JP2022162080A - Distance measuring device - Google Patents

Distance measuring device Download PDF

Info

Publication number
JP2022162080A
JP2022162080A JP2022133379A JP2022133379A JP2022162080A JP 2022162080 A JP2022162080 A JP 2022162080A JP 2022133379 A JP2022133379 A JP 2022133379A JP 2022133379 A JP2022133379 A JP 2022133379A JP 2022162080 A JP2022162080 A JP 2022162080A
Authority
JP
Japan
Prior art keywords
light
light projecting
distance
instantaneous
ifoi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022133379A
Other languages
Japanese (ja)
Inventor
修 加園
Osamu Kasono
充 佐藤
Mitsuru Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Electronic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Electronic Corp filed Critical Pioneer Electronic Corp
Priority to JP2022133379A priority Critical patent/JP2022162080A/en
Publication of JP2022162080A publication Critical patent/JP2022162080A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a distance measuring device with which it is possible to comply with safety standards regarding laser beam output and measure the distance to an object located far away with good accuracy.
SOLUTION: A distance measuring device comprises: a light reception unit that includes a reflected light deflection element for variably deflecting the direction of reflected light of the emission light having been reflected by an object and a light reception element for receiving the reflected light having been deflected by the reflected light deflection element; and a plurality of light projection units, at least one of which is arranged apart from the light reception unit in a direction perpendicular to the optical axis of the light reception unit, and each of which includes a light source for emitting the emission light and an emission light deflection element for variably deflecting the direction of the emission light. The emission light is emitted from one or a plurality of light projection units selected from among the plurality of light projection units, on the basis of the direction of the emission light of the plurality of light projection units.
SELECTED DRAWING: Figure 1
COPYRIGHT: (C)2023,JPO&INPIT

Description

本発明は、対象物までの距離を計測する測距装置に関する。 The present invention relates to a distance measuring device that measures the distance to an object.

光学測距装置は、例えば、レーザ光を対象領域内で走査して対象物までの距離を計測する、すなわち測距する。 An optical rangefinder, for example, scans a target area with a laser beam to measure the distance to the target, that is, measures the distance.

このような測距装置としては、例えば、光走査装置の光反射面を揺動駆動する駆動部が位相差変更部及び振幅変更部の少なくとも一方を備えた光測距装置が特許文献1に開示されている。 As such a rangefinder, for example, Japanese Patent Laid-Open No. 2002-200001 discloses an optical rangefinder in which a drive section for driving the light reflection surface of an optical scanning device to oscillate includes at least one of a phase difference changer and an amplitude changer. It is

特開2011-053137号公報JP 2011-053137 A

レーザ光は対象物に照射されると散乱する。このため、対象物が測距装置から遠くなるにつれて測距装置が受光するレーザ光の強度が弱くなる。したがって、測距装置から遠方に位置する対象物の測距を行うためには、レーザ光の出力を高くして出射することが望まれる。 Laser light scatters when it hits an object. For this reason, the intensity of the laser beam received by the distance measuring device becomes weaker as the object becomes farther from the distance measuring device. Therefore, in order to measure the distance of an object located far from the distance measuring device, it is desirable to emit laser light with a high output.

しかし、レーザ光はパワー密度が高く人体に有害となる場合があるため、安全基準によってレーザ光の出力が制限されている。この安全基準を順守すると、遠距離を測定する場合戻り光の光量が小さくなることが課題の1つとして挙げられる。 However, since laser light has a high power density and may be harmful to the human body, the output of laser light is restricted by safety standards. If this safety standard is observed, one of the problems is that the amount of returned light becomes small when measuring a long distance.

本発明は上記した点に鑑みてなされたものであり、レーザ光の出力に関する安全基準を順守し、かつ遠方に位置する対象物の測距を精度良く行うことが可能な測距装置を提供することを課題の1つとする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a distance measuring apparatus which complies with safety standards regarding the output of laser light and is capable of accurately measuring the distance of a distant object. This is one of the issues.

本願請求項1に記載の測距装置は、出射光が対象物で反射した反射光の方向を可変に偏向する反射光偏向素子及び前記反射光偏向素子によって偏向された前記反射光を受光する受光素子を含む受光部と、少なくとも1つが前記受光部の光軸と垂直な方向において前記受光部と離間して配され、かつ前記出射光を出射する光源及び前記出射光の方向を可変に偏向する出射光偏向素子を各々が含む複数の投光部と、前記複数の投光部の前記出射光の方向に基づいて、前記複数の投光部のうちから選択される1又は複数の投光部から前記出射光が出射されることを特徴とする。 The distance measuring device according to claim 1 of the present application comprises a reflected light deflecting element that variably deflects the direction of reflected light emitted from an object and reflected light, and a light receiving device that receives the reflected light deflected by the reflected light deflecting element. a light receiving unit including an element, at least one of which is arranged apart from the light receiving unit in a direction perpendicular to the optical axis of the light receiving unit, and which variably deflects a light source for emitting the emitted light and a direction of the emitted light. a plurality of light projecting sections each including an emitted light deflection element; and one or a plurality of light projecting sections selected from among the plurality of light projecting sections based on the direction of the emitted light of the plurality of light projecting sections. The emitted light is emitted from.

実施例1に係る測距装置の構成を示すブロック図である。1 is a block diagram showing the configuration of a distance measuring device according to Example 1; FIG. 実施例1に係る測距装置の投光系の動作原理を説明する説明図である。FIG. 4 is an explanatory diagram illustrating the principle of operation of the projection system of the rangefinder according to the first embodiment; 実施例1に係る測距装置の受光系の動作原理を説明する説明図である。FIG. 4 is an explanatory diagram for explaining the principle of operation of the light receiving system of the distance measuring device according to the first embodiment; 図1の投光部の瞬間投光野と受光部の瞬間視野を説明する概念図である。FIG. 2 is a conceptual diagram for explaining the instantaneous light field of the light projecting part and the instantaneous field of view of the light receiving part of FIG. 1; 実施例1に係る測距装置からの距離に応じた投光部の瞬間投光野と受光部の瞬間視野を説明する概念図である。4 is a conceptual diagram illustrating an instantaneous light field of the light projecting part and an instantaneous field of view of the light receiving part according to the distance from the distance measuring device according to the first embodiment; FIG. 実施例2に係る測距装置からの距離に応じた投光部の瞬間投光野と受光部の瞬間視野を説明する概念図である。FIG. 10 is a conceptual diagram illustrating an instantaneous light field of the light projecting unit and an instantaneous field of view of the light receiving unit according to the distance from the distance measuring device according to the second embodiment; 実施例3に係る測距装置からの距離に応じた投光部の瞬間投光野と受光部の瞬間視野を説明する概念図である。FIG. 12 is a conceptual diagram illustrating an instantaneous light field of the light projecting unit and an instantaneous field of view of the light receiving unit according to the distance from the distance measuring device according to the third embodiment; 実施例4に係る測距装置からの距離に応じた投光部の瞬間投光野と受光部の瞬間視野を説明する概念図である。FIG. 12 is a conceptual diagram illustrating the instantaneous light field of the light projecting unit and the instantaneous field of view of the light receiving unit according to the distance from the distance measuring device according to the fourth embodiment; 実施例5に係る測距装置の構成を示すブロック図である。FIG. 11 is a block diagram showing the configuration of a distance measuring device according to Example 5; 実施例5に係る測距装置の投光部と受光部の配置例を示す斜視図である。FIG. 12 is a perspective view showing an arrangement example of a light projecting unit and a light receiving unit of a distance measuring device according to Example 5; 図9の投光部から出射光が出射される態様を示す概念図である。FIG. 10 is a conceptual diagram showing a mode in which emitted light is emitted from the light projecting section of FIG. 9; 実施例5の変形例に係る測距装置から出射された出射光を説明する概念図である。FIG. 11 is a conceptual diagram illustrating outgoing light emitted from a rangefinder according to a modification of the fifth embodiment; 実施例5の変形例に係る測距装置からの所定の距離における投光部の瞬間投光野と受光部の瞬間視野を説明する概念図である。FIG. 14 is a conceptual diagram illustrating an instantaneous light field of the light projecting unit and an instantaneous field of view of the light receiving unit at a predetermined distance from the distance measuring device according to the modification of the fifth embodiment; 実施例5の変形例に係る測距装置からの所定の距離における投光部の瞬間投光野と受光部の瞬間視野を説明する概念図である。FIG. 14 is a conceptual diagram illustrating an instantaneous light field of the light projecting unit and an instantaneous field of view of the light receiving unit at a predetermined distance from the distance measuring device according to the modification of the fifth embodiment; 実施例5の変形例に係る測距装置からの所定の距離における投光部の瞬間投光野と受光部の瞬間視野を説明する概念図である。FIG. 14 is a conceptual diagram illustrating an instantaneous light field of the light projecting unit and an instantaneous field of view of the light receiving unit at a predetermined distance from the distance measuring device according to the modification of the fifth embodiment; 実施例5の変形例に係る測距装置からの所定の距離における投光部の瞬間投光野と受光部の瞬間視野を説明する概念図である。FIG. 14 is a conceptual diagram illustrating an instantaneous light field of the light projecting unit and an instantaneous field of view of the light receiving unit at a predetermined distance from the distance measuring device according to the modification of the fifth embodiment; 実施例5の変形例に係る測距装置からの所定の距離における投光部の瞬間投光野と受光部の瞬間視野を説明する概念図である。FIG. 14 is a conceptual diagram illustrating an instantaneous light field of the light projecting unit and an instantaneous field of view of the light receiving unit at a predetermined distance from the distance measuring device according to the modification of the fifth embodiment; 実施例5の変形例に係る測距装置からの所定の距離における投光部の瞬間投光野と受光部の瞬間視野を説明する概念図である。FIG. 14 is a conceptual diagram illustrating an instantaneous light field of the light projecting unit and an instantaneous field of view of the light receiving unit at a predetermined distance from the distance measuring device according to the modification of the fifth embodiment; 実施例5の変形例に係る測距装置からの所定の距離における投光部の瞬間投光野と受光部の瞬間視野を説明する概念図である。FIG. 14 is a conceptual diagram illustrating an instantaneous light field of the light projecting unit and an instantaneous field of view of the light receiving unit at a predetermined distance from the distance measuring device according to the modification of the fifth embodiment; 実施例5の変形例に係る測距装置からの所定の距離における投光部の瞬間投光野と受光部の瞬間視野を説明する概念図である。FIG. 14 is a conceptual diagram illustrating an instantaneous light field of the light projecting unit and an instantaneous field of view of the light receiving unit at a predetermined distance from the distance measuring device according to the modification of the fifth embodiment; 実施例5の変形例に係る測距装置からの所定の距離における投光部の瞬間投光野と受光部の瞬間視野を説明する概念図である。FIG. 14 is a conceptual diagram illustrating an instantaneous light field of the light projecting unit and an instantaneous field of view of the light receiving unit at a predetermined distance from the distance measuring device according to the modification of the fifth embodiment;

図1は、本実施例に係る測距装置100の機能ブロックを示している。図1において、投光部10a,10bは、出射光を出射する発光装置である。投光部10a,10bは、互いに同一の構成を有する。投光部10a、10bの光源11は、例えば出射光としてパルス光を出射可能なレーザ素子である。 FIG. 1 shows functional blocks of a distance measuring device 100 according to this embodiment. In FIG. 1, light projection units 10a and 10b are light emitting devices that emit emitted light. The light projection units 10a and 10b have the same configuration. The light sources 11 of the light projection units 10a and 10b are, for example, laser elements capable of emitting pulsed light as emitted light.

光偏向素子12は、光反射面(図示せず)を含む出射光反射部材を有している。光偏向素子12は、当該光反射面にてパルス光を反射して、走査対象となる所定の領域(以下、走査対象領域とする)に向けて走査光を出射可能である。したがって、光偏向素子12は、出射光偏向素子として機能する
光偏向素子12は、出射光の方向を可変に偏向させることができる。走査対象領域に存在する物体に反射された走査光は、測距装置100に向けて反射光として戻ってくる。尚、光偏向素子12は、MEMSミラー装置、ポリゴンミラー等を用いることができる。また、光偏向素子12は、光反射面を持たない光偏向素子であってもよい。このような光偏向素子としては、音響光学偏向器(AO偏向器)等が挙げられる。
The light deflection element 12 has an emitted light reflecting member including a light reflecting surface (not shown). The light deflection element 12 can reflect the pulsed light on the light reflecting surface and emit the scanning light toward a predetermined area to be scanned (hereinafter referred to as a scanning target area). Therefore, the optical deflection element 12 functions as an emitted light deflection element. The optical deflection element 12 can variably deflect the direction of emitted light. The scanning light reflected by the object existing in the scanning target area returns toward the distance measuring device 100 as reflected light. A MEMS mirror device, a polygon mirror, or the like can be used as the light deflection element 12 . Also, the optical deflection element 12 may be an optical deflection element that does not have a light reflecting surface. An acousto-optic deflector (AO deflector) or the like can be given as such an optical deflector.

投受光部20は、出射光を出射する発光装置であると共に、反射光を受光して、電気信号である受光信号を生成する受光装置でもある。したがって、投受光部20は、投光部として機能すると共に、受光部としても機能する。 The light projecting/receiving unit 20 is a light emitting device that emits emitted light, and is also a light receiving device that receives reflected light and generates a light reception signal, which is an electrical signal. Therefore, the light projecting/receiving section 20 functions as a light projecting section as well as a light receiving section.

投受光部20の光源21は、例えば出射光としてパルス光を出射可能なレーザ素子である。投受光部20は、反射光を受光して、電気信号である受光信号を生成可能な受光素子22を有している。尚、受光素子22としては、例えば、アバランシェフォトダイオード(APD)等を採用することができる。 The light source 21 of the light projecting/receiving unit 20 is, for example, a laser element capable of emitting pulsed light as emitted light. The light projecting/receiving unit 20 has a light receiving element 22 capable of receiving reflected light and generating a light receiving signal, which is an electrical signal. As the light receiving element 22, for example, an avalanche photodiode (APD) or the like can be adopted.

光偏向素子23は、当該光反射面にて光源21から出射されたパルス光を反射して、走査対象領域に向けて走査光を出射可能である。また、光偏向素子23は、光反射面にて走査対象領域内の物体によってパルス光が反射された反射光を受光素子22に向けて反射可能である。したがって、光偏向素子23は、出射光偏向素子及び反射光偏向素子として機能する。言い換えれば、光偏向素子23は、出射光の方向を可変に偏向させることができ、かつ物体からの反射光の方向を可変に偏向させ受光素子22へと導くことができる。光偏向素子23は、光反射面(図示せず)を含む出射光反射部材を有し、この出射光偏向部材は反射光偏向部材としても機能する。 The light deflection element 23 can reflect the pulsed light emitted from the light source 21 on the light reflecting surface and emit the scanning light toward the scanning target area. Further, the light deflection element 23 can reflect toward the light receiving element 22 the reflected light, which is the pulsed light reflected by the object in the scanning target area on the light reflecting surface. Therefore, the optical deflection element 23 functions as an outgoing optical deflection element and a reflected optical deflection element. In other words, the optical deflection element 23 can variably deflect the direction of the emitted light and variably deflect the direction of the reflected light from the object to guide it to the light receiving element 22 . The light deflecting element 23 has an emitted light reflecting member including a light reflecting surface (not shown), and this emitted light deflecting member also functions as a reflected light deflecting member.

制御部30は、投受光部20の光源21及び投光部10a,10bの各々の光源11から出射するパルス光の制御並びに投受光部20の光偏向素子23及び投光部10a,10bの各々の光偏向素子12の光反射面の角度の制御を行う。 The control unit 30 controls pulsed light emitted from the light source 21 of the light projecting/receiving unit 20 and the light sources 11 of the light projecting units 10a and 10b, and controls the light deflection element 23 of the light projecting/receiving unit 20 and the light projecting units 10a and 10b. The angle of the light reflection surface of the light deflection element 12 is controlled.

光源制御部31は、投受光部20の光源21及び投光部10a,10bの各々の光源11の発光制御を行う。具体的には、例えば、光源21及び光源11がパルス発光をするように発光タイミングを規定したテーブル(図示せず)を参照して、その発光を制御する。 The light source control unit 31 performs light emission control of the light source 21 of the light projecting/receiving unit 20 and the light sources 11 of the light projecting units 10a and 10b. Specifically, for example, the light emission is controlled by referring to a table (not shown) that defines the light emission timing so that the light source 21 and the light source 11 emit pulsed light.

ミラー制御部32は、投受光部20の光偏向素子23及び投光部10a,10bの各々の光偏向素子12の光反射面の傾きの角度を制御する。具体的には、ミラー制御部32は、光源11及び光源21によって出射されて光反射面(図示せず)によって反射されたパルス光によって、走査対象領域の走査がなされるように光偏向素子12及び光偏向素子23を制御する。また、ミラー制御部32は、投受光部20の光偏向素子23の出射光反射部材の光反射面の方向と投光部10a及び投光部10bの光偏向素子12の出射光反射部材の光反射面との方向が連動するように、光偏向素子23及び光偏向素子12を制御する。 The mirror control section 32 controls the angle of inclination of the light reflection surface of the light deflecting element 23 of the light projecting/receiving section 20 and the light deflecting elements 12 of the light projecting sections 10a and 10b. Specifically, the mirror control unit 32 controls the light deflection element 12 so that the scanning target area is scanned by pulsed light emitted by the light source 11 and the light source 21 and reflected by a light reflecting surface (not shown). and controls the optical deflection element 23 . The mirror control unit 32 also controls the direction of the light reflecting surface of the emitted light reflecting member of the light deflecting element 23 of the light projecting/receiving unit 20 and the light of the emitted light reflecting member of the light deflecting element 12 of the light projecting unit 10a and the light projecting unit 10b. The optical deflection element 23 and the optical deflection element 12 are controlled so that the direction with respect to the reflecting surface is interlocked.

測距部としての距離測定部40は、測距装置100と走査対象領域内にある物体との間の距離を算出する。測距装置100と走査対象領域内にある物体との距離の算出は、受光素子22によって生成された受光信号に基づいて行われ、例えばタイムオブフライト法が用いられる。 A distance measurement unit 40 as a distance measurement unit calculates the distance between the distance measurement device 100 and an object in the scanning target area. The calculation of the distance between the distance measuring device 100 and the object in the scanning target area is performed based on the received light signal generated by the light receiving element 22, and for example, the time-of-flight method is used.

具体的には、距離測定部40は、光源11及び光源21によって出射された1のパルス光の出射時刻と、当該1のパルス光が走査対象領域内の物体によって反射されて反射光として受光素子22で検出された受光時刻を取得する。そして、当該出射時刻と当該受光時刻の時刻差に基づいて、測距装置100と物体との距離を算出する。 Specifically, the distance measurement unit 40 detects the emission time of one pulsed light emitted by the light source 11 and the light source 21, and the light receiving element 22 to acquire the light reception time detected. Then, the distance between the distance measuring device 100 and the object is calculated based on the time difference between the emission time and the light reception time.

図2は、投受光部20、および投光部10a、10bの投光系の動作を示す概念図である。図2において、光源21と光偏向素子23との間には、ビームスプリッタBSが設けられている。ビームスプリッタBSは、光源21側から入射した光ビームを光偏向素子23側に通す光学素子である。したがって、光源21から出射された光ビームがビームスプリッタBSを介して光偏向素子23に入射される。光偏向素子23は、入射した出射光ELを走査対象領域Rに向けて反射させる。尚、投光部10a、10bではビームスプリッタBSは配されない。 FIG. 2 is a conceptual diagram showing the operation of the light projecting system of the light projecting/receiving unit 20 and the light projecting units 10a and 10b. In FIG. 2, a beam splitter BS is provided between the light source 21 and the optical deflection element 23 . The beam splitter BS is an optical element that passes the light beam incident from the light source 21 side to the light deflection element 23 side. Therefore, the light beam emitted from the light source 21 is incident on the optical deflection element 23 via the beam splitter BS. The optical deflection element 23 reflects the incident emitted light EL toward the scanning target region R. As shown in FIG. The beam splitter BS is not arranged in the light projection units 10a and 10b.

具体的には、光偏向素子23は、可動部を揺動して走査する態様で光ビームを走査対象領域R内に向けて反射させる。この結果、光偏向素子23によって反射された出射光ELの照射方向が変化する。具体的には、出射光ELは、出射光ELの反射方向にある仮想の面である仮想面VSにおいて所望の軌跡が描かれるように、光偏向素子23で反射される。測距装置100は、走査対象領域Rに存在する対象物OBの測距を行う。尚、仮想面VSは実在するものではない。尚、仮想面VSで描かれる軌跡は、ラスタ走査軌跡、リサジュ走査軌跡等が望ましいがこれに限るものではない。 Specifically, the optical deflection element 23 reflects the light beam toward the scanning target region R in a manner of scanning by swinging the movable portion. As a result, the irradiation direction of the emitted light EL reflected by the optical deflection element 23 changes. Specifically, the emitted light EL is reflected by the light deflection element 23 so that a desired trajectory is drawn on a virtual plane VS, which is a virtual plane in the reflection direction of the emitted light EL. The distance measuring device 100 performs distance measurement of an object OB existing in a scanning target area R. FIG. Note that the virtual surface VS does not actually exist. The trajectory drawn on the virtual surface VS is preferably a raster scanning trajectory, a Lissajous scanning trajectory, or the like, but is not limited thereto.

図3は、投受光部20の受光系の動作を示す概念図である。図3において、走査対象領域Rに対象物OBが存在すると、対象物OBから反射された反射光RLが光偏向素子23に入射され、ビームスプリッタBSを介して受光素子22に入射される。受光素子22は、入射された反射光RLに基づいて電気信号に変換し距離測定部40に供給する。距離測定部40は、光ビームを出射した時刻と光ビームを受光した時刻に基づいて、対象物OBまでの距離を計測する。 FIG. 3 is a conceptual diagram showing the operation of the light receiving system of the light projecting/receiving unit 20. As shown in FIG. In FIG. 3, when an object OB exists in the scanning target area R, the reflected light RL reflected from the object OB is incident on the light deflection element 23 and is incident on the light receiving element 22 via the beam splitter BS. The light receiving element 22 converts the incident reflected light RL into an electric signal and supplies the electric signal to the distance measuring section 40 . The distance measuring unit 40 measures the distance to the object OB based on the time when the light beam is emitted and the time when the light beam is received.

図4Aは、投受光部20及び投光部10a,10bの瞬間投光野(iFOI)(Instantaneous Field of Illumination)と投受光部20の瞬間視野(iFOV)(Instantaneous Field of View)の光軸AXに垂直な方向から見た領域を示している。
尚、光軸AXは、光偏向素子12の反射面MRの傾きがない状態で投受光部20から出射された出射光ELの光軸である。反射面MRの傾きがない状態とは、例えば、MEMSミラー装置の光反射面MRが揺動していない静止状態である。
4A shows the instantaneous field of view (iFOI) of the light projecting/receiving unit 20 and light projecting units 10a and 10b and the instant field of view (iFOV) of the light projecting/receiving unit 20 along the optical axis AX. It shows the area viewed from the vertical direction.
The optical axis AX is the optical axis of the emitted light EL emitted from the light projecting/receiving section 20 when the reflecting surface MR of the light deflection element 12 is not inclined. The state in which the reflecting surface MR does not tilt is, for example, a stationary state in which the light reflecting surface MR of the MEMS mirror device does not oscillate.

図4Bは、本実施例に係る測距装置100からの距離に応じた投受光部20及び投光部10a,10bの瞬間投光野(iFOI)及び投受光部20の瞬間視野(iFOV)の光軸AXに対して垂直な方向の断面を示している。 FIG. 4B shows light in the instantaneous field of view (iFOI) of the light projecting/receiving unit 20 and the light projecting units 10a and 10b and the instantaneous field of view (iFOV) of the light projecting/receiving unit 20 according to the distance from the distance measuring device 100 according to the present embodiment. It shows a cross section in a direction perpendicular to the axis AX.

ここで、瞬間投光野(iFOI)とは、瞬間的に出射光ELが照射される領域である。また、瞬間視野(iFOV)とは、投受光部20の受光面が見込む角度であって、受光素子22が瞬間的に見ることができる領域である。 Here, the instantaneous projection field (iFOI) is a region that is momentarily irradiated with the emitted light EL. Further, the instantaneous field of view (iFOV) is an angle seen by the light receiving surface of the light projecting and receiving unit 20, and is an area that the light receiving element 22 can see instantaneously.

図中の一点鎖線は、投光部10aの瞬間投光野(iFOI(b)及び投光部10bの瞬間投光野(iFOI(c))を示している。また、図中の破線は、投受光部20の瞬間投光野(iFOI(a))及び瞬間視野(iFOV)を示している。 The dashed-dotted lines in the figure indicate the instantaneous light field (iFOI(b)) of the light projecting section 10a and the instantaneous light field (iFOI(c)) of the light projecting section 10b. The instantaneous field of view (iFOI(a)) and the instantaneous field of view (iFOV) of part 20 are shown.

投光部10a及び10bは、投受光部20の光軸AXと垂直な方向において投受光部20と離間して配されている。具体的には、投光部10a及び10bは、投受光部20と出射点が異なる。すなわち、投光部10a及び10bは、投受光部20と光軸が異なる。 The light projecting units 10 a and 10 b are arranged apart from the light projecting/receiving unit 20 in the direction perpendicular to the optical axis AX of the light projecting/receiving unit 20 . Specifically, the light projecting units 10 a and 10 b have different emission points from the light projecting/receiving unit 20 . That is, the light projecting units 10 a and 10 b have different optical axes from the light projecting/receiving unit 20 .

距離L1は、投受光部20の光軸AX上の測距装置100からの距離であり、安全基準で定められている距離である。距離L1は、例えば、測距装置100から100mmである。尚、安全基準は、所定の距離における光の強度に基づいて定められている。 A distance L1 is the distance from the distance measuring device 100 on the optical axis AX of the light emitting/receiving section 20, and is a distance defined by safety standards. Distance L1 is, for example, 100 mm from rangefinder 100 . Safety standards are established based on the intensity of light at a given distance.

投受光部20及び投光部10a,10bの各々は、安全基準を満たす出力でパルス光を出射する。すなわち、距離L1における投受光部20及び投光部10a、10bの強度は、安全基準を満たしている。また、投光部10a及び投光部10bが出射する出射光ELの瞬間投光野(iFOI(b),iFOI(c))は、投受光部20が出射する出射光ELの瞬間投光野(iFOI(a))よりも大きい。投受光部20が出射する出射光ELの瞬間投光野(iFOI(a))は、瞬間視野(iFOV)と互いに等しい大きさである。すなわち、投光部10a及び投光部10bが出射する出射光ELの瞬間投光野(iFOI(b),iFOI(c))は瞬間視野(iFOV)よりも大きい。 Each of the light projecting/receiving unit 20 and the light projecting units 10a and 10b emits pulsed light with an output that satisfies safety standards. That is, the intensity of the light projecting/receiving unit 20 and the light projecting units 10a and 10b at the distance L1 satisfies the safety standard. Further, the instantaneous light field (iFOI(b), iFOI(c)) of the emitted light EL emitted from the light projecting unit 10a and the light emitting unit 10b is the instantaneous light field (iFOI (a)). The instantaneous field of view (iFOI(a)) of the emitted light EL emitted by the light projecting/receiving unit 20 has the same size as the instantaneous field of view (iFOV). That is, the instantaneous light field (iFOI(b), iFOI(c)) of the emitted light EL emitted from the light projecting units 10a and 10b is larger than the instantaneous field of view (iFOV).

図4Bに示すように、注目する断面の測距装置100からの距離に応じて瞬間視野(iFOV)と瞬間投光野(iFOI(a)~(c))の重なり方は変化する。ここで、投受光部20及び投光部10a,10bから出射された各々の出射光ELのうち、測距装置100からの距離において瞬間視野(iFOV)内に照射される出射光ELの強度の和を、測距装置100からの距離における照射光強度とする。 As shown in FIG. 4B, the overlapping manner of the instantaneous field of view (iFOV) and the instantaneous projected field of view (iFOIs (a) to (c)) changes according to the distance from the distance measuring device 100 to the section of interest. Here, among the emitted light beams EL emitted from the light projecting/receiving unit 20 and the light emitting units 10a and 10b, the intensity of the emitted light beam EL emitted within the instantaneous field of view (iFOV) at the distance from the distance measuring device 100 is Let the sum be the irradiation light intensity at the distance from the rangefinder 100 .

距離L1の位置において、瞬間視野(iFOV)の中で投受光部20の瞬間投光野(iFOI(a))、投光部10aの瞬間投光野(iFOI(b))及び投光部10bの瞬間投光野(iFOI(c))は、重なっていない。 At the position of the distance L1, the instantaneous field of view (iFOI(a)) of the light projecting/receiving unit 20, the instantaneous light field (iFOI(b)) of the light projecting unit 10a, and the instantaneous field of view of the light projecting unit 10b in the instantaneous field of view (iFOV). The projection fields (iFOI(c)) are non-overlapping.

距離L1の位置においては、投受光部20は、対象物OBの測距を行うにあたり十分な反射光RLを受光することができる。このため、測距装置100は、精度が高い測距を行うことができる。尚、安全基準は、距離L1の位置において判断される。したがって、本実施例に係る測距装置100は、安全基準を満たしている。 At the position of the distance L1, the light projecting/receiving section 20 can receive sufficient reflected light RL for distance measurement of the object OB. Therefore, the ranging device 100 can perform highly accurate ranging. The safety standard is judged at the position of the distance L1. Therefore, the distance measuring device 100 according to this embodiment satisfies the safety standards.

距離L2は、投受光部20の光軸AX上の測距装置100からの距離であり、距離L1よりも長い。距離L2は、例えば、測距装置100から50mである。 The distance L2 is the distance from the distance measuring device 100 on the optical axis AX of the light emitting/receiving section 20, and is longer than the distance L1. Distance L2 is, for example, 50 m from rangefinder 100 .

距離L2の位置において、瞬間視野(iFOV)の中で投受光部20の瞬間投光野(iFOI(a))、投光部10aの瞬間投光野(iFOI(b))及び投光部10bの瞬間投光野(iFOI(c))は、重なっていない。距離L2の位置においては、投受光部20は、対象物OBの測距を行うにあたり十分な反射光を得ることができる。このため、測距装置100は、精度が高い測距を行うことができる。 At the position of the distance L2, the instantaneous field of view (iFOI(a)) of the light projecting/receiving unit 20, the instantaneous light field (iFOI(b)) of the light projecting unit 10a, and the instantaneous field of view of the light projecting unit 10b in the instantaneous field of view (iFOV). The projection fields (iFOI(c)) are non-overlapping. At the position of the distance L2, the light projecting/receiving unit 20 can obtain sufficient reflected light for distance measurement of the object OB. Therefore, the ranging device 100 can perform highly accurate ranging.

距離L3は、投受光部20の光軸AX上の測距装置100からの距離であり、距離L2よりも長い。距離L3は、例えば、測距装置100から100mである。 A distance L3 is the distance from the distance measuring device 100 on the optical axis AX of the light emitting/receiving section 20, and is longer than the distance L2. Distance L3 is, for example, 100 m from rangefinder 100 .

距離L3の位置において、瞬間視野(iFOV)の中で投受光部20の瞬間投光野(iFOI(a))は、投光部10aの瞬間投光野(iFOI(b))の一部と重なっている。 At the position of the distance L3, the instantaneous field of view (iFOI(a)) of the light projecting/receiving unit 20 in the instantaneous field of view (iFOV) overlaps with a part of the instantaneous light field (iFOI(b)) of the light projecting unit 10a. there is

したがって、投受光部20及び投光部10a、10bのうちの一組の投受光部20及び投光部10aから出射された出射光ELの各々の瞬間投光野(iFOI(a)、iFOI(b))は、瞬間視野(iFOV)上の投受光部20の光軸AXに沿った所定の位置、すなわち距離L3の位置で互いに重なる。 Therefore, the instantaneous light fields (iFOI(a), iFOI(b )) overlap each other at a predetermined position along the optical axis AX of the light emitting/receiving section 20 on the instantaneous field of view (iFOV), that is, at a position of a distance L3.

距離L3の位置においては、瞬間視野(iFOV)の中で瞬間投光野(iFOI(a))が瞬間投光野(iFOI(b))の一部と重なる。このため、瞬間視野(iFOV)範囲内に存在する対象物OBに照射される照射光強度は高くなる。したがって、距離L3の位置において、投受光部20は、対象物OBの測距を行うにあたり十分な反射光RLが得ることができる。このため、測距装置100は、精度が高い測距を行うことができる。 At a distance L3, the instantaneous field of view (iFOI(a)) overlaps a portion of the instantaneous field of view (iFOI(b)) within the instantaneous field of view (iFOV). As a result, the intensity of the irradiation light applied to the object OB existing within the instantaneous field of view (iFOV) is increased. Therefore, at the position of the distance L3, the light projecting/receiving unit 20 can obtain sufficient reflected light RL for distance measurement of the object OB. Therefore, the ranging device 100 can perform highly accurate ranging.

距離L4は、投受光部20の光軸AX上の測距装置100からの距離であり、距離L3よりも長い。距離L4は、例えば、測距装置100から200mである。 A distance L4 is the distance from the distance measuring device 100 on the optical axis AX of the light emitting/receiving section 20, and is longer than the distance L3. Distance L4 is, for example, 200 m from rangefinder 100 .

距離L4の位置において、瞬間視野(iFOV)の中で投受光部20の瞬間投光野(iFOI(a))は、投光部10aの瞬間投光野(iFOI(b))及び投光部10bの瞬間投光野(iFOI(c))の一部と重なっている。 At the position of distance L4, the instantaneous field of view (iFOI(a)) of the light projecting/receiving unit 20 in the instantaneous field of view (iFOV) is the instantaneous field of light (iFOI(b)) of the light projecting unit 10a and that of the light projecting unit 10b. It overlaps with part of the instantaneous field of view (iFOI(c)).

距離L4の位置においては、瞬間投光野(iFOI(a))が瞬間投光野(iFOI(b))及び瞬間投光野(iFOI(c))と重なるため、瞬間視野(iFOV)範囲内に存在する対象物OBに照射される照射光強度は高くなる。したがって、距離L4の位置において、投受光部20は、対象物OBの測距を行うにあたり十分な反射光RLが得られる。このため、測距装置100は、精度が高い測距を行うことができる。 At the position of distance L4, the instantaneous field of view (iFOI(a)) overlaps the instantaneous field of view (iFOI(b)) and the instantaneous field of view (iFOI(c)), so it exists within the range of the instantaneous field of view (iFOV). The intensity of the irradiation light with which the object OB is irradiated is increased. Therefore, at the position of the distance L4, the light projecting/receiving unit 20 can obtain sufficient reflected light RL for measuring the distance of the object OB. Therefore, the ranging device 100 can perform highly accurate ranging.

以上のように、投光部10a、10bは、投受光部20と離間して配される。また、投受光部20、投光部10a、10bから出射される各々の出射光ELの強度は、距離L1の位置において安全基準を満たしている。 As described above, the light projecting units 10 a and 10 b are arranged apart from the light projecting/receiving unit 20 . Further, the intensity of each emitted light EL emitted from the light projecting/receiving unit 20 and the light projecting units 10a and 10b satisfies the safety standard at the position of the distance L1.

また、測距装置100から遠く離れた距離L3の位置においては、投受光部20及び投光部10aの瞬間投光野(iFOI(a)、iFOI(b))が重なるため、瞬間視野(iFOV)範囲内に存在する対象物OBに照射される照射光強度を高くすることが可能となる。同様に、距離L4の位置においては、投受光部20、投光部10a及び10bの瞬間投光野(iFOI(a)iFOI(b)及びiFOI(c))の各々が重なるため、瞬間視野(iFOV)範囲内に存在する対象物OBに照射される照射光強度を高くすることが可能となる。したがって、本実施例に係る測距装置100によれば、レーザ光の出力に関する安全基準を順守し、かつ遠方に位置する対象物OBの測距を行うことが可能となる。 Further, at a position at a distance L3 far away from the distance measuring device 100, since the instantaneous light fields (iFOI(a), iFOI(b)) of the light projecting/receiving unit 20 and the light projecting unit 10a overlap, the instantaneous field of view (iFOV) It is possible to increase the irradiation light intensity with which the object OB existing within the range is irradiated. Similarly, at the position of the distance L4, the instantaneous field of view (iFOI(a), iFOI(b) and iFOI(c)) of the light projecting/receiving unit 20 and the light projecting units 10a and 10b overlap each other, so the instantaneous field of view (iFOV ) It becomes possible to increase the irradiation light intensity with which the object OB existing within the range is irradiated. Therefore, according to the distance measuring device 100 according to the present embodiment, it is possible to observe the safety standards regarding the output of the laser beam and perform distance measurement of the object OB located far away.

尚、本実施例においては、投光部10a及び投光部10bの瞬間投光野(iFOI(b)、iFOI(c))は、投受光部20の瞬間視野(iFOV)よりも大きいものとして説明した。投光部10a及び投光部10bの瞬間投光野(iFOI(b)、iFOI(c))を投受光部20の瞬間視野(iFOV)と等しくしてもよいが、遠方で重ね合わせるためには光偏向素子12,23の偏向角度の精度が求められる。そのため、投光部10a及び投光部10bの瞬間投光野(iFOI(b)、iFOI(c))を投受光部20の瞬間視野(iFOV)より大きくすることで、光偏向素子12,23の偏向角度の精度を緩めることが出来る。尚、投受光部20の瞬間投光野(iFOI(a))は瞬間視野(iFOV)と光偏向素子23を共用することから偏向角度の精度の問題は発生せず、投受光部20の瞬間投光野(iFOI(a))と瞬間視野(iFOV)は同一でもよい。 In this embodiment, the instantaneous field of view (iFOI(b), iFOI(c)) of the light projecting unit 10a and the light projecting unit 10b is assumed to be larger than the instantaneous field of view (iFOV) of the light projecting/receiving unit 20. did. The instantaneous field of view (iFOI(b), iFOI(c)) of the light projecting unit 10a and the light projecting unit 10b may be equal to the instantaneous field of view (iFOV) of the light projecting/receiving unit 20. Accuracy of deflection angles of the optical deflection elements 12 and 23 is required. Therefore, by making the instantaneous light field (iFOI(b), iFOI(c)) of the light projecting unit 10a and the light projecting unit 10b larger than the instantaneous field of view (iFOV) of the light projecting/receiving unit 20, the light deflection elements 12 and 23 The precision of the deflection angle can be loosened. Since the instantaneous field of view (iFOI(a)) of the light projecting/receiving unit 20 shares the instantaneous field of view (iFOV) and the light deflection element 23, there is no problem with the accuracy of the deflection angle. The field of view (iFOI(a)) and the instantaneous field of view (iFOV) may be the same.

また、本実施例においては、投受光部20は、投光部及び受光部として機能するように構成した。しかし、投受光部20は、投光部及び受光部として機能を分離して設けてもよい。すなわち、投受光部20の構成のうち、光源21及び光偏向素子23を投光部として設け、また、投受光部20の構成のうち、受光素子22及び光偏向素子23を受光部として設けてもよい。 Further, in this embodiment, the light projecting/receiving section 20 is configured to function as a light projecting section and a light receiving section. However, the light emitting/receiving section 20 may be provided with separate functions as a light emitting section and a light receiving section. That is, the light source 21 and the light deflection element 23 are provided as the light projecting section in the configuration of the light projecting/receiving section 20, and the light receiving element 22 and the light deflection element 23 are provided as the light receiving section in the configuration of the light projecting/receiving section 20. good too.

さらに、投受光部20及び投光部10a、10bは、出射光ELの出射方向に応じて異なる出射タイミングで出射光ELを出射するようにしてもよい。具体的には、出射光ELの出射方向上の所定の位置から最も遠い投光部から順に出射光ELを出射するようにしてもよい。このように、出射光ELを出射させることによって、投受光部20が反射光RLを受光するタイミングを揃えることが可能となる。したがって、精度が高い測距を行うことができる。 Furthermore, the light projecting/receiving unit 20 and the light projecting units 10a and 10b may emit the emitted light EL at different emission timings depending on the emission direction of the emitted light EL. Specifically, the emitted light EL may be emitted in order from the light projecting part that is farthest from a predetermined position in the emitting direction of the emitted light EL. By emitting the emitted light EL in this way, it is possible to align the timing at which the light projecting/receiving unit 20 receives the reflected light RL. Therefore, highly accurate distance measurement can be performed.

実施例2に係る測距装置100について説明する。実施例2に係る測距装置100は、実施例1の測距装置100とは、投光部の配置数及び各々の瞬間投光野の重なる態様が異なる。尚、実施例1と同一の構成については同一箇所に同一符号を付すことによって説明を省略し、以後同様とする。 A range finder 100 according to a second embodiment will be described. The range finder 100 according to the second embodiment differs from the range finder 100 according to the first embodiment in the number of light projecting units arranged and the manner in which the instantaneous light fields overlap each other. It should be noted that the same reference numerals are assigned to the same portions of the same configuration as in the first embodiment, and the description thereof will be omitted, and the same will be applied hereinafter.

図5は、本実施例に係る測距装置100からの距離に応じた投受光部20及び投光部10a~10dの瞬間投光野(iFOI)と投受光部20の瞬間視野(iFOV)の光軸AXに対して垂直な方向の断面を示している。 FIG. 5 shows the instantaneous field of view (iFOI) of the light projecting/receiving unit 20 and the light projecting units 10a to 10d and the instantaneous field of view (iFOV) of the light projecting/receiving unit 20 according to the distance from the distance measuring device 100 according to the present embodiment. It shows a cross section in a direction perpendicular to the axis AX.

投光部10a~10dは、投受光部20の光軸AXに対して垂直な方向に投受光部20と離間して配されている。具体的には、各々の投光部10a~10dは、等間隔に配置されている。すなわち、投受光部20から投光部10aまでの距離Laは、投光部10aから投光部10bまでの距離Lbと等しい。また、投受光部20から投光部10aまでの距離Laは、投受光部20から投光部10cまでの距離Lcと等しい。また、投光部10cから投光部10dまでの距離Ldは、投受光部20から投光部10cまでの距離Lcと等しい。 The light projecting units 10 a to 10 d are spaced apart from the light projecting/receiving unit 20 in a direction perpendicular to the optical axis AX of the light projecting/receiving unit 20 . Specifically, the respective light projecting sections 10a to 10d are arranged at regular intervals. That is, the distance La from the light projecting/receiving unit 20 to the light projecting unit 10a is equal to the distance Lb from the light projecting unit 10a to the light projecting unit 10b. Further, the distance La from the light projecting/receiving unit 20 to the light projecting unit 10a is equal to the distance Lc from the light projecting/receiving unit 20 to the light projecting unit 10c. Further, the distance Ld from the light projecting unit 10c to the light projecting unit 10d is equal to the distance Lc from the light projecting/receiving unit 20 to the light projecting unit 10c.

ここで、投受光部20の瞬間投光野を瞬間投光野(iFOI(a))とする。また、投光部10aの瞬間投光野を瞬間投光野(iFOI(b))、投光部10bの瞬間投光野を瞬間投光野(iFOI(c))、投光部10cの瞬間投光野を瞬間投光野(iFOI(d))、投光部10dの瞬間投光野を瞬間投光野iFOI(e))とする。 Here, the instantaneous light field of the light projecting/receiving unit 20 is defined as an instantaneous light field (iFOI(a)). The instantaneous light field of the light projecting unit 10a is the instantaneous light field (iFOI(b)), the instantaneous light field of the light projecting unit 10b is the instantaneous light field (iFOI(c)), and the instantaneous light field of the light projecting unit 10c is the instantaneous light field. The projected light field (iFOI(d)) and the instantaneous projected light field of the light projecting unit 10d are defined as the instantaneous projected light field iFOI(e)).

投受光部20及び投光部10a~10dの出射光ELの瞬間投光野(iFOI(a)、iFOI(b)、iFOI(c)、iFOI(d)、iFOI(e))は、投受光部20の瞬間視野(iFOV)と等しい。距離L2~L4は、投受光部20の光軸AX上の測距装置100からの距離であり、実施例1と同様の距離である。また、投受光部20及び投光部10a~10dから出射された各々の出射光ELのうち、測距装置100からの距離において瞬間視野(iFOV)内に照射される出射光ELの強度の和を、測距装置100からの距離における照射光強度とする。尚、本実施例においても投受光部20及び投光部10a~10dは、安全基準を満たす出射光ELを出射するため、距離L1の位置における説明を省略する。 The instantaneous projection fields (iFOI(a), iFOI(b), iFOI(c), iFOI(d), iFOI(e)) of the emitted light EL of the light projecting/receiving unit 20 and the light projecting units 10a to 10d are Equivalent to an instantaneous field of view (iFOV) of 20. Distances L2 to L4 are distances from the distance measuring device 100 on the optical axis AX of the light emitting/receiving section 20, and are the same distances as in the first embodiment. In addition, the sum of the intensities of the emitted light beams EL emitted from the light projecting/receiving unit 20 and the light emitting units 10a to 10d, which is emitted within the instantaneous field of view (iFOV) at the distance from the distance measuring device 100 be the irradiation light intensity at the distance from the distance measuring device 100 . Also in this embodiment, the light projecting/receiving unit 20 and the light projecting units 10a to 10d emit the emitted light EL that satisfies the safety standards, so the description of the position at the distance L1 is omitted.

距離L2の位置において、瞬間視野(iFOV)の中で投受光部20の瞬間投光野(iFOI(a))及び投光部10a~10dの瞬間投光野(iFOI(b)~iFOI(e))は、重なっていない。 At the position of the distance L2, the instantaneous field of view (iFOI(a)) of the light projecting/receiving unit 20 and the instantaneous light field of the light projecting units 10a to 10d (iFOI(b) to iFOI(e)) in the instantaneous field of view (iFOV) do not overlap.

距離L2の位置においては、投受光部20は、対象物OBの測距を行うにあたり十分な反射光RLを受光することができるため、精度が高い測距を行うことができる。 At the position of the distance L2, the light projecting/receiving unit 20 can receive the reflected light RL sufficient for distance measurement of the object OB, so that distance measurement can be performed with high precision.

距離L3の位置において、瞬間視野(iFOV)の中で投受光部20の瞬間投光野(iFOI(a))は、投光部10aの瞬間投光野(iFOI(b))及び投光部10cの瞬間投光野(iFOI(c))の一部と重なっている。 At the position of distance L3, the instantaneous field of view (iFOI(a)) of the light projecting/receiving unit 20 in the instantaneous field of view (iFOV) is the instantaneous field of light (iFOI(b)) of the light projecting unit 10a and that of the light projecting unit 10c. It overlaps with part of the instantaneous field of view (iFOI(c)).

距離L3の位置においては、瞬間視野(iFOV)の中で、瞬間投光野(iFOI(a))、瞬間投光野(iFOI(b))及び瞬間投光野(iFOI(d))が重なる。このため、瞬間視野(iFOV)範囲内に存在する対象物OBに照射される照射光強度は2倍弱になる。したがって、距離L3の位置においては、対象物OBの測距を行うにあたり十分な反射光RLが得られる。 At a distance L3, the instantaneous field of view (iFOI(a)), the instantaneous field of view (iFOI(b)) and the instantaneous field of view (iFOI(d)) overlap in the instantaneous field of view (iFOV). For this reason, the intensity of the irradiation light with which the object OB existing within the instantaneous field of view (iFOV) is irradiated is slightly less than doubled. Therefore, at the position of the distance L3, sufficient reflected light RL is obtained for distance measurement of the object OB.

距離L4の位置において、瞬間視野(iFOV)の中で、投受光部20及び投光部10a~10dの瞬間投光野(iFOI(a)~iFOI(e))の全体が重なっている。言い換えれば、瞬間視野(iFOV)は、投受光部20及び投光部10a~10dの瞬間投光野(iFOI(a)~iFOI(e))の全てを包含する。すなわち、投光部10a~10dの光軸E1~E5の各々と、投受光部20の光軸AXとは、同一の領域RCで互いに重なる。尚、各々の光軸E1~E5が領域RCで互いに重なるとは、領域RC内で光軸E1~E5同士が交差することだけでなく、光軸E1~E5同士がねじれの関係で近接することをも意味する。この.ように光軸E1~E5の各々及び光軸AXを領域RCで互いに重ねることにより、投受光部20及び投光部10a~10dから出射された出射光ELを効率よく測距に用いることが可能となる。 At the position of the distance L4, the entire instantaneous field of view (iFOI(a) to iFOI(e)) of the light projecting/receiving unit 20 and the light projecting units 10a to 10d overlaps in the instantaneous field of view (iFOV). In other words, the instantaneous field of view (iFOV) encompasses all of the instantaneous fields of view (iFOI(a)-iFOI(e)) of the emitter/receiver 20 and the emitters 10a-10d. That is, each of the optical axes E1 to E5 of the light projecting sections 10a to 10d and the optical axis AX of the light projecting and receiving section 20 overlap each other in the same region RC. It should be noted that the optical axes E1 to E5 overlapping each other in the region RC means not only that the optical axes E1 to E5 intersect each other in the region RC but also that the optical axes E1 to E5 are close to each other due to a twisted relationship. also means By overlapping each of the optical axes E1 to E5 and the optical axis AX in the region RC in this manner, the emitted light EL emitted from the light projecting/receiving section 20 and the light projecting sections 10a to 10d can be efficiently used for distance measurement. becomes possible.

具体的には、距離L4の位置においては、全ての瞬間投光野(iFOI(a)~iFOI(e))が重なるため、瞬間視野(iFOV)範囲内に存在する対象物OBに照射される照射光強度は5倍になる。したがって、距離L4において、対象物OBの測距を行うにあたり十分な反射光RLが得られる。 Specifically, at the position of the distance L4, since all the instantaneous projection fields (iFOI(a) to iFOI(e)) overlap, the irradiation applied to the object OB existing within the instantaneous field of view (iFOV) range is The light intensity is quintupled. Therefore, at the distance L4, sufficient reflected light RL can be obtained for distance measurement of the object OB.

以上のように、投光部10a~10dは、投受光部20と離間して配される。また、投受光部20及び投光部10a~10dから出射される出射光ELの強度は、距離L1において安全基準を満たしている。 As described above, the light projecting units 10a to 10d are arranged apart from the light projecting/receiving unit 20. FIG. In addition, the intensity of the emitted light EL emitted from the light projecting/receiving unit 20 and the light projecting units 10a to 10d satisfies the safety standard at the distance L1.

また、測距装置100から遠く離れた距離L3の位置においては、瞬間視野(iFOV)の中で投受光部20、投光部10aの瞬間投光野及び投光部10cの瞬間投光野(iFOI(a)、iFOI(b)及びiFOI(d))が重なるため、瞬間視野(iFOV)範囲内に存在する対象物OBに照射される照射光強度を高くすることが可能となる。同様に、距離L4の位置においては、瞬間視野(iFOV)の中で投受光部20及び投光部10a~10dの瞬間投光野(iFOI(a)~iFOI(e))の各々が重なるため、瞬間視野(iFOV)範囲内に存在する対象物OBに照射される照射光強度を高くすることが可能となる。したがって、本実施例に係る測距装置100によれば、レーザ光の出力に関する安全基準を順守し、かつ遠方に位置する対象物OBの測距を行うことが可能となる。 At a position at a distance L3 far away from the rangefinder 100, the instantaneous field of view (iFOV) of the light projecting/receiving unit 20, the light projecting unit 10a, and the instantaneous light projecting unit 10c (iFOI ( Since a), iFOI(b) and iFOI(d)) overlap, it is possible to increase the irradiation light intensity with which the object OB existing within the instantaneous field of view (iFOV) is irradiated. Similarly, at the position of the distance L4, the instantaneous light fields (iFOI(a) to iFOI(e)) of the light projecting/receiving unit 20 and the light projecting units 10a to 10d overlap in the instantaneous field of view (iFOV). It is possible to increase the irradiation light intensity with which the object OB existing within the instantaneous field of view (iFOV) is irradiated. Therefore, according to the distance measuring device 100 according to the present embodiment, it is possible to observe the safety standards regarding the output of the laser beam and perform distance measurement of the object OB located far away.

実施例3に係る測距装置100について説明する。実施例3に係る測距装置100は、実施例2の測距装置100とは、複数の投光部の各々の瞬間投光野の重なる態様が異なる。 A range finder 100 according to a third embodiment will be described. The range finder 100 according to the third embodiment differs from the range finder 100 according to the second embodiment in that the instantaneous light fields of the plurality of light projecting units are overlapped.

図6は、本実施例に係る測距装置100からの距離に応じた投受光部20及び投光部10a~10dの瞬間投光野(iFOI)と投受光部20の瞬間視野(iFOV)の光軸AXに対して垂直な方向の断面を示している。 FIG. 6 shows the instantaneous field of view (iFOI) of the light projecting/receiving unit 20 and the light projecting units 10a to 10d and the instantaneous field of view (iFOV) of the light projecting/receiving unit 20 according to the distance from the distance measuring device 100 according to the present embodiment. It shows a cross section in a direction perpendicular to the axis AX.

投光部10a~10dは、投受光部20の光軸AXに対して垂直な方向に投受光部20と離間して配されている。具体的には、投光部10a~10dは、図6に示すように距離La~Ldを有して、各々配置されている。投受光部20から投光部10aまでの距離Laは、投受光部20から投光部10cまでの距離Lcと等しい。投光部10aから投光部10bまでの距離Lbは、投光部10cから投光部10dまでの距離Ldと等しい。例えば、距離Lb、Ldは、距離La、Lcの2倍である。 The light projecting units 10 a to 10 d are spaced apart from the light projecting/receiving unit 20 in a direction perpendicular to the optical axis AX of the light projecting/receiving unit 20 . Specifically, the light projecting units 10a to 10d are arranged at distances La to Ld, respectively, as shown in FIG. The distance La from the light projecting/receiving unit 20 to the light projecting unit 10a is equal to the distance Lc from the light projecting/receiving unit 20 to the light projecting unit 10c. The distance Lb from the light projecting unit 10a to the light projecting unit 10b is equal to the distance Ld from the light projecting unit 10c to the light projecting unit 10d. For example, the distances Lb and Ld are twice the distances La and Lc.

投光部10a~10dの出射光ELの瞬間投光野(iFOI(b)、iFOI(c)、iFOI(d)、iFOI(e))は、投受光部20の瞬間投光野(iFOI(a))及び投受光部20の瞬間視野(iFOV)の4倍である。 The instantaneous light field (iFOI(b), iFOI(c), iFOI(d), iFOI(e)) of the emitted light EL of the light projecting units 10a to 10d is the instantaneous light field of the light projecting/receiving unit 20 (iFOI(a) ) and four times the instantaneous field of view (iFOV) of the emitter/receiver 20 .

距離L2~L4は、投受光部20の光軸AX上の測距装置100からの距離であり、実施例1と同様である。本実施例においても投受光部20及び投光部10a~10dは、安全基準を満たす出射光ELを出射するため、距離L1の位置における説明を省略する。 Distances L2 to L4 are the distances from the distance measuring device 100 on the optical axis AX of the light emitting/receiving section 20, and are the same as in the first embodiment. In the present embodiment as well, the light projecting/receiving unit 20 and the light projecting units 10a to 10d emit emitted light EL that satisfies the safety standards, so the description of the position of the distance L1 is omitted.

距離L2の位置において、投受光部20の瞬間投光野(iFOI(a))及び瞬間視野(iFOV)は、投光部10a~10dの瞬間投光野(iFOI(b)~iFOI(e))とは、重なっていない。 At the position of the distance L2, the instantaneous light field (iFOI(a)) and the instantaneous field of view (iFOV) of the light projecting/receiving unit 20 are the instantaneous light fields (iFOI(b) to iFOI(e)) of the light projecting units 10a to 10d. do not overlap.

距離L2の位置においては、投受光部20は、対象物OBの測距を行うにあたり十分な反射光RLを受光することができるため、精度が高い測距を行うことができる。 At the position of the distance L2, the light projecting/receiving unit 20 can receive the reflected light RL sufficient for distance measurement of the object OB, so that distance measurement can be performed with high accuracy.

距離L3の位置において、投受光部20の瞬間投光野(iFOI(a))及び瞬間視野(iFOV)は、投光部10aの瞬間投光野(iFOI(b))及び投光部10cの瞬間投光野(iFOI(d))の一部と重なっている。 At the position of the distance L3, the instantaneous field of view (iFOI(a)) and the instantaneous field of view (iFOV) of the light projecting/receiving section 20 are the same as the instantaneous field of view (iFOI(b)) of the light projecting section 10a and the instantaneous field of view (iFOI(b)) of the light projecting section 10c. Part of the light field (iFOI(d)) overlaps.

距離L3の位置においては、瞬間視野(iFOV)の中で、瞬間投光野(iFOI(a))、瞬間投光野(iFOI(b))及び瞬間投光野(iFOI(d))が重なるため、瞬間視野(iFOV)範囲内に存在する対象物OBに照射される照射光強度は1.5倍になる。したがって、距離L3の位置において、対象物OBの測距を行うにあたり十分な反射光RLが得られる。 At the position of the distance L3, the instantaneous field of view (iFOI(a)), the instantaneous field of view (iFOI(b)), and the instantaneous field of view (iFOI(d)) overlap in the instantaneous field of view (iFOV). The intensity of the irradiation light applied to the object OB existing within the field of view (iFOV) is increased by 1.5 times. Therefore, at the position of the distance L3, sufficient reflected light RL is obtained for distance measurement of the object OB.

距離L4の位置において、瞬間視野(iFOV)の中で、投光部10a~10dの瞬間投光野(iFOI(b)~iFOI(e))は、互いに全体が重なっている。また、投受光部20の瞬間投光野(iFOI(a))及び投受光部20の瞬間視野(iFOV)は、投光部10a~10dの瞬間投光野(iFOI(b)~iFOI(e))に全体が含まれるように重なっている。 At the position of the distance L4, the instantaneous field of view (iFOV) of the light projecting sections 10a to 10d (iFOI(b) to iFOI(e)) completely overlap each other in the instantaneous field of view (iFOV). Further, the instantaneous light field (iFOI(a)) of the light projecting/receiving unit 20 and the instantaneous field of view (iFOV) of the light projecting/receiving unit 20 are the instantaneous light field (iFOI(b) to iFOI(e)) of the light projecting units 10a to 10d. are overlapped so that the whole is included in .

距離L4の位置においては、瞬間視野(iFOV)の中で、全ての瞬間投光野(iFOI(a)~iFOI(e))が重なるため、瞬間視野(iFOV)範囲内に存在する対象物OBに照射される照射光強度は2倍になる。したがって、距離L4において、対象物OBの測距を行うにあたり十分な反射光RLが得られる。 At the position of the distance L4, all the instantaneous projection fields (iFOI (a) to iFOI (e)) overlap in the instantaneous field of view (iFOV), so that the object OB existing within the instantaneous field of view (iFOV) The intensity of the irradiated light is doubled. Therefore, at the distance L4, sufficient reflected light RL can be obtained for distance measurement of the object OB.

以上のように、投光部10a~10dは、投受光部20と離間して配される。また、投受光部20及び投光部10a~10dから出射される出射光ELの強度は、距離L1において安全基準を満たしている。すなわち、距離L1においては、瞬間視野(iFOV)は、投受光部20の瞬間投光野(iFOI(a))のみと重なる。したがって距離L1において照射光強度は、安全基準を満たしている。 As described above, the light projecting units 10a to 10d are arranged apart from the light projecting/receiving unit 20. FIG. In addition, the intensity of the emitted light EL emitted from the light projecting/receiving unit 20 and the light projecting units 10a to 10d satisfies the safety standard at the distance L1. That is, at the distance L1, the instantaneous field of view (iFOV) overlaps only the instantaneous field of view (iFOI(a)) of the light projecting/receiving unit 20 . Therefore, the illuminating light intensity at the distance L1 satisfies the safety standard.

また、測距装置100から遠く離れた距離L3の位置においては、瞬間視野(iFOV)の中で、投受光部20及び投光部10aの瞬間投光野(iFOI(a)、iFOI(b)及びiFOI(d))が重なるため、照射光強度を高くすることが可能となる。同様に、距離L4の位置においては、瞬間視野(iFOV)の中で、投受光部20、投光部10a及び10bの瞬間投光野(iFOI(a)~iFOI(e))の各々が重なるため、瞬間視野(iFOV)範囲内に存在する対象物OBに照射される照射光強度を高くすることが可能となる。したがって、本実施例に係る測距装置100によれば、レーザ光の出力に関する安全基準を順守し、かつ遠方に位置する対象物OBの測距を行うことが可能となる。 At a position at a distance L3 far from the distance measuring device 100, the instantaneous field of view (iFOI(a), iFOI(b) and Since the iFOI(d)) overlap, it is possible to increase the irradiation light intensity. Similarly, at the position of the distance L4, the instantaneous field of view (iFOI(a) to iFOI(e)) of the light projecting/receiving unit 20 and the light projecting units 10a and 10b overlap in the instantaneous field of view (iFOV). , it is possible to increase the intensity of the irradiation light with which the object OB existing within the instantaneous field of view (iFOV) is irradiated. Therefore, according to the distance measuring device 100 according to the present embodiment, it is possible to observe the safety standards regarding the output of the laser beam and perform distance measurement of the object OB located far away.

実施例4に係る測距装置100について説明する。実施例4に係る測距装置100は、実施例2又は3の測距装置100とは、複数の投光部の各々の瞬間投光野の重なる態様が異なる。 A range finder 100 according to a fourth embodiment will be described. The distance measuring device 100 according to the fourth embodiment differs from the distance measuring device 100 according to the second or third embodiment in the manner in which the instantaneous light fields of the plurality of light projecting units are overlapped.

図7は、本実施例に係る測距装置100からの距離に応じた投受光部20及び投光部10a~10dの瞬間投光野(iFOI)と投受光部20の瞬間視野(iFOV)の光軸AXに対して垂直な方向の断面を示している。 FIG. 7 shows the instantaneous field of view (iFOI) of the light projecting/receiving unit 20 and the light projecting units 10a to 10d and the instantaneous field of view (iFOV) of the light projecting/receiving unit 20 according to the distance from the distance measuring device 100 according to the present embodiment. It shows a cross section in a direction perpendicular to the axis AX.

投光部10a~10dは、投受光部20の光軸AXに対して垂直な方向に投受光部20と離間して配されている。具体的には、実施例2で説明したように各々投受光部20及び投光部10a~10dは、等間隔に配置されている。 The light projecting units 10 a to 10 d are spaced apart from the light projecting/receiving unit 20 in a direction perpendicular to the optical axis AX of the light projecting/receiving unit 20 . Specifically, as described in the second embodiment, the light projecting/receiving section 20 and the light projecting sections 10a to 10d are arranged at regular intervals.

投光部10a~10dの出射光ELの瞬間投光野(iFOI(b)~iFOI(e))は、投受光部20の瞬間投光野(iFOI(a))及び投受光部20の瞬間視野(iFOV)の4倍である。 The instantaneous light field (iFOI(b) to iFOI(e)) of the emitted light EL of the light projecting units 10a to 10d is the instantaneous light field (iFOI(a)) of the light projecting/receiving unit 20 and the instantaneous field of view of the light projecting/receiving unit 20 ( iFOV).

距離L2~L4は、投受光部20の光軸AX上の測距装置100からの距離であり、実施例1と同様である。本実施例においても投受光部20及び投光部10a~10dは、安全基準を満たす出射光ELを出射するため、距離L1における説明を省略する。 Distances L2 to L4 are the distances from the distance measuring device 100 on the optical axis AX of the light emitting/receiving section 20, and are the same as in the first embodiment. Also in the present embodiment, the light projecting/receiving unit 20 and the light projecting units 10a to 10d emit emitted light EL that satisfies the safety standards, so the description of the distance L1 is omitted.

距離L2の位置において、瞬間視野(iFOV)の中で、投受光部20の瞬間投光野(iFOI(a))は、投光部10a~10dの瞬間投光野(iFOI(b)~iFOI(e))とは、重なっていない。 At the position of distance L2, in the instantaneous field of view (iFOV), the instantaneous light field (iFOI(a)) of the light projecting/receiving unit 20 is the instantaneous light field (iFOI(b) to iFOI(e )) do not overlap.

距離L2の位置においては、投受光部20は、対象物OBの測距を行うにあたり十分な反射光RLを受光することができるため、精度が高い測距を行うことができる。 At the position of the distance L2, the light projecting/receiving unit 20 can receive the reflected light RL sufficient for distance measurement of the object OB, so that distance measurement can be performed with high accuracy.

距離L3の位置において、瞬間視野(iFOV)の中で、投受光部20の瞬間投光野(iFOI(a))及び投光部10a~10dの瞬間投光野(iFOI(b)~iFOI(e))に含まれるように重なっている。 At the position of distance L3, in the instantaneous field of view (iFOV), the instantaneous light field (iFOI (a)) of the light projecting and receiving unit 20 and the instantaneous light field (iFOI (b) to iFOI (e) of the light projecting units 10a to 10d ) are overlapped to be included in the

このため、距離L3の位置における瞬間視野(iFOV)範囲内に存在する対象物OBに照射される照射光強度の強度は2倍になる。したがって、距離L3の位置において、対象物OBの測距を行うにあたり十分な反射光RLが得られる。 For this reason, the intensity of the irradiation light applied to the object OB existing within the instantaneous field of view (iFOV) at the position of the distance L3 is doubled. Therefore, at the position of the distance L3, sufficient reflected light RL is obtained for distance measurement of the object OB.

距離L4の位置において、瞬間視野(iFOV)の中で、投受光部20の瞬間投光野(iFOI(a))及び投光部10a~10dの瞬間投光野(iFOI(b)~iFOI(e))に含まれるように重なっている。 At the position of the distance L4, in the instantaneous field of view (iFOV), the instantaneous light field (iFOI (a)) of the light projecting and receiving unit 20 and the instantaneous light field (iFOI (b) to iFOI (e) of the light projecting units 10a to 10d ) are overlapped to be included in the

このため、距離L4の位置における瞬間視野(iFOV)範囲内に存在する対象物OBに照射される照射光強度は2倍になる。したがって、距離L4において、対象物OBの測距を行うにあたり十分な反射光RLが得られる。 For this reason, the intensity of the irradiation light applied to the object OB existing within the instantaneous field of view (iFOV) at the position of the distance L4 is doubled. Therefore, at the distance L4, sufficient reflected light RL can be obtained for distance measurement of the object OB.

以上のように、投光部10a~10dは、投受光部20と離間して配される。また、投受光部20及び投光部10a~10dから出射される出射光ELの強度は、距離L1において安全基準を満たしている。すなわち、距離L1においては、瞬間視野(iFOV)は、投受光部20の瞬間投光野(iFOI(a))のみと重なる。したがって距離L1において照射光強度は、安全基準を満たしている。 As described above, the light projecting units 10a to 10d are arranged apart from the light projecting/receiving unit 20. FIG. In addition, the intensity of the emitted light EL emitted from the light projecting/receiving unit 20 and the light projecting units 10a to 10d satisfies the safety standard at the distance L1. That is, at the distance L1, the instantaneous field of view (iFOV) overlaps only the instantaneous field of view (iFOI(a)) of the light projecting/receiving unit 20 . Therefore, the illuminating light intensity at the distance L1 satisfies the safety standard.

また、測距装置100から遠く離れた距離L3の位置においては、瞬間視野(iFOV)の中で、投受光部20、投光部10aの瞬間投光野及び投光部10cの瞬間投光野(iFOI(a)、iFOI(b)及びiFOI(d))が重なるため、瞬間視野(iFOV)範囲内に存在する対象物OBに照射される照射光強度を高くすることが可能となる。同様に、距離L4の位置においては、瞬間視野(iFOV)の中で、投受光部20、投光部10a~10dの瞬間投光野(iFOI(a)~iFOI(e))の各々が重なるため、瞬間視野(iFOV)範囲内に存在する対象物OBに照射される照射光強度を高くすることが可能となる。したがって、本実施例に係る測距装置100によれば、レーザ光の出力に関する安全基準を順守し、かつ遠方に位置する対象物OBの測距を行うことが可能となる。 At a position at a distance L3 far away from the rangefinder 100, the instantaneous field of view (iFOV) of the light projecting/receiving unit 20, the light projecting unit 10a, and the instantaneous light projecting field (iFOI) of the light projecting unit 10c Since (a), iFOI (b) and iFOI (d)) overlap, it is possible to increase the irradiation light intensity with which the object OB existing within the instantaneous field of view (iFOV) is irradiated. Similarly, at the position of the distance L4, the instantaneous light fields (iFOI(a) to iFOI(e)) of the light projecting/receiving unit 20 and the light projecting units 10a to 10d overlap in the instantaneous field of view (iFOV). , it is possible to increase the intensity of the irradiation light with which the object OB existing within the instantaneous field of view (iFOV) is irradiated. Therefore, according to the distance measuring device 100 according to the present embodiment, it is possible to observe the safety standards regarding the output of the laser beam and perform distance measurement of the object OB located far away.

実施例5に係る測距装置100について説明する。実施例5に係る測距装置100は、実施例1乃至4の測距装置100とは、投光部の配置が異なる。 A range finder 100 according to a fifth embodiment will be described. The distance measuring device 100 according to the fifth embodiment differs from the distance measuring devices 100 according to the first to fourth embodiments in the arrangement of the light projecting section.

図8は、本実施例に係る測距装置100の機能ブロックを示している。図8において、投受光部20及び投光部10a~10dは、所定の走査領域に向けて各々が出射光を出射する発光装置である。 制御部30の光源制御部31は、投光部10a~10dからの出射光ELの出射方向に応じて、出射光ELを出射する投光部10a~10dを選択し、選択された投光部から出射光ELを出射させる。 FIG. 8 shows functional blocks of the distance measuring device 100 according to this embodiment. In FIG. 8, a light projecting/receiving unit 20 and light projecting units 10a to 10d are light emitting devices that each emit emitted light toward a predetermined scanning area. The light source control unit 31 of the control unit 30 selects the light projecting units 10a to 10d that emit the emitted light EL according to the emission direction of the emitted light EL from the light projecting units 10a to 10d, and selects the selected light projecting unit. to emit emitted light EL.

図9は、本実施例に係る測距装置100の投光部10a~10d及び投受光部20の配置例を示している。図9において、投光部10a~10dは、投受光部20の光軸AX側からみて点対称に配置されている。 FIG. 9 shows an arrangement example of the light projecting units 10a to 10d and the light projecting/receiving unit 20 of the distance measuring device 100 according to this embodiment. In FIG. 9, the light projecting units 10a to 10d are arranged point-symmetrically when viewed from the optical axis AX side of the light projecting/receiving unit 20. In FIG.

すなわち、投受光部20から投光部10aまでの距離LH1は、投受光部20から投光部10cまでの距離LH2に等しい。また、投受光部20から投光部10bまでの距離LV1は、投受光部20から投光部10dまでの距離LV2に等しい。 That is, the distance LH1 from the light projecting/receiving unit 20 to the light projecting unit 10a is equal to the distance LH2 from the light projecting/receiving unit 20 to the light projecting unit 10c. Further, the distance LV1 from the light projecting/receiving unit 20 to the light projecting unit 10b is equal to the distance LV2 from the light projecting/receiving unit 20 to the light projecting unit 10d.

図10は、本実施例に係る測距装置100の投受光部20及び投光部10a~10dから出射される出射光ELの態様を示している。図10において、光源制御部31は、タイムオブフライトの差が小さくなるように投光部を選択して当該選択した投光部から出射光ELを出射させる。 FIG. 10 shows the output light EL emitted from the light projecting/receiving unit 20 and the light projecting units 10a to 10d of the distance measuring device 100 according to the present embodiment. In FIG. 10, the light source control unit 31 selects a light projecting unit so that the time-of-flight difference is small, and emits the emitted light EL from the selected light projecting unit.

具体的には、光源制御部31は、出射光ELを出射する方向に基づいて、所定の走査領域Rまでの距離の差が相対的に小さい投光部を、投受光部20及び投光部10a~10dの中から選択する。言い換えれば、光源制御部31は、出射光ELを出射する方向に基づいて、投受光部20により反射光RLが受光されるまでの時間の差が相対的に小さい2以上の投光部を選択する。 Specifically, the light source control unit 31 selects the light projecting unit having a relatively small difference in distance to the predetermined scanning region R based on the direction in which the emitted light beam EL is emitted. Choose from 10a-10d. In other words, the light source control unit 31 selects two or more light projecting units that have a relatively small time difference until the reflected light RL is received by the light projecting/receiving unit 20, based on the direction in which the emitted light EL is emitted. do.

例えば、光源制御部31は、仮想面VSにおける出射光の照射目標点PE1に対して出射光ELが出射される際に、投光部10a及び投光部10dを選択し、選択された投光部10a及び投光部10dから出射光ELを出射させる。 For example, the light source control unit 31 selects the light projecting unit 10a and the light projecting unit 10d when the emitted light EL is emitted to the irradiation target point PE1 of the emitted light on the virtual plane VS, and selects the light projecting unit 10d. Emitted light EL is emitted from the portion 10a and the light projecting portion 10d.

同様に、仮想面VSにおける出射光の照射目標点PE2に対して出射光ELが出射される際に、光源制御部31は、投光部10b及び投光部10cを選択し、選択された投光部10b及び投光部10cから出射光ELを出射させる。 Similarly, when the emitted light EL is emitted to the irradiation target point PE2 of the emitted light on the virtual plane VS, the light source control unit 31 selects the light projecting unit 10b and the light projecting unit 10c, and selects the selected light projecting unit. Emission light EL is emitted from the light section 10b and the light projection section 10c.

また、出射光の照射目標点PE3に対して出射光ELが出射される際に、光源制御部31は、投光部10a及び10c、又は、投光部10b及び10dを選択し、選択された投光部10a及び10c、又は、投光部10b及び10dから出射光ELを出射させる。 Further, when the emitted light EL is emitted to the irradiation target point PE3 of the emitted light, the light source control unit 31 selects the light projecting units 10a and 10c or the light projecting units 10b and 10d. Emission light EL is emitted from the light projection units 10a and 10c or the light projection units 10b and 10d.

さらに、仮想面VSにおける出射光の照射目標点PE4に対して出射光ELが出射される際に、光源制御部31は、投光部10a及び投光部10bを選択し、選択された投光部10a及び投光部10bから出射光ELを出射させる。 Furthermore, when the emitted light EL is emitted to the irradiation target point PE4 of the emitted light on the virtual plane VS, the light source control unit 31 selects the light projecting unit 10a and the light projecting unit 10b, and selects the selected light projecting unit. Emitted light EL is emitted from the portion 10a and the light projecting portion 10b.

尚、本実施例において、光源制御部31は、出射光ELを出射する方向に基づいて、2つの投光部(投光部10a及び投光部10d、又は投光部10b及び投光部10c)を選択して、当該選択された投光部から出射光ELを出射させたが、本発明はこれに限定されない。光源制御部31は、出射光ELを出射する方向に基づいて、投受光部20及び各投光部10a~10dから所定の走査領域Rまでの距離の差が小さい投光部を、3つ以上を選択してもよいし、各投光部10a~10dから所定の走査領域Rまでの距離が最も近い1の投光部を選択してもよい。 In this embodiment, the light source control unit 31 selects two light projecting units (light projecting unit 10a and light projecting unit 10d, or light projecting unit 10b and light projecting unit 10c) based on the direction in which the emitted light EL is emitted. ) is selected and the emitted light EL is emitted from the selected light projecting portion, the present invention is not limited to this. The light source control unit 31 selects three or more light projecting units with a small distance difference from the light projecting/receiving unit 20 and the light projecting units 10a to 10d to the predetermined scanning region R based on the direction in which the emitted light EL is emitted. may be selected, or one light projecting unit having the shortest distance from each of the light projecting units 10a to 10d to the predetermined scanning area R may be selected.

図11は、本実施例に係る測距装置から出射された出射光を巨視的に示している。図11に示すように、測距装置100は、出射光ELを出射する方向を連続的に変化させて共通の方向に出射光ELを出射する。 FIG. 11 macroscopically shows emitted light emitted from the distance measuring device according to the present embodiment. As shown in FIG. 11, the distance measuring device 100 continuously changes the direction of emission of the emitted light EL and emits the emitted light EL in a common direction.

具体的には、とある時刻に光源制御部31は、投受光部20及び投光部10a~10dを選択して、投受光部20及び投光部10a~10dから方向D1に向けて出射光ELを出射させる。 Specifically, at a certain time, the light source control unit 31 selects the light projecting/receiving unit 20 and the light projecting units 10a to 10d, and emits light from the light projecting/receiving unit 20 and the light projecting units 10a to 10d in the direction D1. Emit EL.

また、別の時刻に光源制御部31は、投受光部20及び投光部10a~10dから方向D1に向けて出射光ELを出射させてから予め定めた所定時間が経過した後に、投受光部20及び投光部10a~10dから方向D2に向けて出射光ELを出射させる。 At another time, the light source control unit 31 causes the light emitting/receiving unit 20 and the light emitting/receiving units 10a to 10d to emit the emitted light EL in the direction D1, and after a predetermined time has passed, the light emitting/receiving unit 20 and the light projecting units 10a to 10d emit emitted light EL in the direction D2.

さらに、別の時刻に光源制御部31は、投受光部20及び投光部10a~10dから方向D2に向けて出射光ELを出射させてから予め定めた所定時間が経過した後に、投受光部20及び投光部10a~10dから方向D3に向けて出射光ELを出射させる。 Further, at another time, the light source control unit 31 causes the light emitting/receiving unit 20 and the light emitting/receiving units 10a to 10d to emit the emitted light EL in the direction D2, and after a predetermined time has passed, the light emitting/receiving unit 20 and the light projection units 10a to 10d emit emitted light EL in the direction D3.

図12A~図12Cは、方向D1に向けて出射光ELを出射する際の測距装置100からの所定の距離の位置における投受光部20及び各投光部10a~10dの瞬間投光野及び投受光部20の瞬間視野の断面を拡大した態様を示している。尚、測距装置100からの距離に応じて瞬間投光野及び瞬間視野の断面の大きさは変化するが適宜拡大率を変えて表現している。 12A to 12C show the instantaneous projection fields and projection fields of the light projecting/receiving unit 20 and the light projecting units 10a to 10d at a predetermined distance from the distance measuring device 100 when the emitted light EL is emitted in the direction D1. It shows a mode in which the cross section of the instantaneous visual field of the light receiving unit 20 is enlarged. Although the cross-sectional sizes of the instantaneous projection field and the instantaneous field of view change according to the distance from the distance measuring device 100, they are expressed by appropriately changing the enlargement ratio.

図12Aは、測距装置100からの距離が25mの位置における各投光部10a~10dの瞬間投光野(iFOI)及び投受光部20の瞬間視野(iFOV)の断面を拡大した態様を示している。図12Aに示すように、測距装置100からの距離が25mの位置においては、投受光部20の瞬間視野(iFOV)の中では、投光部10a~10dの瞬間投光野(iFOI(b)~iFOI(e))の各々は、互いに重なっていない。 FIG. 12A shows an enlarged cross section of the instantaneous field of view (iFOI) of each of the light projecting units 10a to 10d and the instantaneous field of view (iFOV) of the light projecting/receiving unit 20 at a position at a distance of 25 m from the distance measuring device 100. there is As shown in FIG. 12A, at a position at a distance of 25 m from the distance measuring device 100, the instantaneous field of view (iFOV) of the light projecting/receiving unit 20 includes the instantaneous field of view (iFOI(b)) of the light projecting units 10a to 10d. ˜iFOI(e)) do not overlap each other.

図12Bは、測距装置100からの距離が50mの位置における各投光部10a~10dの瞬間投光野(iFOI)及び投受光部20の瞬間視野(iFOV)の断面を拡大した態様を示している。図12Bに示すように、測距装置100からの距離が50mの位置においては、投受光部20の瞬間視野(iFOV)の中では、投光部10a~10dの瞬間投光野(iFOI(b)~iFOI(e))の各々一部は、互いに重なっている。 FIG. 12B shows an enlarged cross section of the instantaneous field of view (iFOI) of each of the light projecting units 10a to 10d and the instantaneous field of view (iFOV) of the light projecting/receiving unit 20 at a position at a distance of 50 m from the distance measuring device 100. there is As shown in FIG. 12B, when the distance from the distance measuring device 100 is 50 m, the instantaneous field of view (iFOV) of the light projecting/receiving unit 20 includes the instantaneous field of view (iFOI(b)) of the light projecting units 10a to 10d. ˜iFOI(e)) overlap each other.

図12Cは、測距装置100からの距離が100mの位置における各投光部10a~10dの瞬間投光野(iFOI)及び投受光部20の瞬間視野(iFOV)の断面を拡大した態様を示している。図12Cに示すように、測距装置100からの距離が100mの位置においては、投受光部20の瞬間視野(iFOV)の中では、投光部10a~10dの瞬間投光野(iFOI(b)~iFOI(e))の各々が互いに重なっている。 FIG. 12C shows an enlarged cross section of the instantaneous field of view (iFOI) of each of the light projecting units 10a to 10d and the instantaneous field of view (iFOV) of the light projecting/receiving unit 20 at a position at a distance of 100 m from the distance measuring device 100. there is As shown in FIG. 12C, when the distance from the distance measuring device 100 is 100 m, the instantaneous field of view (iFOV) of the light projecting/receiving unit 20 includes the instantaneous field of view (iFOI(b)) of the light projecting units 10a to 10d. ˜iFOI(e)) overlap each other.

図13A~図13Cは、方向D2に向けて出射光ELを出射する際の測距装置100からの所定の距離の位置における各投光部10a~10dの瞬間投光野及び投受光部20の瞬間視野の断面を拡大した態様を示している。尚、測距装置100からの距離に応じて瞬間投光野及び瞬間視野の断面の大きさは変化するが適宜拡大率を変えて表現している。 13A to 13C show the instantaneous light field of each of the light projecting units 10a to 10d and the moment of the light projecting/receiving unit 20 at a predetermined distance from the distance measuring device 100 when the emitted light EL is emitted in the direction D2. It shows a mode in which the cross section of the field of view is enlarged. Although the cross-sectional sizes of the instantaneous projection field and the instantaneous field of view change according to the distance from the distance measuring device 100, they are expressed by appropriately changing the enlargement ratio.

図13Aは、測距装置100からの距離が25mの位置における各投光部10a~10dの瞬間投光野(iFOI)及び投受光部20の瞬間視野(iFOV)の断面を拡大した態様を示している。図13Aに示すように、測距装置100からの距離が25mの位置においては、投受光部20の瞬間視野(iFOV)の中では、投光部10a~10dの瞬間投光野(iFOI(b)~iFOI(e))各々は、互いに重なっていない。 FIG. 13A shows an enlarged cross section of the instantaneous field of view (iFOI) of each of the light projecting units 10a to 10d and the instantaneous field of view (iFOV) of the light projecting/receiving unit 20 at a position at a distance of 25 m from the distance measuring device 100. there is As shown in FIG. 13A, when the distance from the distance measuring device 100 is 25 m, the instantaneous field of view (iFOV) of the light projecting/receiving unit 20 includes the instantaneous field of view (iFOI(b)) of the light projecting units 10a to 10d. ˜iFOI(e)) are not overlapping each other.

図13Bは、測距装置100からの距離が50mの位置における各投光部10a~10dの瞬間投光野(iFOI)及び投受光部20の瞬間視野(iFOV)の断面を拡大した態様を示している。図13Bに示すように、測距装置100からの距離が50mの位置においては、投受光部20の瞬間視野(iFOV)の中では、投光部10a~10dの瞬間投光野(iFOI(b)~iFOI(e))の各々の一部は、互いに重なっている。 FIG. 13B shows an enlarged cross section of the instantaneous field of view (iFOI) of each of the light projecting units 10a to 10d and the instantaneous field of view (iFOV) of the light projecting/receiving unit 20 at a position at a distance of 50 m from the distance measuring device 100. there is As shown in FIG. 13B, at a position at a distance of 50 m from the distance measuring device 100, the instantaneous field of view (iFOV) of the light projecting/receiving unit 20 has an instantaneous light field (iFOI(b)) of the light projecting units 10a to 10d. ˜iFOI(e)) overlap each other.

図13Cは、測距装置100からの距離が100mの位置における各投光部10a~10dの瞬間投光野(iFOI)及び投受光部20の瞬間視野(iFOV)の断面を拡大した態様を示している。図13Cに示すように、測距装置100からの距離が100mの位置においては、投受光部20の瞬間視野(iFOV)の中では、投光部10a~10dの瞬間投光野(iFOI(b)~iFOI(e))の各々は、互いに重なっている。 FIG. 13C shows an enlarged cross section of the instantaneous field of view (iFOI) of each of the light projecting units 10a to 10d and the instantaneous field of view (iFOV) of the light projecting/receiving unit 20 at a position at a distance of 100 m from the distance measuring device 100. there is As shown in FIG. 13C, when the distance from the distance measuring device 100 is 100 m, the instantaneous field of view (iFOV) of the light projecting/receiving unit 20 includes the instantaneous field of view (iFOI(b) ˜iFOI(e)) overlap each other.

図14A~図14Cは、方向D3に向けて出射光ELを出射する際の測距装置100からの所定の距離の位置における各投光部10a~10dの瞬間投光野及び投受光部20の瞬間視野の断面を拡大した態様を示している。尚、測距装置100からの距離に応じて瞬間投光野及び瞬間視野の断面の大きさは変化するが適宜拡大率を変えて表現している。 14A to 14C show the instantaneous light field of each of the light projecting units 10a to 10d and the moment of the light projecting/receiving unit 20 at a predetermined distance from the distance measuring device 100 when the emitted light EL is emitted in the direction D3. It shows a mode in which the cross section of the field of view is enlarged. Although the cross-sectional sizes of the instantaneous projection field and the instantaneous field of view change according to the distance from the distance measuring device 100, they are expressed by appropriately changing the enlargement ratio.

図14Aは、測距装置100からの距離が25mの位置における各投光部10a~10dの瞬間投光野(iFOI)及び投受光部20の瞬間視野(iFOV)の断面を拡大した態様を示している。図14Aに示すように、測距装置100からの距離が25mの位置においては、投受光部20の瞬間視野(iFOV)の中では、投光部10a~10dの瞬間投光野(iFOI(b)~iFOI(e))の各々は、互いに重なっていない。 FIG. 14A shows an enlarged cross section of the instantaneous field of view (iFOI) of each of the light projecting units 10a to 10d and the instantaneous field of view (iFOV) of the light projecting/receiving unit 20 at a position at a distance of 25 m from the distance measuring device 100. there is As shown in FIG. 14A, at a position at a distance of 25 m from the distance measuring device 100, the instantaneous field of view (iFOV) of the light projecting/receiving unit 20 includes the instantaneous field of view (iFOI(b)) of the light projecting units 10a to 10d. ˜iFOI(e)) do not overlap each other.

図14Bは、測距装置100からの距離が50mの位置における各投光部10a~10dの瞬間投光野(iFOI)及び投受光部20の瞬間視野(iFOV)の断面を拡大した態様を示している。図14Bに示すように、測距装置100からの距離が50mの位置においては、投受光部20の瞬間視野(iFOV)の中では、投光部10a~10dの瞬間投光野(iFOI(b)~iFOI(e))の各々の一部は、互いに重なっている。 FIG. 14B shows an enlarged cross section of the instantaneous field of view (iFOI) of each of the light projecting units 10a to 10d and the instantaneous field of view (iFOV) of the light projecting/receiving unit 20 at a position at a distance of 50 m from the distance measuring device 100. there is As shown in FIG. 14B, at a position at a distance of 50 m from the distance measuring device 100, the instantaneous field of view (iFOV) of the light projecting/receiving unit 20 includes the instantaneous field of view (iFOI(b)) of the light projecting units 10a to 10d. ˜iFOI(e)) overlap each other.

図14Cは、測距装置100からの距離が100mの位置における各投光部10a~10dの瞬間投光野(iFOI)及び投受光部20の瞬間視野(iFOV)の断面を拡大した態様を示している。図14Cに示すように、測距装置100からの距離が100mの位置においては、投受光部20の瞬間視野(iFOV)の中では、投光部10a~10dの瞬間投光野(iFOI(b)~iFOI(e))は、互いに重なっている。 FIG. 14C shows an enlarged cross section of the instantaneous field of view (iFOI) of each of the light projecting units 10a to 10d and the instantaneous field of view (iFOV) of the light projecting/receiving unit 20 at a position at a distance of 100 m from the distance measuring device 100. there is As shown in FIG. 14C, at a position at a distance of 100 m from the distance measuring device 100, the instantaneous field of view (iFOV) of the light projecting and receiving unit 20 includes the instantaneous field of view (iFOI (b) ˜iFOI(e)) overlap each other.

このように、方向D1,D2,D3のいずれにおいても測距装置100からの距離が25mの位置では、瞬間視野(iFOV)の中で、瞬間投光野(iFOI(b)~iFOI(e))が互いに重ならない。すなわち、測距装置100からの距離が25mの位置においては、瞬間視野(iFOV)は、投受光部20の瞬間投光野(iFOI(a))のみと重なる。しかしながら測距装置100からの距離が25mの位置では、近距離であるため対象物OBの測距を行うに当たり十分な反射光RLが得ることが出来る。加えて、測距装置100からの距離が25mの位置において瞬間投光野(iFOI(b)~iFOI(e))が互いに重ならないことから、測距装置100からの距離が25m未満の位置においても瞬間投光野は重なることはない。したがって本実施例に係る測距装置100は、安全基準を満たしている。 Thus, at a position at a distance of 25 m from the distance measuring device 100 in any of the directions D1, D2, and D3, the instantaneous projection fields (iFOI(b) to iFOI(e)) in the instantaneous field of view (iFOV) do not overlap each other. That is, when the distance from the distance measuring device 100 is 25 m, the instantaneous field of view (iFOV) overlaps only the instantaneous field of view (iFOI(a)) of the light projecting/receiving unit 20 . However, at a position at a distance of 25 m from the distance measuring device 100, since the distance is short, sufficient reflected light RL can be obtained for distance measurement of the object OB. In addition, since the instantaneous projection fields (iFOI(b) to iFOI(e)) do not overlap each other at a position at a distance of 25 m from the rangefinder 100, even at a position at a distance of less than 25m from the rangefinder 100, The instantaneous flood fields do not overlap. Therefore, the distance measuring device 100 according to this embodiment satisfies the safety standards.

また、方向D1,D2,D3のいずれにおいても測距装置100からの距離が50mの位置では、瞬間視野(iFOV)の中で瞬間投光野(iFOI(b)~iFOI(e))の一部が重なり合うため照射光強度が強くなる。したがって、測距装置100からの距離が50mの位置において、対象物OBの測距を行うにあたり十分な反射光RLが得られる。 In addition, at a position at a distance of 50 m from the distance measuring device 100 in any of the directions D1, D2, and D3, part of the instantaneous projection field (iFOI(b) to iFOI(e)) in the instantaneous field of view (iFOV) are overlapped, the intensity of the irradiated light is increased. Therefore, at a position at a distance of 50 m from the distance measuring device 100, sufficient reflected light RL is obtained for distance measurement of the object OB.

さらに、方向D1,D2,D3のいずれにおいても測距装置100からの距離が100mの位置では、瞬間視野(iFOV)の中で、瞬間投光野(iFOI(b)~iFOI(e))の各々が互いに重なりあうため照射光強度が強くなる。したがって、測距装置100からの距離が100mの位置において、対象物OBの測距を行うにあたり十分な反射光RLが得られる。 Furthermore, at a position at a distance of 100 m from the distance measuring device 100 in any of the directions D1, D2, and D3, each of the instantaneous projection fields (iFOI(b) to iFOI(e)) in the instantaneous field of view (iFOV) are superimposed on each other, the intensity of the irradiation light is increased. Therefore, at a position at a distance of 100 m from the distance measuring device 100, sufficient reflected light RL can be obtained for distance measurement of the object OB.

以上のように、光源制御部31は、出射光ELの出射方向に基づいて、各投光部から所定の走査領域までの距離の差が小さい投光部を、複数の投光部の中から選択する。これによって、出射光ELの出射方向上に存在する対象物OBで反射される反射光RLの受光タイミングを揃える(又はほぼ揃える)ことが可能となる。したがって本実施例に係る測距装置100によれば、タイムオブフライトを揃える(又はほぼ揃える)ことができ、簡易な処理で精度が高い測距を行うことができる。 As described above, the light source control unit 31 selects a light projecting unit having a small difference in distance from each light projecting unit to a predetermined scanning area from among a plurality of light projecting units, based on the emission direction of the emitted light EL. select. This makes it possible to align (or substantially align) the reception timings of the reflected light RL reflected by the object OB present in the direction in which the emitted light EL is emitted. Therefore, according to the range finder 100 according to the present embodiment, it is possible to align (or substantially align) the time of flight, and perform highly accurate ranging with simple processing.

100 測距装置
10a~10d 投光部
11 光源
12 光偏向素子
20 投受光部
21 光源
22 受光素子
23 光偏向素子
30 距離測定部
100 Distance measuring devices 10a to 10d Light projecting unit 11 Light source 12 Light deflecting element 20 Projecting/receiving unit 21 Light source 22 Light receiving element 23 Light deflecting element 30 Distance measuring unit

Claims (1)

出射光が対象物で反射した反射光の方向を可変に偏向する反射光偏向素子及び前記反射光偏向素子によって偏向された前記反射光を受光する受光素子を含む受光部と、
少なくとも1つが前記受光部の光軸と垂直な方向において前記受光部と離間して配され、かつ前記出射光を出射する光源及び前記出射光の方向を可変に偏向する出射光偏向素子を各々が含む複数の投光部と、
前記複数の投光部の前記出射光の方向に基づいて、前記複数の投光部のうちから選択される1又は複数の投光部から前記出射光が出射されることを特徴とする測距装置。
a light receiving unit including a reflected light deflection element that variably deflects the direction of reflected light emitted from an object and reflected by the object, and a light receiving element that receives the reflected light deflected by the reflected light deflection element;
At least one is arranged apart from the light receiving section in a direction perpendicular to the optical axis of the light receiving section, and each includes a light source for emitting the emitted light and an emitted light deflection element for variably deflecting the direction of the emitted light. a plurality of light emitters including;
distance measurement, wherein the emitted light is emitted from one or a plurality of light projecting units selected from the plurality of light projecting units based on the direction of the emitted light from the plurality of light projecting units. Device.
JP2022133379A 2018-03-26 2022-08-24 Distance measuring device Pending JP2022162080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022133379A JP2022162080A (en) 2018-03-26 2022-08-24 Distance measuring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018058974A JP2019174126A (en) 2018-03-26 2018-03-26 Ranging device
JP2022133379A JP2022162080A (en) 2018-03-26 2022-08-24 Distance measuring device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018058974A Division JP2019174126A (en) 2018-03-26 2018-03-26 Ranging device

Publications (1)

Publication Number Publication Date
JP2022162080A true JP2022162080A (en) 2022-10-21

Family

ID=68166735

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018058974A Pending JP2019174126A (en) 2018-03-26 2018-03-26 Ranging device
JP2022133379A Pending JP2022162080A (en) 2018-03-26 2022-08-24 Distance measuring device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018058974A Pending JP2019174126A (en) 2018-03-26 2018-03-26 Ranging device

Country Status (1)

Country Link
JP (2) JP2019174126A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023067693A1 (en) * 2021-10-19 2023-04-27 パイオニア株式会社 Ranging device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6196484A (en) * 1984-10-18 1986-05-15 Fujitsu Ten Ltd Light reflection type substance detector
JPH07210773A (en) * 1994-01-21 1995-08-11 Opt:Kk Guard device
JP2000019253A (en) * 1998-07-01 2000-01-21 Nippon Signal Co Ltd:The Obstacle detection device
JP2005292156A (en) * 1999-02-24 2005-10-20 Denso Corp Distance-measuring device
JP2011141142A (en) * 2010-01-05 2011-07-21 Sharp Corp Range finder and electronic equipment
JP2013145174A (en) * 2012-01-13 2013-07-25 Panasonic Corp Proximity sensor
WO2017132704A1 (en) * 2016-01-31 2017-08-03 Velodyne Lidar, Inc. Lidar based 3-d imaging with far-field illumination overlap

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6196484A (en) * 1984-10-18 1986-05-15 Fujitsu Ten Ltd Light reflection type substance detector
JPH07210773A (en) * 1994-01-21 1995-08-11 Opt:Kk Guard device
JP2000019253A (en) * 1998-07-01 2000-01-21 Nippon Signal Co Ltd:The Obstacle detection device
JP2005292156A (en) * 1999-02-24 2005-10-20 Denso Corp Distance-measuring device
JP2011141142A (en) * 2010-01-05 2011-07-21 Sharp Corp Range finder and electronic equipment
JP2013145174A (en) * 2012-01-13 2013-07-25 Panasonic Corp Proximity sensor
WO2017132704A1 (en) * 2016-01-31 2017-08-03 Velodyne Lidar, Inc. Lidar based 3-d imaging with far-field illumination overlap

Also Published As

Publication number Publication date
JP2019174126A (en) 2019-10-10

Similar Documents

Publication Publication Date Title
US20200333587A1 (en) Ladar Transmitter with Ellipsoidal Reimager
US10782392B2 (en) Scanning optical system and light projecting and receiving apparatus
JP2020526755A (en) Ladar transmitter with reimager
TW201734501A (en) Ladar transmitter with improved gaze on scan area portions
US20160313553A1 (en) Optical scanner for laser radar or other devices
US11662463B2 (en) Lidar apparatus and method
KR102607187B1 (en) A lidar device
US10162171B2 (en) Scanning optical system and light projecting and receiving apparatus
JP7157385B2 (en) Scanning optical system and laser radar equipment
JP2022162080A (en) Distance measuring device
JP2021170033A (en) Scanner
JP2021162475A (en) Scanner, scanning method, and scanning program
JP2022159438A (en) Ranging device
WO2018147454A1 (en) Scanning optical system and laser radar device
WO2019076337A1 (en) Improved arrangement of light sources and detectors in a lidar system
JP7314661B2 (en) Optical scanning device, object detection device and sensing device
JP2022164850A (en) Optical device, distance measuring device and distance measuring method
US11762066B2 (en) Multi-beam scanning system
JP2020020703A (en) Scanner, method for controlling scanner, program, recording medium, and distance measuring device
JP2020046341A (en) Light projecting device, light projecting receiving device, and distance measuring device
JP7148249B2 (en) rangefinder
JP2024059877A (en) Optical device, distance measuring device, distance measuring method, program, and recording medium
JP2023101803A (en) Scanning device and distance-measuring device
JP2022072722A (en) Distance measuring device
JP2024036526A (en) Light projecting device, projecting/receiving device, and distance measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230704

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240109