flocculation device 4 includes a cyclone electrolytic bath 40 having water inlets at both ends communicating with the precipitation reactor 2, a central rotary shaft 41 provided at the center of the cyclone electrolytic bath 40, and a central Two sets of hydrovortex fans 42 provided on the rotating shaft 41 and close to the water inlet of the cyclone electrolyzer 40, and a dynamic electrolysis device attached to the central rotating shaft 41 and positioned between the two hydrovortex fans 42. 43, and a drainage unit 44 horizontally mounted on the side wall of the cyclone electrolyzer 40 and in communication with the coagulating sedimentation tank 5,
The dynamic electrolysis device 43 includes an anode core 430 and a cathode core 43 which are movably provided on the central rotating shaft 41.
including 1
Anode core 430 is close to central rotating shaft 41 , and cathode core 431 is provided around anode core 430 .
As shown in FIG. 6, the anode core 430 includes a connection shaft 432 installed on the central rotating shaft 41, first connection frames 433 provided at both ends of the connection shaft 432, and attached to the first connection frames 433,
and a plurality of sets of electrode plate mounts 434 arranged evenly in the radial direction of the central rotating shaft 41;
a plurality of sets of crescent-shaped electrode plates 437 attached to the electrode plate mount 434 and evenly spaced in the axial direction of the central rotating shaft 41;
The crescent-shaped electrode plate 437 includes an iron electrode plate and an aluminum electrode plate, and the iron electrode plate and the aluminum electrode plate are spaced apart.
As shown in FIG. 7, the cathode cores 431 are attached to a second connection frame 435 provided on the central rotating shaft 41 and the second connecting frame 435 and arranged evenly in the radial direction of the central rotating shaft 41. a plurality of sets of cathode electrode plates 436;
Cathode electrode plate 436 is located between crescent electrode plate 437 and the inner wall of cyclone electrolytic cell 40 .
Among these, the hydrovortex fan 42 adopts products according to the prior art, and specific product numbers may be determined by those skilled in the art according to their needs.

実施例3
実施例2と比較して、以下の点が異なる。
図8に示すように、サイクロン電解槽40の側壁において6群の環状ダクト45が軸方向
に均等に配置されており、環状ダクト45においてサイクロン電解槽40と連通している
ジェットノズル46が均等に配置されている。
Example 3
Compared with Example 2, the following points are different.
As shown in FIG. 8 , six groups of annular ducts 45 are evenly arranged in the axial direction on the side wall of the cyclone electrolytic bath 40 , and the jet nozzles 46 communicating with the cyclone electrolytic bath 40 are evenly spaced in the annular ducts 45 . are placed.

実施例4
実施例1の処理システムを用いた銅製錬における廃酸含有廃水の効率的な処理プロセスは
、以下のステップを含む。
S1、脱ヒ素処理
まず、廃酸含有廃水と濃度35%の硫化ナトリウム溶液とを1:0.08の体積比で循環
反応室10に投入し、第1撹拌器14を用いて600r/minの回転数で持続的に撹拌
し、負圧装置110によって廃酸含有廃水と硫化ナトリウム溶液を2つの循環反応室10
、上部連通手段11及び下部連通手段12内を循環させ、次に、生成した沈殿物を分離し
て、ろ過して排出し、生成した硫化水素廃気を排気ターボファン13によって効率的に排
気し、硫化水素ガス回収装置3に送る。
S2、脱フッ素-中和処理
次に、循環反応室内の廃酸含有廃水を沈殿反応装置2に入れて、石灰石スラリーを150
0g/L加え、撹拌しながら反応させ、廃酸含有廃水と石灰石を反応させて石膏及びフッ
化カルシウム沈殿を生成し、ろ過プレスをした後、沈殿物を除去し、一次ろ液を分離し、
次に、pHが6となるまで一次ろ液に水酸化ナトリウムを加え、撹拌しながら反応させた
後、二次ろ過プレスをして、沈殿物を除去し、二次ろ液を分離する。
Example 4
An efficient treatment process for waste acid-containing wastewater in copper smelting using the treatment system of Example 1 includes the following steps.
S1, arsenic removal treatment First, waste acid-containing waste water and a sodium sulfide solution having a concentration of 35% are introduced into the circulation reaction chamber 10 at a volume ratio of 1:0.08, and the first stirrer 14 is used to rotate the mixture at 600 r/min. The waste acid-containing waste water and the sodium sulfide solution are passed through two circulation reaction chambers 10 by a negative pressure device 110 while being continuously stirred at a rotational speed.
, the upper communication means 11 and the lower communication means 12 are circulated, then the produced precipitate is separated, filtered and discharged, and the produced hydrogen sulfide waste gas is efficiently discharged by the exhaust turbo fan 13. , to the hydrogen sulfide gas recovery unit 3 .
S2, defluorination-neutralization treatment Next, the waste acid-containing waste water in the circulation reaction chamber is put into the precipitation reactor 2, and 150% limestone slurry is added.
Add 0 g/L, react while stirring, react waste acid-containing wastewater and limestone to produce gypsum and calcium fluoride precipitates, filter press, remove precipitates, separate primary filtrate,
Next, sodium hydroxide is added to the primary filtrate until the pH reaches 6, and the mixture is reacted with stirring, followed by a secondary filtration press to remove precipitates and separate the secondary filtrate.

実施例5
本実施例に記載の実施例2の処理システムによる銅製錬における廃酸含有廃水の効率的な
処理プロセスは、以下のステップを含む。
S1、脱ヒ素処理
まず、廃酸含有廃水と濃度35%の硫化ナトリウム溶液とを1:0.08の体積比で循環
反応室10に投入し、第1撹拌器14を用いて600r/minの回転数で持続的に撹拌
し、負圧装置110によって廃酸含有廃水と硫化ナトリウム溶液とを2つの循環反応室1
0、上部連通手段11及び下部連通手段12内を循環させ、次に、生成した沈殿物を分離
して、ろ過して排出し、生成した硫化水素廃気を排気ターボファン13によって効率的に
排気し、硫化水素ガス回収装置3に送る。
S2、脱フッ素-中和処理
次に、循環反応室内の廃酸含有廃水を沈殿反応装置2に入れて、石灰石スラリーを150
0g/L加え、撹拌しながら反応させ、廃酸含有廃水と石灰石とを反応させて石膏及びフ
ッ化カルシウム沈殿を生成し、ろ過プレスをした後、沈殿物を除去し、一次ろ液を分離し
、次に、pHが6となるまで一次ろ液に水酸化ナトリウムを加え、撹拌しながら反応させ
た後、二次ろ過プレスをして、沈殿物を除去し、二次ろ液を分離する。
S3、電解高度処理
サイクロン電解槽40の両端から二次ろ液を投入し、ハイドロボルテックスファン42を
2000r/minで高速回転させて二次ろ液を渦流とし、陽極コア430、陰極コア4
31を回転させて、二次ろ液を電流密度330A/mで30min電解し、水酸化物コ
ロイドを形成し、残りの重金属等汚染物質を吸着し、最後に、水酸化物コロイドを生成し
た二次ろ液を凝集沈殿池5に送り、空気浮上・沈降分離を行う。
Example 5
An efficient treatment process for waste acid-containing wastewater in copper smelting by the treatment system of Example 2 described in this example includes the following steps.
S1, arsenic removal treatment First, waste acid-containing waste water and a sodium sulfide solution having a concentration of 35% are introduced into the circulation reaction chamber 10 at a volume ratio of 1:0.08, and the first stirrer 14 is used to rotate the mixture at 600 r/min. The waste acid-containing waste water and the sodium sulfide solution are passed through two circulation reaction chambers 1 by a negative pressure device 110 while being continuously stirred at a rotational speed.
0, circulating in the upper communication means 11 and the lower communication means 12, then separating and filtering the generated sediment and discharging the generated hydrogen sulfide waste gas efficiently by the exhaust turbo fan 13; and sent to the hydrogen sulfide gas recovery device 3.
S2, defluorination-neutralization treatment Next, the waste acid-containing waste water in the circulation reaction chamber is put into the precipitation reactor 2, and 150% limestone slurry is added.
Add 0 g/L, react while stirring, react waste acid-containing waste water with limestone to produce gypsum and calcium fluoride precipitates, filter and press, remove precipitates, and separate the primary filtrate. Next, sodium hydroxide is added to the primary filtrate until the pH reaches 6, reacted with stirring, and then subjected to a secondary filtration press to remove precipitates and separate the secondary filtrate.
S3, the secondary filtrate is charged from both ends of the advanced electrolytic treatment cyclone electrolytic tank 40, the hydrovortex fan 42 is rotated at high speed of 2000 r/min to make the secondary filtrate vortex, and the anode core 430 and the cathode core 4
31 was rotated to electrolyze the secondary filtrate at a current density of 330 A/m 2 for 30 minutes to form hydroxide colloids, adsorb the remaining contaminants such as heavy metals, and finally generate hydroxide colloids. The secondary filtrate is sent to the coagulation-sedimentation tank 5 for air flotation and sedimentation separation.

実施例6
与実施例5と比較して、以下の点が異なる。
S1、脱ヒ素処理において、第1撹拌器14は2000r/minの回転数で持続的に撹
拌し、
S2、石灰石スラリーを1800g/L加え、脱フッ素-中和処理において、pHが6と
なるように一次ろ液に水酸化ナトリウムを加え、
S3、電解高度処理において、ハイドロボルテックスファン42は4000r/minで
高速回転し、電流密度は500A/m、電解時間は40minである。
Example 6
Compared with Example 5, the following points are different.
S1, in the arsenic removal treatment, the first stirrer 14 continuously stirs at a rotation speed of 2000 r/min,
S2, adding 1800 g/L of limestone slurry, adding sodium hydroxide to the primary filtrate so that the pH becomes 6 in the defluorination-neutralization treatment,
In S3, electrolysis advanced treatment, the hydrovortex fan 42 rotates at a high speed of 4000 r/min, the current density is 500 A/m 2 , and the electrolysis time is 40 min.

実施例7
実施例5と比較して、以下の点が異なる。
S1、脱ヒ素処理において、第1撹拌器14は2000r/minの回転数で持続的に撹
拌し、
S2、石灰石スラリーを1800g/L加え、脱フッ素-中和処理において、pHが6と
なるように一次ろ液に水酸化ナトリウムを加え、
S3、電解高度処理において、ハイドロボルテックスファン42は4000r/minで
高速回転し、電流密度は600A/m、電解時間は60minである。
Example 7
Compared with Example 5, the following points are different.
S1, in the arsenic removal treatment, the first stirrer 14 continuously stirs at a rotation speed of 2000 r/min,
S2, adding 1800 g/L of limestone slurry, adding sodium hydroxide to the primary filtrate so that the pH becomes 6 in the defluorination-neutralization treatment,
In S3, electrolysis advanced treatment, the hydrovortex fan 42 rotates at a high speed of 4000 r/min, the current density is 600 A/m 2 , and the electrolysis time is 60 min.

実施例8
実施例7と比較して、以下の点が異なる。
S2、脱フッ素-中和処理において、pHが7となるように一次ろ液に水酸化ナトリウム
を加える。
Example 8
Compared with Example 7, the following points are different.
S2, adding sodium hydroxide to the primary filtrate to bring the pH to 7 in the defluorination-neutralization process.

実施例9
実施例7と比較して、以下の点が異なる。
S1、脱ヒ素処理において、廃酸含有廃水と濃度45%の硫化ナトリウム溶液とを1:0
.3の体積比で循環反応室10に投入し、
S2、石灰石スラリーを2800g/L加える。
Example 9
Compared with Example 7, the following points are different.
S1, in the arsenic removal treatment, waste acid-containing waste water and sodium sulfide solution with a concentration of 45% were mixed in a ratio of 1:0.
. put into the circulation reaction chamber 10 at a volume ratio of 3,
S2, add 2800 g/L of limestone slurry.

実施例10
本実施例では、実施例3の処理システムによる銅製錬における廃酸含有廃水の効率的な処
理プロセスが記載されており、実施例5と比較して、以下の点が異なる。
S3、電解高度処理
サイクロン電解槽40の両端から二次ろ液を投入し、ハイドロボルテックスファン42を
高速回転させて二次ろ液を渦流とし、陽極コア430、陰極コア431を回転させて二次
ろ液を電解し、水酸化物コロイドを形成し、それと同時に、環状ダクト45によってジェ
ットノズル46を介して渦流へマイクロバブルを充填し、マイクロバブルが水酸化物コロ
イドと組み合わせて残りの重金属などの汚染物質を吸着する。
Example 10
This example describes an efficient treatment process for waste acid-containing wastewater in copper smelting by the treatment system of Example 3, and differs from Example 5 in the following points.
S3, the secondary filtrate is charged from both ends of the advanced electrolytic treatment cyclone electrolytic tank 40, the hydrovortex fan 42 is rotated at high speed to make the secondary filtrate a whirlpool, and the anode core 430 and the cathode core 431 are rotated to rotate the secondary filtrate. The filtrate is electrolysed to form hydroxide colloids, and at the same time microbubbles are packed into the vortex through jet nozzles 46 by annular duct 45, and the microbubbles combine with the hydroxide colloids to release residual heavy metals, etc. Adsorb pollutants.

実験例
上記の実施例4、実施例5、実施例6及び従来技術の方法を用いて、ある銅製錬工場由来
の廃酸濃度15%の廃酸含有廃水を処理し、各実施例における試験の処理品質、及び係る
時間を以下の表1に記録する。
表1:各実施例の汚染物質除去率及び処理時間
EXPERIMENTAL EXAMPLES Example 4, Example 5, Example 6 and the prior art method described above were used to treat waste acid-containing wastewater from a copper smelting plant having a waste acid concentration of 15%, and the results of the tests in each example. The processing quality and time involved are recorded in Table 1 below.
Table 1: Contaminant Removal Rate and Treatment Time for Each Example


Figure 0007152635000002

Figure 0007152635000002

(1)本発明で提供される実施例4~実施例10の試験結果と従来技術の試験結果とを比
較したところ、従来技術に比べて、本発明の技術的解決手段は、ヒ素などの不純物の除去
率を効果的に高め、処理効率を効果的に高め、単位時間内の処理量を向上させることがで
き、従来技術による廃酸含有廃水の処理品質を大幅に改善し、銅製錬企業に要求される廃
酸含有廃水の排出要件を満たすことが分かった。
(2)実施例4と実施例5の試験結果を比較したところ、実施例5は汚染物質の除去率を
さらに高めることができることが分かり、実施例5では、廃酸溶液が高度処理されるため
、廃酸溶液への処理品質がさらに高まり、サイクロン電解槽、ハイドロボルテックスファ
ン、動的電解装置が設けられることにより、廃酸含有廃水が効率的且つ動的に電解され、
水酸化ナトリウムが添加されるため、設けられる鉄電極板、アルミ電極板によって水酸化
第二鉄、水酸化アルミニウムコロイドが生成され、マイクロ凝集剤として機能し、水中の
懸濁顆粒やコロイド汚染物質がマイクロ凝集剤により吸着されて被覆され、これにより、
処理品質がさらに向上し、Cu、As、Zn、Pb、Fなどの有害物質に対する高度処理
が達成される。
(3)実施例5、実施例6を比較したところ、電解時間を延ばし、電流密度を高くすると
、処理品質をさらに高めることができることが分かり、電流密度の増大及び電解時間の延
長により、陽極電極がより多くの鉄イオン、アルミイオンを放出し、廃酸溶液中で生成し
た水酸化物コロイドが多くなり、このように、高度吸着除去が促進される。
(4)実施例5、実施例6及び実施例7を比較したところ、実施例7で提供される電解の
パラメータは本技術的解決手段で開示された最適な電解パラメータであることが分かり、
ここで、電流密度は600A/m、電解時間は60minである。
(6)実施例7と実施例8を比較したところ、電解のpHを6から7に上昇すると、処理
品質がさらに向上することが分かり、その理由として、一方面原因是pH値の上昇により
処理環境中の水酸根が多くなり、余剰な水酸根イオンが電解陽極で生成した鉄イオン、ア
ルミイオンと結合して、より多くの水酸化物コロイドが形成され、一方、水酸根イオンは
廃酸溶液中の重金属イオンとともに沈殿を形成することができ、これにより、処理効果が
よくなる。
(7)実施例7と実施例9を比較したところ、硫化ナトリウム、石灰石スラリーの添加量
を増加することにより、循環反応室10、上部連通手段11及び下部連通手段12内の循
環反応における正反応の進行が促進され、ヒ素をより十分に沈降させることに有利である
ことが分かった。さらに、試験の結果、実施例9における硫化ナトリウム、石灰石スラリ
ーの添加量が最適値であり、添加量が高すぎると、無駄を引き起こす。
(8)実施例10において増設される環状ダクト、ジェットノズルはサイクロン電解槽へ
マイクロバブルを充填し、これにより、マイクロ凝集剤について空気浮上処理を行い、マ
イクロバブルと凝集剤を組み合わせることにより吸着効果を高め、処理品質を向上させる

(9)以上の比較から、実施例10は本技術的解決手段で開示された最良な実施形態であ
り、従来技術による廃酸含有廃水の処理品質を大幅に向上させ、銅製錬企業に要求される
廃酸含有廃水の排出要件を満たす。
(1) Comparing the test results of Examples 4 to 10 provided in the present invention with the test results of the prior art, it is found that, compared with the prior art, the technical solution of the present invention is the impurities such as arsenic. can effectively increase the removal rate of , effectively improve the treatment efficiency, improve the treatment volume per unit time, greatly improve the treatment quality of waste acid-containing wastewater by conventional technology, and contribute to the copper smelting enterprise It was found to meet the required waste acid-containing wastewater discharge requirements.
(2) Comparing the test results of Example 4 and Example 5, it was found that Example 5 can further increase the pollutant removal rate. , the processing quality of the waste acid solution is further improved, and the waste acid-containing wastewater is efficiently and dynamically electrolyzed by installing a cyclone electrolytic cell, a hydrovortex fan, and a dynamic electrolysis device,
Since sodium hydroxide is added, ferric hydroxide and aluminum hydroxide colloids are generated by the iron electrode plate and aluminum electrode plate provided, which function as micro-flocculants and remove suspended granules and colloidal contaminants in water. Adsorbed and coated by the microflocculant, thereby
The treatment quality is further improved, and advanced treatment of harmful substances such as Cu, As, Zn, Pb, and F is achieved.
(3) By comparing Examples 5 and 6, it was found that the treatment quality could be further improved by extending the electrolysis time and increasing the current density. will release more iron ions, aluminum ions, and more hydroxide colloids will be produced in the waste acid solution, thus promoting high adsorption removal.
(4) Comparing Example 5, Example 6 and Example 7, it is found that the electrolysis parameters provided in Example 7 are the optimum electrolysis parameters disclosed in this technical solution;
Here, the current density is 600 A/m 2 and the electrolysis time is 60 min.
(6) Comparing Example 7 and Example 8, it was found that the treatment quality was further improved by increasing the electrolysis pH from 6 to 7. There are more hydroxyl radicals in the environment, and the surplus hydroxyl radical ions combine with the iron ions and aluminum ions generated at the electrolytic anode to form more hydroxide colloids, while the hydroxyl radical ions are released from the waste acid solution. A precipitate can be formed with the heavy metal ions in it, which makes the treatment effect better.
(7) Comparing Example 7 and Example 9, it was found that by increasing the amount of sodium sulfide and limestone slurry added, the positive reaction in the circulation reaction in the circulation reaction chamber 10, the upper communication means 11 and the lower communication means 12 was found to be advantageous for accelerating the progress of arsenic and precipitating arsenic more efficiently. Moreover, the test results show that the addition amount of sodium sulfide, limestone slurry in Example 9 is the optimum value, and if the addition amount is too high, it will cause waste.
(8) The annular duct and jet nozzle added in Example 10 fill the cyclone electrolytic bath with microbubbles, thereby performing an air floating treatment on the microflocculant, and combining the microbubbles and the flocculant for an adsorption effect. and improve processing quality.
(9) From the above comparison, Example 10 is the best embodiment disclosed in this technical solution, which greatly improves the treatment quality of waste acid-containing wastewater by the prior art, and is required by copper smelting enterprises. meet waste acid-containing wastewater discharge requirements.

1-循環反応装置、10-循環反応室、11-上部連通手段、110-負圧装置、12-
下部連通手段、120-連通キャビティ、121-接続カバー、122-ろ過遮断ユニッ
ト、123-排水室、124-ろ滓貯蔵室、125-第1ろ液螺旋搬送機、13-排気タ
ーボファン、14-第1撹拌器、2-沈殿反応装置、20-混合反応室、21-第2撹拌
器、22-石灰石スラリー入り口、23-石膏沈殿室、24-フィルタプレス、240-
石膏ろ過プレス板、241-動力モジュール、242-第2ろ液螺旋搬送機、3-硫化水
素ガス回収装置、30-密閉反応槽、31-霧化アルカリ液スプレーディスク、32-硫
化水素ガスジェットリング、33-接続口、34-硫化ナトリウム溶液補充配管、4-サ
イクロン電解凝集装置、40-サイクロン電解槽、41-中央回転軸、42-ハイドロボ
ルテックスファン、43-動的電解装置、430-陽極コア、431-陰極コア、432
-接続軸、433-第1接続枠、434-電極板マウント、437-三日月状電極板43
5-、第2接続枠、436-陰極電極板、44-排水ユニット、45-環状ダクト、46
-ジェットノズル、5-凝集沈殿池
1-Circulation reactor, 10-Circulation reaction chamber, 11-Upper communication means, 110-Negative pressure device, 12-
Lower communication means, 120 - communication cavity, 121 - connection cover, 122 - filtration blocking unit, 123 - drain chamber, 124 - filter cake storage room, 125 - first filtrate spiral conveyer, 13 - exhaust turbofan, 14 - 1st agitator, 2 - precipitation reactor, 20 - mixing reaction chamber, 21 - 2nd agitator, 22 - limestone slurry inlet, 23 - gypsum precipitation chamber, 24 - filter press, 240 -
Gypsum filter press plate, 241 - power module, 242 - second filtrate spiral conveyer, 3 - hydrogen sulfide gas recovery device, 30 - closed reaction tank, 31 - atomized alkaline liquid spray disc, 32 - hydrogen sulfide gas jet ring , 33-connection port, 34-sodium sulfide solution replenishment pipe, 4-cyclone electrolytic flocculation device, 40-cyclone electrolytic cell, 41-central rotating shaft, 42-hydrovortex fan, 43-dynamic electrolysis device, 430-anode core , 431—cathode core, 432
- connection shaft, 433 - first connection frame, 434 - electrode plate mount, 437 - crescent electrode plate 43
5-, second connecting frame, 436-cathode electrode plate, 44-drainage unit, 45-annular duct, 46
- jet nozzle, 5 - coagulation basin

Claims (7)

銅製錬における廃酸含有廃水の処理システムであって、
廃酸含有廃水を順次処理するための、一次処理システムと、二次処理システムとを含み、
前記一次処理システムは、循環反応装置(1)と、前記循環反応装置(1)の下方に設
けられ、且つ循環反応装置(1)の排水口と連通している沈殿反応装置(2)とを含み、
前記循環反応装置(1)は、並設された2つの循環反応室(10)と、前記循環反応室(
10)の内部に可動に設けられる第1撹拌器(14)と、前記循環反応室(10)の上部
に設けられ、且つ2つの循環反応室(10)を連通させる上部連通手段(11)と、前記
循環反応室(10)の下部に設けられ、且つ2つの循環反応室(10)を連通させる下部
連通手段(12)と、前記上部連通手段(11)に取り付けられ、且つ循環反応室(10
)に対応する2つの排気ターボファン(13)と、負圧配管を介して前記排気ターボファ
ン(13)と連通している硫化水素ガス回収装置(3)とを含み、
前記上部連通手段(11)には、2つの循環反応室(10)、上部連通手段(11)
及び下部連通手段(12)の間で廃酸含有廃水を循環させる負圧装置(110)が設けら
れ、前記下部連通手段(12)は沈殿反応装置(2)と連通しており、
前記二次処理システムは、沈殿反応装置(2)と連通しているサイクロン電解凝集装置
(4)と、前記サイクロン電解凝集装置(4)と連通している凝集沈殿池(5)とを含み

前記サイクロン電解凝集装置(4)は、両端の給水口が沈殿反応装置(2)と連通し
ているサイクロン電解槽(40)と、前記サイクロン電解槽(40)の中心に設けられる
中央回転軸(41)と、前記中央回転軸(41)に取り付けられ、且つサイクロン電解槽
(40)の給水口に近い2組のハイドロボルテックスファン(42)と、前記中央回転軸
(41)に取り付けられ、且つ2つのハイドロボルテックスファン(42)の間に位置す
る動的電解装置(43)と、前記サイクロン電解槽(40)の側壁に水平に設けられ、且
つ凝集沈殿池(5)と連通している排水ユニット(44)とを含み、
前記動的電解装置(43)は、中央回転軸(41)に可動に設けられる陽極コア(
430)と、陰極コア(431)とを含み、
前記陽極コア(430)は中央回転軸(41)に近く、前記陰極コア(431)
は陽極コア(430)外に移動可能に周設される、
ことを特徴とする処理システム。
A treatment system for waste acid-containing wastewater in copper smelting, comprising:
comprising a primary treatment system and a secondary treatment system for sequentially treating waste acid-containing wastewater;
The primary treatment system comprises a circulation reactor (1) and a precipitation reactor (2) provided below the circulation reactor (1) and communicating with a drain port of the circulation reactor (1). including
The circulation reactor (1) includes two circulation reaction chambers (10) arranged side by side, and the circulation reaction chamber (
10), a first stirrer (14) movably provided inside the circulation reaction chamber (10), and an upper communication means (11) provided above the circulation reaction chamber (10) and communicating the two circulation reaction chambers (10). , a lower communication means (12) provided in the lower part of the circulation reaction chamber (10) and communicating the two circulation reaction chambers (10); 10
) and a hydrogen sulfide gas recovery device (3) communicating with the exhaust turbofans (13) via negative pressure piping,
The upper communication means (11) includes two circulation reaction chambers (10), upper communication means (11)
and a negative pressure device (110) for circulating the waste acid-containing waste water between the lower communication means (12), the lower communication means (12) communicating with the precipitation reactor (2),
said secondary treatment system comprising a cyclone flocculation device (4) in communication with a precipitation reactor (2) and a flocculation tank (5) in communication with said cyclone flocculation device (4);
The cyclone electrolytic flocculation device (4) comprises a cyclone electrolytic bath (40) having water inlets at both ends communicating with the precipitation reactor (2), and a central rotating shaft (40) provided at the center of the cyclone electrolytic bath (40). 41), two sets of hydrovortex fans (42) attached to the central rotating shaft (41) and close to the water inlet of the cyclone electrolyzer (40), attached to the central rotating shaft (41), and A dynamic electrolysis device (43) located between two hydrovortex fans (42) and a waste water horizontally installed on the side wall of said cyclone electrolyser (40) and communicating with a coagulating sedimentation basin (5). a unit (44);
The dynamic electrolysis device (43) includes an anode core (
430) and a cathode core (431),
Said anode core (430) is close to the central axis of rotation (41) and said cathode core (431)
is movably disposed around the outside of the anode core (430),
A processing system characterized by:
前記陽極コア(430)は、前記中央回転軸(41)上に套設される接続軸(432)と
、前記接続軸(432)の両端に設けられる第1接続枠(433)と、前記第1接続枠(
433)に取り付けられ、且つ中央回転軸(41)の径方向に均等に配置されている複数
組の電極板マウント(434)と、電極板マウント(434)に取り付けられ、中央回転
軸(41)の軸方向に均等に配置されている複数組の三日月状電極板(437)とを含み

前記三日月状電極板(437)は、鉄電極板、アルミ電極板を含み、前記鉄電極板と、ア
ルミ電極板は間隔を空けて配置されており、
前記陰極コア(431)は、前記中央回転軸(41)に取り付けられる第2接続枠(43
5)と、前記第2接続枠(435)に取り付けられ、且つ中央回転軸(41)の径方向に
均等に配置されている複数組の陰極電極板(436)とを含み、
前記陰極電極板(436)は、三日月状電極板(437)と、サイクロン電解槽(40)
の内側壁との間に位置する、
ことを特徴とする請求項1に記載の銅製錬における廃酸含有廃水の処理システム。
The anode core (430) includes a connection shaft (432) installed on the central rotating shaft (41), first connection frames (433) provided at both ends of the connection shaft (432), and the first 1 connection frame (
A plurality of sets of electrode plate mounts (434) attached to the central rotating shaft (41) and evenly distributed in the radial direction of the central rotating shaft (41); a plurality of sets of crescent-shaped electrode plates (437) evenly spaced in the axial direction of
The crescent-shaped electrode plate (437) includes an iron electrode plate and an aluminum electrode plate, and the iron electrode plate and the aluminum electrode plate are spaced apart,
The cathode core (431) has a second connection frame (43) attached to the central rotating shaft (41).
5), and a plurality of sets of cathode electrode plates (436) attached to the second connection frame (435) and evenly arranged in the radial direction of the central rotating shaft (41),
The cathode electrode plate (436) comprises a crescent electrode plate (437) and a cyclone electrolytic bath (40).
located between the inner wall of
The treatment system for waste acid-containing waste water in copper smelting according to claim 1, characterized in that:
前記サイクロン電解槽(40)の側壁において複数組の環状ダクト(45)が軸方向に均
等に配置されており、前記環状ダクト(45)にはサイクロン電解槽(40)と連通して
いるジェットノズル(46)が均等に配置されている、
ことを特徴とする請求項1に記載の銅製錬における廃酸含有廃水の処理システム。
A plurality of sets of annular ducts (45) are evenly arranged in the axial direction on the sidewall of the cyclone electrolytic bath (40), and the annular ducts (45) are jet nozzles communicating with the cyclone electrolytic bath (40). (46) are evenly distributed,
The treatment system for waste acid-containing waste water in copper smelting according to claim 1, characterized in that:
前記下部連通手段(12)は、循環反応室(10)の下部に設けられる連通キャビティ(
120)と、前記連通キャビティ(120)の上部の中央部に設けられる接続カバー(1
21)と、前記連通キャビティ(120)の内部に設けられ、且つ接続カバー(121)
の下方に位置するろ過遮断ユニット(122)とを含み、
前記ろ過遮断ユニット(122)は、連通キャビティ(120)を排水室(123)とろ
滓貯蔵室(124)とに仕切り、前記接続カバー(121)には、ろ滓貯蔵室(124)
と連通している第1ろ液螺旋搬送機(125)が傾斜して設けられる、
ことを特徴とする請求項1に記載の銅製錬における廃酸含有廃水の処理システム。
The lower communication means (12) is a communication cavity (
120) and a connection cover (1
21) and a connection cover (121) provided inside the communication cavity (120) and
a filtration block unit (122) located below the
The filtration blocking unit (122) partitions the communication cavity (120) into a drainage chamber (123) and a filter cake storage chamber (124), and the connection cover (121) includes a filter cake storage chamber (124).
A first filtrate spiral conveyer (125) is provided at an angle in communication with
The treatment system for waste acid-containing waste water in copper smelting according to claim 1, characterized in that:
前記沈殿反応装置(2)は、連通キャビティ(120)の真下に設けられ、且つ排水室(
123)と連通している混合反応室(20)と、前記混合反応室(20)の内部に設けら
れる第2撹拌器(21)と、混合反応室(20)の側壁に設けられる石灰石スラリー入り
口(22)と、前記混合反応室(20)の下部に設けられる石膏沈殿室(23)と、石膏
沈殿室(23)に設けられるフィルタプレス(24)とを含み、
フィルタプレス(24)は、石膏沈殿室(23)の内部に対して垂直に可動に設けられる
2つの石膏ろ過プレス板(240)と、前記石膏沈殿室(23)に設けられ、前記石膏ろ
過プレス板(240)を駆動する動力モジュール(241)と、傾斜して設けられ、且つ
石膏沈殿室(23)の中央部空間と連通している第2ろ液螺旋搬送機(242)とを含む

ことを特徴とする請求項1に記載の銅製錬における廃酸含有廃水の処理システム。
Said precipitation reactor (2) is provided directly below the communicating cavity (120) and has a drain chamber (
123), a second agitator (21) provided inside said mixing reaction chamber (20), and a limestone slurry inlet provided on the side wall of said mixing reaction chamber (20). (22), a gypsum settling chamber (23) provided below the mixing reaction chamber (20), and a filter press (24) provided in the gypsum settling chamber (23),
The filter press (24) comprises two gypsum filter press plates (240) that are vertically movable with respect to the interior of the gypsum settling chamber (23), and the gypsum filter press that is installed in the gypsum settling chamber (23). comprising a power module (241) for driving the plate (240) and a second filtrate spiral conveyer (242) provided at an angle and communicating with the central space of the gypsum settling chamber (23);
The treatment system for waste acid-containing waste water in copper smelting according to claim 1, characterized in that:
前記硫化水素ガス回収装置(3)は、密閉反応槽(30)と、前記密閉反応槽(30)の
上部に設けられる霧化アルカリ液スプレーディスク(31)と、前記密閉反応槽(30)
の外壁に套設される硫化水素ガスジェットリング(32)と、高圧配管を介して硫化水素
ガスジェットリング(32)と排気ターボファン(13)を接続する接続口(33)と、
密閉反応槽(30)の下部に設けられ、且つ循環反応室(10)と連通している硫化ナト
リウム溶液補充配管(34)とを含む、
ことを特徴とする請求項1に記載の銅製錬における廃酸含有廃水の処理システム。
The hydrogen sulfide gas recovery device (3) comprises a closed reaction tank (30), an atomized alkaline liquid spray disk (31) provided in the upper part of the closed reaction tank (30), and the closed reaction tank (30).
a hydrogen sulfide gas jet ring (32) mounted on the outer wall of the, a connection port (33) that connects the hydrogen sulfide gas jet ring (32) and the exhaust turbofan (13) via high-pressure piping;
A sodium sulfide solution replenishment pipe (34) provided at the bottom of the closed reaction vessel (30) and communicating with the circulation reaction chamber (10),
The treatment system for waste acid-containing waste water in copper smelting according to claim 1, characterized in that:
まず、廃酸含有廃水と濃度35~45%の硫化ナトリウム溶液とを1:0.08~0.3
の体積比で循環反応室(10)に投入し、第1撹拌器(14)を用いて600~2000
r/minの回転数で持続的に撹拌し、負圧装置(110)によって廃酸含有廃水と硫化
ナトリウム溶液を2つの循環反応室(10)、上部連通手段(11)及び下部連通手段(
12)内を循環させ、次に、生成した沈殿物を分離して、ろ過して排出し、生成した硫化
水素廃気を排気ターボファン(13)によって効率的に排気し、硫化水素ガス回収装置(
3)に送る、脱ヒ素処理のステップS1と、
次に、循環反応室内の廃酸含有廃水を沈殿反応装置(2)に入れて、石灰石スラリーを1
500~2800g/L加え、撹拌しながら反応させ、廃酸含有廃水と石灰石を反応させ
て石膏及びフッ化カルシウム沈殿を生成し、ろ過プレスをした後、沈殿物を除去し、一次
ろ液を分離し、次に、pHが6~7となるまで一次ろ液に水酸化ナトリウムを加え、撹拌
しながら反応させた後、二次ろ過プレスをして、沈殿物を除去し、二次ろ液を分離する、
脱フッ素-中和処理のステップS2と、
サイクロン電解槽(40)の両端から二次ろ液を投入し、ハイドロボルテックスファン(
42)の回転によって二次ろ液を渦流とし、陽極コア(430)、陰極コア(431)を
回転させて、二次ろ液を電流密度330~600A/mで30~60min電解し、水
酸化物コロイドを形成し、残りの重金属汚染物質を吸着し、最後に、水酸化物コロイドを
生成した二次ろ液を凝集沈殿池(5)に送り、空気浮上・沈降分離を行う、電解高度処理
のステップS3とを含む、
ことを特徴とする請求項1~5のいずれかに記載の銅製錬における廃酸含有廃水の処理シ
ステムの処理プロセス。
First, waste acid-containing wastewater and a sodium sulfide solution with a concentration of 35 to 45% are mixed at a ratio of 1:0.08 to 0.3.
into the circulation reaction chamber (10) at a volume ratio of 600 to 2000 using the first stirrer (14)
Stirring continuously at r/min rotation speed, waste acid-containing wastewater and sodium sulfide solution are passed through two circulation reaction chambers (10), upper communication means (11) and lower communication means (11) by a negative pressure device (110).
12) circulate inside, then separate the produced precipitate, filter and discharge, and the produced hydrogen sulfide waste gas is efficiently discharged by exhaust turbofan (13), hydrogen sulfide gas recovery device (
3), step S1 of the dearsenicing treatment, and
Next, the waste acid-containing waste water in the circulation reaction chamber is put into the precipitation reactor (2), and the limestone slurry is
Add 500 to 2800 g/L, react while stirring, react waste acid-containing wastewater and limestone to produce gypsum and calcium fluoride precipitates, filter press, remove precipitates, and separate primary filtrate. Next, sodium hydroxide is added to the primary filtrate until the pH reaches 6 to 7, reacted with stirring, and then subjected to a secondary filtration press to remove precipitates, and the secondary filtrate is To separate,
Step S2 of the defluorination-neutralization treatment;
A secondary filtrate is introduced from both ends of the cyclone electrolytic cell (40), and a hydrovortex fan (
42) to turn the secondary filtrate into a vortex, rotate the anode core (430) and the cathode core (431) to electrolyze the secondary filtrate at a current density of 330-600 A/m 2 for 30-60 minutes, form hydroxide colloids, adsorb remaining heavy metal contaminants, and finally send the secondary filtrate in which hydroxide colloids are produced to a coagulating sedimentation tank (5) for air flotation and sedimentation separation; including advanced processing step S3,
The treatment process of the treatment system for waste acid-containing wastewater in copper smelting according to any one of claims 1 to 5, characterized in that:
JP2022063470A 2022-03-23 2022-04-06 Treatment system and process for waste acid-containing wastewater in copper smelting Active JP7152635B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210292233.8 2022-03-23
CN202210292233.8A CN114671556B (en) 2022-03-23 2022-03-23 Efficient waste acid and sewage treatment system and process in copper smelting engineering

Publications (2)

Publication Number Publication Date
JP7152635B1 true JP7152635B1 (en) 2022-10-13
JP2023143552A JP2023143552A (en) 2023-10-06

Family

ID=82075044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022063470A Active JP7152635B1 (en) 2022-03-23 2022-04-06 Treatment system and process for waste acid-containing wastewater in copper smelting

Country Status (2)

Country Link
JP (1) JP7152635B1 (en)
CN (1) CN114671556B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115465976A (en) * 2022-11-15 2022-12-13 中山市中环环保废液回收有限公司 Recycling treatment method for tin-stripping waste liquid of nitric acid system
CN115611277A (en) * 2022-10-24 2023-01-17 苏州中材非金属矿工业设计研究院有限公司 Preparation process of high-purity graphite

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115259275B (en) * 2022-08-20 2023-05-09 生态环境部南京环境科学研究所 Full-automatic xenon arc lamp photolyzer device for industrial water body
CN117285133B (en) * 2023-11-24 2024-02-06 甘肃金宝实业有限公司 Waste water treatment device after citric acid extraction

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000061488A (en) * 1998-06-10 2000-02-29 Kankyo Eng Co Ltd Treatment of organic wastewater and chemical agent used therein
JP2004223480A (en) * 2003-01-27 2004-08-12 Kankyo Eng Co Ltd Method for treating organic waste water

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5783057A (en) * 1996-09-19 1998-07-21 Nippon Mining & Metals Co., Ltd. Method of purifying copper electrolytic solution
CN103112974B (en) * 2013-01-22 2014-07-23 长沙创享环保科技有限公司 Treatment method of arsenic wastewater
CN207210045U (en) * 2017-08-25 2018-04-10 金川集团股份有限公司 A kind of vulcanization reaction device for handling the waste water containing heavy metal-polluted acid
CN108911097A (en) * 2018-09-05 2018-11-30 长沙华时捷环保科技发展股份有限公司 A kind of acid waste water forced circulation reaction unit and method
CN109020003A (en) * 2018-10-17 2018-12-18 成都飞创科技有限公司 A kind of wastewater efficient flocculation clarifier
CN211688329U (en) * 2019-12-30 2020-10-16 广西南国铜业有限责任公司 Sour processing vulcanizer of dirty
CN113233646A (en) * 2021-05-17 2021-08-10 紫金铜业有限公司 Treatment process of high-concentration arsenic-containing waste acid

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000061488A (en) * 1998-06-10 2000-02-29 Kankyo Eng Co Ltd Treatment of organic wastewater and chemical agent used therein
JP2004223480A (en) * 2003-01-27 2004-08-12 Kankyo Eng Co Ltd Method for treating organic waste water

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115611277A (en) * 2022-10-24 2023-01-17 苏州中材非金属矿工业设计研究院有限公司 Preparation process of high-purity graphite
CN115465976A (en) * 2022-11-15 2022-12-13 中山市中环环保废液回收有限公司 Recycling treatment method for tin-stripping waste liquid of nitric acid system
CN115465976B (en) * 2022-11-15 2023-01-17 中山市中环环保废液回收有限公司 Recycling treatment method for tin-stripping waste liquid of nitric acid system

Also Published As

Publication number Publication date
CN114671556A (en) 2022-06-28
JP2023143552A (en) 2023-10-06
CN114671556B (en) 2022-12-09

Similar Documents

Publication Publication Date Title
JP7152635B1 (en) Treatment system and process for waste acid-containing wastewater in copper smelting
CN102079597B (en) Method for removing copper ions in sewage
CN113896280A (en) ultrasonic/ozone/H2O2System and method for combined removal of organic matters in sodium aluminate solution
CN112573704A (en) System and method for treating strong brine by using micro-channel reactor
CN102153219B (en) Treatment method for waste water after purification of graphite
CN202519115U (en) Nano-catalysis, electrolysis, flocculation and air-floatation device
CN102295338A (en) High-efficiency phosphate removing equipment and use method thereof
KR101393322B1 (en) A phosphorus chemisorption system of reducing load in wastewater
CN106186451A (en) A kind of processing system containing heavy metal metallurgy waste water
CN105384286B (en) A kind of processing method of industrial wastewater recycling
CN111675385A (en) Method and system for ultrafiltration aeration and alkali addition iron removal
JPH1052692A (en) Method and apparatus for removal of heavy metal and method for separation of protein in removal of heavy metal
CN111072097A (en) Treatment device and method for efficiently removing organic matters in chlorine-containing wastewater
RU2057080C1 (en) Method for treatment of sewage and device for its embodiment
RU109134U1 (en) STATION FOR ELECTROCOAGULATIVE PREPARATION AND SOFTENING OF DRINKING WATER
CN114918236A (en) Waste incineration fly ash washing reaction device, treatment system and method
CN113443758A (en) Full-quantitative pretreatment device, treatment system and treatment method for landfill leachate
CN113772844A (en) Oily heavy metal industrial wastewater treatment system and treatment process thereof
CN206204043U (en) A kind of processing system containing heavy metal metallurgy waste water
CN212954743U (en) Oily sewage treatment device
CN212127801U (en) Coal gasification ash water is with removing hard device
CN219636978U (en) Novel water treatment pulse electromagnetic mud-water separation device
CN219637042U (en) High-salt high-hardness wastewater treatment system
CN215327454U (en) Inorganic chemistry experiment waste liquid treatment device and system
US20210380445A1 (en) Roll assembly, in particular for water treatment, and treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220406

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220824

R150 Certificate of patent or registration of utility model

Ref document number: 7152635

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150