JP2019158598A - Distance measurement apparatus - Google Patents

Distance measurement apparatus Download PDF

Info

Publication number
JP2019158598A
JP2019158598A JP2018045650A JP2018045650A JP2019158598A JP 2019158598 A JP2019158598 A JP 2019158598A JP 2018045650 A JP2018045650 A JP 2018045650A JP 2018045650 A JP2018045650 A JP 2018045650A JP 2019158598 A JP2019158598 A JP 2019158598A
Authority
JP
Japan
Prior art keywords
light
light receiving
unit
distance measuring
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018045650A
Other languages
Japanese (ja)
Other versions
JP7148249B2 (en
Inventor
孝典 落合
Takanori Ochiai
孝典 落合
琢也 白戸
Takuya Shirato
琢也 白戸
亮 出田
Ryo IZUTA
亮 出田
柳澤 琢麿
Takamaro Yanagisawa
琢麿 柳澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Electronic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Electronic Corp filed Critical Pioneer Electronic Corp
Priority to JP2018045650A priority Critical patent/JP7148249B2/en
Publication of JP2019158598A publication Critical patent/JP2019158598A/en
Application granted granted Critical
Publication of JP7148249B2 publication Critical patent/JP7148249B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

To provide a distance measurement apparatus capable of having a sufficient SN ratio and downsizing the apparatus.SOLUTION: A distance measurement apparatus comprises: a light projection section 10 which includes a light source 11 for emitting emission light and an emission light deflection element 12 having an emission light reflection member for variably deflecting a direction of the emission light; and each of a plurality of light reception sections 20 which is arranged separately from the light projection section in a direction perpendicular to an optical axis of the light projection section, and includes a reflection light deflection element 21 having a reflection light reflection member for variably deflecting a direction of reflection light which is the emission light reflected by an object and a light receiving element 22 for receiving the reflection light deflected by the reflection light deflection element.SELECTED DRAWING: Figure 1

Description

本発明は、対象物までの距離を計測する測距装置に関する。   The present invention relates to a distance measuring device that measures a distance to an object.

光学測距装置は、例えば、レーザ光を対象領域内で走査して対象物までの距離を計測する、すなわち測距する。   The optical distance measuring device, for example, measures the distance to the object by scanning the laser beam in the object region, that is, measures the distance.

このような測距装置としては、例えば、光走査装置の光反射面を揺動駆動する駆動部が位相差変更部及び振幅変更部の少なくとも一方を備えた光測距装置が特許文献1に開示されている。   As such a distance measuring device, for example, Patent Document 1 discloses an optical distance measuring device in which a drive unit that swings and drives a light reflecting surface of an optical scanning device includes at least one of a phase difference changing unit and an amplitude changing unit. Has been.

特開2011−053137号公報JP 2011-053137 A

レーザ光は対象物に照射されると散乱する。このため、対象物が測距装置から遠くなるにつれて測距装置が受光するレーザ光の強度が弱くなる。したがって、測距装置から遠方に位置する対象物の測距を行うためには、対象物から反射された光をより多く受光することが望まれる。   Laser light scatters when irradiated on an object. For this reason, the intensity of the laser beam received by the distance measuring device decreases as the object moves away from the distance measuring device. Therefore, in order to perform distance measurement of an object located far from the distance measuring device, it is desired to receive more light reflected from the object.

しかし、より多くの光を受光するようにすると、背景光などのノイズを受光する光量も増加する。ここで、測距装置のシグナル比(SN比)は、受光系の開口の大きさに伴って変化する。具体的には、受光系の開口が大きくなるにつれてSN比も大きくなる。しかし、受光系の開口を大きくすると、装置が大型化する問題が課題の1つとして挙げられる。   However, when more light is received, the amount of light that receives noise such as background light also increases. Here, the signal ratio (SN ratio) of the distance measuring device varies with the size of the aperture of the light receiving system. Specifically, the S / N ratio increases as the aperture of the light receiving system increases. However, when the aperture of the light receiving system is increased, one of the problems is that the apparatus becomes larger.

本発明は上記した点に鑑みてなされたものであり、十分なSN比を有し且つ、装置の小型化を図ることが可能な測距装置を提供することを課題の1つとする。   The present invention has been made in view of the above points, and an object of the present invention is to provide a distance measuring device that has a sufficient S / N ratio and can be downsized.

本願請求項1に記載の測距装置は、出射光を出射する光源、及び前記出射光の方向を可変に偏向する出射光反射部材を有する出射光偏向素子を含む投光部と、各々が前記投光部の光軸に対する垂直方向において前記投光部と離間して配され、かつ前記出射光が対象物で反射した反射光の方向を可変に偏向する反射光反射部材を有する反射光偏向素子及び前記反射光偏向素子によって偏向された前記反射光を受光する受光素子を各々が含む複数の受光部と、を有することを特徴とする。   The distance measuring device according to claim 1 of the present application includes a light projecting unit including a light source that emits outgoing light, and an outgoing light deflecting element that includes an outgoing light reflecting member that variably deflects the direction of the outgoing light, A reflected light deflecting element having a reflected light reflecting member that is arranged away from the light projecting unit in a direction perpendicular to the optical axis of the light projecting unit and variably deflects the direction of the reflected light reflected by the object. And a plurality of light receiving portions each including a light receiving element that receives the reflected light deflected by the reflected light deflecting element.

実施例1に係る測距装置の構成を示すブロック図である。1 is a block diagram illustrating a configuration of a distance measuring device according to Embodiment 1. FIG. 実施例1に係る測距装置の投光系の動作原理を説明する説明図である。It is explanatory drawing explaining the operation principle of the light projection system of the distance measuring device which concerns on Example 1. FIG. 実施例1に係る測距装置の受光系の動作原理を説明する説明図である。FIG. 6 is an explanatory diagram illustrating an operation principle of a light receiving system of the distance measuring apparatus according to the first embodiment. 図1の投光部と受光部の配置例を示す概念図である。It is a conceptual diagram which shows the example of arrangement | positioning of the light projection part of FIG. 1, and a light-receiving part. 実施例2に係る測距装置の投光部と受光部の配置例を示す概念図である。FIG. 10 is a conceptual diagram illustrating an arrangement example of a light projecting unit and a light receiving unit of a distance measuring apparatus according to a second embodiment. 実施例3に係る測距装置の投光部と受光部の配置例を示す概念図である。FIG. 10 is a conceptual diagram illustrating an arrangement example of a light projecting unit and a light receiving unit of a distance measuring apparatus according to a third embodiment. 実施例4に係る測距装置の距離測定部が受光部を選択する処理フロー図である。FIG. 10 is a process flow diagram in which a distance measuring unit of a distance measuring apparatus according to a fourth embodiment selects a light receiving unit. 実施例5に係る測距装置の距離測定部が受光部を選択する処理フロー図である。FIG. 10 is a process flow diagram in which a distance measuring unit of a distance measuring apparatus according to a fifth embodiment selects a light receiving unit. 実施例6に係る測距装置の距離測定部が受光部を選択する処理フロー図である。FIG. 10 is a process flow diagram in which a distance measuring unit of a distance measuring apparatus according to a sixth embodiment selects a light receiving unit. 実施例7に係る測距装置の距離測定部が受光部を選択する処理フロー図である。FIG. 10 is a process flow diagram in which a distance measuring unit of a distance measuring apparatus according to a seventh embodiment selects a light receiving unit. 実施例8に係る測距装置の投光部と受光部の配置例を示す概念図である。It is a conceptual diagram which shows the example of arrangement | positioning of the light projection part of the ranging device which concerns on Example 8, and a light-receiving part. 図11の受光部が生成した受光信号を示す概念図である。It is a conceptual diagram which shows the light reception signal which the light-receiving part of FIG. 11 produced | generated. 図12の受光信号を合成した信号を示す概念図である。It is a conceptual diagram which shows the signal which synthesize | combined the light reception signal of FIG. 図11の受光部が生成した受光信号の補正例を示す概念図である。It is a conceptual diagram which shows the example of correction | amendment of the light reception signal which the light-receiving part of FIG. 11 produced | generated. 図14の受光信号を合成した信号を示す概念図である。It is a conceptual diagram which shows the signal which synthesize | combined the light reception signal of FIG. 図11の受光部が生成した受光信号の他の補正例を示す概念図である。It is a conceptual diagram which shows the other example of correction | amendment of the light reception signal which the light-receiving part of FIG. 11 produced | generated.

図1は、本実施例に係る測距装置100を示している。   FIG. 1 shows a distance measuring device 100 according to the present embodiment.

投光部10は、出射光を出射する発光装置である。投光部10の光源11は、例えば出射光としてパルス光を出射可能なレーザ素子である。   The light projecting unit 10 is a light emitting device that emits outgoing light. The light source 11 of the light projecting unit 10 is, for example, a laser element that can emit pulsed light as emitted light.

出射光偏向素子12は、光反射面(図示せず)を含む出射光反射部材を有している。出射光偏向素子12は、当該光反射面にてパルス光を反射して、走査対象となる所定の領域(以下、走査対象領域とする)に向けて走査光を出射可能である。言い換えれば、出射光偏向素子12は、出射光の方向を可変に偏向させることができる。走査対象領域に存在する物体に反射された走査光は、測距装置100に向けて反射光として戻ってくる。尚、出射光偏向素子12は、MEMS(Micro Electro Mechanical System)ミラー装置、ポリゴンミラー等を用いることができる。   The outgoing light deflection element 12 has an outgoing light reflecting member including a light reflecting surface (not shown). The outgoing light deflection element 12 can reflect the pulsed light on the light reflecting surface and emit the scanning light toward a predetermined region to be scanned (hereinafter referred to as a scanning target region). In other words, the outgoing light deflection element 12 can deflect the direction of outgoing light variably. The scanning light reflected by the object existing in the scanning target area returns to the distance measuring device 100 as reflected light. The outgoing light deflection element 12 may be a MEMS (Micro Electro Mechanical System) mirror device, a polygon mirror, or the like.

受光部20は、反射光を受光して受光信号を生成する受光装置である。測距装置100は、互いに同一の構成を有する複数の受光部20を有する。受光部20の反射光偏向素子としての反射光偏向素子21は、光反射面(図示せず)を含む反射光反射部材を有しており、当該光反射面にて反射光を受光素子22に向けて反射可能である。言い換えれば、反射光偏向素子21は、反射光の方向を可変に偏向させることができる。尚、反射光偏向素子21は、MEMSミラー装置、ポリゴンミラー等を用いることもできる。   The light receiving unit 20 is a light receiving device that receives reflected light and generates a light reception signal. The distance measuring device 100 includes a plurality of light receiving units 20 having the same configuration. The reflected light deflecting element 21 as the reflected light deflecting element of the light receiving unit 20 has a reflected light reflecting member including a light reflecting surface (not shown), and the reflected light is transmitted to the light receiving element 22 by the light reflecting surface. It can be reflected toward. In other words, the reflected light deflecting element 21 can variably deflect the direction of the reflected light. The reflected light deflecting element 21 may be a MEMS mirror device, a polygon mirror, or the like.

受光素子22は、反射光を受光して、電気信号である受光信号を生成可能な光検出器である。受光素子22としては、例えば、アバランシェフォトダイオード(APD)等を採用することができる。   The light receiving element 22 is a photodetector that can receive reflected light and generate a received light signal that is an electrical signal. As the light receiving element 22, for example, an avalanche photodiode (APD) or the like can be employed.

制御部30は、光源11から出射するパルス光の制御及び出射光偏向素子12、反射光偏向素子21の光反射面の角度の制御を行う。   The control unit 30 controls the pulsed light emitted from the light source 11 and controls the angles of the light reflecting surfaces of the outgoing light deflection element 12 and the reflected light deflection element 21.

光源制御部31は、光源11の発光制御を行う。具体的には、例えば、光源11がパルス発光をするように発光タイミングを規定したテーブル(図示せず)を参照して、その発光を制御する。   The light source control unit 31 performs light emission control of the light source 11. Specifically, for example, the light emission is controlled with reference to a table (not shown) that defines the light emission timing so that the light source 11 emits pulsed light.

ミラー制御部32は、出射光偏向素子12及び反射光偏向素子21の光反射面の傾きの角度を制御する。具体的には、ミラー制御部32は、光源11によって出射されて光反射面(図示せず)によって反射されたパルス光によって、走査対象領域の走査がなされるように出射光偏向素子12を制御する。また、ミラー制御部32は、出射光偏向素子12の出射光反射部材の光反射面の方向と反射光偏向素子21の反射光反射部材の光反射面の方向が連動するように反射光偏向素子21を制御する。   The mirror control unit 32 controls the angle of inclination of the light reflecting surfaces of the outgoing light deflection element 12 and the reflected light deflection element 21. Specifically, the mirror control unit 32 controls the outgoing light deflection element 12 so that the scanning target region is scanned by the pulsed light emitted from the light source 11 and reflected by a light reflecting surface (not shown). To do. Further, the mirror control unit 32 reflects the reflected light deflecting element so that the direction of the light reflecting surface of the outgoing light reflecting member of the outgoing light deflecting element 12 and the direction of the light reflecting surface of the reflected light reflecting member of the reflected light deflecting element 21 are linked. 21 is controlled.

測距部としての距離測定部40は、測距装置100と走査対象領域内にある物体との距離を算出する。測距装置100と走査対象領域内にある物体との距離の算出は、受光部20によって生成された受光信号に基づいて行われ、例えばタイムオブフライト法が用いられる。   A distance measuring unit 40 as a distance measuring unit calculates the distance between the distance measuring device 100 and an object in the scanning target area. The distance between the distance measuring device 100 and the object in the scanning target area is calculated based on the light reception signal generated by the light receiving unit 20, and for example, a time-of-flight method is used.

具体的には、距離測定部40は、光源11によって出射された1のパルス光の出射時刻と、当該1のパルス光が走査対象領域内の物体によって反射されて反射光として複数の受光部20の各々で検出された受光時刻を取得する。そして、当該出射時刻と当該受光時刻の時刻差に基づいて、当該1のパルス光が光源11から出射されて受光部20に受光されるまでの光経路の長さを算出し、当該長さに基づいて測距装置100と物体との距離を算出する。   Specifically, the distance measuring unit 40 includes a plurality of light receiving units 20 as reflected light by the emission time of one pulsed light emitted from the light source 11 and the one pulsed light reflected by an object in the scanning target region. The light reception time detected in each of the above is acquired. Then, based on the time difference between the emission time and the light reception time, the length of the optical path from when the one pulsed light is emitted from the light source 11 and received by the light receiving unit 20 is calculated. Based on this, the distance between the distance measuring device 100 and the object is calculated.

図2は、測距装置100の投光系の動作を示す概念図である。図2において、光源11から出射された出射光ELは、出射光偏向素子12に入射される。出射光偏向素子12は、入射した出射光ELを走査対象領域Rに向けて反射させる。   FIG. 2 is a conceptual diagram showing the operation of the light projecting system of the distance measuring device 100. In FIG. 2, the emitted light EL emitted from the light source 11 enters the emitted light deflection element 12. The outgoing light deflection element 12 reflects the incident outgoing light EL toward the scanning target region R.

具体的には、出射光偏向素子12は、可動部MRを揺動して走査する態様で光ビームを走査対象領域R内に向けて反射させる。この結果、出射光偏向素子12によって反射された出射光ELの照射方向が変化する。具体的には、出射光ELは、出射光ELの反射方向にある仮想の面である仮想面VSにおいて、リサージュ軌跡が描かれるように出射光偏向素子12で反射される。測距装置100は、走査対象領域Rに存在する対象物OBの測距を行う。尚、仮想面VSは実在するものではない。また、仮想面VSで描かれる軌跡は、リサージュ軌跡でなくてもよい。仮想面VSで描かれる軌跡は、例えば、ラスタ走査による軌跡であってもよい。   Specifically, the outgoing light deflection element 12 reflects the light beam toward the scanning target region R in such a manner that the movable portion MR is swung and scanned. As a result, the irradiation direction of the outgoing light EL reflected by the outgoing light deflection element 12 changes. Specifically, the emitted light EL is reflected by the emitted light deflecting element 12 so that a Lissajous locus is drawn on a virtual surface VS that is a virtual surface in the reflection direction of the emitted light EL. The distance measuring device 100 measures the object OB existing in the scanning target region R. Note that the virtual surface VS does not exist. Further, the trajectory drawn on the virtual surface VS may not be the Lissajous trajectory. The trajectory drawn on the virtual plane VS may be a trajectory by raster scanning, for example.

図3は、測距装置100の受光系の動作を示す概念図である。図3において、走査対象領域Rに対象物OBが存在すると、対象物OBから反射された反射光RLが反射光偏向素子21に入射され、受光素子22に入射される。受光素子22は、入射された反射光RLに基づいて電気信号に変換し距離測定部40に供給する。距離測定部40は、光ビームを出射した時刻と光ビームを受光した時刻に基づいて、対象物OBまでの距離を計測する。   FIG. 3 is a conceptual diagram showing the operation of the light receiving system of the distance measuring device 100. In FIG. 3, when the object OB exists in the scanning target region R, the reflected light RL reflected from the object OB enters the reflected light deflection element 21 and enters the light receiving element 22. The light receiving element 22 converts the incident reflected light RL into an electrical signal and supplies it to the distance measuring unit 40. The distance measuring unit 40 measures the distance to the object OB based on the time when the light beam is emitted and the time when the light beam is received.

図4は、投光部10と受光部20の配置例を示している。図4に示すように、受光部20の各々は、投光部10の光軸FXに対する垂直方向において投光部10と離間して配置されている。具体的には、投光部10の光軸FXを中心軸として対称となる位置に一対の受光部20が配置されている。この一対の受光部20は、互いに異なる3カ所に設けられている。   FIG. 4 shows an arrangement example of the light projecting unit 10 and the light receiving unit 20. As shown in FIG. 4, each of the light receiving units 20 is disposed away from the light projecting unit 10 in the direction perpendicular to the optical axis FX of the light projecting unit 10. Specifically, the pair of light receiving units 20 are arranged at positions symmetrical with respect to the optical axis FX of the light projecting unit 10 as a central axis. The pair of light receiving units 20 are provided at three different locations.

受光部20の各々は、投光部10の光軸FX上の所定の点P1を中心とする円の円弧AR上に配されている。受光部20の各々は、投光部10の光軸FX上の所定の領域RA内の点P1と各々の受光部20とを結ぶ線L1〜L6の長さが等しくなる位置に配置されている。   Each of the light receiving units 20 is arranged on a circular arc AR of a circle centered on a predetermined point P1 on the optical axis FX of the light projecting unit 10. Each of the light receiving units 20 is disposed at a position where the lengths of the lines L1 to L6 connecting the point P1 in the predetermined area RA on the optical axis FX of the light projecting unit 10 and each light receiving unit 20 are equal. .

線L1と投光部10の光軸FX上の点P1における光軸FXとが成す角度を角度θ1とする。線L2と投光部10の光軸FX上の点P1における光軸FXとが成す角度を角度θ2とする。線L3と投光部10の光軸FX上の点P1における光軸FXとが成す角度を角度θ3とする
言い換えれば、角度θ1は、投光部10からの距離が最も遠い受光部20と点P1を結ぶ線L1が投光部10の光軸FXと成す角である。角度θ2は、線L1の受光部20よりも投光部10に近い受光部20と点P1を結ぶ線L2が投光部10の光軸FXと成す角である。角度θ3は、線L2の受光部20よりも投光部10に近い受光部20と点P1を結ぶ線L3が投光部10の光軸FXと成す角である。
An angle formed by the line L1 and the optical axis FX at the point P1 on the optical axis FX of the light projecting unit 10 is defined as an angle θ1. An angle formed by the line L2 and the optical axis FX at the point P1 on the optical axis FX of the light projecting unit 10 is defined as an angle θ2. The angle formed by the line L3 and the optical axis FX at the point P1 on the optical axis FX of the light projecting unit 10 is defined as an angle θ3. In other words, the angle θ1 is a point that is farthest from the light receiving unit 20 from the light projecting unit 10. A line L1 connecting P1 is an angle formed with the optical axis FX of the light projecting unit 10. The angle θ2 is an angle formed by the line L2 connecting the light receiving unit 20 closer to the light projecting unit 10 than the light receiving unit 20 of the line L1 and the point P1 with the optical axis FX of the light projecting unit 10. The angle θ3 is an angle formed by the line L3 connecting the light receiving unit 20 closer to the light projecting unit 10 than the light receiving unit 20 of the line L2 and the point P1 with the optical axis FX of the light projecting unit 10.

角度θ1は、角度θ2及び角度θ3よりも大きい。また、角度θ2は、角度θ3よりも大きい。従って、線L1,L2,L3が投光部10の光軸FXと成す角度θ1、θ2、θ3は、受光部20と投光部10との距離が遠くなるにつれて大きくなる。   The angle θ1 is larger than the angle θ2 and the angle θ3. Further, the angle θ2 is larger than the angle θ3. Accordingly, the angles θ1, θ2, and θ3 formed by the lines L1, L2, and L3 and the optical axis FX of the light projecting unit 10 increase as the distance between the light receiving unit 20 and the light projecting unit 10 increases.

投光部10の光軸FX上の所定の点P1から各受光部20の距離が一定となるように、受光部20が配置されていることで、所定の点P1から各受光部20までのタイムオブフライト、すなわち、投光部10から出射光ELが出射されてから各々の受光部20が反射光RLを受光するまでの時間を一定にすることができる。   Since the light receiving units 20 are arranged so that the distances from the predetermined points P1 on the optical axis FX of the light projecting unit 10 to the respective light receiving units 20 are constant, the distances from the predetermined points P1 to the respective light receiving units 20 are set. Time of flight, that is, the time from when the emitted light EL is emitted from the light projecting unit 10 to when each of the light receiving units 20 receives the reflected light RL can be made constant.

以上のように本実施例の測距装置によれば、複数の受光部20が、投光部10の光軸FXに対する垂直方向において投光部10と離間して配され、複数の受光部20の各々が、反射光偏向素子21及び反射光RLを受光する受光素子22を含む。すなわち、複数の受光部20で測距装置100の受光系を構成することにより、1つの受光部20で受光系を構成した場合よりも各受光部20が有する開口を小さくすることができる。したがって、個々の受光部20を小さく構成することが可能となり、測距装置100の小型化を図ることが可能となる。   As described above, according to the distance measuring apparatus of the present embodiment, the plurality of light receiving units 20 are arranged apart from the light projecting unit 10 in the direction perpendicular to the optical axis FX of the light projecting unit 10, and the plurality of light receiving units 20. Each includes a reflected light deflection element 21 and a light receiving element 22 that receives the reflected light RL. That is, by configuring the light receiving system of the distance measuring device 100 with the plurality of light receiving units 20, it is possible to make the opening of each light receiving unit 20 smaller than when the light receiving system is configured with one light receiving unit 20. Therefore, each light receiving unit 20 can be made small, and the distance measuring device 100 can be downsized.

また、測距装置100は、個々の受光部20によって生成された受光信号に基づいて測距を行うことにより、個々の受光部20の有する開口は小さくても、結果として、測距装置100の受光系が高い開口を有することができる。従って、測距装置100は、十分なSN比を有し且つ、装置の小型化を図ることが可能となる。   In addition, the distance measuring device 100 performs distance measurement based on the light reception signals generated by the individual light receiving units 20, and as a result, even if the apertures of the individual light receiving units 20 are small, as a result, The light receiving system can have a high aperture. Therefore, the distance measuring device 100 has a sufficient S / N ratio and can be downsized.

尚、本実施例においては、投光部10は、光源11と、出射光偏向素子12を有するように説明したが、投光部10は、受光素子22を有して構成してもよい。このように、投光部10を構成した場合は、出射光ELと反射光RLとを分割するビームスプリッタを備えるようにするとよい。   In the present embodiment, the light projecting unit 10 has been described as including the light source 11 and the outgoing light deflecting element 12, but the light projecting unit 10 may include the light receiving element 22. Thus, when the light projection part 10 is comprised, it is good to provide the beam splitter which divides | segments the emitted light EL and the reflected light RL.

実施例2に係る測距装置100について説明する。実施例2に係る測距装置100は、実施例1の測距装置100とは、受光部20の投光部10に対する配置位置が異なる。尚、実施例1と同一の構成については同一箇所に同一符号を付すことによって説明を省略し、以後同様とする。   A distance measuring apparatus 100 according to a second embodiment will be described. The distance measuring device 100 according to the second embodiment differs from the distance measuring device 100 according to the first embodiment in the arrangement position of the light receiving unit 20 with respect to the light projecting unit 10. In addition, about the structure same as Example 1, description is abbreviate | omitted by attaching | subjecting the same code | symbol to the same location, and it is the same hereafter.

図5は、本実施例に係る測距装置100の投光部10と受光部20の配置例を示している。図5に示すように、受光部20と点P1を結ぶ線L2,L5は、投光部10の光軸FX上の所定の領域RA内の点P1において交わる。また、受光部20と点P2を結ぶ線L3,L4は、投光部10の光軸FX上の所定の領域RAから投光部10に近づく方向に位置する領域RB内の光軸FX上の点P2において交わる。さらに、受光部20と点P3を結ぶ線L1,L6は、投光部10の光軸FX上の所定の領域RAよりも投光部10から離れた方向に位置する領域RC内の光軸FX上の点P3において交わる。   FIG. 5 shows an arrangement example of the light projecting unit 10 and the light receiving unit 20 of the distance measuring device 100 according to the present embodiment. As shown in FIG. 5, lines L2 and L5 connecting the light receiving unit 20 and the point P1 intersect at a point P1 in a predetermined region RA on the optical axis FX of the light projecting unit 10. Lines L3 and L4 connecting the light receiving unit 20 and the point P2 are on the optical axis FX in the region RB located in the direction approaching the light projecting unit 10 from the predetermined region RA on the optical axis FX of the light projecting unit 10. Intersect at point P2. Furthermore, lines L1 and L6 connecting the light receiving unit 20 and the point P3 are the optical axes FX in the region RC located in a direction farther from the light projecting unit 10 than the predetermined region RA on the optical axis FX of the light projecting unit 10. Intersect at the upper point P3.

すなわち、測距装置100は、線L2,L5が領域RA内の点P1で投光部10の光軸FXと交わる2つの受光部20を含む一の受光部群G1を有する。また、測距装置100は、線L3,L4が領域RB内の点P2で投光部10の光軸FXと交わる2つの受光部20を含む一の受光部群G2を有する。さらに、測距装置100は、線L1,L6が領域RC内の点P3で投光部10の光軸FXと交わる2つの受光部20を含む一の受光部群G3を有する。   That is, the distance measuring device 100 has one light receiving unit group G1 including two light receiving units 20 where the lines L2 and L5 intersect the optical axis FX of the light projecting unit 10 at a point P1 in the region RA. The distance measuring device 100 has one light receiving unit group G2 including two light receiving units 20 where the lines L3 and L4 intersect the optical axis FX of the light projecting unit 10 at a point P2 in the region RB. Further, the distance measuring device 100 has one light receiving unit group G3 including two light receiving units 20 whose lines L1 and L6 intersect the optical axis FX of the light projecting unit 10 at a point P3 in the region RC.

以上のように、投光部10の光軸FXと受光部20と所定の点とを結ぶ線が交わる領域RA,RB、RCは、それぞれ投光部10からの受光部20の距離に応じて異なっている。すなわち、測距装置100は、3つの受光部群G1、G2,G3を有している。   As described above, the regions RA, RB, and RC where the lines connecting the optical axis FX of the light projecting unit 10, the light receiving unit 20, and the predetermined point intersect each depend on the distance of the light receiving unit 20 from the light projecting unit 10. Is different. That is, the distance measuring device 100 includes three light receiving unit groups G1, G2, and G3.

このため、投光部10の光軸FX上の点P1付近に対象物OBが存在する場合、受光部群G1に含まれる2つの受光部20が生成した受光受信に基づいて測距を行うことができる。同様に、光軸FX上の点P2付近に対象物OBが存在する場合、受光部群G2に含まれる2つの受光部20が生成した受光信号に基づいて測距を行うことができる。また、光軸FX上の点P3付近に対象物OBが存在する場合、受光部群G3に含まれる2つの受光部20が生成した受光信号に基づいて測距を行うことができる。   For this reason, when the object OB is present near the point P1 on the optical axis FX of the light projecting unit 10, distance measurement is performed based on the received light reception generated by the two light receiving units 20 included in the light receiving unit group G1. Can do. Similarly, when the object OB exists near the point P2 on the optical axis FX, distance measurement can be performed based on the light reception signals generated by the two light receiving units 20 included in the light receiving unit group G2. Further, when the object OB is present near the point P3 on the optical axis FX, distance measurement can be performed based on the light reception signals generated by the two light receiving units 20 included in the light receiving unit group G3.

したがって、本実施例に係る測距装置100によれば、投光部10の光軸FX上の点P1付近、点P2付近、点P3付近のいずれかに対象物OBが存在する場合、受光部群G1、G2,G3で受光する反射光RLのタイムオブフライトを一定にすることができる。このため、受光部群G1、G2,G3のいずれかに含まれる受光部20において生成される受光信号のピーク位置を揃えることが可能となる。したがって、測距装置100の測距の精度を高めることが可能となる。   Therefore, according to the distance measuring device 100 according to the present embodiment, when the object OB exists in the vicinity of the point P1, the point P2, or the point P3 on the optical axis FX of the light projecting unit 10, the light receiving unit The time of flight of the reflected light RL received by the groups G1, G2, G3 can be made constant. For this reason, it is possible to align the peak positions of the received light signals generated in the light receiving units 20 included in any of the light receiving unit groups G1, G2, and G3. Therefore, it is possible to improve the distance measurement accuracy of the distance measuring apparatus 100.

実施例3に係る測距装置100について説明する。実施例3に係る測距装置100は、実施例1又は2の測距装置100とは、受光部20の投光部10に対する配置位置が異なる。   A distance measuring apparatus 100 according to a third embodiment will be described. The distance measuring device 100 according to the third embodiment differs from the distance measuring device 100 according to the first or second embodiment in the arrangement position of the light receiving unit 20 with respect to the light projecting unit 10.

図6は、本実施例に係る測距装置100の投光部10と受光部20の配置例を示している。図6において、複数の受光部20は、投光部10の光軸FXに対して垂直方向に沿って列状に配列されている。   FIG. 6 shows an arrangement example of the light projecting unit 10 and the light receiving unit 20 of the distance measuring device 100 according to the present embodiment. In FIG. 6, the plurality of light receiving units 20 are arranged in a row along a direction perpendicular to the optical axis FX of the light projecting unit 10.

受光部20の光軸RX2,RX5が、投光部10の光軸FX上の所定の領域RAにおいて交わるように、一対の受光部20が配置されている。受光部20の光軸RX3,RX4が、投光部10の光軸FX上の所定の領域RBにおいて交わるように、一対の受光部20が配置されている。受光部20の光軸RX1,RX6が、投光部10の光軸FX上の所定の領域RCにおいて交わるように、一対の受光部20が配置されている。   The pair of light receiving units 20 is arranged so that the optical axes RX2 and RX5 of the light receiving unit 20 intersect in a predetermined region RA on the optical axis FX of the light projecting unit 10. The pair of light receiving units 20 is arranged so that the optical axes RX3 and RX4 of the light receiving unit 20 intersect in a predetermined region RB on the optical axis FX of the light projecting unit 10. The pair of light receiving units 20 are arranged so that the optical axes RX1 and RX6 of the light receiving unit 20 intersect in a predetermined region RC on the optical axis FX of the light projecting unit 10.

複数の受光部20の各々は、投光部10の光軸FX上の所定の領域RAとは異なる領域RB又はRCにおいて、複数の受光部20の光軸RX3,RX4又はRX1、RX6が互いに交わるように配置されている。具体的には、投光部10の光軸FXに対する垂直方向において、投光部10から離れている受光部20の光軸ほど投光部10から遠い投光部10の光軸FX上で交わるように各々の受光部20が配置されている。   In each of the plurality of light receiving units 20, the optical axes RX3, RX4 or RX1, RX6 of the plurality of light receiving units 20 intersect with each other in a region RB or RC different from the predetermined region RA on the optical axis FX of the light projecting unit 10. Are arranged as follows. Specifically, in the direction perpendicular to the optical axis FX of the light projecting unit 10, the optical axis of the light receiving unit 20 farther from the light projecting unit 10 intersects on the optical axis FX of the light projecting unit 10 farther from the light projecting unit 10. In this way, the respective light receiving portions 20 are arranged.

すなわち、測距装置100は、各々の光軸RX2,RX5が領域RA内の点P1で投光部10の光軸FXと交わる2つの受光部20を含む一の受光部群G1を有する。また、測距装置100は、各々の光軸RX3,RX4が領域RB内の点P2で投光部10の光軸FXと交わる2つの受光部20を含む一の受光部群G2を有する。さらに、測距装置100は、各々の光軸RX1,RX6が領域RC内の点P3で投光部10の光軸FXと交わる2つの受光部20を含む一の受光部群G3を有する。このように、投光部10から離れている受光部20の光軸ほど投光部10から遠い投光部10の光軸FX上で交わっている。   That is, the distance measuring device 100 has one light receiving unit group G1 including two light receiving units 20 in which the respective optical axes RX2 and RX5 intersect the optical axis FX of the light projecting unit 10 at a point P1 in the region RA. In addition, the distance measuring device 100 has one light receiving unit group G2 including two light receiving units 20 in which the respective optical axes RX3 and RX4 intersect the optical axis FX of the light projecting unit 10 at a point P2 in the region RB. Further, the distance measuring device 100 has one light receiving unit group G3 including two light receiving units 20 in which each of the optical axes RX1 and RX6 intersects the optical axis FX of the light projecting unit 10 at a point P3 in the region RC. Thus, the optical axis of the light receiving unit 20 that is farther from the light projecting unit 10 intersects on the optical axis FX of the light projecting unit 10 that is farther from the light projecting unit 10.

また、各受光部20の受光面20aから垂直方向に伸びる光軸RX1〜RX6と投光部10の光軸FXとは、鋭角の角度を有するように配されている。なお、各受光部20の受光面20aから垂直方向に伸びる光軸RX1〜RX6と投光部10の光軸FXとが成す角度は、投光部10から離れるにつれて小さくなる。   Further, the optical axes RX1 to RX6 extending in the vertical direction from the light receiving surface 20a of each light receiving unit 20 and the optical axis FX of the light projecting unit 10 are arranged to have an acute angle. The angle formed by the optical axes RX1 to RX6 extending in the vertical direction from the light receiving surface 20a of each light receiving unit 20 and the optical axis FX of the light projecting unit 10 decreases as the distance from the light projecting unit 10 increases.

以上のように、複数の受光部20は、投光部10の光軸FXに対して垂直方向に沿って列状に配列されている。したがって、本実施例に係る測距装置100によれば、複数の受光部20を配置するスペースを小さくすることができ、装置の小型化を図ることが可能となる。   As described above, the plurality of light receiving units 20 are arranged in a line along the direction perpendicular to the optical axis FX of the light projecting unit 10. Therefore, according to the distance measuring device 100 according to the present embodiment, the space for arranging the plurality of light receiving units 20 can be reduced, and the size of the device can be reduced.

また、受光部20の受光面20aから垂直方向に伸びる光軸RX1〜RX6と投光部10の光軸FXとが成す角度は、投光部10から離れるにつれて小さくなる。すなわち、投光部10の光軸FX上の所定の位置で光軸RXが交わるように、各受光部群G1〜G3に対応する受光部20の受光面20aを傾けて配置することによって、反射光偏向素子21の光反射面の角度を大きくすることなく、受光する反射光RLの光量を増加させることができる。したがって、設計可能な反射光偏向素子21の光反射面の最大角度に制限されることなく、測距装置100が受光する反射光RLの強度を高めることが可能となりSN比を高めることができる。   Further, the angle formed by the optical axes RX1 to RX6 extending in the vertical direction from the light receiving surface 20a of the light receiving unit 20 and the optical axis FX of the light projecting unit 10 decreases as the distance from the light projecting unit 10 increases. That is, the light receiving surface 20a of the light receiving unit 20 corresponding to each light receiving unit group G1 to G3 is inclined and arranged so that the optical axis RX intersects at a predetermined position on the optical axis FX of the light projecting unit 10. The amount of reflected light RL to be received can be increased without increasing the angle of the light reflecting surface of the light deflection element 21. Therefore, the intensity of the reflected light RL received by the distance measuring device 100 can be increased without being limited to the maximum angle of the light reflecting surface of the reflective light deflecting element 21 that can be designed, and the SN ratio can be increased.

実施例4に係る測距装置100について説明する。実施例4に係る測距装置100は、実施例1乃至3の測距装置100とは、距離測定部40の処理が異なる。具体的には、距離測定部40は、受光部20の反射光RLの受光状況に応じて複数の受光部20を異なった態様で選択して測距をする。   A distance measuring apparatus 100 according to a fourth embodiment will be described. The distance measuring device 100 according to the fourth embodiment is different from the distance measuring device 100 according to the first to third embodiments in processing of the distance measuring unit 40. Specifically, the distance measuring unit 40 selects a plurality of light receiving units 20 in different modes according to the light receiving state of the reflected light RL of the light receiving unit 20 and performs distance measurement.

図7は、距離測定部40が受光部20を選択する処理フローを示している。   FIG. 7 shows a processing flow in which the distance measuring unit 40 selects the light receiving unit 20.

図7に示すように、距離測定部40は、受光部20から受光信号を受信すると、受光信号に含まれる背景光の光量が予め定めた基準値を超えるか否かを判断する(ステップS101)。   As shown in FIG. 7, when the distance measurement unit 40 receives the light reception signal from the light reception unit 20, the distance measurement unit 40 determines whether or not the amount of background light included in the light reception signal exceeds a predetermined reference value (step S101). .

距離測定部40は、受光信号に含まれる背景光が予め定めた基準値を超えないと判断した場合(ステップS101:N)、当該受光部20が生成した受光信号を測距に用いる受光信号として選択する(ステップS102)。   When the distance measurement unit 40 determines that the background light included in the light reception signal does not exceed a predetermined reference value (step S101: N), the light reception signal generated by the light reception unit 20 is used as a light reception signal for distance measurement. Select (step S102).

距離測定部40は、受光信号に含まれる背景光の光量が予め定めた基準値を超えると判断した場合(ステップS101:Y)、当該受光部20が生成した受光信号を測距に用いる受光信号から除外する。(ステップS103)。   When the distance measurement unit 40 determines that the amount of background light included in the light reception signal exceeds a predetermined reference value (step S101: Y), the light reception signal that uses the light reception signal generated by the light reception unit 20 for distance measurement. Exclude from (Step S103).

距離測定部40は、全ての受光部20で生成された受光信号の選択が完了したか判断する(ステップS104)。   The distance measuring unit 40 determines whether the selection of the received light signals generated by all the light receiving units 20 has been completed (step S104).

距離測定部40は、ステップS104の判断において、受光信号の選択が完了していないと判断した場合(ステップS104:N)、ステップS101の判断に戻る。   If the distance measuring unit 40 determines in step S104 that the selection of the received light signal has not been completed (step S104: N), it returns to the determination in step S101.

距離測定部40は、ステップS104の判断において、受光信号の選択が完了したと判断した場合(ステップS104:Y)、ステップS102において選択した受光信号を用いて測距する(ステップS105)。   If it is determined in step S104 that the selection of the received light signal has been completed (step S104: Y), the distance measuring unit 40 measures the distance using the received light signal selected in step S102 (step S105).

以上のように、距離測定部40は、各々の受光部20が生成した受光信号のノイズの量に応じて受光信号を選択して測距する。したがって、本実施例に係る測距装置100によれば、距離測定部40が測距する処理において受光信号のノイズ量を減少させる、すなわちSN比を高めることができる。この結果、測距装置100の測距精度を高めることが可能となる。   As described above, the distance measurement unit 40 selects and measures the light reception signal according to the amount of noise of the light reception signal generated by each light reception unit 20. Therefore, according to the distance measuring device 100 according to the present embodiment, it is possible to reduce the noise amount of the received light signal, that is, to increase the SN ratio, in the process of distance measurement by the distance measuring unit 40. As a result, the ranging accuracy of the ranging device 100 can be increased.

実施例5に係る測距装置100について説明する。実施例5に係る測距装置100は、実施例4の測距装置100とは、距離測定部40の処理が異なる。具体的には、距離測定部40は、出射光ELが出射されてから各々の受光部20が反射光RLを受光するまでの時間(以下、計測時間とする)に応じて複数の受光部20を異なった態様で用いて測距をする。   A distance measuring apparatus 100 according to a fifth embodiment will be described. The distance measuring device 100 according to the fifth embodiment is different from the distance measuring device 100 according to the fourth embodiment in processing of the distance measuring unit 40. Specifically, the distance measuring unit 40 includes a plurality of light receiving units 20 according to the time from when the emitted light EL is emitted until each light receiving unit 20 receives the reflected light RL (hereinafter referred to as measurement time). Ranging in different ways.

図8は、実施例5に係る測距装置100の距離測定部40が受光部20を選択する処理フローを示している。図8に示すように、距離測定部40は、受光部20から受光信号を受信すると、計測時間が予め定めた規定時間を超えるか否かを判断する(ステップS201)。   FIG. 8 shows a processing flow in which the distance measuring unit 40 of the distance measuring apparatus 100 according to the fifth embodiment selects the light receiving unit 20. As shown in FIG. 8, when the distance measuring unit 40 receives the light reception signal from the light receiving unit 20, the distance measuring unit 40 determines whether the measurement time exceeds a predetermined time (step S201).

距離測定部40は、計測時間が予め定めた規定時間を超えないと判断した場合(ステップS201:N)、当該受光部20が生成した受光信号を測距に用いる受光信号として選択する(ステップS202)。   When the distance measurement unit 40 determines that the measurement time does not exceed a predetermined time (step S201: N), the distance measurement unit 40 selects the light reception signal generated by the light reception unit 20 as a light reception signal used for distance measurement (step S202). ).

距離測定部40は、計測時間が予め定めた規定時間を超えると判断した場合(ステップS201:Y)、当該受光部20が生成した受光信号を測距に用いる受光信号から除外する(ステップS203)。   When the distance measurement unit 40 determines that the measurement time exceeds a predetermined time (step S201: Y), the distance measurement unit 40 excludes the light reception signal generated by the light reception unit 20 from the light reception signal used for distance measurement (step S203). .

距離測定部40は、全ての受光部20で生成された受光信号の選択が完了したか判断する(ステップS204)。   The distance measuring unit 40 determines whether selection of the received light signals generated by all the light receiving units 20 is completed (step S204).

距離測定部40は、ステップS204の判断において、受光信号の選択が完了していないと判断した場合(ステップS204:N)、ステップS201の判断に戻る。   When the distance measuring unit 40 determines that the selection of the received light signal is not completed in the determination in step S204 (step S204: N), the distance measurement unit 40 returns to the determination in step S201.

距離測定部40は、ステップS204の判断において、受光信号の選択が完了したと判断した場合(ステップS204:Y)、ステップS202において選択した受光信号を用いて測距する(ステップS205)。   If it is determined in step S204 that the selection of the received light signal has been completed (step S204: Y), the distance measuring unit 40 measures the distance using the received light signal selected in step S202 (step S205).

以上のように、距離測定部40は、計測時間に応じて、受光部20が生成した受光信号を選択して対象物OBまでの距離を測定する。すなわち、距離測定部40は、対象物OBまでの距離に応じて測距処理に使用する受光信号を選択する。   As described above, the distance measuring unit 40 selects the light reception signal generated by the light receiving unit 20 according to the measurement time, and measures the distance to the object OB. That is, the distance measurement unit 40 selects a light reception signal used for the distance measurement process according to the distance to the object OB.

したがって、本実施例に係る測距装置100によれば、タイムオブフライトが近い受光信号を用いて測距することができる。この結果、測距装置100の測距の精度を高めることが可能となる。   Therefore, according to the distance measuring apparatus 100 according to the present embodiment, it is possible to perform distance measurement using a light reception signal having a close time of flight. As a result, it is possible to improve the distance measurement accuracy of the distance measuring apparatus 100.

実施例6に係る測距装置100について説明する。実施例6に係る測距装置100は、実施例5の測距装置100とは、距離測定部40の処理が異なる。具体的には、距離測定部40は、計測時間に応じて、複数の受光部20の各々で計測された受光信号に対して重み付けを行い、対象物OBまでの距離を測定する。   A distance measuring apparatus 100 according to Example 6 will be described. The distance measuring device 100 according to the sixth embodiment is different from the distance measuring device 100 according to the fifth embodiment in processing of the distance measuring unit 40. Specifically, the distance measuring unit 40 weights the light reception signals measured by each of the plurality of light receiving units 20 according to the measurement time, and measures the distance to the object OB.

図9は、実施例6に係る測距装置100の距離測定部40が受光部20を選択する処理フローを示している。図9に示すように、距離測定部40は、受光部20から受光信号を受信すると、計測時間が予め定めた規定時間を超えるか否かを判断する(ステップS301)。   FIG. 9 shows a processing flow in which the distance measuring unit 40 of the distance measuring apparatus 100 according to the sixth embodiment selects the light receiving unit 20. As shown in FIG. 9, when the distance measuring unit 40 receives a light reception signal from the light receiving unit 20, the distance measuring unit 40 determines whether the measurement time exceeds a predetermined time (step S301).

距離測定部40は、計測時間が予め定めた規定時間を超えないと判断した場合(ステップS301:N)、当該受光部20が生成した受光信号に対して重み付けを行う(ステップS302)。   When the distance measuring unit 40 determines that the measurement time does not exceed a predetermined time (step S301: N), the distance measuring unit 40 weights the light reception signal generated by the light receiving unit 20 (step S302).

距離測定部40は、全ての受光部20で生成された受光信号に対して重み付けが完了したか判断する(ステップS303)。   The distance measuring unit 40 determines whether weighting is completed for the light reception signals generated by all the light receiving units 20 (step S303).

距離測定部40は、ステップS303の判断において、受光信号に対して重み付けが完了していないと判断した場合(ステップS303:N)、ステップS301の判断に戻る。   If the distance measuring unit 40 determines in step S303 that weighting of the received light signal has not been completed (step S303: N), it returns to the determination in step S301.

距離測定部40は、ステップS303の判断において、受光信号に対する重み付けが完了したと判断した場合(ステップS303:Y)、重み付けされた複数の受光信号を用いて測距する(ステップS304)。ここで重み付けとは、計測時間が規定時間よりも短い受光信号に対しては測距の処理に当該受光信号を使用する割合を減らす、又は、計測時間が規定時間よりも短い受光信号に対しては当該規定時間を超える計測時間に近付けるように計測時間が短い受光信号に補正を加える等である。   When the distance measuring unit 40 determines in step S303 that weighting of the light reception signal is completed (step S303: Y), the distance measurement unit 40 measures the distance using the plurality of weighted light reception signals (step S304). Here, the weighting means that for a light reception signal whose measurement time is shorter than the specified time, the ratio of using the light reception signal for the distance measurement process is reduced, or for a light reception signal whose measurement time is shorter than the specified time. For example, correction is made to the received light signal whose measurement time is short so as to approach the measurement time exceeding the specified time.

ステップS301の判断において、距離測定部40は、計測時間が予め定めた規定時間を超えると判断した場合(ステップS301:N)、ステップS303の処理を行う。   In the determination in step S301, when the distance measurement unit 40 determines that the measurement time exceeds a predetermined time (step S301: N), the distance measurement unit 40 performs the process in step S303.

以上のように、測距装置100は、計測時間が規定時間よりも短い受光信号に対して重み付けを行い、測距する。したがって、本実施例に係る測距装置100によれば、データの信頼性を考慮して測距することができるため、精度が高い測距を行うことができる。   As described above, the distance measuring device 100 performs weighting by weighting the received light signal whose measurement time is shorter than the specified time. Therefore, according to the distance measuring apparatus 100 according to the present embodiment, it is possible to perform distance measurement in consideration of data reliability, and therefore it is possible to perform distance measurement with high accuracy.

実施例7に係る測距装置100について説明する。実施例7に係る測距装置100は、実施例6の測距装置100とは、距離測定部40の処理が異なる。具体的には、距離測定部40は、計測時間が長くなるにつれて選択する受光部20を多くする。尚、本実施例においては、測距装置100は、6つの受光部20を有しているものとして説明する。   A distance measuring apparatus 100 according to Example 7 will be described. The distance measuring device 100 according to the seventh embodiment is different from the distance measuring device 100 according to the sixth embodiment in processing of the distance measuring unit 40. Specifically, the distance measuring unit 40 increases the number of light receiving units 20 to be selected as the measurement time increases. In the present embodiment, the distance measuring device 100 will be described as having six light receiving units 20.

図10は、実施例7に係る測距装置100の距離測定部40が受光部20を選択する処理フローを示している。図10に示すように、距離測定部40は、受光部20から受光信号を受信すると、計測時間が、予め定めた第1の規定時間を超えるか否かを判断する(ステップS401)。   FIG. 10 illustrates a processing flow in which the distance measuring unit 40 of the distance measuring apparatus 100 according to the seventh embodiment selects the light receiving unit 20. As illustrated in FIG. 10, when the distance measurement unit 40 receives a light reception signal from the light reception unit 20, the distance measurement unit 40 determines whether or not the measurement time exceeds a predetermined first specified time (step S401).

距離測定部40は、計測時間が予め定めた第1の規定時間を超えると判断した場合(ステップS401:Y)、6つの受光部20が生成した受光信号のうち全ての受光信号を選択する(ステップS402)。距離測定部40は、ステップS402において選択した受光信号を用いて測距する(ステップS403)。   When the distance measurement unit 40 determines that the measurement time exceeds a predetermined first predetermined time (step S401: Y), the distance measurement unit 40 selects all the light reception signals among the light reception signals generated by the six light reception units 20 ( Step S402). The distance measuring unit 40 measures the distance using the light reception signal selected in step S402 (step S403).

距離測定部40は、計測時間が予め定めた第1の規定時間を超えないと判断した場合(ステップS401:N)、計測時間が第1の規定時間よりも短い第2の規定時間を超えるか否かを判断する(ステップS404)。   When the distance measurement unit 40 determines that the measurement time does not exceed the first predetermined time (step S401: N), does the distance measurement unit 40 exceed the second predetermined time that is shorter than the first predetermined time? It is determined whether or not (step S404).

距離測定部40は、計測時間が予め定めた第2の規定時間を超えると判断した場合(ステップS404:Y)、6つの受光部20が生成した受光信号のうち相対的に計測時間が短い3つの受光信号を選択する(ステップS405)。距離測定部40は、ステップS405において選択した受光信号を用いて測距する(ステップS403)。   When the distance measurement unit 40 determines that the measurement time exceeds a predetermined second predetermined time (step S404: Y), the measurement time is relatively short among the light reception signals generated by the six light reception units 20. Two light reception signals are selected (step S405). The distance measuring unit 40 measures the distance using the received light signal selected in step S405 (step S403).

距離測定部40は、計測時間が、予め定めた第2の規定時間を超えないと判断した場合(ステップS404:N)、計測時間が第2の規定時間よりも短い第3の規定時間を超えるか否かを判断する(ステップS406)。   When the distance measuring unit 40 determines that the measurement time does not exceed the predetermined second specified time (step S404: N), the measurement time exceeds the third specified time that is shorter than the second specified time. Whether or not (step S406).

距離測定部40は、計測時間が予め定めた第3の規定時間を超えると判断した場合(ステップS405:Y)、6つの受光部20が生成した受光信号のうち相対的に計測時間が短い2つの受光信号を選択する(ステップS407)。距離測定部40は、ステップS407において選択した受光信号を用いて測距する(ステップS403)。   When the distance measurement unit 40 determines that the measurement time exceeds a predetermined third predetermined time (step S405: Y), the measurement time 2 is relatively short among the light reception signals generated by the six light reception units 20. Two light reception signals are selected (step S407). The distance measuring unit 40 measures the distance using the received light signal selected in step S407 (step S403).

距離測定部40は、計測時間が予め定めた第3の規定時間を超えないと判断した場合(ステップS405:N)、6つの受光部20が生成した受光信号のうち相対的に計測時間が短い1つの受光信号を選択する(ステップS408)。距離測定部40は、ステップS408において選択した受光信号を用いて測距する(ステップS403)。   When the distance measurement unit 40 determines that the measurement time does not exceed the predetermined third predetermined time (step S405: N), the measurement time is relatively short among the light reception signals generated by the six light reception units 20. One light reception signal is selected (step S408). The distance measuring unit 40 measures the distance using the received light signal selected in step S408 (step S403).

以上のように、距離測定部40は、計測時間に応じて測距に用いる受光信号を選択する。すなわち、計測時間が長い場合、測距装置100から対象物OBまでの距離は遠いため各々の受光部20の計測時間の差は短くなる。したがって、測距装置100が有している全ての受光部20の受光信号を用いて測距することにより、高い信号強度で測距することが可能となる。   As described above, the distance measuring unit 40 selects a light reception signal used for distance measurement according to the measurement time. That is, when the measurement time is long, since the distance from the distance measuring device 100 to the object OB is long, the difference in the measurement time of each light receiving unit 20 becomes short. Therefore, distance measurement can be performed with high signal intensity by performing distance measurement using the light reception signals of all the light receiving units 20 included in the distance measuring device 100.

また、第1の規定時間よりも短く第2の規定時間よりも長い計測時間においては、各々の受光部20の計測時間の差が測距に影響を与える。そこで、距離測定部40は、計測時間が相対的に短い受光信号を用いて測距を行うことで、測距の精度を高めることができる。   Further, in the measurement time shorter than the first specified time and longer than the second specified time, the difference in the measurement time of each light receiving unit 20 affects the distance measurement. Therefore, the distance measurement unit 40 can improve the accuracy of distance measurement by performing distance measurement using a light reception signal having a relatively short measurement time.

このように、距離測定部40は、計測時間に応じて測距に用いる受光部20を選択することで、誤差の少ない受光信号によって測距を行う。したがって、測距装置100は、精度が高い測距を行うことができる。なお、本発明では、受光信号の選択において上記の実施例には限定されない。例えば、計測時間が第1の規定時間を超える場合に選択する受光信号、計測時間が第2の規定時間を超える場合に選択する受光信号、計測時間が第3の規定時間を超える場合に選択する受光信号及び計測時間が第3の規定時間を超えない場合に選択する受光信号の各々の数は、順に小さくなっていることを条件に、任意に決めてもよい。   As described above, the distance measurement unit 40 selects the light receiving unit 20 used for distance measurement according to the measurement time, and performs distance measurement using a light reception signal with less error. Therefore, the distance measuring device 100 can perform distance measurement with high accuracy. In the present invention, the selection of the received light signal is not limited to the above embodiment. For example, a light reception signal that is selected when the measurement time exceeds the first specified time, a light reception signal that is selected when the measurement time exceeds the second specified time, or a light reception signal that is selected when the measurement time exceeds the third specified time. The number of received light signals and the number of received light signals that are selected when the measurement time does not exceed the third specified time may be arbitrarily determined on the condition that the number of received light signals decreases in order.

実施例8に係る測距装置100について説明する。実施例8に係る測距装置100は、実施例1乃至7の測距装置100とは、距離測定部40が行う測距処理が異なる。   A distance measuring apparatus 100 according to an eighth embodiment will be described. The distance measuring device 100 according to the eighth embodiment is different from the distance measuring device 100 according to the first to seventh embodiments in the distance measuring process performed by the distance measuring unit 40.

距離測定部40は、出射光ELの出射角度に応じて複数の受光部20が生成した受光信号の各々を異なる態様で用いて測距する。   The distance measuring unit 40 measures the distance by using each of the received light signals generated by the plurality of light receiving units 20 according to the emission angle of the emitted light EL in a different manner.

図11は、本実施例に係る測距装置100の投光部10と受光部20の配置例を示している。図11に示すように、投光部10は、中心軸CX上に配置されている。受光部20A〜20Dは、中心軸CXの垂直方向において列状に配置されている。具体的には、中心軸CXに対して対称となる位置に一対の受光部20A、20Dが配置されている。また、中心軸CXに対して対称となる位置であって一対の受光部20A、20Dの間に一対の受光部20B,20Cが配置されている。   FIG. 11 shows an arrangement example of the light projecting unit 10 and the light receiving unit 20 of the distance measuring device 100 according to the present embodiment. As shown in FIG. 11, the light projecting unit 10 is disposed on the central axis CX. The light receiving units 20A to 20D are arranged in a row in the direction perpendicular to the central axis CX. Specifically, a pair of light receiving portions 20A and 20D are arranged at positions symmetrical with respect to the central axis CX. In addition, a pair of light receiving portions 20B and 20C is disposed between the pair of light receiving portions 20A and 20D at positions symmetrical with respect to the central axis CX.

投光部10は、中心軸CXに対する角度θEにおいて、出射光ELを出射する。対象物OBで反射された出射光ELは、反射光RLとして各受光部20A〜20Dに入射する。   The light projecting unit 10 emits outgoing light EL at an angle θE with respect to the central axis CX. The outgoing light EL reflected by the object OB enters each of the light receiving units 20A to 20D as reflected light RL.

ここで、測距装置100から対象物OBまでの距離を距離Zとする。図中において、各受光部20A〜20Dから対象物OBまでの距離はそれぞれ異なる。具体的には、受光部20A〜20Dから対象物OBまでの距離は、受光部20A、受光部20B、受光部20C、受光部20Dの順に長くなっている。   Here, the distance from the distance measuring device 100 to the object OB is a distance Z. In the figure, the distances from the light receiving units 20A to 20D to the object OB are different. Specifically, the distance from the light receiving units 20A to 20D to the object OB becomes longer in the order of the light receiving unit 20A, the light receiving unit 20B, the light receiving unit 20C, and the light receiving unit 20D.

図12は、受光部20Aが生成した受光信号A、受光部20Bが生成した受光信号B、受光部20Cが生成した受光信号C、及び受光部20Dが生成した受光信号Dを示している。図12において、受光信号A〜DのピークPKの位置は、受光部20A〜20Dから対象物OBまでの距離に応じて異なる。また、各受光信号A〜DのピークPKの強度は弱く、ノイズNよりもわずかに強度が高い。   FIG. 12 shows a light reception signal A generated by the light receiving unit 20A, a light reception signal B generated by the light receiving unit 20B, a light reception signal C generated by the light receiving unit 20C, and a light reception signal D generated by the light receiving unit 20D. In FIG. 12, the position of the peak PK of the light reception signals A to D varies depending on the distance from the light receiving units 20A to 20D to the object OB. Further, the intensity of the peak PK of each of the received light signals A to D is weak and slightly higher than the noise N.

図13は、図12の受光信号A〜Dを加算して生成した合成信号を示している。図13に示すように、受光信号A〜Dを全て加算して合成すると、各受光信号A〜DのピークPKがノイズNに埋もれてしまいピークPKの位置を判別するのが困難である。また、各々の受光信号A〜DのピークPKの位置がずれており、正確に対象物OBの測距をすることが困難である。   FIG. 13 shows a combined signal generated by adding the received light signals A to D of FIG. As shown in FIG. 13, when all the light reception signals A to D are added and synthesized, the peak PK of each light reception signal A to D is buried in noise N, and it is difficult to determine the position of the peak PK. Further, the positions of the peaks PK of the respective received light signals A to D are shifted, and it is difficult to accurately measure the object OB.

距離測定部40は、出射光ELの出射角度に応じて複数の受光部20A〜20Dが生成した受光信号A〜Dの各々を補正して測距する。具体的には、距離測定部40は、出射光偏向素子12の出射角度θEに対する測定装置100と対象物OBまでの距離Zと、各受光部20に対する基準時刻からの計測時間の補正量を示した値を記憶したテーブルを有している。   The distance measurement unit 40 corrects each of the light reception signals A to D generated by the plurality of light reception units 20A to 20D according to the emission angle of the emission light EL, and measures the distance. Specifically, the distance measuring unit 40 indicates the distance Z between the measuring device 100 and the object OB with respect to the emission angle θE of the outgoing light deflection element 12, and the correction amount of the measurement time from the reference time for each light receiving unit 20. It has a table that stores the values.

例えば、表1に示すように、出射角度θE1において、測距装置100から対象物OBまでの距離がZ1であるとき、一の受光部20に対する基準時刻からの補正量はΔTA1秒である。同条件での他の受光部20に対する基準時刻からの補正量はΔTB1秒である。このように、距離測定部40は、各受光部20の設置位置に応じた基準時刻からの補正量を示す値を記憶したテーブルを有している。   For example, as shown in Table 1, when the distance from the distance measuring device 100 to the object OB is Z1 at the emission angle θE1, the correction amount from the reference time for one light receiving unit 20 is ΔTA1 seconds. The correction amount from the reference time for the other light receiving units 20 under the same conditions is ΔTB1 second. As described above, the distance measuring unit 40 has a table that stores a value indicating the correction amount from the reference time according to the installation position of each light receiving unit 20.

図14は、受光部20A〜20Dが生成した受光信号A〜Dの補正例を示している。図14において、距離測定部40は、表1のテーブルを参照して各受光信号A〜Dに対する基準時刻からの補正量に応じて受光信号A〜Dを重ね合わせる。これにより、距離測定部40は、重ね合わされた受光信号に含まれる対象物OBからの反射光RLの信号強度が最大となった信号に基づいて、測距を行う。   FIG. 14 shows a correction example of the received light signals A to D generated by the light receiving units 20A to 20D. In FIG. 14, the distance measuring unit 40 superimposes the light reception signals A to D according to the correction amount from the reference time for each light reception signal A to D with reference to the table of Table 1. Thereby, the distance measurement unit 40 performs distance measurement based on the signal having the maximum signal intensity of the reflected light RL from the object OB included in the superimposed light reception signal.

具体的には、距離測定部40は、受光信号Aについて基準時刻からの補正量ΔTA1を進めた位置に補正する。距離測定部40は、受光信号Bについて基準時刻からの補正量ΔTB1を進めた位置に補正する。距離測定部40は、受光信号Cについて基準時刻からの補正量ΔTC1を進めた位置に補正する。距離測定部40は、受光信号Dについて基準時刻からの補正量ΔTD1を進めた位置に補正する。   Specifically, the distance measuring unit 40 corrects the received light signal A to a position where the correction amount ΔTA1 from the reference time is advanced. The distance measuring unit 40 corrects the received light signal B to a position where the correction amount ΔTB1 from the reference time is advanced. The distance measuring unit 40 corrects the received light signal C to a position where the correction amount ΔTC1 from the reference time is advanced. The distance measuring unit 40 corrects the received light signal D to a position where the correction amount ΔTD1 from the reference time is advanced.

図15は、図14の受光信号A〜Dを加算して生成した合成信号を示している。図15に示すように、補正後の受光信号A〜Dを全て加算して合成されると、合成信号のピークPKの強度が所定の位置でノイズよりも大きくなる。したがって、ピークPKを判別することが容易となる。また、各々の受光信号A〜DのピークPKの位置が一致することにより、正確に対象物OBの測距をすることが可能である。   FIG. 15 shows a combined signal generated by adding the received light signals A to D of FIG. As shown in FIG. 15, when all the corrected received light signals A to D are added and synthesized, the intensity of the peak PK of the synthesized signal becomes larger than the noise at a predetermined position. Therefore, it becomes easy to determine the peak PK. Further, since the positions of the peaks PK of the respective light receiving signals A to D coincide with each other, it is possible to accurately measure the object OB.

このように、距離測定部40は、受光信号を揃えることにより、対象物OBからの反射光RLの信号強度を大きくすることで、反射光RLに対するノイズ量の軽減を図ることが可能となる。したがって、本実施例の測距装置によれば、高い精度で測距することが可能となる。なお、表1のテーブルは上記に限定されず、基準となる受光部20が計測した基準時刻から各受光部20にそれぞれ対応する当該基準時刻からの時間の補正量を示した値を記憶させてもよい。   As described above, the distance measurement unit 40 can reduce the amount of noise with respect to the reflected light RL by increasing the signal intensity of the reflected light RL from the object OB by aligning the received light signals. Therefore, according to the distance measuring apparatus of the present embodiment, distance measurement can be performed with high accuracy. The table in Table 1 is not limited to the above, and a value indicating a correction amount of time from the reference time corresponding to each light receiving unit 20 from the reference time measured by the light receiving unit 20 serving as a reference is stored. Also good.

図16は、受光信号A〜Dの他の補正例を示している。図16において、距離測定部40は、受光信号Aを基準時刻とし、受光信号B〜Dに対して基準時刻からの時間の補正を行う。具体的には、距離測定部40は、受光信号Bについて基準時刻からの補正量ΔTB2を進めた位置に補正する。距離測定部40は、受光信号Cについては、基準時刻からの補正量ΔTC2を進めた位置に補正する。距離測定部40は、受光信号Dについて基準時刻からの補正量ΔTD2を進めた位置に補正する。   FIG. 16 shows another correction example of the light reception signals A to D. In FIG. 16, the distance measuring unit 40 uses the light reception signal A as a reference time, and corrects the time from the reference time for the light reception signals B to D. Specifically, the distance measuring unit 40 corrects the light reception signal B to a position where the correction amount ΔTB2 from the reference time is advanced. The distance measuring unit 40 corrects the received light signal C to a position where the correction amount ΔTC2 from the reference time is advanced. The distance measuring unit 40 corrects the received light signal D to a position where the correction amount ΔTD2 from the reference time is advanced.

このように受光信号A〜Dの補正を行っても、受光信号A〜Dのピークの位置を揃えることが可能となり、測距装置100は、高い精度で測距を行うことができる。   Even if the light reception signals A to D are corrected in this way, the peak positions of the light reception signals A to D can be made uniform, and the distance measuring device 100 can perform distance measurement with high accuracy.

100 測距装置
10 投光部
11 光源
12 出射光偏向素子
20 受光部
21 反射光偏向素子
22 受光素子
40 距離測定部
FX 投光部の光軸
RX1〜RX6 受光部の光軸
DESCRIPTION OF SYMBOLS 100 Distance measuring device 10 Light projection part 11 Light source 12 Output light deflection element 20 Light reception part 21 Reflection light deflection element 22 Light reception element 40 Distance measurement part FX Optical axis RX1-RX6 of a light projection part Optical axis of a light reception part

Claims (9)

出射光を出射する光源及び前記出射光の方向を可変に偏向する出射光反射部材を有する出射光偏向素子を含む投光部と、
各々が前記投光部の光軸に対する垂直方向において前記投光部と離間して配され、かつ前記出射光が対象物で反射した反射光の方向を可変に偏向する反射光反射部材を有する反射光偏向素子及び前記反射光偏向素子によって偏向された前記反射光を受光する受光素子を各々が含む複数の受光部と、
を有することを特徴とする測距装置。
A light projecting unit including a light source that emits outgoing light and an outgoing light deflecting element having an outgoing light reflecting member that variably deflects the direction of the outgoing light;
Reflecting members each having a reflected light reflecting member that is spaced apart from the light projecting unit in a direction perpendicular to the optical axis of the light projecting unit and that variably deflects the direction of the reflected light reflected by the object from the emitted light A plurality of light receiving portions each including a light deflecting element and a light receiving element that receives the reflected light deflected by the reflected light deflecting element;
A distance measuring device comprising:
前記投光部の光軸上の所定の領域で前記複数の受光部の光軸の各々が交わるように前記受光部の各々が配置されていることを特徴とする請求項1に記載の測距装置。   2. The distance measuring device according to claim 1, wherein each of the light receiving units is arranged so that each of the optical axes of the plurality of light receiving units intersects in a predetermined region on the optical axis of the light projecting unit. apparatus. 前記受光部の光軸と前記投光部の光軸とが成す角度が、前記受光部の前記投光部との距離が遠くなるにつれて大きくなるように前記受光部の各々が配置されていることを特徴とする請求項2に記載の測距装置。   Each of the light receiving units is arranged such that an angle formed by the optical axis of the light receiving unit and the optical axis of the light projecting unit increases as the distance from the light projecting unit of the light receiving unit increases. The distance measuring device according to claim 2. 前記投光部の光軸上の所定の領域とは異なる領域で前記複数の受光部の光軸の各々が交わるように前記受光部の各々が配置されていることを特徴とする請求項2又は3に記載の測距装置。   The each of the light receiving units is arranged such that each of the optical axes of the plurality of light receiving units intersects with a region different from a predetermined region on the optical axis of the light projecting unit. 3. The distance measuring device according to 3. 前記投光部の光軸と前記受光部の光軸とが交わる領域は、前記投光部からの前記受光部の距離に応じて異なることを特徴とする請求項2乃至4のいずれか一項に記載の測距装置。   5. The region where the optical axis of the light projecting unit and the optical axis of the light receiving unit intersect depends on a distance of the light receiving unit from the light projecting unit. 6. The distance measuring device described in 1. 前記投光部から離れている前記受光部の光軸ほど前記投光部から遠い前記投光部の光軸上で交わることを特徴とする請求項2乃至5のいずれか一項に記載の測距装置。   6. The measurement according to claim 2, wherein an optical axis of the light receiving unit farther from the light projecting unit intersects on an optical axis of the light projecting unit farther from the light projecting unit. Distance device. 各々の光軸が一の領域で前記投光部の光軸と交わる前記複数の受光部を含む一の受光部群と、
各々の光軸が他の領域で前記投光部の光軸と交わる前記複数の受光部を含む他の受光部群と、を有することを特徴とする請求項2乃至6のいずれか一項に記載の測距装置。
One light receiving unit group including the plurality of light receiving units, each optical axis intersecting the optical axis of the light projecting unit in one region;
The other light receiving unit group including the plurality of light receiving units, each of which has an optical axis intersecting with the optical axis of the light projecting unit in another region, according to any one of claims 2 to 6. The described distance measuring device.
前記投光部の光軸上の所定の点を中心とする円の円弧上に前記受光部の各々が配されていることを特徴とする請求項1乃至7のいずれか一項に記載の測距装置。   8. The measurement according to claim 1, wherein each of the light receiving parts is arranged on a circular arc centered on a predetermined point on the optical axis of the light projecting part. 9. Distance device. 前記受光部の各々の前記反射光反射部材は、前記投光部の前記出射光反射部材と連動して揺動することを特徴とする請求項1乃至8のいずれか一項に記載の測距装置。   9. The distance measuring device according to claim 1, wherein the reflected light reflecting member of each of the light receiving portions swings in conjunction with the outgoing light reflecting member of the light projecting portion. apparatus.
JP2018045650A 2018-03-13 2018-03-13 rangefinder Active JP7148249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018045650A JP7148249B2 (en) 2018-03-13 2018-03-13 rangefinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018045650A JP7148249B2 (en) 2018-03-13 2018-03-13 rangefinder

Publications (2)

Publication Number Publication Date
JP2019158598A true JP2019158598A (en) 2019-09-19
JP7148249B2 JP7148249B2 (en) 2022-10-05

Family

ID=67993960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018045650A Active JP7148249B2 (en) 2018-03-13 2018-03-13 rangefinder

Country Status (1)

Country Link
JP (1) JP7148249B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06109847A (en) * 1992-09-30 1994-04-22 Mazda Motor Corp Optical distance-measuring apparatus
JP2012226020A (en) * 2011-04-15 2012-11-15 Toyota Central R&D Labs Inc Distance measuring instrument
JP2014115182A (en) * 2012-12-10 2014-06-26 Konica Minolta Inc Laser radar
JP2014219250A (en) * 2013-05-07 2014-11-20 富士通株式会社 Range finder and program
US20160323562A1 (en) * 2015-04-29 2016-11-03 Apple Inc. Time-of-flight depth mapping with flexible scan pattern
JP2018023149A (en) * 2017-09-21 2018-02-08 日本電気株式会社 Mobile station
US20180059408A1 (en) * 2016-09-01 2018-03-01 Funai Electric Co., Ltd. Scanner mirror
US20180231640A1 (en) * 2017-02-14 2018-08-16 Baidu Usa Llc Lidar system with synchronized mems mirrors

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06109847A (en) * 1992-09-30 1994-04-22 Mazda Motor Corp Optical distance-measuring apparatus
JP2012226020A (en) * 2011-04-15 2012-11-15 Toyota Central R&D Labs Inc Distance measuring instrument
JP2014115182A (en) * 2012-12-10 2014-06-26 Konica Minolta Inc Laser radar
JP2014219250A (en) * 2013-05-07 2014-11-20 富士通株式会社 Range finder and program
US20160323562A1 (en) * 2015-04-29 2016-11-03 Apple Inc. Time-of-flight depth mapping with flexible scan pattern
US20180059408A1 (en) * 2016-09-01 2018-03-01 Funai Electric Co., Ltd. Scanner mirror
JP2018036543A (en) * 2016-09-01 2018-03-08 船井電機株式会社 Scanner mirror
US20180231640A1 (en) * 2017-02-14 2018-08-16 Baidu Usa Llc Lidar system with synchronized mems mirrors
JP2018132524A (en) * 2017-02-14 2018-08-23 バイドゥ・ユーエスエイ・リミテッド・ライアビリティ・カンパニーBaidu USA LLC Lidar device and method for operating lidar device
JP2018023149A (en) * 2017-09-21 2018-02-08 日本電気株式会社 Mobile station

Also Published As

Publication number Publication date
JP7148249B2 (en) 2022-10-05

Similar Documents

Publication Publication Date Title
CN109917348B (en) Laser radar system
CN112567266B (en) Detection system for vehicle
CN109001713A (en) Range accuracy calibration system
EP2381272B1 (en) Laser scanner
CN107703510B (en) Laser radar and laser radar control method
US11662463B2 (en) Lidar apparatus and method
JP2017129573A (en) Photoelectronic sensor and object detection method
US10094738B2 (en) Method for determining angle errors and light-emitting device
CN110333516B (en) Multi-line laser radar
CN113433564A (en) Laser radar and method for measuring distance by using laser radar
CN110873867A (en) Laser radar system based on MEMS scanning mirror
JP2021535996A (en) Coaxial settings for photodetection and ranging, ie LIDAR measurements
CN113093203A (en) Scanning laser radar of linear array detector
JP2014098603A (en) Three-dimensional model generation device
JP7473067B2 (en) Optical scanning device, object detection device and sensing device
JP2021170033A (en) Scanner
JP7148249B2 (en) rangefinder
JP2019158599A (en) Distance measurement apparatus
JP2022162080A (en) Distance measuring device
JP2017125771A (en) Optical scanner
CN115308758A (en) Laser radar optical system for large-range measurement
CN113030912B (en) Laser radar system based on scanning galvanometer
US20090273769A1 (en) Measuring device
JP7314661B2 (en) Optical scanning device, object detection device and sensing device
CN113917471A (en) Surveying instrument, distance measuring method and computer program product for determining 3D coordinates

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220104

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220922

R150 Certificate of patent or registration of utility model

Ref document number: 7148249

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150