JP7145780B2 - Excitation device and excitation method for synchronous machine - Google Patents

Excitation device and excitation method for synchronous machine Download PDF

Info

Publication number
JP7145780B2
JP7145780B2 JP2019027671A JP2019027671A JP7145780B2 JP 7145780 B2 JP7145780 B2 JP 7145780B2 JP 2019027671 A JP2019027671 A JP 2019027671A JP 2019027671 A JP2019027671 A JP 2019027671A JP 7145780 B2 JP7145780 B2 JP 7145780B2
Authority
JP
Japan
Prior art keywords
signal
value
current
synchronous machine
stabilized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019027671A
Other languages
Japanese (ja)
Other versions
JP2020137262A (en
Inventor
雅彦 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2019027671A priority Critical patent/JP7145780B2/en
Publication of JP2020137262A publication Critical patent/JP2020137262A/en
Application granted granted Critical
Publication of JP7145780B2 publication Critical patent/JP7145780B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Eletrric Generators (AREA)

Description

本発明の実施形態は、同期機の励磁装置および励磁方法に関する。 TECHNICAL FIELD Embodiments of the present invention relate to an excitation device and an excitation method for a synchronous machine.

同期機の励磁装置の機能の一つとして、電機子電流が同期機の耐量を超えないように制限する過電流制限機能がある。 One of the functions of the exciter of the synchronous machine is an overcurrent limiting function that limits the armature current so that it does not exceed the withstand capacity of the synchronous machine.

一般的な過電流制限機能は、遅相運転時には同期機の界磁電圧を低減し、逆に進相運転時には同期機の界磁電圧を増加させることで同期機の電機子電流を低減するようにしている。 A general overcurrent limit function reduces the armature current of the synchronous machine by reducing the field voltage of the synchronous machine during lagging operation and increasing the field voltage of the synchronous machine during leading operation. I have to.

特開昭58-218899号公報JP-A-58-218899 特開平6-133599号公報JP-A-6-133599 特開平8-116697号公報JP-A-8-116697 特開平2018-007484号公報JP-A-2018-007484

一般に、過電流制限機能は、電機子電流に対する電流制限設定値を示す信号(以下、「電機子電流制限設定信号IL」)と電機子電流(以下、「電機子電流Ig」)との偏差(=IL-Ig)を示す信号(以下、「電機子電流偏差信号ΔIg」)を用いて界磁電圧を増減することで電機子電流偏差信号ΔIgを0に近付ける機能であるが、進相運転時には-ΔIg(=Ig-IL)によって界磁電圧を増減するようになるため、電機子電流Igに含まれる有効電流の作用により負制動現象を引き起こす場合がある。 In general, the overcurrent limit function detects the deviation ( = IL-Ig) (hereinafter referred to as "armature current deviation signal ΔIg") is used to increase or decrease the field voltage to bring the armature current deviation signal ΔIg closer to 0. Since the field voltage is increased or decreased by -ΔIg (=Ig-IL), the action of the active current included in the armature current Ig may cause a negative damping phenomenon.

電機子電流Igは、有効電流(以下、「有効電流IP」)と無効電流(以下、「無効電流IQ」)とを用いて次式で表される。 The armature current Ig is expressed by the following equation using an active current (hereinafter "active current IP") and a reactive current (hereinafter "reactive current IQ").

Ig=(IP+IQ1/2 …(1)
(1)式において電機子電流Igを有効電流IPで偏微分すると次式が得られる。
Ig=(IP 2 +IQ 2 ) 1/2 (1)
By partially differentiating the armature current Ig with respect to the active current IP in the equation (1), the following equation is obtained.

∂Ig/∂IP=1/2・2・IP・(IP+IQ-1/2=IP/Ig …(2)
(2)式より、電機子電流Igには有効電流IPに比例して変化する成分が含まれることがわかる。
∂Ig/∂IP=1/2·2·IP·(IP 2 +IQ 2 ) −1/2 =IP/Ig (2)
(2), it can be seen that the armature current Ig includes a component that varies in proportion to the active current IP.

同期機の励磁装置において、過電流制限制御を行う場合、電機子電流偏差信号ΔIgを増幅して励磁制御を行うことになるが、電機子電流に含まれる有効電流IPに比例した信号で励磁制御を行うと、制御系の制動力が低下し制御系が不安定になる場合がある。特に進相領域で過電流制限制御を行う場合、有効電流IPの増減に応じて励磁制御出力を増減することになるため、制御系が不安定になりやすい。 In the exciter of a synchronous machine, when performing overcurrent limit control, the armature current deviation signal ΔIg is amplified to perform excitation control. If you do, the braking force of the control system may decrease and the control system may become unstable. In particular, when overcurrent limit control is performed in the phase-leading region, the excitation control output is increased or decreased according to the increase or decrease in effective current IP, so the control system tends to become unstable.

本発明が解決しようとする課題は、同期機の励磁装置において過電流制限制御を行うに際して安定した制限制御を行うことができる、同期機の励磁装置および励磁方法を提供することにある。 SUMMARY OF THE INVENTION An object of the present invention is to provide an exciter and an excitation method for a synchronous machine that can perform stable limit control when overcurrent limit control is performed in the exciter for the synchronous machine.

実施形態に係る同期機の励磁装置は、同期機の交流出力電圧を電圧設定値に一致させるように調整する電圧調整手段と、前記同期機の電機子電流が予め定めた過電流設定値を超過したときに当該電機子電流を予め定めた電流制限設定値まで引戻すように制御する電機子電流制限手段とを備え、前記電機子電流制限手段は、前記同期機の有効電流信号を検出する有効電流検出手段と、前記同期機の電機子電流信号を検出する電機子電流検出手段と、前記有効電流信号の変化分を安定化信号として出力する安定化信号生成手段と、前記電機子電流信号の値から前記電流制限設定値を減算し更に前記安定化信号の値を減算して得られる値を安定化電流偏差信号として出力する安定化電流偏差信号生成手段と、前記安定化電流偏差信号および所定の信号のうちの低値の信号を選択し増幅して得られる信号を前記同期機の励磁強め信号として前記電圧調整手段に供給する増幅手段と、を備えており、前記安定化信号生成手段は、1段又は直列接続された複数段の不完全微分回路と、前記同期機の有効電流信号の値と電機子電流の値との比がゲインとして設定される増幅手段とを含むAn excitation apparatus for a synchronous machine according to an embodiment includes voltage adjustment means for adjusting an AC output voltage of the synchronous machine so as to match a voltage set value, and an armature current for the synchronous machine that exceeds a predetermined overcurrent set value. and armature current limiting means for controlling the armature current to return to a predetermined current limit set value when the armature current is set to a predetermined current limit set value, wherein the armature current limiting means detects an effective current signal of the synchronous machine. current detection means; armature current detection means for detecting an armature current signal of the synchronous machine; stabilization signal generation means for outputting a change in the active current signal as a stabilization signal; stabilized current deviation signal generation means for outputting a value obtained by subtracting the current limit set value from the value and then subtracting the value of the stabilized signal as a stabilized current deviation signal; and an amplifying means for supplying a signal obtained by selecting and amplifying a low-value signal from the signals of to the voltage adjusting means as an excitation strengthening signal for the synchronous machine , wherein the stabilized signal generating means comprises , an imperfect differentiation circuit of one stage or a plurality of stages connected in series, and an amplifying means in which the ratio between the value of the active current signal and the value of the armature current of the synchronous machine is set as a gain .

本発明によれば、同期機の励磁装置において過電流制限制御を行うに際して安定した制限制御を行うことができる。 According to the present invention, stable limit control can be performed when overcurrent limit control is performed in an exciter of a synchronous machine.

第1の実施形態に係る同期機の励磁装置の構成を示す図。The figure which shows the structure of the excitation apparatus of the synchronous machine which concerns on 1st Embodiment. 同実施形態における電機子電流の制限作用について説明するための概念図。FIG. 4 is a conceptual diagram for explaining the armature current limiting action in the same embodiment. 第2の実施形態に係る同期機の励磁装置の構成を示す図。The figure which shows the structure of the excitation apparatus of the synchronous machine which concerns on 2nd Embodiment.

以下、実施の形態について、図面を参照して説明する。 Embodiments will be described below with reference to the drawings.

[第1の実施形態]
最初に、図1および図2を参照して、第1の実施形態について説明する。
[First embodiment]
First, a first embodiment will be described with reference to FIGS. 1 and 2. FIG.

(構成)
図1は、第1の実施形態に係る同期機の励磁装置の構成を示す図である。
(Constitution)
FIG. 1 is a diagram showing the configuration of an excitation device for a synchronous machine according to the first embodiment.

1は同期機であり、固定子鉄心に巻装された電機子巻線(または固定子巻線ともいう)1Aと、回転子リムに固定された磁極鉄心に巻装された界磁巻線1Bとから構成され、界磁巻線1Bにはスリップリングおよびブラシからなる摺動接触部2を介して静止部側の励磁電源から界磁電流Ifが供給されるようになっている。 A synchronous machine 1 includes an armature winding (also called a stator winding) 1A wound around a stator core and a field winding 1B wound around a pole core fixed to a rotor rim. A field current If is supplied to the field winding 1B from an excitation power source on the stationary portion side through a sliding contact portion 2 consisting of a slip ring and a brush.

同期機1の主回路において、3は同期機1で発生した電圧を系統電圧まで昇圧する主要変圧器であり、4は同期機1を電力系統5に連系する並列用遮断器である。 In the main circuit of the synchronous machine 1, 3 is a main transformer that boosts the voltage generated in the synchronous machine 1 to the system voltage, and 4 is a parallel circuit breaker that connects the synchronous machine 1 to the power system 5.

また、同期機1の界磁回路において、6は励磁用変圧器7を介して同期機1から供給される交流電力を整流して界磁巻線1Bに界磁電流Ifを供給するためのサイリスタ整流器である。8は同期機1の交流出力電圧Vgを目標値に一致させるように調整する自動電圧調整器(AVR)である。 In the field circuit of the synchronous machine 1, a thyristor 6 rectifies the AC power supplied from the synchronous machine 1 via the excitation transformer 7 and supplies a field current If to the field winding 1B. Rectifier. 8 is an automatic voltage regulator (AVR) for adjusting the AC output voltage Vg of the synchronous machine 1 so as to match a target value.

自動電圧調整器8は、電圧検出器8A、有効電力検出器8B、無効電力検出器8C、除算器8D、除算器8E、電流算出器8F、反限時タイマ8G、選択器8H、減算器8J、微分器8K、増幅器8L、減算器8M、減算器8N、低値選択器8P、増幅器8Q、減算器8R、低値選択器8S、増幅器8T、電圧設定器8U、減算器8V、高値選択器8W、低値選択器8X、および電圧調整器8Yを有する。 The automatic voltage regulator 8 includes a voltage detector 8A, an active power detector 8B, a reactive power detector 8C, a divider 8D, a divider 8E, a current calculator 8F, an anti-time timer 8G, a selector 8H, a subtractor 8J, Differentiator 8K, amplifier 8L, subtractor 8M, subtractor 8N, low value selector 8P, amplifier 8Q, subtractor 8R, low value selector 8S, amplifier 8T, voltage setting device 8U, subtractor 8V, high value selector 8W , a low value selector 8X, and a voltage regulator 8Y.

電圧検出器8Aは、計器用変圧器9を介して同期機1の交流出力電圧Vgに比例する電圧を検出し、これを交流電圧検出値Vgd(PU値)として出力する。 Voltage detector 8A detects a voltage proportional to AC output voltage Vg of synchronous machine 1 via voltage transformer 9, and outputs this as an AC voltage detection value Vgd (PU value).

有効電力検出器8Bは、計器用変圧器9と計器用変流器10を介して同期機1の有効電力Pgに比例する有効電力信号を検出し、これを有効電力検出値Pgd(PU値)として出力する。 Active power detector 8B detects an active power signal proportional to active power Pg of synchronous machine 1 via instrument transformer 9 and instrument current transformer 10, and converts this to active power detection value Pgd (PU value). output as

無効電力検出器8Cは、計器用変圧器9と計器用変流器10を介して同期機1の無効電力Qgに比例する無効電力信号を検出し、これを無効電力検出値Qgd(PU値)として出力する。 Reactive power detector 8C detects a reactive power signal proportional to reactive power Qg of synchronous machine 1 via instrument transformer 9 and instrument current transformer 10, and detects this as reactive power detection value Qgd (PU value). output as

除算器8Dは、有効電力検出値Pgdと交流電圧検出値Vgdとを入力し、有効電力検出値Pgdを交流電圧検出値Vgdで除して得られる値を有効電流信号IPdとして出力する。 Divider 8D inputs active power detection value Pgd and AC voltage detection value Vgd, and outputs a value obtained by dividing active power detection value Pgd by AC voltage detection value Vgd as active current signal IPd.

上述した電圧検出器8A、有効電力検出器8B、および除算器8Dは、同期機1の有効電流IPを有効電流信号IPdとして検出する有効電流検出手段を構成する。 The voltage detector 8A, the active power detector 8B, and the divider 8D described above constitute active current detection means for detecting the active current IP of the synchronous machine 1 as an active current signal IPd.

除算器8Eは、無効電力検出値Qgdと交流電圧検出値Vgdとを入力し、同期機1の無効電力検出値Qgdを交流電圧検出値Vgdで除して得られる値を無効電流信号IQdとして出力する。 Divider 8E inputs reactive power detection value Qgd and AC voltage detection value Vgd, and outputs a value obtained by dividing reactive power detection value Qgd of synchronous machine 1 by AC voltage detection value Vgd as reactive current signal IQd. do.

上述した電圧検出器8A、無効電力検出器8C、および除算器8Eは、同期機1の無効電流IQを無効電流信号IQdとして検出する無効電流検出手段を構成する。 The voltage detector 8A, reactive power detector 8C, and divider 8E described above constitute reactive current detection means for detecting the reactive current IQ of the synchronous machine 1 as a reactive current signal IQd.

電流算出器8Fは、有効電流信号IPdの値の自乗と無効電流信号IQdの値の自乗との和の平方根を算出し、これを同期機1の電機子電流Igに比例する電機子電流信号Igdとして出力する。この電流算出器8Fは、上記電機子電流信号Igdを検出する電機子電流検出手段を構成する。 A current calculator 8F calculates the square root of the sum of the square of the value of the active current signal IPd and the square of the value of the reactive current signal IQd. output as The current calculator 8F constitutes armature current detection means for detecting the armature current signal Igd.

反限時タイマ8Gは、電機子電流信号Igdを入力し、電機子電流信号Igdの値と予め定めた過電流設定値Iocとの差分の積分値が予め定めた過電流限時設定値Tocを超過した時に電流制限動作信号OCをオン出力する。 The inverse time limit timer 8G receives the armature current signal Igd, and the integrated value of the difference between the value of the armature current signal Igd and the predetermined overcurrent set value Ioc exceeds the predetermined overcurrent time limit set value Toc. The current limiting operation signal OC is turned on at this time.

選択器8Hは、電流制限動作信号OCを入力し、電流制限動作信号OCがオフの時は制限設定1(瞬時電流制限設定値)を選択し、一方、電流制限動作信号OCがオンの時は制限設定2(時限電流制限設定値)を選択し、選択した方を制限設定信号ILとして出力する。 The selector 8H receives the current limiting operation signal OC, selects limit setting 1 (instantaneous current limit set value) when the current limiting operation signal OC is off, and selects limit setting 1 (instantaneous current limit setting value) when the current limiting operation signal OC is on. Limit setting 2 (timed current limit set value) is selected, and the selected one is output as limit setting signal IL.

なお、制限設定1には同期機1の電機子電流Igを瞬時に制限する場合の閾値が適用され、制限設定2には同期機1の電機子電流Igを過電流限時設定値Tocによる遅延を持って制限する場合の閾値が適用される。過電流設定値Iocは制限設定1よりも小さい値が設定され、制限設定2は過電流設定値Iocよりも小さい値が設定される。すなわち、「制限設定2<Ioc<制限設定1」の関係が成り立つように設定される。 Note that the limit setting 1 applies a threshold value for instantaneously limiting the armature current Ig of the synchronous machine 1, and the limit setting 2 applies a delay to the armature current Ig of the synchronous machine 1 by the overcurrent time limit set value Toc. Thresholds for holding and restricting are applied. The overcurrent set value Ioc is set to a value smaller than the limit setting 1, and the limit setting 2 is set to a value smaller than the overcurrent set value Ioc. That is, it is set so that the relationship of "limitation setting 2<Ioc<limitation setting 1" is established.

減算器8Jは、電機子電流信号Igdと制限設定信号ILとを入力し、電機子電流信号Igdの値から制限設定信号ILの値を減算して得られる値を電流偏差信号Ieとして出力する。すなわち、減算器8Jは、同期機1の電機子電流Igに比例する電機子電流信号Igdと電流を制限するレベルを示す制限設定信号ILとを入力して、その差分を電流偏差信号Ieとして出力する。 The subtractor 8J inputs the armature current signal Igd and the limit setting signal IL, and outputs a value obtained by subtracting the value of the limit setting signal IL from the value of the armature current signal Igd as the current deviation signal Ie. That is, the subtractor 8J receives the armature current signal Igd proportional to the armature current Ig of the synchronous machine 1 and the limit setting signal IL indicating the current limit level, and outputs the difference between them as the current deviation signal Ie. do.

微分器8Kは、有効電流信号IPdを入力し、有効電流信号IPdを不完全微分(inexact differential)して得られる値を有効電流偏差信号dIPとして出力する。 The differentiator 8K receives the active current signal IPd and outputs a value obtained by inexact differential of the active current signal IPd as the active current deviation signal dIP.

増幅器8Lは、有効電流偏差信号dIPを入力し、有効電流偏差信号dIPの値に所定のゲインを乗じて得られる値を安定化信号STBとして出力する。 The amplifier 8L receives the active current deviation signal dIP and outputs a value obtained by multiplying the value of the active current deviation signal dIP by a predetermined gain as the stabilization signal STB.

上述した微分器8Kおよび増幅器8Lは、有効電流信号IPdの変化分(負制動現象の要因となる有効電流変動に比例する成分)を安定化信号STBとして出力する安定化信号生成手段を構成する。 The above-described differentiator 8K and amplifier 8L constitute stabilization signal generation means for outputting a change in the active current signal IPd (a component proportional to the active current fluctuation that causes the negative braking phenomenon) as a stabilization signal STB.

減算器8Mは、電流偏差信号Ieと安定化信号STBとを入力し、電流偏差信号Ieの値から安定化信号STBの値を減算して得られる値を安定化電流偏差信号Iesとして出力する。 The subtractor 8M receives the current deviation signal Ie and the stabilization signal STB, and outputs a value obtained by subtracting the value of the stabilization signal STB from the value of the current deviation signal Ie as the stabilized current deviation signal Ies.

上述した反限時タイマ8G、選択器8H、減算器8J、および減算器8Mは、電機子電流信号Igdの値から制限設定1(瞬時電流制限設定値)または制限設定2の値(時限電流制限設定値)を減算し更に安定化信号STBの値を減算して得られる値を安定化電流偏差信号Iesとして出力する安定化電流偏差信号生成手段を構成する。 The inverse time timer 8G, the selector 8H, the subtractor 8J, and the subtractor 8M described above convert the value of the armature current signal Igd to the value of limit setting 1 (instantaneous current limit setting) or limit setting 2 (time limit current limit setting). value) and further subtracts the value of the stabilization signal STB to output a value obtained by subtracting the value of the stabilization signal STB as the stabilized current deviation signal Ies.

減算器8Nは、無効電力の進相側不感帯の境界として予め定めた閾値(進相側不感帯設定値)DB1と無効電力検出値Qgdとを入力し、進相側不感帯設定値DB1から無効電力検出値Qgdを減算して得られる値を進相側不感帯偏差信号DBe1として出力する。 A subtractor 8N inputs a predetermined threshold value (advance-side dead band setting value) DB1 as a boundary of a dead band on the phase-advance side of reactive power and a reactive power detection value Qgd, and detects reactive power from the phase-advance-side dead band setting value DB1. A value obtained by subtracting the value Qgd is output as the phase leading side dead band deviation signal DBe1.

低値選択器8Pは、安定化電流偏差信号Iesと進相側不感帯偏差信号DBe1とを入力し、低値選択して得られる信号を進相側電流偏差信号Iedとして出力する。 The low-value selector 8P receives the stabilized current deviation signal Ies and the lead-side dead band deviation signal DBe1, and outputs a signal obtained by selecting a low value as the lead-side current deviation signal Ied.

増幅器8Qは、進相側電流偏差信号Iedを入力し、進相側電流偏差信号Iedの値に所定の正のゲインを乗じて得られる値を進相側電流制限信号Ildとして出力する。 The amplifier 8Q receives the leading current deviation signal Ied and outputs a value obtained by multiplying the value of the leading current deviation signal Ied by a predetermined positive gain as the leading current limiting signal Ild.

上述した低値選択器8Pおよび増幅器8Qは、安定化電流偏差信号Iesおよび進相側不感帯偏差信号DBe1のうちの低値の信号を選択し増幅して得られる進相側電流制限信号Ildを同期機1の励磁強め信号として電圧調整手段81の高値選択器8Wに供給する低値選択増幅手段を構成する。 The low-value selector 8P and the amplifier 8Q described above select and amplify the low-value signal from the stabilized current deviation signal Ies and the phase-advance dead band deviation signal DBe1, and synchronize the phase-advance current limit signal Ild. A low-value selection amplifying means for supplying the signal to the high-value selector 8W of the voltage adjusting means 81 as an excitation strengthening signal for the machine 1 is constructed.

減算器8Rは、無効電力検出値Qgdと無効電力の遅相側不感帯の境界として予め定めた閾値(遅相側不感帯設定値)DB2とを入力し、無効電力検出値Qgdから遅相側不感帯設定値DB2を減算して得られる値を遅相側不感帯偏差信号DBe2として出力する。 The subtractor 8R inputs the reactive power detection value Qgd and a predetermined threshold value (lag-side dead band set value) DB2 as the boundary of the lag-side dead band of reactive power, and sets the lag-side dead band from the reactive power detection value Qgd. A value obtained by subtracting the value DB2 is output as the lag side dead band deviation signal DBe2.

低値選択器8Sは、電流偏差信号Ieと遅相側不感帯偏差信号DBe2とを入力し、低値選択して得られる信号を遅相側電流偏差信号Iegとして出力する。 The low value selector 8S receives the current deviation signal Ie and the lag side dead band deviation signal DBe2, and outputs a signal obtained by selecting a low value as the lag side current deviation signal Ieg.

増幅器8Tは、遅相側電流偏差信号Iegの値に所定の負のゲインを乗じて得られる値を遅相側電流制限信号Ilgとして出力する。 The amplifier 8T outputs a value obtained by multiplying the value of the lagging current deviation signal Ieg by a predetermined negative gain as the lagging current limiting signal Ilg.

上述した低値選択器8Sおよび増幅器8Tは、電流偏差信号Ieおよび遅相側不感帯偏差信号DBe2のうちの低値の信号を選択し符号反転増幅して得られる遅相側電流制限信号Ilgを同期機1の励磁弱め信号として電圧調整手段81の低値選択器8Xに供給する低値選択増幅手段を構成する。 The low-value selector 8S and the amplifier 8T described above select a low-value signal from the current deviation signal Ie and the lag-side dead band deviation signal DBe2, and synchronize the lag-side current limit signal Ilg obtained by sign-inverting and amplifying it. A low-value selection amplifying means for supplying a low-value selector 8X of the voltage adjusting means 81 as an excitation weakening signal for the machine 1 is constructed.

電圧設定器8Uは、予め定めた電圧設定値Vrを出力する。 The voltage setter 8U outputs a predetermined voltage set value Vr.

減算器8Vは、電圧設定値Vrから交流電圧検出値Vgdを減算して得られる値を電圧偏差信号Veとして出力する。 The subtractor 8V outputs a value obtained by subtracting the AC voltage detection value Vgd from the voltage set value Vr as the voltage deviation signal Ve.

高値選択器8Wは、電圧偏差信号Veと進相側電流制限信号Ildとを入力し、高値選択して得られる信号を電圧偏差信号Ve2として出力する。すなわち、高値選択器8Wは、高値選択して得られる信号を新たな電圧偏差信号として電圧調整器8Y側へ供給する。 The high value selector 8W receives the voltage deviation signal Ve and the leading side current limit signal Ild, and outputs a signal obtained by selecting a high value as a voltage deviation signal Ve2. That is, the high-value selector 8W supplies a signal obtained by high-value selection to the voltage regulator 8Y side as a new voltage deviation signal.

低値選択器8Xは、電圧偏差信号Ve2と遅相側電流制限信号Ilgとを入力し、低値選択して得られる値を電圧偏差信号Ve3として出力する。すなわち、低値選択器8Xは、低値選択して得られる値を新たな電圧偏差信号として電圧調整器8Y側へ供給する。 The low value selector 8X receives the voltage deviation signal Ve2 and the lagging current limit signal Ilg, and outputs a value obtained by selecting a low value as the voltage deviation signal Ve3. That is, the low value selector 8X supplies the value obtained by low value selection to the voltage regulator 8Y side as a new voltage deviation signal.

電圧調整器8Yは、電圧偏差信号Ve3を入力し、電圧偏差信号Ve3を増幅した位相制御信号αに応じたタイミングでサイリスタ整流器6のゲート信号Pを出力する。すなわち、電圧調整器8Yは、電圧偏差信号Ve3が0になるように、サイリスタ整流器6へ供給するゲート信号Pのタイミングを制御する。 The voltage regulator 8Y receives the voltage deviation signal Ve3 and outputs the gate signal P of the thyristor rectifier 6 at a timing corresponding to the phase control signal α obtained by amplifying the voltage deviation signal Ve3. That is, the voltage regulator 8Y controls the timing of the gate signal P supplied to the thyristor rectifier 6 so that the voltage deviation signal Ve3 becomes zero.

図1において、81は、同期機1の交流出力電圧Vgを目標値に一致させるように調整する電圧調整機能の基本部分(電圧調整手段)であり、上述した電圧設定器8U、減算器8V、高値選択器8W、低値選択器8X、および電圧調整器8Yを含む。 In FIG. 1, reference numeral 81 denotes a basic part (voltage adjusting means) of a voltage adjusting function for adjusting the AC output voltage Vg of the synchronous machine 1 so as to match a target value. It includes a high value selector 8W, a low value selector 8X and a voltage regulator 8Y.

一方、80は、例えば同期機1の電機子電流Igの値が過電流設定値Iocを超過したときに当該電機子電流を制限設定2(時限電流制限設定値)まで引戻すように制御する過電流制限機能等を実現する部分(電機子電流制限手段)であり、上述した電圧検出器8A、有効電力検出器8B、無効電力検出器8C、除算器8D、除算器8E、電流算出器8F、反限時タイマ8G、選択器8H、減算器8J、微分器8K、増幅器8L、減算器8M、減算器8N、低値選択器8P、増幅器8Q、減算器8R、低値選択器8S、および増幅器8Tを含む。 On the other hand, 80 controls to pull back the armature current to limit setting 2 (timed current limit set value) when the value of the armature current Ig of the synchronous machine 1 exceeds the overcurrent set value Ioc, for example. A portion (armature current limiting means) that implements a current limiting function, etc., and includes the voltage detector 8A, active power detector 8B, reactive power detector 8C, divider 8D, divider 8E, current calculator 8F, Inverse timer 8G, selector 8H, subtractor 8J, differentiator 8K, amplifier 8L, subtractor 8M, subtractor 8N, low value selector 8P, amplifier 8Q, subtractor 8R, low value selector 8S, and amplifier 8T including.

なお、上述した進相側不感帯設定値DB1には、それより遅相側では電機子電流制限を作動させない無効電力値が設定され、遅相側不感帯設定値DB2には、それより進相側では電機子電流制限を作動させない無効電力値が設定される。 A reactive power value that does not activate the armature current limit on the phase lagging side is set in the above-mentioned leading phase dead band setting value DB1, and a lagging phase side dead band setting value DB2 on the phase leading side is set to A reactive power value is set that does not activate the armature current limit.

また、微分器8Kは、1段又は直列接続された複数段の不完全微分回路を装備するものとするが、入力信号の直流成分を除去して変化分を出力する機能を有するものであれば、いかなる回路を用いて構成しても良い。 In addition, the differentiator 8K is assumed to be equipped with one stage or a plurality of stages of incomplete differentiation circuits connected in series. , any circuit may be used.

また、増幅器8Lの増幅ゲインとしては、任意の固定値が設定されてもよいが、有効電流信号IPdの値と電機子電流信号Igdの値との比が設定されてもよい。例えば、増幅器8Lの増幅ゲインとして、(2)式からもわかるようにIP/Ig(すなわち、IPd/Igd)を設定すれば、電機子電流信号Igdに含まれる有効電流変動に比例する成分を除去できる。増幅器8Lの増幅ゲインには、1倍または、それより小さい値が設定される。 An arbitrary fixed value may be set as the amplification gain of the amplifier 8L, but the ratio between the value of the effective current signal IPd and the value of the armature current signal Igd may be set. For example, if IP/Ig (that is, IPd/Igd) is set as the amplification gain of the amplifier 8L as can be seen from the equation (2), the component proportional to the active current fluctuation contained in the armature current signal Igd is removed. can. The amplification gain of the amplifier 8L is set to 1 or a smaller value.

(作用)
図1の構成において、並列用遮断器4が投入され、同期機1が電力系統5と並列運転している状態において、電機子電流信号Igdが制限設定2を下回っていれば電流偏差信号Ieが負の値となるため、進相側電流制限信号Ildは負の値を示し、遅相側電流制限信号Ilgは正の値を示す。このとき高値選択器8Wおよび低値選択器8Xでは電圧偏差信号Veが選択され、電圧偏差信号Ve3として電圧調整器8Yに入力される。電圧調整器8Yは電圧偏差信号Ve3が0になるようにゲート信号Pのタイミングを制御するので、結果的に交流電圧検出値Vgdが電圧設定値Vrと一致するように同期機1の交流出力電圧Vgが制御される。
(action)
In the configuration of FIG. 1, when the parallel circuit breaker 4 is turned on and the synchronous machine 1 is operating in parallel with the power system 5, if the armature current signal Igd is below the limit setting 2, the current deviation signal Ie is Since it has a negative value, the leading-phase current limiting signal Ild exhibits a negative value, and the lagging-phase current limiting signal Ilg exhibits a positive value. At this time, the voltage deviation signal Ve is selected by the high value selector 8W and the low value selector 8X, and is input to the voltage regulator 8Y as the voltage deviation signal Ve3. Since the voltage regulator 8Y controls the timing of the gate signal P so that the voltage deviation signal Ve3 becomes 0, as a result, the AC output voltage of the synchronous machine 1 is adjusted so that the AC voltage detection value Vgd coincides with the voltage setting value Vr. Vg is controlled.

図2は、同期機1の電機子電流Igを制限する作用について説明するための概念図である。図2では横軸を有効電流IP、縦軸を無効電流IQとして同期機1の運転点を示しており、本例では過電流設定値Iocを1.05PU、制限設定2を1.0PU、進相側不感帯設定値DB1を-0.1PU、遅相側不感帯設定値DB2を0.3PUとしている。
ここでは4つのケースを挙げて説明する。
FIG. 2 is a conceptual diagram for explaining the action of limiting the armature current Ig of the synchronous machine 1. As shown in FIG. In FIG. 2, the horizontal axis represents the active current IP, and the vertical axis represents the reactive current IQ. The phase-side dead band set value DB1 is set to -0.1 PU, and the lag-side dead band set value DB2 is set to 0.3 PU.
Four cases will be described here.

・「ケース1」
同期機1の電機子電流Igが増加し、図2中の運転点Aに到達したとする。このとき、電機子電流信号Igdの値が過電流設定値Iocを超過するので、その差分の積分値が過電流限時設定値Tocを超過した時点で電流制限動作信号OCがオン出力され、制限設定1に代えて制限設定2が制限設定信号ILとして出力され、これにより電機子電流信号Igdと制限設定信号ILとの差分である電流偏差信号Ieが正の値となる。
・"Case 1"
Assume that the armature current Ig of the synchronous machine 1 increases and reaches the operating point A in FIG. At this time, since the value of the armature current signal Igd exceeds the overcurrent set value Ioc, the current limit operation signal OC is turned on when the integrated value of the difference exceeds the overcurrent time limit set value Toc, and the limit is set. Instead of 1, limit setting 2 is output as limit setting signal IL, whereby current deviation signal Ie, which is the difference between armature current signal Igd and limit setting signal IL, takes a positive value.

運転点Aでは進相側不感帯偏差信号DBe1(=DB1-Qgd)も正の値であるため、低値選択器8Pにより低値選択して得られる進相側電流偏差信号Ied、および増幅器8Qで増幅された進相側電流制限信号Ildも正の値となる。 At the operating point A, the lead-side dead band deviation signal DBe1 (=DB1-Qgd) is also a positive value. The amplified phase leading side current limiting signal Ild also takes a positive value.

結果的に、高値選択器8Wにより進相側電流制限信号Ildが電圧偏差信号Ve2として選択され、電圧調整器8Yが界磁電流Ifを増加させるため、交流出力電圧Vgや無効電流IQも増加する。有効電流IPは、有効電力Pgが一定の場合、交流出力電圧Vgの増加に伴い減少する。 As a result, the leading side current limit signal Ild is selected as the voltage deviation signal Ve2 by the high-value selector 8W, and the voltage regulator 8Y increases the field current If, so that the AC output voltage Vg and the reactive current IQ also increase. . Active current IP decreases as AC output voltage Vg increases when active power Pg is constant.

本ケースでは、進相側不感帯偏差信号DBe1が0になる前に電流偏差信号Ieが0に到達するので、電機子電流Igが制限設定2に到達した時点、すなわち運転点A’で増幅器8Qが出力する進相側電流制限信号Ildが0となって定常状態に落ち着く。 In this case, the current deviation signal Ie reaches 0 before the lead-side dead band deviation signal DBe1 becomes 0. Therefore, when the armature current Ig reaches the limit setting 2, that is, at the operating point A', the amplifier 8Q The leading-phase current limiting signal Ild to be output becomes 0, and the steady state is established.

上記説明において、低値選択器8Pの入力信号の一つは、電流偏差信号Ieの値から安定化信号STBの値を減算して得られる安定化電流偏差信号Iesであるが、定常状態に落ち着いた後の安定化信号STBの値は0になるため、安定化信号STBによって定常状態に落ち着いた後の運転点が変わることはない。 In the above description, one of the input signals of the low value selector 8P is the stabilized current deviation signal Ies obtained by subtracting the value of the stabilized signal STB from the value of the current deviation signal Ie. Since the value of the stabilization signal STB after this is 0, the operating point does not change after the stabilization signal STB stabilizes the steady state.

一方、電機子電流制限動作中は、安定化電流偏差信号Iesを増幅した信号で励磁制御が行われているが、安定化信号STBによって負制動現象の要因となる有効電流変動に比例する成分が電流偏差信号Ieから除去されるため、電機子電流制限動作中も負制動現象を起こすことなく安定な運転が行える。 On the other hand, during the armature current limiting operation, excitation control is performed by a signal obtained by amplifying the stabilized current deviation signal Ies. Since it is removed from the current deviation signal Ie, stable operation can be performed without causing a negative braking phenomenon even during the armature current limiting operation.

・「ケース2」
別のケースとして、同期機1の電機子電流Igが増加し、図2中の運転点Bに到達したとする。この場合も、運転点Aのケースと同様の作用となるが、電流偏差信号Ieが0になる前に進相側不感帯偏差信号DBe1が0に到達するので、無効電力Qgが進相側不感帯設定値DB1に到達した時点、すなわち運転点B’で増幅器8Qが出力する進相側電流制限信号Ildが0となって定常状態に落ち着く。
・"Case 2"
As another case, assume that the armature current Ig of the synchronous machine 1 increases and reaches the operating point B in FIG. In this case as well, the operation is the same as in the case of the operating point A. However, since the lead-side dead band deviation signal DBe1 reaches 0 before the current deviation signal Ie reaches 0, the reactive power Qg is set to the lead-side dead band. When the value DB1 is reached, that is, at the operating point B', the leading side current limiting signal Ild output from the amplifier 8Q becomes 0 and the steady state is established.

本ケースでは、無効電力偏差信号(DB1-Qg)を増幅した信号で励磁制御が行われているので、ゲインを適切に設定していれば負制動現象は発生しない。 In this case, since the excitation control is performed by the signal obtained by amplifying the reactive power deviation signal (DB1-Qg), the negative damping phenomenon does not occur if the gain is appropriately set.

・「ケース3」
次に、遅相運転のケースとして、同期機1の電機子電流Igが増加し、図2中の運転点Cに到達したとする。このとき、電機子電流信号Igdの値が過電流設定値Iocを超過するので、その差分の積分値が過電流限時設定値Tocを超過した時点で電流制限動作信号OCがオン出力され、制限設定1に代えて制限設定2が制限設定信号ILとして出力され、これにより電機子電流信号Igdと制限設定信号ILとの差分である電流偏差信号Ieが正の値となる。
・"Case 3"
Next, as a case of lagging phase operation, assume that the armature current Ig of the synchronous machine 1 increases and reaches the operating point C in FIG. At this time, since the value of the armature current signal Igd exceeds the overcurrent set value Ioc, the current limit operation signal OC is turned on when the integrated value of the difference exceeds the overcurrent time limit set value Toc, and the limit is set. Instead of 1, limit setting 2 is output as limit setting signal IL, whereby current deviation signal Ie, which is the difference between armature current signal Igd and limit setting signal IL, takes a positive value.

運転点Cでは遅相側不感帯偏差信号DBe2(=Qgd-DB2)も正の値であるため、低値選択器8Sにより低値選択して得られる遅相側電流偏差信号Iegは正の値となり、増幅器8Tにより負のゲインで増幅された遅相側電流制限信号Ilgは負の値となる。 At the operating point C, the lag side dead band deviation signal DBe2 (=Qgd-DB2) is also a positive value, so the lag side current deviation signal Ieg obtained by selecting a low value by the low value selector 8S becomes a positive value. , the lagging current limiting signal Ilg amplified with a negative gain by the amplifier 8T becomes a negative value.

結果的に、低値選択器8Xにより遅相側電流制限信号Ilgが電圧偏差信号Ve3として選択され、電圧調整器8Yが界磁電流Ifを減少させるため、交流出力電圧Vgや無効電流IQも減少する。有効電流IPは、有効電力Pgが一定の場合、交流出力電圧Vgの減少に伴い増加する。 As a result, the low-value selector 8X selects the slow-phase current limit signal Ilg as the voltage deviation signal Ve3, and the voltage regulator 8Y reduces the field current If, so that the AC output voltage Vg and reactive current IQ also decrease. do. Active current IP increases as AC output voltage Vg decreases when active power Pg is constant.

本ケースでは、遅相側不感帯偏差信号DBe2が0になる前に電流偏差信号Ieが0に到達するので、電機子電流Igが制限設定2に到達した時点、すなわち運転点C’で増幅器8Tが出力する遅相側電流制限信号Ilgが0となって定常状態に落ち着く。また、本ケースでは、電流偏差信号Ieに含まれる電機子電流Igを符号反転した信号で励磁制御が行われるため、電機子電流Igに含まれる有効電流変動分が正の制動力として作用することになり、負制動現象は発生しない。 In this case, the current deviation signal Ie reaches 0 before the lagging dead band deviation signal DBe2 becomes 0. Therefore, when the armature current Ig reaches the limit setting 2, that is, at the operating point C', the amplifier 8T The delayed phase side current limiting signal Ilg to be output becomes 0, and the steady state is established. Further, in this case, since the excitation control is performed by a signal obtained by inverting the sign of the armature current Ig included in the current deviation signal Ie, the active current variation included in the armature current Ig acts as a positive braking force. , and the negative braking phenomenon does not occur.

・「ケース4」
別のケースとして、同期機1の電機子電流Igが増加し、図2中の運転点Dに到達したとする。この場合も、運転点Cのケースと同様の作用となるが、電流偏差信号Ieが0になる前に遅相側不感帯偏差信号DBe2が0に到達するので、無効電力Qgが遅相側不感帯設定値DB2に到達した時点、すなわち運転点D’で増幅器8Tが出力する遅相側電流制限信号Ilgが0となって定常状態に落ち着く。
・"Case 4"
As another case, assume that the armature current Ig of the synchronous machine 1 increases and reaches the operating point D in FIG. In this case as well, the operation is the same as in the case of the operating point C, but since the lagging phase side dead band deviation signal DBe2 reaches 0 before the current deviation signal Ie reaches 0, the reactive power Qg is set to the lagging phase side dead band. When the value DB2 is reached, that is, at the operating point D', the slow-phase side current limiting signal Ilg output from the amplifier 8T becomes 0 and the steady state is established.

本ケースでは、無効電力偏差信号(DB2-Qg)を増幅した信号で励磁制御が行われているので、ゲインを適切に設定していれば負制動現象は発生しない。 In this case, since excitation control is performed by a signal obtained by amplifying the reactive power deviation signal (DB2-Qg), the negative damping phenomenon does not occur if the gain is appropriately set.

(効果)
第1の実施形態によれば、励磁強め動作によって電機子電流制限制御を行う場合に、電流偏差信号Ieに含まれる有効電流変動成分を安定化信号STBによって除去することで、電機子電流制限制御中の負制動現象を防止し、安定した制限制御を実現することができる。
(effect)
According to the first embodiment, when the armature current limit control is performed by the excitation strengthening operation, the effective current fluctuation component included in the current deviation signal Ie is removed by the stabilization signal STB, thereby performing the armature current limit control. It is possible to prevent the negative braking phenomenon in the middle and realize stable limit control.

[第2の実施形態]
次に、図3を参照して第2の実施形態について説明する。
[Second embodiment]
Next, a second embodiment will be described with reference to FIG.

(構成)
図3は、第2の実施形態に係る同期機の励磁装置の構成を示す図である。
(Constitution)
FIG. 3 is a diagram showing the configuration of an excitation device for a synchronous machine according to the second embodiment.

第2の実施形態は、上述した第1の実施形態(図1)において、自動電圧調整器8を自動電圧調整器8’に置き換えたものである。自動電圧調整器8との相違点は、増幅器8Lの代わりに、増幅器8L’を備えている点にある。 The second embodiment replaces the automatic voltage regulator 8 with an automatic voltage regulator 8' in the first embodiment (FIG. 1) described above. A difference from the automatic voltage regulator 8 is that an amplifier 8L' is provided instead of the amplifier 8L.

増幅器8L’は、有効電流偏差信号dIPと有効電流信号IPdと電機子電流信号Igdとを入力し、有効電流偏差信号dIPの値に有効電流信号IPdの値と電機子電流信号Igdの値との比を乗算して得られる安定化信号STBを出力する。増幅器8L’の増幅ゲインには、有効電流信号IPdの値と電機子電流信号Igdの値との比が適用される。 The amplifier 8L' receives the active current deviation signal dIP, the active current signal IPd, and the armature current signal Igd, and the value of the active current deviation signal dIP is the value of the active current signal IPd and the value of the armature current signal Igd. Output a stabilized signal STB obtained by multiplying the ratio. The ratio between the value of the active current signal IPd and the value of the armature current signal Igd is applied to the amplification gain of the amplifier 8L'.

(作用)
第1の実施形態との相違点は、増幅器8L’のゲインを運転状態に応じて可変にしたことにある。
(action)
A difference from the first embodiment is that the gain of the amplifier 8L' is made variable according to the operating state.

前述したように、増幅器8L’の増幅ゲインは(2)式に示されるIP/Ig(すなわち、IPd/Igd)に設定される。これにより、電機子電流Igに含まれる有効電流変動に比例する成分が除去される。 As described above, the amplification gain of the amplifier 8L' is set to IP/Ig (that is, IPd/Igd) shown in equation (2). As a result, the component proportional to the active current fluctuation included in the armature current Ig is removed.

従って、増幅器8L’は、同期機1の運転状態が変化しても、電機子電流信号Igdに含まれる有効電流変動成分を除去するのに必要十分な大きさの安定化信号STBを生成する。 Therefore, even if the operating state of the synchronous machine 1 changes, the amplifier 8L' generates the stabilization signal STB having a necessary and sufficient magnitude to remove the active current fluctuation component contained in the armature current signal Igd.

(効果)
第2の実施形態によれば、第1の実施形態の効果に加え、励磁強め動作によって電機子電流制限制御を行う場合に、あらゆる運転状態において、電流偏差信号Ieに含まれる有効電流変動成分を必要十分な大きさの安定化信号STBによって除去できるため、電機子電流制限制御中の負制動現象を防止し、安定した制限制御を実現することができる。
(effect)
According to the second embodiment, in addition to the effects of the first embodiment, when armature current limit control is performed by excitation strengthening operation, the active current fluctuation component included in the current deviation signal Ie is reduced in all operating states. Since it can be removed by the stabilizing signal STB having a necessary and sufficient magnitude, it is possible to prevent the negative damping phenomenon during the armature current limit control and realize stable limit control.

以上詳述したように、各実施形態によれば、同期機の励磁装置において過電流制限制御を行うに際し、安定した制限制御を行うことができる。 As described in detail above, according to each embodiment, stable limit control can be performed when overcurrent limit control is performed in the excitation device of the synchronous machine.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 While several embodiments of the invention have been described, these embodiments have been presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and modifications can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the scope of the invention described in the claims and equivalents thereof.

1…同期機、1A…電機子巻線、1B…界磁巻線、2…摺動接触部、3…主要変圧器、4…並列用遮断器、5…電力系統、6…サイリスタ整流器、7…励磁用変圧器、8…自動電圧調整器、8’…自動電圧調整器、8A…電圧検出器、8B…有効電力検出器、8C…無効電力検出器、8D…除算器、8E…除算器、8F…電流算出器、8G…反限時タイマ、8H…選択器、8J…減算器、8K…微分器、8L…増幅器、8L’…増幅器、8M…減算器、8N…減算器、8P…低値選択器、8Q…増幅器、8R…減算器、8S…低値選択器、8T…増幅器、8U…電圧設定器、8V…減算器、8W…高値選択器、8X…低値選択器、8Y…電圧調整器、9…計器用変圧器、10…計器用変流器、80…電機子電流制限手段、81…電圧調整手段。 DESCRIPTION OF SYMBOLS 1... Synchronous machine 1A... Armature winding 1B... Field winding 2... Sliding contact part 3... Main transformer 4... Parallel circuit breaker 5... Power system 6... Thyristor rectifier 7 Transformer for excitation 8 Automatic voltage regulator 8′ Automatic voltage regulator 8A Voltage detector 8B Active power detector 8C Reactive power detector 8D Divider 8E Divider , 8F... current calculator, 8G... anti-time timer, 8H... selector, 8J... subtractor, 8K... differentiator, 8L... amplifier, 8L'... amplifier, 8M... subtractor, 8N... subtractor, 8P... low Value selector 8Q Amplifier 8R Subtractor 8S Low value selector 8T Amplifier 8U Voltage setting device 8V Subtractor 8W High value selector 8X Low value selector 8Y Voltage regulator 9... Instrument transformer 10... Instrument current transformer 80... Armature current limiting means 81... Voltage adjusting means.

Claims (4)

同期機の交流出力電圧を電圧設定値に一致させるように調整する電圧調整手段と、前記同期機の電機子電流が予め定めた過電流設定値を超過したときに当該電機子電流を予め定めた電流制限設定値まで引戻すように制御する電機子電流制限手段とを備え、
前記電機子電流制限手段は、
前記同期機の有効電流信号を検出する有効電流検出手段と、
前記同期機の電機子電流信号を検出する電機子電流検出手段と、
前記有効電流信号の変化分を安定化信号として出力する安定化信号生成手段と、
前記電機子電流信号の値から前記電流制限設定値を減算し更に前記安定化信号の値を減算して得られる値を安定化電流偏差信号として出力する安定化電流偏差信号生成手段と、
前記安定化電流偏差信号および所定の信号のうちの低値の信号を選択し増幅して得られる信号を前記同期機の励磁強め信号として前記電圧調整手段に供給する増幅手段と、
を備えており、
前記安定化信号生成手段は、1段又は直列接続された複数段の不完全微分回路と、前記同期機の有効電流信号の値と電機子電流の値との比がゲインとして設定される増幅手段とを含む、同期機の励磁装置。
voltage adjustment means for adjusting the AC output voltage of the synchronous machine so as to match the voltage set value; Armature current limiting means for controlling to pull back to the current limit set value,
The armature current limiting means comprises:
active current detection means for detecting an active current signal of the synchronous machine;
armature current detection means for detecting an armature current signal of the synchronous machine;
stabilized signal generation means for outputting a change in the active current signal as a stabilized signal;
stabilized current deviation signal generating means for outputting a value obtained by subtracting the current limit set value from the value of the armature current signal and further subtracting the value of the stabilized signal as a stabilized current deviation signal;
amplifying means for supplying a signal obtained by selecting and amplifying a low-value signal from the stabilized current deviation signal and the predetermined signal to the voltage adjusting means as an excitation strengthening signal for the synchronous machine;
and
The stabilizing signal generating means includes a single stage or a plurality of stages of incomplete differentiation circuits connected in series, and an amplifying means in which the ratio between the value of the active current signal and the value of the armature current of the synchronous machine is set as a gain. exciter for a synchronous machine, including
同期機の交流出力電圧を電圧設定値に一致させるように調整する電圧調整手段と、前記同期機の電機子電流が予め定めた過電流設定値を超過したときに当該電機子電流を予め定めた電流制限設定値まで引戻すように制御する電機子電流制限手段とを備え、
前記電機子電流制限手段は、
前記同期機の無効電力から無効電力検出値を得る無効電力検出手段と、
前記同期機の有効電流信号を検出する有効電流検出手段と、
前記同期機の電機子電流信号を検出する電機子電流検出手段と、
前記有効電流信号の変化分を安定化信号として出力する安定化信号生成手段と、
前記電機子電流信号の値から前記電流制限設定値を減算して得られる値を電流偏差信号として出力する電流偏差信号生成手段と、
前記電流偏差信号の値から前記安定化信号の値を減算して得られる値を安定化電流偏差信号として出力する安定化電流偏差信号生成手段と、
前記無効電力の進相側不感帯の境界として予め定めた進相側不感帯設定値から前記無効電力検出値を減算して得られる値を進相側不感帯偏差信号として出力する減算手段と、
前記安定化電流偏差信号および前記進相側不感帯偏差信号のうちの低値の信号を選択し増幅して得られる遅相側電流制限信号を前記同期機の励磁強め信号として前記電圧調整手段に供給する低値選択増幅手段と、
前記無効電力検出値から前記無効電力の遅相側不感帯の境界として予め定めた遅相側不感帯設定値を減算して得られる値を遅相側不感帯偏差信号として出力する減算手段と、
前記電流偏差信号および前記遅相側不感帯偏差信号のうちの低値の信号を選択し符号反転増幅して得られる遅相側電流制限信号を前記同期機の励磁弱め信号として前記電圧調整手段に供給する低値選択増幅手段と、
を備えており、
前記安定化信号生成手段は、1段又は直列接続された複数段の不完全微分回路と、前記同期機の有効電流信号の値と電機子電流の値との比がゲインとして設定される増幅手段とを含む、同期機の励磁装置。
voltage adjustment means for adjusting the AC output voltage of the synchronous machine so as to match the voltage set value; Armature current limiting means for controlling to pull back to the current limit set value,
The armature current limiting means comprises:
reactive power detection means for obtaining a reactive power detection value from the reactive power of the synchronous machine;
active current detection means for detecting an active current signal of the synchronous machine;
armature current detection means for detecting an armature current signal of the synchronous machine;
stabilized signal generation means for outputting a change in the active current signal as a stabilized signal;
current deviation signal generation means for outputting a value obtained by subtracting the current limit set value from the value of the armature current signal as a current deviation signal;
stabilized current deviation signal generating means for outputting a value obtained by subtracting the value of the stabilized signal from the value of the current deviation signal as a stabilized current deviation signal;
subtraction means for outputting a value obtained by subtracting the reactive power detection value from a phase-advance-side dead band set value predetermined as a boundary of the phase-advance-side dead band of the reactive power as a phase-advance-side dead band deviation signal;
A lagging current limit signal obtained by selecting and amplifying a low value signal from the stabilized current deviation signal and the leading dead band deviation signal is supplied to the voltage adjusting means as an excitation strengthening signal for the synchronous machine. low value selection amplification means for
a subtracting means for outputting a value obtained by subtracting a lag-side dead band set value predetermined as a boundary of the lag-side dead band of the reactive power from the reactive power detection value as a lag-side dead band deviation signal;
A lagging-phase current limiting signal obtained by selecting a low-value signal from the current deviation signal and the lagging-phase-side dead-band deviation signal and performing sign-reversal amplification is supplied to the voltage adjusting means as an excitation weakening signal for the synchronous machine. low value selection amplification means for
and
The stabilizing signal generating means includes a single stage or a plurality of stages of incomplete differentiation circuits connected in series, and an amplifying means in which the ratio between the value of the active current signal and the value of the armature current of the synchronous machine is set as a gain. exciter for a synchronous machine, including
同期機の交流出力電圧を電圧設定値に一致させるように調整する電圧調整手段と、前記同期機の電機子電流が予め定めた過電流設定値を超過したときに当該電機子電流を予め定めた電流制限設定値まで引戻すように制御する電機子電流制限手段とを備えた同期機の励磁方法であって、
前記電機子電流制限手段により、
前記同期機の有効電流信号を検出し、
前記同期機の電機子電流信号を検出し、
前記有効電流信号の変化分を安定化信号として出力し、
前記電機子電流信号の値から前記電流制限設定値を減算し更に前記安定化信号の値を減算して得られる値を安定化電流偏差信号として出力し、
前記安定化電流偏差信号および所定の信号のうちの低値の信号を選択し増幅して得られる信号を前記同期機の励磁強め信号として前記電圧調整手段に供給する、
ことを含み、
前記有効電流信号の変化分を安定化信号として出力することは、
1段又は直列接続された複数段の不完全微分回路と、前記同期機の有効電流信号の値と電機子電流の値との比がゲインとして設定される増幅手段とを用いて、前記有効電流信号の変化分を安定化信号として出力することを含む、同期機の励磁方法。
voltage adjustment means for adjusting the AC output voltage of the synchronous machine so as to match the voltage set value; A method for exciting a synchronous machine comprising:
By the armature current limiting means,
detecting an active current signal of the synchronous machine;
detecting an armature current signal of the synchronous machine;
outputting a change in the active current signal as a stabilization signal;
outputting a value obtained by subtracting the current limit setting value from the value of the armature current signal and further subtracting the value of the stabilization signal as a stabilized current deviation signal;
A signal obtained by selecting and amplifying a low value signal from the stabilized current deviation signal and the predetermined signal is supplied to the voltage adjustment means as an excitation strengthening signal for the synchronous machine;
including
Outputting the change in the active current signal as a stabilization signal includes:
Using a single stage or a plurality of stages of incomplete differentiation circuits connected in series and an amplifying means in which the ratio between the value of the active current signal of the synchronous machine and the value of the armature current is set as a gain, the active current A method of exciting a synchronous machine, including outputting a signal change as a stabilized signal .
同期機の交流出力電圧を電圧設定値に一致させるように調整する電圧調整手段と、前記同期機の電機子電流が予め定めた過電流設定値を超過したときに当該電機子電流を予め定めた電流制限設定値まで引戻すように制御する電機子電流制限手段とを備えた同期機の励磁方法であって、voltage adjustment means for adjusting the AC output voltage of the synchronous machine so as to match the voltage set value; A method for exciting a synchronous machine comprising:
前記電機子電流制限手段により、By the armature current limiting means,
前記同期機の無効電力から無効電力検出値を得て、obtaining a reactive power detection value from the reactive power of the synchronous machine;
前記同期機の有効電流信号を検出し、detecting an active current signal of the synchronous machine;
前記同期機の電機子電流信号を検出し、detecting an armature current signal of the synchronous machine;
前記有効電流信号の変化分を安定化信号として出力し、outputting a change in the active current signal as a stabilization signal;
前記電機子電流信号の値から前記電流制限設定値を減算して得られる値を電流偏差信号として出力し、outputting a value obtained by subtracting the current limit set value from the value of the armature current signal as a current deviation signal;
前記電流偏差信号の値から前記安定化信号の値を減算して得られる値を安定化電流偏差信号として出力し、outputting a value obtained by subtracting the value of the stabilized signal from the value of the current deviation signal as a stabilized current deviation signal;
前記無効電力の進相側不感帯の境界として予め定めた進相側不感帯設定値から前記無効電力検出値を減算して得られる値を進相側不感帯偏差信号として出力し、outputting a value obtained by subtracting the reactive power detection value from a predetermined phase-advance-side dead band set value as a boundary of the phase-advance-side dead band of the reactive power as a phase-advance-side dead band deviation signal,
前記安定化電流偏差信号および前記進相側不感帯偏差信号のうちの低値の信号を選択し増幅して得られる遅相側電流制限信号を前記同期機の励磁強め信号として前記電圧調整手段に供給し、A lagging current limit signal obtained by selecting and amplifying a low value signal from the stabilized current deviation signal and the leading dead band deviation signal is supplied to the voltage adjusting means as an excitation strengthening signal for the synchronous machine. death,
前記無効電力検出値から前記無効電力の遅相側不感帯の境界として予め定めた遅相側不感帯設定値を減算して得られる値を遅相側不感帯偏差信号として出力し、outputting a value obtained by subtracting a lag-side dead band set value predetermined as a boundary of the lag-side dead band of the reactive power from the reactive power detection value as a lag-side dead band deviation signal;
前記電流偏差信号および前記遅相側不感帯偏差信号のうちの低値の信号を選択し符号反転増幅して得られる遅相側電流制限信号を前記同期機の励磁弱め信号として前記電圧調整手段に供給する、A lagging-phase current limiting signal obtained by selecting a low-value signal from the current deviation signal and the lagging-phase-side dead-band deviation signal and performing sign-reversal amplification is supplied to the voltage adjusting means as an excitation weakening signal for the synchronous machine. do,
ことを含み、including
前記有効電流信号の変化分を安定化信号として出力することは、Outputting the change in the active current signal as a stabilization signal includes:
1段又は直列接続された複数段の不完全微分回路と、前記同期機の有効電流信号の値と電機子電流の値との比がゲインとして設定される増幅手段とを用いて、前記有効電流信号の変化分を安定化信号として出力することを含む、同期機の励磁方法。Using a single stage or a plurality of stages of incomplete differentiation circuits connected in series and an amplifying means in which the ratio between the value of the active current signal of the synchronous machine and the value of the armature current is set as a gain, the active current A method of exciting a synchronous machine, including outputting a signal change as a stabilized signal.
JP2019027671A 2019-02-19 2019-02-19 Excitation device and excitation method for synchronous machine Active JP7145780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019027671A JP7145780B2 (en) 2019-02-19 2019-02-19 Excitation device and excitation method for synchronous machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019027671A JP7145780B2 (en) 2019-02-19 2019-02-19 Excitation device and excitation method for synchronous machine

Publications (2)

Publication Number Publication Date
JP2020137262A JP2020137262A (en) 2020-08-31
JP7145780B2 true JP7145780B2 (en) 2022-10-03

Family

ID=72263817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019027671A Active JP7145780B2 (en) 2019-02-19 2019-02-19 Excitation device and excitation method for synchronous machine

Country Status (1)

Country Link
JP (1) JP7145780B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001103668A (en) 1999-09-28 2001-04-13 Toshiba Corp System-stabilizing device
JP2018007484A (en) 2016-07-06 2018-01-11 株式会社東芝 Exciter and excitation method of synchronous machine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5323014A (en) * 1976-08-16 1978-03-03 Hitachi Ltd Excitation control device of synchronous machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001103668A (en) 1999-09-28 2001-04-13 Toshiba Corp System-stabilizing device
JP2018007484A (en) 2016-07-06 2018-01-11 株式会社東芝 Exciter and excitation method of synchronous machine

Also Published As

Publication number Publication date
JP2020137262A (en) 2020-08-31

Similar Documents

Publication Publication Date Title
US9429136B2 (en) Control system of variable speed pumped storage hydropower system and method of controlling the same
CN107836077B (en) Motor control device
JPWO2013084461A1 (en) Electric motor control device
CN110649632B (en) Control method and device of high-excitation-multiple magnetically-controlled high-voltage shunt reactor
US20180226908A1 (en) Method and system for adjusting wind turbine power take-off
JP5866070B1 (en) Multi-winding motor drive control device
CN107104621B (en) Weak magnetic control method and device for running speed of alternating current motor
JP2015023661A (en) Current control device for synchronous motor
US5644206A (en) Control unit for induction motor
JP7145780B2 (en) Excitation device and excitation method for synchronous machine
JP2018057170A (en) Controller for alternating electric motor
JP6736390B2 (en) Excitation device and excitation method for synchronous machine
JPS62110499A (en) Operation control for variable speed pumping-up power generation system
JP2016508022A (en) Motor control device and motor control method
KR20180019726A (en) How to adjust the wind turbine power draw
JP5207910B2 (en) Operation control method and operation control apparatus for variable speed generator motor
WO2015083449A1 (en) Electric motor control device and control method
JP2003209996A (en) Controller of synchronous machine
JP6391096B2 (en) AC motor current control device
KR101552301B1 (en) Non-tuning synchronous generator for outputting high-quality power
JP2005065423A (en) Controller for self-excitation converter
RU2666125C1 (en) Three phase device for power transformation with fixed neutral point
US20200274474A1 (en) Control device and control method for synchronous electric motor
KR102036031B1 (en) Apparatus for controlling inverter
CN111201703B (en) Method for operating multiple motors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220920

R150 Certificate of patent or registration of utility model

Ref document number: 7145780

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150