JP7148249B2 - rangefinder - Google Patents

rangefinder Download PDF

Info

Publication number
JP7148249B2
JP7148249B2 JP2018045650A JP2018045650A JP7148249B2 JP 7148249 B2 JP7148249 B2 JP 7148249B2 JP 2018045650 A JP2018045650 A JP 2018045650A JP 2018045650 A JP2018045650 A JP 2018045650A JP 7148249 B2 JP7148249 B2 JP 7148249B2
Authority
JP
Japan
Prior art keywords
light
light receiving
receiving
unit
distance measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018045650A
Other languages
Japanese (ja)
Other versions
JP2019158598A (en
Inventor
孝典 落合
琢也 白戸
亮 出田
琢麿 柳澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corp filed Critical Pioneer Corp
Priority to JP2018045650A priority Critical patent/JP7148249B2/en
Publication of JP2019158598A publication Critical patent/JP2019158598A/en
Application granted granted Critical
Publication of JP7148249B2 publication Critical patent/JP7148249B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、対象物までの距離を計測する測距装置に関する。 The present invention relates to a distance measuring device that measures the distance to an object.

光学測距装置は、例えば、レーザ光を対象領域内で走査して対象物までの距離を計測する、すなわち測距する。 An optical rangefinder, for example, scans a target area with a laser beam to measure the distance to the target, that is, measures the distance.

このような測距装置としては、例えば、光走査装置の光反射面を揺動駆動する駆動部が位相差変更部及び振幅変更部の少なくとも一方を備えた光測距装置が特許文献1に開示されている。 As such a rangefinder, for example, Japanese Patent Laid-Open No. 2002-200001 discloses an optical rangefinder in which a drive section for driving the light reflection surface of an optical scanning device to oscillate includes at least one of a phase difference changer and an amplitude changer. It is

特開2011-053137号公報JP 2011-053137 A

レーザ光は対象物に照射されると散乱する。このため、対象物が測距装置から遠くなるにつれて測距装置が受光するレーザ光の強度が弱くなる。したがって、測距装置から遠方に位置する対象物の測距を行うためには、対象物から反射された光をより多く受光することが望まれる。 Laser light scatters when it hits an object. For this reason, the intensity of the laser beam received by the distance measuring device becomes weaker as the object becomes farther from the distance measuring device. Therefore, in order to measure the distance of an object located far from the distance measuring device, it is desirable to receive more light reflected from the object.

しかし、より多くの光を受光するようにすると、背景光などのノイズを受光する光量も増加する。ここで、測距装置のシグナル比(SN比)は、受光系の開口の大きさに伴って変化する。具体的には、受光系の開口が大きくなるにつれてSN比も大きくなる。しかし、受光系の開口を大きくすると、装置が大型化する問題が課題の1つとして挙げられる。 However, when more light is received, the amount of light that receives noise such as background light also increases. Here, the signal ratio (SN ratio) of the distance measuring device changes with the size of the aperture of the light receiving system. Specifically, the SN ratio increases as the aperture of the light receiving system increases. However, one of the problems is that if the aperture of the light-receiving system is increased, the size of the device increases.

本発明は上記した点に鑑みてなされたものであり、十分なSN比を有し且つ、装置の小型化を図ることが可能な測距装置を提供することを課題の1つとする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a distance measuring apparatus which has a sufficient SN ratio and which can be miniaturized.

本願請求項1に記載の測距装置は、出射光を出射する光源、及び前記出射光の方向を可変に偏向する出射光反射部材を有する出射光偏向素子を含む投光部と、各々が前記投光部の光軸に対する垂直方向において前記投光部と離間して配され、かつ前記出射光が対象物で反射した反射光の方向を可変に偏向する反射光反射部材を有する反射光偏向素子及び前記反射光偏向素子によって偏向された前記反射光を受光する受光素子を各々が含む複数の受光部と、を有することを特徴とする。 A distance measuring apparatus according to claim 1 of the present application comprises: a light source for emitting emitted light; A reflected light deflecting element having a reflected light reflecting member arranged apart from the light projecting part in a direction perpendicular to the optical axis of the light projecting part and variably deflecting the direction of the reflected light of the emitted light reflected by an object. and a plurality of light receiving units each including a light receiving element for receiving the reflected light deflected by the reflected light deflection element.

実施例1に係る測距装置の構成を示すブロック図である。1 is a block diagram showing the configuration of a distance measuring device according to Example 1; FIG. 実施例1に係る測距装置の投光系の動作原理を説明する説明図である。FIG. 4 is an explanatory diagram illustrating the principle of operation of the projection system of the rangefinder according to the first embodiment; 実施例1に係る測距装置の受光系の動作原理を説明する説明図である。FIG. 4 is an explanatory diagram for explaining the principle of operation of the light receiving system of the distance measuring device according to the first embodiment; 図1の投光部と受光部の配置例を示す概念図である。FIG. 2 is a conceptual diagram showing an arrangement example of a light projecting section and a light receiving section in FIG. 1; 実施例2に係る測距装置の投光部と受光部の配置例を示す概念図である。FIG. 11 is a conceptual diagram showing an example of arrangement of a light projecting unit and a light receiving unit of a distance measuring device according to a second embodiment; 実施例3に係る測距装置の投光部と受光部の配置例を示す概念図である。FIG. 11 is a conceptual diagram showing an example of arrangement of a light projecting unit and a light receiving unit of a distance measuring device according to Example 3; 実施例4に係る測距装置の距離測定部が受光部を選択する処理フロー図である。FIG. 11 is a processing flow diagram for selecting a light receiving unit by the distance measuring unit of the range finder according to the fourth embodiment; 実施例5に係る測距装置の距離測定部が受光部を選択する処理フロー図である。FIG. 11 is a processing flow diagram for selecting a light receiving unit by the distance measuring unit of the range finder according to the fifth embodiment; 実施例6に係る測距装置の距離測定部が受光部を選択する処理フロー図である。FIG. 12 is a processing flow diagram for selecting a light receiving unit by the distance measuring unit of the range finder according to the sixth embodiment; 実施例7に係る測距装置の距離測定部が受光部を選択する処理フロー図である。FIG. 20 is a processing flow diagram for selecting a light receiving unit by the distance measuring unit of the range finder according to the seventh embodiment; 実施例8に係る測距装置の投光部と受光部の配置例を示す概念図である。FIG. 11 is a conceptual diagram showing an example of arrangement of a light projecting unit and a light receiving unit of a distance measuring device according to Example 8; 図11の受光部が生成した受光信号を示す概念図である。FIG. 12 is a conceptual diagram showing a light receiving signal generated by the light receiving unit of FIG. 11; 図12の受光信号を合成した信号を示す概念図である。FIG. 13 is a conceptual diagram showing a signal obtained by synthesizing the received light signals of FIG. 12; 図11の受光部が生成した受光信号の補正例を示す概念図である。FIG. 12 is a conceptual diagram showing an example of correction of the received light signal generated by the light receiving unit of FIG. 11; 図14の受光信号を合成した信号を示す概念図である。FIG. 15 is a conceptual diagram showing a signal obtained by synthesizing the received light signals of FIG. 14; 図11の受光部が生成した受光信号の他の補正例を示す概念図である。FIG. 12 is a conceptual diagram showing another correction example of the received light signal generated by the light receiving unit of FIG. 11;

図1は、本実施例に係る測距装置100を示している。 FIG. 1 shows a distance measuring device 100 according to this embodiment.

投光部10は、出射光を出射する発光装置である。投光部10の光源11は、例えば出射光としてパルス光を出射可能なレーザ素子である。 The light projecting unit 10 is a light emitting device that emits emitted light. The light source 11 of the light projection unit 10 is, for example, a laser element capable of emitting pulsed light as emitted light.

出射光偏向素子12は、光反射面(図示せず)を含む出射光反射部材を有している。出射光偏向素子12は、当該光反射面にてパルス光を反射して、走査対象となる所定の領域(以下、走査対象領域とする)に向けて走査光を出射可能である。言い換えれば、出射光偏向素子12は、出射光の方向を可変に偏向させることができる。走査対象領域に存在する物体に反射された走査光は、測距装置100に向けて反射光として戻ってくる。尚、出射光偏向素子12は、MEMS(Micro Electro Mechanical System)ミラー装置、ポリゴンミラー等を用いることができる。 The emitted light deflection element 12 has an emitted light reflecting member including a light reflecting surface (not shown). The output light deflection element 12 can reflect the pulsed light on the light reflecting surface and emit the scanning light toward a predetermined area to be scanned (hereinafter referred to as a scanning target area). In other words, the emitted light deflection element 12 can variably deflect the direction of the emitted light. The scanning light reflected by the object existing in the scanning target area returns toward the distance measuring device 100 as reflected light. It should be noted that a MEMS (Micro Electro Mechanical System) mirror device, a polygon mirror, or the like can be used as the emitted light deflection element 12 .

受光部20は、反射光を受光して受光信号を生成する受光装置である。測距装置100は、互いに同一の構成を有する複数の受光部20を有する。受光部20の反射光偏向素子としての反射光偏向素子21は、光反射面(図示せず)を含む反射光反射部材を有しており、当該光反射面にて反射光を受光素子22に向けて反射可能である。言い換えれば、反射光偏向素子21は、反射光の方向を可変に偏向させることができる。尚、反射光偏向素子21は、MEMSミラー装置、ポリゴンミラー等を用いることもできる。 The light-receiving unit 20 is a light-receiving device that receives reflected light and generates a light-receiving signal. The distance measuring device 100 has a plurality of light receiving units 20 having the same configuration. A reflected light deflecting element 21 as a reflected light deflecting element of the light receiving section 20 has a reflected light reflecting member including a light reflecting surface (not shown). It can be reflected towards. In other words, the reflected light deflection element 21 can variably deflect the direction of the reflected light. A MEMS mirror device, a polygon mirror, or the like can also be used as the reflected light deflection element 21 .

受光素子22は、反射光を受光して、電気信号である受光信号を生成可能な光検出器である。受光素子22としては、例えば、アバランシェフォトダイオード(APD)等を採用することができる。 The light-receiving element 22 is a photodetector capable of receiving reflected light and generating a light-receiving signal, which is an electrical signal. For example, an avalanche photodiode (APD) or the like can be used as the light receiving element 22 .

制御部30は、光源11から出射するパルス光の制御及び出射光偏向素子12、反射光偏向素子21の光反射面の角度の制御を行う。 The control unit 30 controls the pulsed light emitted from the light source 11 and the angles of the light reflecting surfaces of the emitted light deflection element 12 and the reflected light deflection element 21 .

光源制御部31は、光源11の発光制御を行う。具体的には、例えば、光源11がパルス発光をするように発光タイミングを規定したテーブル(図示せず)を参照して、その発光を制御する。 The light source control unit 31 controls light emission of the light source 11 . Specifically, for example, the light emission is controlled by referring to a table (not shown) that defines the light emission timing so that the light source 11 emits pulsed light.

ミラー制御部32は、出射光偏向素子12及び反射光偏向素子21の光反射面の傾きの角度を制御する。具体的には、ミラー制御部32は、光源11によって出射されて光反射面(図示せず)によって反射されたパルス光によって、走査対象領域の走査がなされるように出射光偏向素子12を制御する。また、ミラー制御部32は、出射光偏向素子12の出射光反射部材の光反射面の方向と反射光偏向素子21の反射光反射部材の光反射面の方向が連動するように反射光偏向素子21を制御する。 The mirror control unit 32 controls the inclination angles of the light reflecting surfaces of the emitted light deflecting element 12 and the reflected light deflecting element 21 . Specifically, the mirror control unit 32 controls the emitted light deflection element 12 so that the scanning target area is scanned by the pulsed light emitted by the light source 11 and reflected by a light reflecting surface (not shown). do. Further, the mirror control unit 32 controls the reflected light deflecting element so that the direction of the light reflecting surface of the emitted light reflecting member of the emitted light deflecting element 12 and the direction of the light reflecting surface of the reflected light reflecting member of the reflected light deflecting element 21 are interlocked. 21.

測距部としての距離測定部40は、測距装置100と走査対象領域内にある物体との距離を算出する。測距装置100と走査対象領域内にある物体との距離の算出は、受光部20によって生成された受光信号に基づいて行われ、例えばタイムオブフライト法が用いられる。 A distance measurement unit 40 as a distance measurement unit calculates the distance between the distance measurement device 100 and an object in the scanning target area. The calculation of the distance between the distance measuring device 100 and the object in the scanning target area is performed based on the received light signal generated by the light receiving unit 20, and the time-of-flight method, for example, is used.

具体的には、距離測定部40は、光源11によって出射された1のパルス光の出射時刻と、当該1のパルス光が走査対象領域内の物体によって反射されて反射光として複数の受光部20の各々で検出された受光時刻を取得する。そして、当該出射時刻と当該受光時刻の時刻差に基づいて、当該1のパルス光が光源11から出射されて受光部20に受光されるまでの光経路の長さを算出し、当該長さに基づいて測距装置100と物体との距離を算出する。 Specifically, the distance measurement unit 40 determines the emission time of one pulsed light emitted by the light source 11 and the light received by the plurality of light receiving units 20 as reflected light from the object in the scanning target area. acquires the time of light reception detected by each of Then, based on the time difference between the emission time and the light reception time, the length of the optical path from the light source 11 to the light receiving unit 20 is calculated. Based on this, the distance between the distance measuring device 100 and the object is calculated.

図2は、測距装置100の投光系の動作を示す概念図である。図2において、光源11から出射された出射光ELは、出射光偏向素子12に入射される。出射光偏向素子12は、入射した出射光ELを走査対象領域Rに向けて反射させる。 FIG. 2 is a conceptual diagram showing the operation of the projection system of the distance measuring device 100. As shown in FIG. In FIG. 2 , emitted light EL emitted from a light source 11 is incident on an emitted light deflection element 12 . The emitted light deflection element 12 reflects the incident emitted light EL toward the scan target region R. As shown in FIG.

具体的には、出射光偏向素子12は、可動部MRを揺動して走査する態様で光ビームを走査対象領域R内に向けて反射させる。この結果、出射光偏向素子12によって反射された出射光ELの照射方向が変化する。具体的には、出射光ELは、出射光ELの反射方向にある仮想の面である仮想面VSにおいて、リサージュ軌跡が描かれるように出射光偏向素子12で反射される。測距装置100は、走査対象領域Rに存在する対象物OBの測距を行う。尚、仮想面VSは実在するものではない。また、仮想面VSで描かれる軌跡は、リサージュ軌跡でなくてもよい。仮想面VSで描かれる軌跡は、例えば、ラスタ走査による軌跡であってもよい。 Specifically, the emitted light deflecting element 12 reflects the light beam toward the scanning target region R in a manner of scanning by swinging the movable portion MR. As a result, the irradiation direction of the emitted light EL reflected by the emitted light deflection element 12 changes. Specifically, the emitted light EL is reflected by the emitted light deflection element 12 so that a Lissajous trajectory is drawn on a virtual plane VS, which is a virtual plane in the reflection direction of the emitted light EL. The distance measuring device 100 performs distance measurement of an object OB existing in a scanning target area R. FIG. Note that the virtual surface VS does not actually exist. Also, the trajectory drawn on the virtual plane VS may not be the Lissajous trajectory. The trajectory drawn on the virtual plane VS may be, for example, a trajectory obtained by raster scanning.

図3は、測距装置100の受光系の動作を示す概念図である。図3において、走査対象領域Rに対象物OBが存在すると、対象物OBから反射された反射光RLが反射光偏向素子21に入射され、受光素子22に入射される。受光素子22は、入射された反射光RLに基づいて電気信号に変換し距離測定部40に供給する。距離測定部40は、光ビームを出射した時刻と光ビームを受光した時刻に基づいて、対象物OBまでの距離を計測する。 FIG. 3 is a conceptual diagram showing the operation of the light receiving system of the distance measuring device 100. As shown in FIG. In FIG. 3 , when an object OB exists in the scanning target area R, the reflected light RL reflected from the object OB is incident on the reflected light deflection element 21 and is incident on the light receiving element 22 . The light receiving element 22 converts the incident reflected light RL into an electric signal and supplies the electric signal to the distance measuring section 40 . The distance measuring unit 40 measures the distance to the object OB based on the time when the light beam is emitted and the time when the light beam is received.

図4は、投光部10と受光部20の配置例を示している。図4に示すように、受光部20の各々は、投光部10の光軸FXに対する垂直方向において投光部10と離間して配置されている。具体的には、投光部10の光軸FXを中心軸として対称となる位置に一対の受光部20が配置されている。この一対の受光部20は、互いに異なる3カ所に設けられている。 FIG. 4 shows an arrangement example of the light projecting section 10 and the light receiving section 20. As shown in FIG. As shown in FIG. 4 , each light receiving section 20 is arranged apart from light projecting section 10 in the direction perpendicular to optical axis FX of light projecting section 10 . Specifically, a pair of light receiving units 20 are arranged at symmetrical positions with respect to the optical axis FX of the light projecting unit 10 as a central axis. The pair of light receiving portions 20 are provided at three mutually different locations.

受光部20の各々は、投光部10の光軸FX上の所定の点P1を中心とする円の円弧AR上に配されている。受光部20の各々は、投光部10の光軸FX上の所定の領域RA内の点P1と各々の受光部20とを結ぶ線L1~L6の長さが等しくなる位置に配置されている。 Each of the light receiving sections 20 is arranged on an arc AR of a circle centered at a predetermined point P1 on the optical axis FX of the light projecting section 10 . Each of the light receiving sections 20 is arranged at a position where the lengths of lines L1 to L6 connecting the respective light receiving sections 20 with a point P1 within a predetermined area RA on the optical axis FX of the light projecting section 10 are equal. .

線L1と投光部10の光軸FX上の点P1における光軸FXとが成す角度を角度θ1とする。線L2と投光部10の光軸FX上の点P1における光軸FXとが成す角度を角度θ2とする。線L3と投光部10の光軸FX上の点P1における光軸FXとが成す角度を角度θ3とする
言い換えれば、角度θ1は、投光部10からの距離が最も遠い受光部20と点P1を結ぶ線L1が投光部10の光軸FXと成す角である。角度θ2は、線L1の受光部20よりも投光部10に近い受光部20と点P1を結ぶ線L2が投光部10の光軸FXと成す角である。角度θ3は、線L2の受光部20よりも投光部10に近い受光部20と点P1を結ぶ線L3が投光部10の光軸FXと成す角である。
The angle between the line L1 and the optical axis FX at the point P1 on the optical axis FX of the light projecting section 10 is defined as an angle θ1. The angle between the line L2 and the optical axis FX at the point P1 on the optical axis FX of the light projecting section 10 is defined as an angle θ2. The angle between the line L3 and the optical axis FX at the point P1 on the optical axis FX of the light projecting section 10 is defined as the angle θ3. A line L1 connecting P1 forms an angle with the optical axis FX of the light projecting section 10 . The angle θ2 is the angle between the optical axis FX of the light projecting unit 10 and the line L2 connecting the light receiving unit 20 closer to the light projecting unit 10 than the light receiving unit 20 of the line L1 and the point P1. The angle θ3 is the angle between the optical axis FX of the light projecting unit 10 and the line L3 connecting the light receiving unit 20 closer to the light projecting unit 10 than the light receiving unit 20 of the line L2 and the point P1.

角度θ1は、角度θ2及び角度θ3よりも大きい。また、角度θ2は、角度θ3よりも大きい。従って、線L1,L2,L3が投光部10の光軸FXと成す角度θ1、θ2、θ3は、受光部20と投光部10との距離が遠くなるにつれて大きくなる。 The angle θ1 is greater than the angles θ2 and θ3. Also, the angle θ2 is larger than the angle θ3. Accordingly, angles θ1, θ2, and θ3 formed by lines L1, L2, and L3 with the optical axis FX of light projecting section 10 increase as the distance between light receiving section 20 and light projecting section 10 increases.

投光部10の光軸FX上の所定の点P1から各受光部20の距離が一定となるように、受光部20が配置されていることで、所定の点P1から各受光部20までのタイムオブフライト、すなわち、投光部10から出射光ELが出射されてから各々の受光部20が反射光RLを受光するまでの時間を一定にすることができる。 Since the light-receiving units 20 are arranged so that the distance from the predetermined point P1 on the optical axis FX of the light-projecting unit 10 to each light-receiving unit 20 is constant, the distance from the predetermined point P1 to each light-receiving unit 20 The time of flight, that is, the time from when the emitted light EL is emitted from the light projecting section 10 until each of the light receiving sections 20 receives the reflected light RL can be made constant.

以上のように本実施例の測距装置によれば、複数の受光部20が、投光部10の光軸FXに対する垂直方向において投光部10と離間して配され、複数の受光部20の各々が、反射光偏向素子21及び反射光RLを受光する受光素子22を含む。すなわち、複数の受光部20で測距装置100の受光系を構成することにより、1つの受光部20で受光系を構成した場合よりも各受光部20が有する開口を小さくすることができる。したがって、個々の受光部20を小さく構成することが可能となり、測距装置100の小型化を図ることが可能となる。 As described above, according to the distance measuring device of the present embodiment, the plurality of light receiving units 20 are arranged apart from the light projecting unit 10 in the direction perpendicular to the optical axis FX of the light projecting unit 10, and the plurality of light receiving units 20 includes a reflected light deflection element 21 and a light receiving element 22 that receives the reflected light RL. That is, by configuring the light receiving system of the distance measuring device 100 with a plurality of light receiving units 20, the aperture of each light receiving unit 20 can be made smaller than when the light receiving system is configured with one light receiving unit 20. Therefore, it is possible to configure each light receiving unit 20 to be small, and it is possible to reduce the size of the distance measuring device 100 .

また、測距装置100は、個々の受光部20によって生成された受光信号に基づいて測距を行うことにより、個々の受光部20の有する開口は小さくても、結果として、測距装置100の受光系が高い開口を有することができる。従って、測距装置100は、十分なSN比を有し且つ、装置の小型化を図ることが可能となる。 Further, the distance measuring apparatus 100 performs distance measurement based on the light receiving signals generated by the individual light receiving sections 20. As a result, even if the apertures of the individual light receiving sections 20 are small, the distance measuring apparatus 100 The receiving system can have a high aperture. Therefore, the distance measuring device 100 has a sufficient SN ratio and can be miniaturized.

尚、本実施例においては、投光部10は、光源11と、出射光偏向素子12を有するように説明したが、投光部10は、受光素子22を有して構成してもよい。このように、投光部10を構成した場合は、出射光ELと反射光RLとを分割するビームスプリッタを備えるようにするとよい。 In this embodiment, the light projecting section 10 has the light source 11 and the emitted light deflection element 12 , but the light projecting section 10 may have the light receiving element 22 . When the light projecting section 10 is configured in this manner, it is preferable to include a beam splitter that splits the emitted light EL and the reflected light RL.

実施例2に係る測距装置100について説明する。実施例2に係る測距装置100は、実施例1の測距装置100とは、受光部20の投光部10に対する配置位置が異なる。尚、実施例1と同一の構成については同一箇所に同一符号を付すことによって説明を省略し、以後同様とする。 A range finder 100 according to a second embodiment will be described. The distance measuring device 100 according to the second embodiment differs from the distance measuring device 100 according to the first embodiment in the arrangement position of the light receiving unit 20 with respect to the light projecting unit 10 . It should be noted that the same reference numerals are assigned to the same portions of the same configuration as in the first embodiment, and the description thereof will be omitted, and the same will be applied hereinafter.

図5は、本実施例に係る測距装置100の投光部10と受光部20の配置例を示している。図5に示すように、受光部20と点P1を結ぶ線L2,L5は、投光部10の光軸FX上の所定の領域RA内の点P1において交わる。また、受光部20と点P2を結ぶ線L3,L4は、投光部10の光軸FX上の所定の領域RAから投光部10に近づく方向に位置する領域RB内の光軸FX上の点P2において交わる。さらに、受光部20と点P3を結ぶ線L1,L6は、投光部10の光軸FX上の所定の領域RAよりも投光部10から離れた方向に位置する領域RC内の光軸FX上の点P3において交わる。 FIG. 5 shows an arrangement example of the light projecting section 10 and the light receiving section 20 of the distance measuring device 100 according to this embodiment. As shown in FIG. 5 , lines L2 and L5 connecting the light receiving section 20 and the point P1 intersect at a point P1 within a predetermined area RA on the optical axis FX of the light projecting section 10 . Lines L3 and L4 connecting the light receiving portion 20 and the point P2 are located on the optical axis FX within the region RB located in the direction approaching the light projecting portion 10 from the predetermined region RA on the optical axis FX of the light projecting portion 10. Intersect at point P2. Further, lines L1 and L6 connecting the light receiving portion 20 and the point P3 are located in an area RC located further away from the light projecting portion 10 than the predetermined area RA on the optical axis FX of the light projecting portion 10. Intersect at point P3 above.

すなわち、測距装置100は、線L2,L5が領域RA内の点P1で投光部10の光軸FXと交わる2つの受光部20を含む一の受光部群G1を有する。また、測距装置100は、線L3,L4が領域RB内の点P2で投光部10の光軸FXと交わる2つの受光部20を含む一の受光部群G2を有する。さらに、測距装置100は、線L1,L6が領域RC内の点P3で投光部10の光軸FXと交わる2つの受光部20を含む一の受光部群G3を有する。 That is, rangefinder 100 has one light receiving section group G1 including two light receiving sections 20 where lines L2 and L5 intersect optical axis FX of light projecting section 10 at point P1 in area RA. Rangefinder 100 also has one light receiving section group G2 including two light receiving sections 20 where lines L3 and L4 intersect optical axis FX of light projecting section 10 at point P2 in region RB. Further, rangefinder 100 has one light receiving section group G3 including two light receiving sections 20 where lines L1 and L6 intersect optical axis FX of light projecting section 10 at point P3 in region RC.

以上のように、投光部10の光軸FXと受光部20と所定の点とを結ぶ線が交わる領域RA,RB、RCは、それぞれ投光部10からの受光部20の距離に応じて異なっている。すなわち、測距装置100は、3つの受光部群G1、G2,G3を有している。 As described above, the regions RA, RB, and RC where the lines connecting the optical axis FX of the light projecting unit 10 and the light receiving unit 20 and the predetermined points intersect each other according to the distance of the light receiving unit 20 from the light projecting unit 10. different. That is, the distance measuring device 100 has three light receiving section groups G1, G2, and G3.

このため、投光部10の光軸FX上の点P1付近に対象物OBが存在する場合、受光部群G1に含まれる2つの受光部20が生成した受光受信に基づいて測距を行うことができる。同様に、光軸FX上の点P2付近に対象物OBが存在する場合、受光部群G2に含まれる2つの受光部20が生成した受光信号に基づいて測距を行うことができる。また、光軸FX上の点P3付近に対象物OBが存在する場合、受光部群G3に含まれる2つの受光部20が生成した受光信号に基づいて測距を行うことができる。 Therefore, when the object OB exists near the point P1 on the optical axis FX of the light projecting unit 10, distance measurement can be performed based on received light received by the two light receiving units 20 included in the light receiving unit group G1. can be done. Similarly, when the object OB exists near the point P2 on the optical axis FX, distance measurement can be performed based on the received light signals generated by the two light receiving sections 20 included in the light receiving section group G2. Further, when the object OB exists near the point P3 on the optical axis FX, distance measurement can be performed based on the received light signals generated by the two light receiving sections 20 included in the light receiving section group G3.

したがって、本実施例に係る測距装置100によれば、投光部10の光軸FX上の点P1付近、点P2付近、点P3付近のいずれかに対象物OBが存在する場合、受光部群G1、G2,G3で受光する反射光RLのタイムオブフライトを一定にすることができる。このため、受光部群G1、G2,G3のいずれかに含まれる受光部20において生成される受光信号のピーク位置を揃えることが可能となる。したがって、測距装置100の測距の精度を高めることが可能となる。 Therefore, according to the distance measuring device 100 according to the present embodiment, when the object OB exists in any of the vicinity of the point P1, the vicinity of the point P2, and the vicinity of the point P3 on the optical axis FX of the light projecting section 10, the light receiving section The time-of-flight of the reflected light RL received by the groups G1, G2, and G3 can be made constant. Therefore, it is possible to align the peak positions of the light receiving signals generated by the light receiving sections 20 included in any one of the light receiving section groups G1, G2, and G3. Therefore, it is possible to improve the accuracy of distance measurement by the distance measuring device 100 .

実施例3に係る測距装置100について説明する。実施例3に係る測距装置100は、実施例1又は2の測距装置100とは、受光部20の投光部10に対する配置位置が異なる。 A range finder 100 according to a third embodiment will be described. The distance measuring device 100 according to the third embodiment differs from the distance measuring device 100 according to the first or second embodiment in the arrangement position of the light receiving section 20 with respect to the light projecting section 10 .

図6は、本実施例に係る測距装置100の投光部10と受光部20の配置例を示している。図6において、複数の受光部20は、投光部10の光軸FXに対して垂直方向に沿って列状に配列されている。 FIG. 6 shows an arrangement example of the light projecting unit 10 and the light receiving unit 20 of the distance measuring device 100 according to this embodiment. In FIG. 6 , the plurality of light receiving units 20 are arranged in a row along the direction perpendicular to the optical axis FX of the light projecting unit 10 .

受光部20の光軸RX2,RX5が、投光部10の光軸FX上の所定の領域RAにおいて交わるように、一対の受光部20が配置されている。受光部20の光軸RX3,RX4が、投光部10の光軸FX上の所定の領域RBにおいて交わるように、一対の受光部20が配置されている。受光部20の光軸RX1,RX6が、投光部10の光軸FX上の所定の領域RCにおいて交わるように、一対の受光部20が配置されている。 A pair of light receiving sections 20 are arranged such that the optical axes RX2 and RX5 of the light receiving sections 20 intersect in a predetermined area RA on the optical axis FX of the light projecting section 10 . A pair of light receiving portions 20 are arranged such that the optical axes RX3 and RX4 of the light receiving portions 20 intersect in a predetermined region RB on the optical axis FX of the light projecting portion 10. As shown in FIG. A pair of light receiving portions 20 are arranged such that the optical axes RX1 and RX6 of the light receiving portions 20 intersect in a predetermined region RC on the optical axis FX of the light projecting portion 10 .

複数の受光部20の各々は、投光部10の光軸FX上の所定の領域RAとは異なる領域RB又はRCにおいて、複数の受光部20の光軸RX3,RX4又はRX1、RX6が互いに交わるように配置されている。具体的には、投光部10の光軸FXに対する垂直方向において、投光部10から離れている受光部20の光軸ほど投光部10から遠い投光部10の光軸FX上で交わるように各々の受光部20が配置されている。 Optical axes RX3, RX4 or RX1, RX6 of the plurality of light receiving sections 20 intersect each other in a region RB or RC different from a predetermined region RA on the optical axis FX of the light projecting section 10. are arranged as Specifically, in the direction perpendicular to the optical axis FX of the light projecting unit 10, the optical axis of the light receiving unit 20 farther from the light projecting unit 10 intersects on the optical axis FX of the light projecting unit 10 farther from the light projecting unit 10. Each light receiving section 20 is arranged as follows.

すなわち、測距装置100は、各々の光軸RX2,RX5が領域RA内の点P1で投光部10の光軸FXと交わる2つの受光部20を含む一の受光部群G1を有する。また、測距装置100は、各々の光軸RX3,RX4が領域RB内の点P2で投光部10の光軸FXと交わる2つの受光部20を含む一の受光部群G2を有する。さらに、測距装置100は、各々の光軸RX1,RX6が領域RC内の点P3で投光部10の光軸FXと交わる2つの受光部20を含む一の受光部群G3を有する。このように、投光部10から離れている受光部20の光軸ほど投光部10から遠い投光部10の光軸FX上で交わっている。 That is, rangefinder 100 has one light receiving section group G1 including two light receiving sections 20 whose respective optical axes RX2 and RX5 intersect optical axis FX of light projecting section 10 at point P1 in area RA. Rangefinder 100 also has one light receiving section group G2 including two light receiving sections 20 whose respective optical axes RX3 and RX4 intersect optical axis FX of light projecting section 10 at point P2 in region RB. Further, distance measuring device 100 has one light receiving section group G3 including two light receiving sections 20 whose respective optical axes RX1 and RX6 intersect optical axis FX of light projecting section 10 at point P3 in region RC. In this way, the optical axes of the light receiving units 20 that are farther from the light projecting unit 10 intersect on the optical axis FX of the light projecting unit 10 that is farther from the light projecting unit 10 .

また、各受光部20の受光面20aから垂直方向に伸びる光軸RX1~RX6と投光部10の光軸FXとは、鋭角の角度を有するように配されている。なお、各受光部20の受光面20aから垂直方向に伸びる光軸RX1~RX6と投光部10の光軸FXとが成す角度は、投光部10から離れるにつれて小さくなる。 Further, the optical axes RX1 to RX6 extending vertically from the light receiving surface 20a of each light receiving section 20 and the optical axis FX of the light projecting section 10 are arranged to form an acute angle. The angle between the optical axes RX1 to RX6 extending vertically from the light receiving surface 20a of each light receiving section 20 and the optical axis FX of the light projecting section 10 becomes smaller as the distance from the light projecting section 10 increases.

以上のように、複数の受光部20は、投光部10の光軸FXに対して垂直方向に沿って列状に配列されている。したがって、本実施例に係る測距装置100によれば、複数の受光部20を配置するスペースを小さくすることができ、装置の小型化を図ることが可能となる。 As described above, the plurality of light receiving units 20 are arranged in a row along the direction perpendicular to the optical axis FX of the light projecting unit 10 . Therefore, according to the distance measuring device 100 of the present embodiment, the space for arranging the plurality of light receiving units 20 can be reduced, and the size of the device can be reduced.

また、受光部20の受光面20aから垂直方向に伸びる光軸RX1~RX6と投光部10の光軸FXとが成す角度は、投光部10から離れるにつれて小さくなる。すなわち、投光部10の光軸FX上の所定の位置で光軸RXが交わるように、各受光部群G1~G3に対応する受光部20の受光面20aを傾けて配置することによって、反射光偏向素子21の光反射面の角度を大きくすることなく、受光する反射光RLの光量を増加させることができる。したがって、設計可能な反射光偏向素子21の光反射面の最大角度に制限されることなく、測距装置100が受光する反射光RLの強度を高めることが可能となりSN比を高めることができる。 Further, the angle formed by the optical axes RX1 to RX6 extending vertically from the light receiving surface 20a of the light receiving section 20 and the optical axis FX of the light projecting section 10 becomes smaller as the distance from the light projecting section 10 increases. That is, by arranging the light receiving surfaces 20a of the light receiving units 20 corresponding to the light receiving unit groups G1 to G3 at an angle so that the optical axis RX intersects at a predetermined position on the optical axis FX of the light projecting unit 10, the light is reflected. The amount of reflected light RL to be received can be increased without increasing the angle of the light reflecting surface of the light deflection element 21 . Therefore, the intensity of the reflected light RL received by the distance measuring device 100 can be increased without being restricted by the maximum angle of the light reflecting surface of the reflected light deflection element 21 that can be designed, and the SN ratio can be increased.

実施例4に係る測距装置100について説明する。実施例4に係る測距装置100は、実施例1乃至3の測距装置100とは、距離測定部40の処理が異なる。具体的には、距離測定部40は、受光部20の反射光RLの受光状況に応じて複数の受光部20を異なった態様で選択して測距をする。 A range finder 100 according to a fourth embodiment will be described. The distance measuring device 100 according to the fourth embodiment differs from the distance measuring devices 100 according to the first to third embodiments in the processing of the distance measuring unit 40 . Specifically, the distance measuring unit 40 selects a plurality of light receiving units 20 in different modes according to the light receiving conditions of the reflected light RL of the light receiving units 20 and performs distance measurement.

図7は、距離測定部40が受光部20を選択する処理フローを示している。 FIG. 7 shows a processing flow in which the distance measuring section 40 selects the light receiving section 20. As shown in FIG.

図7に示すように、距離測定部40は、受光部20から受光信号を受信すると、受光信号に含まれる背景光の光量が予め定めた基準値を超えるか否かを判断する(ステップS101)。 As shown in FIG. 7, when receiving the light receiving signal from the light receiving unit 20, the distance measuring unit 40 determines whether or not the amount of background light included in the light receiving signal exceeds a predetermined reference value (step S101). .

距離測定部40は、受光信号に含まれる背景光が予め定めた基準値を超えないと判断した場合(ステップS101:N)、当該受光部20が生成した受光信号を測距に用いる受光信号として選択する(ステップS102)。 When the distance measurement unit 40 determines that the background light included in the light reception signal does not exceed the predetermined reference value (step S101: N), the light reception signal generated by the light reception unit 20 is used as the light reception signal used for distance measurement. Select (step S102).

距離測定部40は、受光信号に含まれる背景光の光量が予め定めた基準値を超えると判断した場合(ステップS101:Y)、当該受光部20が生成した受光信号を測距に用いる受光信号から除外する。(ステップS103)。 When the distance measurement unit 40 determines that the amount of background light contained in the light reception signal exceeds a predetermined reference value (step S101: Y), the light reception signal generated by the light reception unit 20 is used for distance measurement. Exclude from (Step S103).

距離測定部40は、全ての受光部20で生成された受光信号の選択が完了したか判断する(ステップS104)。 The distance measurement unit 40 determines whether or not the selection of the received light signals generated by all the light receiving units 20 has been completed (step S104).

距離測定部40は、ステップS104の判断において、受光信号の選択が完了していないと判断した場合(ステップS104:N)、ステップS101の判断に戻る。 When the distance measurement unit 40 determines in step S104 that the selection of the received light signal has not been completed (step S104: N), the process returns to step S101.

距離測定部40は、ステップS104の判断において、受光信号の選択が完了したと判断した場合(ステップS104:Y)、ステップS102において選択した受光信号を用いて測距する(ステップS105)。 When the distance measurement unit 40 determines in step S104 that the selection of the received light signal has been completed (step S104: Y), distance measurement is performed using the received light signal selected in step S102 (step S105).

以上のように、距離測定部40は、各々の受光部20が生成した受光信号のノイズの量に応じて受光信号を選択して測距する。したがって、本実施例に係る測距装置100によれば、距離測定部40が測距する処理において受光信号のノイズ量を減少させる、すなわちSN比を高めることができる。この結果、測距装置100の測距精度を高めることが可能となる。 As described above, the distance measurement unit 40 selects a light receiving signal according to the amount of noise in the light receiving signal generated by each light receiving unit 20 and performs distance measurement. Therefore, according to the range finder 100 of the present embodiment, it is possible to reduce the amount of noise in the received light signal in the process of measuring the range by the range finder 40, that is, to increase the SN ratio. As a result, it is possible to improve the distance measurement accuracy of the distance measuring device 100 .

実施例5に係る測距装置100について説明する。実施例5に係る測距装置100は、実施例4の測距装置100とは、距離測定部40の処理が異なる。具体的には、距離測定部40は、出射光ELが出射されてから各々の受光部20が反射光RLを受光するまでの時間(以下、計測時間とする)に応じて複数の受光部20を異なった態様で用いて測距をする。 A range finder 100 according to a fifth embodiment will be described. The distance measuring device 100 according to the fifth embodiment differs from the distance measuring device 100 according to the fourth embodiment in the processing of the distance measuring unit 40 . Specifically, the distance measurement unit 40 measures the distance between the plurality of light receiving units 20 according to the time (hereinafter referred to as measurement time) from the emission of the emitted light EL until each light receiving unit 20 receives the reflected light RL. are used in different ways for ranging.

図8は、実施例5に係る測距装置100の距離測定部40が受光部20を選択する処理フローを示している。図8に示すように、距離測定部40は、受光部20から受光信号を受信すると、計測時間が予め定めた規定時間を超えるか否かを判断する(ステップS201)。 FIG. 8 shows a processing flow in which the distance measuring unit 40 of the distance measuring device 100 according to the fifth embodiment selects the light receiving unit 20. As shown in FIG. As shown in FIG. 8, when receiving the light receiving signal from the light receiving unit 20, the distance measuring unit 40 determines whether or not the measured time exceeds a predetermined specified time (step S201).

距離測定部40は、計測時間が予め定めた規定時間を超えないと判断した場合(ステップS201:N)、当該受光部20が生成した受光信号を測距に用いる受光信号として選択する(ステップS202)。 When the distance measurement unit 40 determines that the measurement time does not exceed the predetermined time (step S201: N), the distance measurement unit 40 selects the light reception signal generated by the light reception unit 20 as the light reception signal to be used for distance measurement (step S202). ).

距離測定部40は、計測時間が予め定めた規定時間を超えると判断した場合(ステップS201:Y)、当該受光部20が生成した受光信号を測距に用いる受光信号から除外する(ステップS203)。 When the distance measurement unit 40 determines that the measurement time exceeds the predetermined time (step S201: Y), the distance measurement unit 40 excludes the light reception signal generated by the light reception unit 20 from the light reception signals used for distance measurement (step S203). .

距離測定部40は、全ての受光部20で生成された受光信号の選択が完了したか判断する(ステップS204)。 The distance measurement unit 40 determines whether or not the selection of the received light signals generated by all the light receiving units 20 has been completed (step S204).

距離測定部40は、ステップS204の判断において、受光信号の選択が完了していないと判断した場合(ステップS204:N)、ステップS201の判断に戻る。 When the distance measurement unit 40 determines in step S204 that the selection of the received light signal has not been completed (step S204: N), the process returns to step S201.

距離測定部40は、ステップS204の判断において、受光信号の選択が完了したと判断した場合(ステップS204:Y)、ステップS202において選択した受光信号を用いて測距する(ステップS205)。 When the distance measurement unit 40 determines in step S204 that the selection of the light receiving signal has been completed (step S204: Y), distance measurement is performed using the light receiving signal selected in step S202 (step S205).

以上のように、距離測定部40は、計測時間に応じて、受光部20が生成した受光信号を選択して対象物OBまでの距離を測定する。すなわち、距離測定部40は、対象物OBまでの距離に応じて測距処理に使用する受光信号を選択する。 As described above, the distance measurement unit 40 selects the received light signal generated by the light receiving unit 20 according to the measurement time and measures the distance to the object OB. That is, the distance measurement unit 40 selects the received light signal to be used for distance measurement processing according to the distance to the object OB.

したがって、本実施例に係る測距装置100によれば、タイムオブフライトが近い受光信号を用いて測距することができる。この結果、測距装置100の測距の精度を高めることが可能となる。 Therefore, according to the range finder 100 according to the present embodiment, it is possible to measure the range using the received light signal having a close time-of-flight. As a result, it is possible to improve the accuracy of distance measurement by the distance measuring device 100 .

実施例6に係る測距装置100について説明する。実施例6に係る測距装置100は、実施例5の測距装置100とは、距離測定部40の処理が異なる。具体的には、距離測定部40は、計測時間に応じて、複数の受光部20の各々で計測された受光信号に対して重み付けを行い、対象物OBまでの距離を測定する。 A range finder 100 according to a sixth embodiment will be described. The distance measuring device 100 according to the sixth embodiment differs from the distance measuring device 100 according to the fifth embodiment in the processing of the distance measuring unit 40 . Specifically, the distance measurement unit 40 weights the received light signal measured by each of the plurality of light receiving units 20 according to the measurement time, and measures the distance to the object OB.

図9は、実施例6に係る測距装置100の距離測定部40が受光部20を選択する処理フローを示している。図9に示すように、距離測定部40は、受光部20から受光信号を受信すると、計測時間が予め定めた規定時間を超えるか否かを判断する(ステップS301)。 FIG. 9 shows a processing flow in which the distance measuring unit 40 of the distance measuring device 100 according to the sixth embodiment selects the light receiving unit 20. As shown in FIG. As shown in FIG. 9, when receiving the light receiving signal from the light receiving unit 20, the distance measuring unit 40 determines whether or not the measured time exceeds a predetermined specified time (step S301).

距離測定部40は、計測時間が予め定めた規定時間を超えないと判断した場合(ステップS301:N)、当該受光部20が生成した受光信号に対して重み付けを行う(ステップS302)。 When the distance measurement unit 40 determines that the measurement time does not exceed the predetermined time (step S301: N), it weights the received light signal generated by the light receiving unit 20 (step S302).

距離測定部40は、全ての受光部20で生成された受光信号に対して重み付けが完了したか判断する(ステップS303)。 The distance measuring unit 40 determines whether the weighting of the light receiving signals generated by all the light receiving units 20 has been completed (step S303).

距離測定部40は、ステップS303の判断において、受光信号に対して重み付けが完了していないと判断した場合(ステップS303:N)、ステップS301の判断に戻る。 If the distance measurement unit 40 determines in step S303 that weighting of the received light signal has not been completed (step S303: N), the process returns to step S301.

距離測定部40は、ステップS303の判断において、受光信号に対する重み付けが完了したと判断した場合(ステップS303:Y)、重み付けされた複数の受光信号を用いて測距する(ステップS304)。ここで重み付けとは、計測時間が規定時間よりも短い受光信号に対しては測距の処理に当該受光信号を使用する割合を減らす、又は、計測時間が規定時間よりも短い受光信号に対しては当該規定時間を超える計測時間に近付けるように計測時間が短い受光信号に補正を加える等である。 If the distance measurement unit 40 determines in step S303 that the weighting of the received light signals has been completed (step S303: Y), distance measurement is performed using a plurality of weighted received light signals (step S304). Here, the weighting is to reduce the rate of using the received light signal for distance measurement processing for the received light signal whose measurement time is shorter than the specified time, or is, for example, correcting a light receiving signal having a short measurement time so as to approach the measurement time exceeding the specified time.

ステップS301の判断において、距離測定部40は、計測時間が予め定めた規定時間を超えると判断した場合(ステップS301:N)、ステップS303の処理を行う。 When the distance measurement unit 40 determines in step S301 that the measured time exceeds the predetermined time (step S301: N), it performs the processing in step S303.

以上のように、測距装置100は、計測時間が規定時間よりも短い受光信号に対して重み付けを行い、測距する。したがって、本実施例に係る測距装置100によれば、データの信頼性を考慮して測距することができるため、精度が高い測距を行うことができる。 As described above, the distance measuring apparatus 100 performs distance measurement by weighting light reception signals whose measurement time is shorter than the specified time. Therefore, according to the range finder 100 according to the present embodiment, since the range can be measured with the reliability of the data taken into consideration, the range can be measured with high accuracy.

実施例7に係る測距装置100について説明する。実施例7に係る測距装置100は、実施例6の測距装置100とは、距離測定部40の処理が異なる。具体的には、距離測定部40は、計測時間が長くなるにつれて選択する受光部20を多くする。尚、本実施例においては、測距装置100は、6つの受光部20を有しているものとして説明する。 A range finder 100 according to a seventh embodiment will be described. The distance measuring device 100 according to the seventh embodiment differs from the distance measuring device 100 according to the sixth embodiment in the processing of the distance measuring unit 40 . Specifically, the distance measurement unit 40 selects more light receiving units 20 as the measurement time increases. In this embodiment, the distance measuring device 100 will be described as having six light receiving units 20 .

図10は、実施例7に係る測距装置100の距離測定部40が受光部20を選択する処理フローを示している。図10に示すように、距離測定部40は、受光部20から受光信号を受信すると、計測時間が、予め定めた第1の規定時間を超えるか否かを判断する(ステップS401)。 FIG. 10 shows a processing flow in which the distance measuring unit 40 of the distance measuring device 100 according to the seventh embodiment selects the light receiving unit 20. As shown in FIG. As shown in FIG. 10, when receiving the light receiving signal from the light receiving section 20, the distance measuring section 40 determines whether or not the measured time exceeds a predetermined first specified time (step S401).

距離測定部40は、計測時間が予め定めた第1の規定時間を超えると判断した場合(ステップS401:Y)、6つの受光部20が生成した受光信号のうち全ての受光信号を選択する(ステップS402)。距離測定部40は、ステップS402において選択した受光信号を用いて測距する(ステップS403)。 When the distance measurement unit 40 determines that the measurement time exceeds the predetermined first specified time (step S401: Y), it selects all the light reception signals among the light reception signals generated by the six light reception units 20 ( step S402). The distance measurement unit 40 measures the distance using the received light signal selected in step S402 (step S403).

距離測定部40は、計測時間が予め定めた第1の規定時間を超えないと判断した場合(ステップS401:N)、計測時間が第1の規定時間よりも短い第2の規定時間を超えるか否かを判断する(ステップS404)。 When the distance measurement unit 40 determines that the measured time does not exceed the predetermined first specified time (step S401: N), the distance measurement unit 40 determines whether the measured time exceeds the second specified time shorter than the first specified time. It is determined whether or not (step S404).

距離測定部40は、計測時間が予め定めた第2の規定時間を超えると判断した場合(ステップS404:Y)、6つの受光部20が生成した受光信号のうち相対的に計測時間が短い3つの受光信号を選択する(ステップS405)。距離測定部40は、ステップS405において選択した受光信号を用いて測距する(ステップS403)。 When the distance measurement unit 40 determines that the measurement time exceeds the predetermined second specified time (step S404: Y), the three light receiving signals generated by the six light receiving units 20 have relatively short measurement times. One received light signal is selected (step S405). The distance measuring unit 40 measures the distance using the received light signal selected in step S405 (step S403).

距離測定部40は、計測時間が、予め定めた第2の規定時間を超えないと判断した場合(ステップS404:N)、計測時間が第2の規定時間よりも短い第3の規定時間を超えるか否かを判断する(ステップS406)。 When the distance measurement unit 40 determines that the measured time does not exceed the predetermined second specified time (step S404: N), the measured time exceeds the third specified time shorter than the second specified time. (step S406).

距離測定部40は、計測時間が予め定めた第3の規定時間を超えると判断した場合(ステップS405:Y)、6つの受光部20が生成した受光信号のうち相対的に計測時間が短い2つの受光信号を選択する(ステップS407)。距離測定部40は、ステップS407において選択した受光信号を用いて測距する(ステップS403)。 When the distance measurement unit 40 determines that the measurement time exceeds the predetermined third specified time (step S405: Y), the distance measurement unit 40 determines that the light reception signals generated by the six light reception units 20 have relatively short measurement times. One received light signal is selected (step S407). The distance measurement unit 40 measures the distance using the received light signal selected in step S407 (step S403).

距離測定部40は、計測時間が予め定めた第3の規定時間を超えないと判断した場合(ステップS405:N)、6つの受光部20が生成した受光信号のうち相対的に計測時間が短い1つの受光信号を選択する(ステップS408)。距離測定部40は、ステップS408において選択した受光信号を用いて測距する(ステップS403)。 When the distance measurement unit 40 determines that the measurement time does not exceed the predetermined third specified time (step S405: N), the measurement time of the light receiving signals generated by the six light receiving units 20 is relatively short. One received light signal is selected (step S408). The distance measurement unit 40 measures the distance using the received light signal selected in step S408 (step S403).

以上のように、距離測定部40は、計測時間に応じて測距に用いる受光信号を選択する。すなわち、計測時間が長い場合、測距装置100から対象物OBまでの距離は遠いため各々の受光部20の計測時間の差は短くなる。したがって、測距装置100が有している全ての受光部20の受光信号を用いて測距することにより、高い信号強度で測距することが可能となる。 As described above, the distance measurement unit 40 selects the received light signal used for distance measurement according to the measurement time. That is, when the measurement time is long, the distance between the distance measuring device 100 and the object OB is long, so the difference between the measurement times of the respective light receiving units 20 is short. Therefore, by measuring the distance using the light reception signals of all the light receiving units 20 of the distance measuring device 100, it is possible to measure the distance with high signal strength.

また、第1の規定時間よりも短く第2の規定時間よりも長い計測時間においては、各々の受光部20の計測時間の差が測距に影響を与える。そこで、距離測定部40は、計測時間が相対的に短い受光信号を用いて測距を行うことで、測距の精度を高めることができる。 Moreover, in the measurement time shorter than the first specified time and longer than the second specified time, the difference in the measurement time of each light receiving unit 20 affects the distance measurement. Therefore, the distance measurement unit 40 can improve the accuracy of distance measurement by performing distance measurement using a light receiving signal whose measurement time is relatively short.

このように、距離測定部40は、計測時間に応じて測距に用いる受光部20を選択することで、誤差の少ない受光信号によって測距を行う。したがって、測距装置100は、精度が高い測距を行うことができる。なお、本発明では、受光信号の選択において上記の実施例には限定されない。例えば、計測時間が第1の規定時間を超える場合に選択する受光信号、計測時間が第2の規定時間を超える場合に選択する受光信号、計測時間が第3の規定時間を超える場合に選択する受光信号及び計測時間が第3の規定時間を超えない場合に選択する受光信号の各々の数は、順に小さくなっていることを条件に、任意に決めてもよい。 In this manner, the distance measurement unit 40 selects the light receiving unit 20 to be used for distance measurement according to the measurement time, thereby performing distance measurement using light reception signals with little error. Therefore, the ranging device 100 can perform highly accurate ranging. In addition, in the present invention, the selection of the received light signal is not limited to the above-described embodiment. For example, a received light signal selected when the measurement time exceeds the first specified time, a received light signal selected when the measured time exceeds the second specified time, and selected when the measured time exceeds the third specified time. The number of light receiving signals and the number of light receiving signals to be selected when the measurement time does not exceed the third specified time may be arbitrarily determined on the condition that the numbers are sequentially smaller.

実施例8に係る測距装置100について説明する。実施例8に係る測距装置100は、実施例1乃至7の測距装置100とは、距離測定部40が行う測距処理が異なる。 A range finder 100 according to an eighth embodiment will be described. The distance measuring device 100 according to the eighth embodiment differs from the distance measuring devices 100 according to the first to seventh embodiments in the distance measuring process performed by the distance measuring unit 40 .

距離測定部40は、出射光ELの出射角度に応じて複数の受光部20が生成した受光信号の各々を異なる態様で用いて測距する。 The distance measurement unit 40 measures the distance using each of the received light signals generated by the plurality of light receiving units 20 in different manners according to the emission angle of the emitted light EL.

図11は、本実施例に係る測距装置100の投光部10と受光部20の配置例を示している。図11に示すように、投光部10は、中心軸CX上に配置されている。受光部20A~20Dは、中心軸CXの垂直方向において列状に配置されている。具体的には、中心軸CXに対して対称となる位置に一対の受光部20A、20Dが配置されている。また、中心軸CXに対して対称となる位置であって一対の受光部20A、20Dの間に一対の受光部20B,20Cが配置されている。 FIG. 11 shows an arrangement example of the light projecting unit 10 and the light receiving unit 20 of the distance measuring device 100 according to this embodiment. As shown in FIG. 11, the light projecting section 10 is arranged on the central axis CX. The light receiving sections 20A to 20D are arranged in rows in the direction perpendicular to the central axis CX. Specifically, a pair of light receiving portions 20A and 20D are arranged at symmetrical positions with respect to the central axis CX. A pair of light receiving portions 20B and 20C are arranged between the pair of light receiving portions 20A and 20D at positions symmetrical with respect to the central axis CX.

投光部10は、中心軸CXに対する角度θEにおいて、出射光ELを出射する。対象物OBで反射された出射光ELは、反射光RLとして各受光部20A~20Dに入射する。 The light projecting unit 10 emits the emitted light EL at an angle θE with respect to the central axis CX. The emitted light EL reflected by the object OB enters each of the light receiving sections 20A to 20D as reflected light RL.

ここで、測距装置100から対象物OBまでの距離を距離Zとする。図中において、各受光部20A~20Dから対象物OBまでの距離はそれぞれ異なる。具体的には、受光部20A~20Dから対象物OBまでの距離は、受光部20A、受光部20B、受光部20C、受光部20Dの順に長くなっている。 Here, let distance Z be the distance from the distance measuring device 100 to the object OB. In the drawing, the distances from the respective light receiving sections 20A to 20D to the object OB are different. Specifically, the distance from the light receiving sections 20A to 20D to the object OB increases in the order of the light receiving section 20A, the light receiving section 20B, the light receiving section 20C, and the light receiving section 20D.

図12は、受光部20Aが生成した受光信号A、受光部20Bが生成した受光信号B、受光部20Cが生成した受光信号C、及び受光部20Dが生成した受光信号Dを示している。図12において、受光信号A~DのピークPKの位置は、受光部20A~20Dから対象物OBまでの距離に応じて異なる。また、各受光信号A~DのピークPKの強度は弱く、ノイズNよりもわずかに強度が高い。 FIG. 12 shows the light receiving signal A generated by the light receiving section 20A, the light receiving signal B generated by the light receiving section 20B, the light receiving signal C generated by the light receiving section 20C, and the light receiving signal D generated by the light receiving section 20D. In FIG. 12, the positions of the peaks PK of the light receiving signals A to D differ according to the distance from the light receiving sections 20A to 20D to the object OB. Also, the intensity of the peak PK of each of the received light signals A to D is weak and slightly higher than the noise N. FIG.

図13は、図12の受光信号A~Dを加算して生成した合成信号を示している。図13に示すように、受光信号A~Dを全て加算して合成すると、各受光信号A~DのピークPKがノイズNに埋もれてしまいピークPKの位置を判別するのが困難である。また、各々の受光信号A~DのピークPKの位置がずれており、正確に対象物OBの測距をすることが困難である。 FIG. 13 shows a synthesized signal generated by adding the received light signals A to D of FIG. As shown in FIG. 13, when all the received light signals A to D are added and synthesized, the peak PK of each of the received light signals A to D is buried in the noise N, making it difficult to determine the position of the peak PK. Moreover, the positions of the peaks PK of the light receiving signals A to D are shifted, making it difficult to accurately measure the distance to the object OB.

距離測定部40は、出射光ELの出射角度に応じて複数の受光部20A~20Dが生成した受光信号A~Dの各々を補正して測距する。具体的には、距離測定部40は、出射光偏向素子12の出射角度θEに対する測定装置100と対象物OBまでの距離Zと、各受光部20に対する基準時刻からの計測時間の補正量を示した値を記憶したテーブルを有している。 The distance measuring unit 40 measures the distance by correcting each of the light receiving signals A to D generated by the plurality of light receiving units 20A to 20D according to the emission angle of the emitted light EL. Specifically, the distance measuring unit 40 indicates the distance Z between the measuring device 100 and the object OB with respect to the emission angle θE of the emitted light deflection element 12, and the correction amount of the measurement time from the reference time for each light receiving unit 20. It has a table that stores the values.

例えば、表1に示すように、出射角度θE1において、測距装置100から対象物OBまでの距離がZ1であるとき、一の受光部20に対する基準時刻からの補正量はΔTA1秒である。同条件での他の受光部20に対する基準時刻からの補正量はΔTB1秒である。このように、距離測定部40は、各受光部20の設置位置に応じた基準時刻からの補正量を示す値を記憶したテーブルを有している。 For example, as shown in Table 1, when the distance from the distance measuring device 100 to the object OB is Z1 at the exit angle θE1, the correction amount from the reference time for one light receiving unit 20 is ΔTA1 seconds. The amount of correction from the reference time for the other light receiving units 20 under the same conditions is ΔTB1 seconds. As described above, the distance measurement unit 40 has a table storing values indicating the amount of correction from the reference time corresponding to the installation position of each light receiving unit 20 .

Figure 0007148249000001
Figure 0007148249000001

図14は、受光部20A~20Dが生成した受光信号A~Dの補正例を示している。図14において、距離測定部40は、表1のテーブルを参照して各受光信号A~Dに対する基準時刻からの補正量に応じて受光信号A~Dを重ね合わせる。これにより、距離測定部40は、重ね合わされた受光信号に含まれる対象物OBからの反射光RLの信号強度が最大となった信号に基づいて、測距を行う。 FIG. 14 shows an example of correction of the received light signals A to D generated by the light receiving sections 20A to 20D. In FIG. 14, the distance measuring unit 40 refers to the table of Table 1 and superimposes the received light signals A to D according to the amount of correction from the reference time for each of the received light signals A to D. As a result, the distance measurement unit 40 performs distance measurement based on the signal with the maximum signal intensity of the reflected light RL from the object OB included in the superimposed received light signal.

具体的には、距離測定部40は、受光信号Aについて基準時刻からの補正量ΔTA1を進めた位置に補正する。距離測定部40は、受光信号Bについて基準時刻からの補正量ΔTB1を進めた位置に補正する。距離測定部40は、受光信号Cについて基準時刻からの補正量ΔTC1を進めた位置に補正する。距離測定部40は、受光信号Dについて基準時刻からの補正量ΔTD1を進めた位置に補正する。 Specifically, the distance measuring unit 40 corrects the received light signal A to a position advanced by the correction amount ΔTA1 from the reference time. The distance measuring unit 40 corrects the received light signal B to a position advanced by a correction amount ΔTB1 from the reference time. The distance measuring unit 40 corrects the received light signal C to a position advanced by a correction amount ΔTC1 from the reference time. The distance measuring unit 40 corrects the received light signal D to a position advanced by a correction amount ΔTD1 from the reference time.

図15は、図14の受光信号A~Dを加算して生成した合成信号を示している。図15に示すように、補正後の受光信号A~Dを全て加算して合成されると、合成信号のピークPKの強度が所定の位置でノイズよりも大きくなる。したがって、ピークPKを判別することが容易となる。また、各々の受光信号A~DのピークPKの位置が一致することにより、正確に対象物OBの測距をすることが可能である。 FIG. 15 shows a synthesized signal generated by adding the received light signals A to D of FIG. As shown in FIG. 15, when all the corrected received light signals A to D are added and synthesized, the intensity of the peak PK of the synthesized signal becomes greater than the noise at a predetermined position. Therefore, it becomes easy to determine the peak PK. In addition, since the positions of the peaks PK of the light receiving signals A to D match each other, it is possible to accurately measure the distance to the object OB.

このように、距離測定部40は、受光信号を揃えることにより、対象物OBからの反射光RLの信号強度を大きくすることで、反射光RLに対するノイズ量の軽減を図ることが可能となる。したがって、本実施例の測距装置によれば、高い精度で測距することが可能となる。なお、表1のテーブルは上記に限定されず、基準となる受光部20が計測した基準時刻から各受光部20にそれぞれ対応する当該基準時刻からの時間の補正量を示した値を記憶させてもよい。 In this manner, the distance measurement unit 40 increases the signal intensity of the reflected light RL from the object OB by aligning the received light signals, thereby reducing the amount of noise in the reflected light RL. Therefore, according to the range finder of this embodiment, it is possible to measure the range with high accuracy. Note that the table of Table 1 is not limited to the above, and stores a value indicating the amount of correction of the time from the reference time corresponding to each light receiving unit 20 from the reference time measured by the light receiving unit 20 as a reference. good too.

図16は、受光信号A~Dの他の補正例を示している。図16において、距離測定部40は、受光信号Aを基準時刻とし、受光信号B~Dに対して基準時刻からの時間の補正を行う。具体的には、距離測定部40は、受光信号Bについて基準時刻からの補正量ΔTB2を進めた位置に補正する。距離測定部40は、受光信号Cについては、基準時刻からの補正量ΔTC2を進めた位置に補正する。距離測定部40は、受光信号Dについて基準時刻からの補正量ΔTD2を進めた位置に補正する。 FIG. 16 shows another correction example of the received light signals A to D. FIG. In FIG. 16, the distance measuring unit 40 uses the received light signal A as a reference time, and corrects the received light signals BD for the time from the reference time. Specifically, the distance measuring unit 40 corrects the received light signal B to a position advanced by a correction amount ΔTB2 from the reference time. The distance measurement unit 40 corrects the received light signal C to a position advanced by a correction amount ΔTC2 from the reference time. The distance measuring unit 40 corrects the received light signal D to a position advanced by a correction amount ΔTD2 from the reference time.

このように受光信号A~Dの補正を行っても、受光信号A~Dのピークの位置を揃えることが可能となり、測距装置100は、高い精度で測距を行うことができる。 Even if the light receiving signals A to D are corrected in this way, it is possible to align the peak positions of the light receiving signals A to D, and the distance measuring apparatus 100 can measure the distance with high accuracy.

100 測距装置
10 投光部
11 光源
12 出射光偏向素子
20 受光部
21 反射光偏向素子
22 受光素子
40 距離測定部
FX 投光部の光軸
RX1~RX6 受光部の光軸
100 Distance measuring device 10 Light projecting unit 11 Light source 12 Emitted light deflection element 20 Light receiving unit 21 Reflected light deflection element 22 Light receiving element 40 Distance measuring unit FX Optical axes RX1 to RX6 of light emitting unit Optical axes of light receiving unit

Claims (7)

出射光を出射する光源前記出射光の方向を可変に偏向する出射光反射部材を有する出射光偏向素子及び前記出射光が外部に出射する開口を含む投光部と、
各々が前記投光部の開口の中心軸である投光中心軸に対する垂直方向において前記投光部と離間して配され、かつ前記出射光が対象物で反射した反射光の方向を可変に偏向する反射光反射部材を有する反射光偏向素子及び前記反射光偏向素子によって偏向された前記反射光を受光する受光素子を各々が含む複数の受光部と、
を有し、
前記複数の受光部は、各々の受光部の受光面から垂直方向に伸びる中心軸である受光中心軸が前記投光中心軸上の複数の位置で前記投光中心軸と交わることを特徴とする測距装置。
a light projecting unit including a light source for emitting emitted light , an emitted light deflection element having an emitted light reflecting member for variably deflecting the direction of the emitted light, and an opening through which the emitted light is emitted to the outside ;
Each is arranged apart from the light projecting unit in a direction perpendicular to the light projecting center axis which is the center axis of the opening of the light projecting unit, and the direction of the reflected light reflected by the target object is variably deflected from the emitted light. a plurality of light receiving units each including a reflected light deflecting element having a reflected light reflecting member and a light receiving element receiving the reflected light deflected by the reflected light deflecting element;
has
In the plurality of light receiving portions, a light receiving center axis extending vertically from a light receiving surface of each light receiving portion intersects the light projecting center axis at a plurality of positions on the light projecting center axis . rangefinder.
前記複数の受光部は、前記投光中心軸に対して垂直な方向に沿って列状に配置されていることを特徴とする請求項1に記載の測距装置。 2. The distance measuring device according to claim 1, wherein the plurality of light receiving units are arranged in a line along a direction perpendicular to the center axis of light projection . 前記投光中心軸と前記受光中心軸とが交わる位置は、前記投光部からの前記受光部の距離に応じて異なることを特徴とする請求項1又は2に記載の測距装置。 3. The distance measuring device according to claim 1, wherein a position where the center axis of light projection and the center axis of light reception intersect varies depending on the distance of the light receiving section from the light projecting section. 前記複数の受光部の各々は、前記投光部から離れている前記受光部ほど、前記受光中心前記投光部から遠い前記投光中心軸上で交わることを特徴とする請求項1乃至3のいずれか一項に記載の測距装置。 2. The light- receiving central axis of each of the plurality of light-receiving parts intersects on the light-projecting central axis farther from the light-projecting part as the light-receiving part is farther from the light-projecting part. 4. The distance measuring device according to any one of 3 . 前記複数の受光部は、
各々の受光中心軸が一の領域で前記投光中心軸と交わる一対の受光部を含む一の受光部群と、
各々の受光中心軸が他の領域で前記投光中心軸と交わる一対の受光部を含む他の受光部群と、を有することを特徴とする請求項1乃至4のいずれか一項に記載の測距装置。
The plurality of light receiving units are
a light-receiving portion group including a pair of light-receiving portions each having a light- receiving central axis intersecting the light-projecting central axis in one region;
5. The light-receiving unit group according to claim 1 , further comprising a pair of light-receiving units whose respective light- receiving central axes intersect the light-projecting central axis in another region. rangefinder.
前記一の受光部群及び前記他の受光部群の各々における前記一対の受光部を構成する受光部は、前記投光中心軸を挟んで互いに対向する位置に配されていることを特徴とする請求項に記載の測距装置。 The light receiving portions constituting the pair of light receiving portions in each of the one light receiving portion group and the other light receiving portion group are arranged at positions facing each other across the light projection central axis . The distance measuring device according to claim 5 . 前記受光部の各々の前記反射光反射部材は、前記投光部の前記出射光反射部材と連動して揺動することを特徴とする請求項1乃至のいずれか一項に記載の測距装置。 7. The distance measurement according to any one of claims 1 to 6 , wherein the reflected light reflecting member of each of the light receiving units swings in conjunction with the emitted light reflecting member of the light projecting unit. Device.
JP2018045650A 2018-03-13 2018-03-13 rangefinder Active JP7148249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018045650A JP7148249B2 (en) 2018-03-13 2018-03-13 rangefinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018045650A JP7148249B2 (en) 2018-03-13 2018-03-13 rangefinder

Publications (2)

Publication Number Publication Date
JP2019158598A JP2019158598A (en) 2019-09-19
JP7148249B2 true JP7148249B2 (en) 2022-10-05

Family

ID=67993960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018045650A Active JP7148249B2 (en) 2018-03-13 2018-03-13 rangefinder

Country Status (1)

Country Link
JP (1) JP7148249B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012226020A (en) 2011-04-15 2012-11-15 Toyota Central R&D Labs Inc Distance measuring instrument
JP2014115182A (en) 2012-12-10 2014-06-26 Konica Minolta Inc Laser radar
JP2014219250A (en) 2013-05-07 2014-11-20 富士通株式会社 Range finder and program
US20160323562A1 (en) 2015-04-29 2016-11-03 Apple Inc. Time-of-flight depth mapping with flexible scan pattern
US20180059408A1 (en) 2016-09-01 2018-03-01 Funai Electric Co., Ltd. Scanner mirror
US20180231640A1 (en) 2017-02-14 2018-08-16 Baidu Usa Llc Lidar system with synchronized mems mirrors

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06109847A (en) * 1992-09-30 1994-04-22 Mazda Motor Corp Optical distance-measuring apparatus
JP6458839B2 (en) * 2017-09-21 2019-01-30 日本電気株式会社 Mobile station and method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012226020A (en) 2011-04-15 2012-11-15 Toyota Central R&D Labs Inc Distance measuring instrument
JP2014115182A (en) 2012-12-10 2014-06-26 Konica Minolta Inc Laser radar
JP2014219250A (en) 2013-05-07 2014-11-20 富士通株式会社 Range finder and program
US20160323562A1 (en) 2015-04-29 2016-11-03 Apple Inc. Time-of-flight depth mapping with flexible scan pattern
US20180059408A1 (en) 2016-09-01 2018-03-01 Funai Electric Co., Ltd. Scanner mirror
JP2018036543A (en) 2016-09-01 2018-03-08 船井電機株式会社 Scanner mirror
US20180231640A1 (en) 2017-02-14 2018-08-16 Baidu Usa Llc Lidar system with synchronized mems mirrors
JP2018132524A (en) 2017-02-14 2018-08-23 バイドゥ・ユーエスエイ・リミテッド・ライアビリティ・カンパニーBaidu USA LLC Lidar device and method for operating lidar device

Also Published As

Publication number Publication date
JP2019158598A (en) 2019-09-19

Similar Documents

Publication Publication Date Title
CN109917348B (en) Laser radar system
CN108693515B (en) Lidar system and method for ascertaining a system state of a lidar system
US20180329038A1 (en) Laser scanner for motor vehicles
CN112567266A (en) Detection system for vehicle
US20160313553A1 (en) Optical scanner for laser radar or other devices
CN114578381A (en) Laser radar system
US10094738B2 (en) Method for determining angle errors and light-emitting device
CN111007484B (en) Single-line laser radar
CN110873867A (en) Laser radar system based on MEMS scanning mirror
CN110703267A (en) Laser emission device, laser emission method and laser radar system
CN113093203B (en) Linear array detector scanning laser radar
JP2021535996A (en) Coaxial settings for photodetection and ranging, ie LIDAR measurements
JP2014098603A (en) Three-dimensional model generation device
JP7148249B2 (en) rangefinder
CN110140060B (en) Optical component for a lidar system, lidar system and working device
JP2021170033A (en) Scanner
JP2022162080A (en) Distance measuring device
WO2021001502A1 (en) Post-scanner telescope optics for lidar system
JP2019158599A (en) Distance measurement apparatus
JP7314661B2 (en) Optical scanning device, object detection device and sensing device
KR102361945B1 (en) Light Source Module for Hight Density Beam Radiation and its Control Method
WO2017122440A1 (en) Optical scanning device
CN110596673A (en) Coaxial laser radar system
JP2021012264A (en) Optical scanner, object detection device, and sensing device
US20210165100A1 (en) Lidar arrangement, vehicle, and robot comprising a lidar arrangement of this type

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220104

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220922

R150 Certificate of patent or registration of utility model

Ref document number: 7148249

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150