JP2020137262A - Exciting arrangement of synchronous machine and excitation method - Google Patents

Exciting arrangement of synchronous machine and excitation method Download PDF

Info

Publication number
JP2020137262A
JP2020137262A JP2019027671A JP2019027671A JP2020137262A JP 2020137262 A JP2020137262 A JP 2020137262A JP 2019027671 A JP2019027671 A JP 2019027671A JP 2019027671 A JP2019027671 A JP 2019027671A JP 2020137262 A JP2020137262 A JP 2020137262A
Authority
JP
Japan
Prior art keywords
signal
current
value
synchronous machine
armature current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019027671A
Other languages
Japanese (ja)
Other versions
JP7145780B2 (en
Inventor
雅彦 柴田
Masahiko Shibata
雅彦 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2019027671A priority Critical patent/JP7145780B2/en
Publication of JP2020137262A publication Critical patent/JP2020137262A/en
Application granted granted Critical
Publication of JP7145780B2 publication Critical patent/JP7145780B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Control Of Eletrric Generators (AREA)

Abstract

To provide an excitation arrangement of a synchronous machine, capable of performing a stable limitation control when performing an over-current limit control.SOLUTION: An exciting arrangement of a synchronous machine, comprises: voltage adjustment means of adjusting an AC output voltage of the synchronous machine so as to be matched to a voltage setting value; and armature current limitation means of controlling the armature current so as to be returned to a current limitation setting value when the armature current of the synchronous machine exceeds a preset overcurrent setting value. The armature current limitation means comprises: stabilization signal generation means of outputting a changed portion of an effective current signal as a stabilization signal; stabilization current deviation signal generation means of outputting a value obtained by subtracting the current limitation setting value and further the stabilization signal from the value of a signal of the armature current as a stabilization current deviation signal; and amplification means of supplying to the voltage adjustment means the signal obtained by selecting and amplifying the signal of a low value from the stabilization current deviation signal and a prescribed signal as an excitation enhanced signal of the synchronous machine.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、同期機の励磁装置および励磁方法に関する。 An embodiment of the present invention relates to an exciting device and an exciting method of a synchronous machine.

同期機の励磁装置の機能の一つとして、電機子電流が同期機の耐量を超えないように制限する過電流制限機能がある。 One of the functions of the exciter of the synchronous machine is an overcurrent limiting function that limits the armature current so as not to exceed the withstand capacity of the synchronous machine.

一般的な過電流制限機能は、遅相運転時には同期機の界磁電圧を低減し、逆に進相運転時には同期機の界磁電圧を増加させることで同期機の電機子電流を低減するようにしている。 The general overcurrent limiting function reduces the field voltage of the synchronous machine during slow-phase operation, and conversely increases the field voltage of the synchronous machine during phase-advance operation to reduce the armature current of the synchronous machine. I have to.

特開昭58−218899号公報Japanese Unexamined Patent Publication No. 58-218899 特開平6−133599号公報Japanese Unexamined Patent Publication No. 6-133599 特開平8−116697号公報Japanese Unexamined Patent Publication No. 8-116679 特開平2018−007484号公報JP-A-2018-007484

一般に、過電流制限機能は、電機子電流に対する電流制限設定値を示す信号(以下、「電機子電流制限設定信号IL」)と電機子電流(以下、「電機子電流Ig」)との偏差(=IL−Ig)を示す信号(以下、「電機子電流偏差信号ΔIg」)を用いて界磁電圧を増減することで電機子電流偏差信号ΔIgを0に近付ける機能であるが、進相運転時には−ΔIg(=Ig−IL)によって界磁電圧を増減するようになるため、電機子電流Igに含まれる有効電流の作用により負制動現象を引き起こす場合がある。 In general, the overcurrent limiting function is a deviation (hereinafter, "armature current Ig") between a signal indicating a current limit setting value for an armature current (hereinafter, "armature current limit setting signal IL") and an armature current (hereinafter, "armature current Ig"). = IL-Ig) (hereinafter, "armature current deviation signal ΔIg") is used to increase or decrease the field voltage to bring the armature current deviation signal ΔIg closer to 0, but during phase advance operation Since the field voltage is increased or decreased by −ΔIg (= Ig−IL), a negative braking phenomenon may be caused by the action of the active current included in the armature current Ig.

電機子電流Igは、有効電流(以下、「有効電流IP」)と無効電流(以下、「無効電流IQ」)とを用いて次式で表される。 The armature current Ig is expressed by the following equation using an active current (hereinafter, “active current IP”) and a reactive current (hereinafter, “reactive current IQ”).

Ig=(IP+IQ1/2 …(1)
(1)式において電機子電流Igを有効電流IPで偏微分すると次式が得られる。
Ig = (IP 2 + IQ 2 ) 1/2 ... (1)
The following equation is obtained by partially differentiating the armature current Ig with respect to the effective current IP in equation (1).

∂Ig/∂IP=1/2・2・IP・(IP+IQ−1/2=IP/Ig …(2)
(2)式より、電機子電流Igには有効電流IPに比例して変化する成分が含まれることがわかる。
∂Ig / ∂IP = 1/2 ・ 2 ・ IP ・ (IP 2 + IQ 2 ) -1 / 2 = IP / Ig… (2)
From equation (2), it can be seen that the armature current Ig contains a component that changes in proportion to the effective current IP.

同期機の励磁装置において、過電流制限制御を行う場合、電機子電流偏差信号ΔIgを増幅して励磁制御を行うことになるが、電機子電流に含まれる有効電流IPに比例した信号で励磁制御を行うと、制御系の制動力が低下し制御系が不安定になる場合がある。特に進相領域で過電流制限制御を行う場合、有効電流IPの増減に応じて励磁制御出力を増減することになるため、制御系が不安定になりやすい。 When the overcurrent limit control is performed in the exciting device of the synchronous machine, the armature current deviation signal ΔIg is amplified to perform the excitation control, but the excitation control is performed by a signal proportional to the effective current IP included in the armature current. If this is done, the braking force of the control system may decrease and the control system may become unstable. In particular, when overcurrent limiting control is performed in the phase advance region, the excitation control output is increased or decreased according to the increase or decrease of the active current IP, so that the control system tends to become unstable.

本発明が解決しようとする課題は、同期機の励磁装置において過電流制限制御を行うに際して安定した制限制御を行うことができる、同期機の励磁装置および励磁方法を提供することにある。 An object of the present invention to be solved is to provide an exciting device and an exciting method for a synchronous machine, which can perform stable limiting control when performing overcurrent limiting control in the exciting device of the synchronous machine.

実施形態に係る同期機の励磁装置は、同期機の交流出力電圧を電圧設定値に一致させるように調整する電圧調整手段と、前記同期機の電機子電流が予め定めた過電流設定値を超過したときに当該電機子電流を予め定めた電流制限設定値まで引戻すように制御する電機子電流制限手段とを備える。前記電機子電流制限手段は、前記同期機の有効電流信号を検出する有効電流検出手段と、前記同期機の電機子電流信号を検出する電機子電流検出手段と、前記有効電流信号の変化分を安定化信号として出力する安定化信号生成手段と、前記電機子電流信号の値から前記電流制限設定値を減算し更に前記安定化信号の値を減算して得られる値を安定化電流偏差信号として出力する安定化電流偏差信号生成手段と、前記安定化電流偏差信号および所定の信号のうちの低値の信号を選択し増幅して得られる信号を前記同期機の励磁強め信号として前記電圧調整手段に供給する増幅手段と、を備えている。 The exciter of the synchronous machine according to the embodiment includes a voltage adjusting means for adjusting the AC output voltage of the synchronous machine so as to match the voltage set value, and the armature current of the synchronous machine exceeds a predetermined overcurrent set value. The armature current limiting means for controlling the armature current to be pulled back to a predetermined current limit set value is provided. The armature current limiting means includes an effective current detecting means for detecting the effective current signal of the synchronous machine, an armature current detecting means for detecting the armature current signal of the synchronous machine, and a change in the effective current signal. A stabilizing signal generating means that outputs as a stabilizing signal and a value obtained by subtracting the current limit set value from the value of the armature current signal and further subtracting the value of the stabilizing signal are used as a stabilizing current deviation signal. The voltage adjusting means uses the stabilized current deviation signal generating means to be output and the signal obtained by selecting and amplifying the stabilized current deviation signal and the low value signal among the predetermined signals as the excitation strengthening signal of the synchronous machine. It is provided with an amplification means for supplying the current.

本発明によれば、同期機の励磁装置において過電流制限制御を行うに際して安定した制限制御を行うことができる。 According to the present invention, stable limiting control can be performed when overcurrent limiting control is performed in the exciting device of the synchronous machine.

第1の実施形態に係る同期機の励磁装置の構成を示す図。The figure which shows the structure of the exciter of the synchronous machine which concerns on 1st Embodiment. 同実施形態における電機子電流の制限作用について説明するための概念図。The conceptual diagram for demonstrating the armature current limiting action in the same embodiment. 第2の実施形態に係る同期機の励磁装置の構成を示す図。The figure which shows the structure of the exciter of the synchronous machine which concerns on 2nd Embodiment.

以下、実施の形態について、図面を参照して説明する。 Hereinafter, embodiments will be described with reference to the drawings.

[第1の実施形態]
最初に、図1および図2を参照して、第1の実施形態について説明する。
[First Embodiment]
First, the first embodiment will be described with reference to FIGS. 1 and 2.

(構成)
図1は、第1の実施形態に係る同期機の励磁装置の構成を示す図である。
(Constitution)
FIG. 1 is a diagram showing a configuration of an exciting device of the synchronous machine according to the first embodiment.

1は同期機であり、固定子鉄心に巻装された電機子巻線(または固定子巻線ともいう)1Aと、回転子リムに固定された磁極鉄心に巻装された界磁巻線1Bとから構成され、界磁巻線1Bにはスリップリングおよびブラシからなる摺動接触部2を介して静止部側の励磁電源から界磁電流Ifが供給されるようになっている。 Reference numeral 1 denotes a synchronous machine, which is an armature winding (also called a stator winding) 1A wound around a stator core and a field winding 1B wound around a magnetic pole core fixed to a rotor rim. The field current If is supplied to the field winding 1B from the exciting power source on the stationary portion side via the sliding contact portion 2 including the slip ring and the brush.

同期機1の主回路において、3は同期機1で発生した電圧を系統電圧まで昇圧する主要変圧器であり、4は同期機1を電力系統5に連系する並列用遮断器である。 In the main circuit of the synchronous machine 1, 3 is a main transformer that boosts the voltage generated by the synchronous machine 1 to the system voltage, and 4 is a parallel circuit breaker that connects the synchronous machine 1 to the power system 5.

また、同期機1の界磁回路において、6は励磁用変圧器7を介して同期機1から供給される交流電力を整流して界磁巻線1Bに界磁電流Ifを供給するためのサイリスタ整流器である。8は同期機1の交流出力電圧Vgを目標値に一致させるように調整する自動電圧調整器(AVR)である。 Further, in the field circuit of the synchronous machine 1, 6 is a thyristor for rectifying the AC power supplied from the synchronous machine 1 via the exciting transformer 7 and supplying the field current If to the field winding 1B. It is a rectifier. Reference numeral 8 denotes an automatic voltage regulator (AVR) that adjusts the AC output voltage Vg of the synchronous machine 1 so as to match the target value.

自動電圧調整器8は、電圧検出器8A、有効電力検出器8B、無効電力検出器8C、除算器8D、除算器8E、電流算出器8F、反限時タイマ8G、選択器8H、減算器8J、微分器8K、増幅器8L、減算器8M、減算器8N、低値選択器8P、増幅器8Q、減算器8R、低値選択器8S、増幅器8T、電圧設定器8U、減算器8V、高値選択器8W、低値選択器8X、および電圧調整器8Yを有する。 The automatic voltage regulator 8 includes a voltage detector 8A, an active power detector 8B, an ineffective power detector 8C, a divider 8D, a divider 8E, a current calculator 8F, a counter time timer 8G, a selector 8H, a subtractor 8J, and the like. Differentiator 8K, amplifier 8L, subtractor 8M, subtractor 8N, low value selector 8P, amplifier 8Q, subtractor 8R, low value selector 8S, amplifier 8T, voltage setter 8U, subtractor 8V, high value selector 8W , Low value selector 8X, and voltage regulator 8Y.

電圧検出器8Aは、計器用変圧器9を介して同期機1の交流出力電圧Vgに比例する電圧を検出し、これを交流電圧検出値Vgd(PU値)として出力する。 The voltage detector 8A detects a voltage proportional to the AC output voltage Vg of the synchronous machine 1 via the voltage transformer 9, and outputs this as an AC voltage detection value Vgd (PU value).

有効電力検出器8Bは、計器用変圧器9と計器用変流器10を介して同期機1の有効電力Pgに比例する有効電力信号を検出し、これを有効電力検出値Pgd(PU値)として出力する。 The active power detector 8B detects an active power signal proportional to the active power Pg of the synchronous machine 1 via the voltage transformer 9 and the instrument transformer 10, and detects this as the active power detection value Pgd (PU value). Output as.

無効電力検出器8Cは、計器用変圧器9と計器用変流器10を介して同期機1の無効電力Qgに比例する無効電力信号を検出し、これを無効電力検出値Qgd(PU値)として出力する。 The reactive power detector 8C detects a reactive power signal proportional to the reactive power Qg of the synchronous machine 1 via the voltage transformer 9 and the current transformer 10 for the instrument, and detects this as the reactive power detection value Qgd (PU value). Output as.

除算器8Dは、有効電力検出値Pgdと交流電圧検出値Vgdとを入力し、有効電力検出値Pgdを交流電圧検出値Vgdで除して得られる値を有効電流信号IPdとして出力する。 The divider 8D inputs the active power detection value Pgd and the AC voltage detection value Vgd, and outputs the value obtained by dividing the active power detection value Pgd by the AC voltage detection value Vgd as the effective current signal IPd.

上述した電圧検出器8A、有効電力検出器8B、および除算器8Dは、同期機1の有効電流IPを有効電流信号IPdとして検出する有効電流検出手段を構成する。 The voltage detector 8A, the active power detector 8B, and the divider 8D described above constitute an effective current detecting means for detecting the active current IP of the synchronous machine 1 as an effective current signal IPd.

除算器8Eは、無効電力検出値Qgdと交流電圧検出値Vgdとを入力し、同期機1の無効電力検出値Qgdを交流電圧検出値Vgdで除して得られる値を無効電流信号IQdとして出力する。 The divider 8E inputs the reactive power detection value Qgd and the AC voltage detection value Vgd, and outputs the value obtained by dividing the reactive power detection value Qgd of the synchronous machine 1 by the AC voltage detection value Vgd as the reactive current signal IQd. To do.

上述した電圧検出器8A、無効電力検出器8C、および除算器8Eは、同期機1の無効電流IQを無効電流信号IQdとして検出する無効電流検出手段を構成する。 The voltage detector 8A, the reactive power detector 8C, and the reactive current 8E described above constitute a reactive current detecting means for detecting the reactive current IQ of the synchronous machine 1 as a reactive current signal IQd.

電流算出器8Fは、有効電流信号IPdの値の自乗と無効電流信号IQdの値の自乗との和の平方根を算出し、これを同期機1の電機子電流Igに比例する電機子電流信号Igdとして出力する。この電流算出器8Fは、上記電機子電流信号Igdを検出する電機子電流検出手段を構成する。 The current calculator 8F calculates the square root of the sum of the square of the value of the effective current signal IPd and the square of the value of the invalid current signal IQd, and calculates this as the armature current signal Igd proportional to the armature current Ig of the synchronous machine 1. Output as. The current calculator 8F constitutes an armature current detecting means for detecting the armature current signal Igd.

反限時タイマ8Gは、電機子電流信号Igdを入力し、電機子電流信号Igdの値と予め定めた過電流設定値Iocとの差分の積分値が予め定めた過電流限時設定値Tocを超過した時に電流制限動作信号OCをオン出力する。 The counter-time limit timer 8G inputs the armature current signal Igd, and the integrated value of the difference between the armature current signal Igd value and the preset overcurrent set value Ioc exceeds the predetermined overcurrent limit set value Toc. Occasionally, the current limit operation signal OC is output on.

選択器8Hは、電流制限動作信号OCを入力し、電流制限動作信号OCがオフの時は制限設定1(瞬時電流制限設定値)を選択し、一方、電流制限動作信号OCがオンの時は制限設定2(時限電流制限設定値)を選択し、選択した方を制限設定信号ILとして出力する。 The selector 8H inputs the current limit operation signal OC, selects limit setting 1 (instantaneous current limit set value) when the current limit operation signal OC is off, and on the other hand, when the current limit operation signal OC is on. Limit setting 2 (timed current limit set value) is selected, and the selected one is output as the limit setting signal IL.

なお、制限設定1には同期機1の電機子電流Igを瞬時に制限する場合の閾値が適用され、制限設定2には同期機1の電機子電流Igを過電流限時設定値Tocによる遅延を持って制限する場合の閾値が適用される。過電流設定値Iocは制限設定1よりも小さい値が設定され、制限設定2は過電流設定値Iocよりも小さい値が設定される。すなわち、「制限設定2<Ioc<制限設定1」の関係が成り立つように設定される。 A threshold value for instantaneously limiting the armature current Ig of the synchronous machine 1 is applied to the limit setting 1, and the armature current Ig of the synchronous machine 1 is delayed by the overcurrent time limit set value Toc to the limit setting 2. The threshold for holding and limiting is applied. The overcurrent set value Ioc is set to a value smaller than the limit setting 1, and the limit setting 2 is set to a value smaller than the overcurrent set value Ioc. That is, the relationship of "limit setting 2 <Ioc <limit setting 1" is set to hold.

減算器8Jは、電機子電流信号Igdと制限設定信号ILとを入力し、電機子電流信号Igdの値から制限設定信号ILの値を減算して得られる値を電流偏差信号Ieとして出力する。すなわち、減算器8Jは、同期機1の電機子電流Igに比例する電機子電流信号Igdと電流を制限するレベルを示す制限設定信号ILとを入力して、その差分を電流偏差信号Ieとして出力する。 The subtractor 8J inputs the armature current signal Igd and the limit setting signal IL, and outputs a value obtained by subtracting the value of the limit setting signal IL from the value of the armature current signal Igd as the current deviation signal Ie. That is, the subtractor 8J inputs the armature current signal Igd proportional to the armature current Ig of the synchronous machine 1 and the limit setting signal IL indicating the level of limiting the current, and outputs the difference as the current deviation signal Ie. To do.

微分器8Kは、有効電流信号IPdを入力し、有効電流信号IPdを不完全微分(inexact differential)して得られる値を有効電流偏差信号dIPとして出力する。 The differentiator 8K inputs the effective current signal IPd and outputs the value obtained by inexact differential of the effective current signal IPd as the effective current deviation signal dIP.

増幅器8Lは、有効電流偏差信号dIPを入力し、有効電流偏差信号dIPの値に所定のゲインを乗じて得られる値を安定化信号STBとして出力する。 The amplifier 8L inputs the effective current deviation signal dIP, and outputs a value obtained by multiplying the value of the effective current deviation signal dIP by a predetermined gain as a stabilization signal STB.

上述した微分器8Kおよび増幅器8Lは、有効電流信号IPdの変化分(負制動現象の要因となる有効電流変動に比例する成分)を安定化信号STBとして出力する安定化信号生成手段を構成する。 The above-mentioned differentiator 8K and amplifier 8L constitute a stabilization signal generation means that outputs a change in the effective current signal IPd (a component proportional to the fluctuation of the effective current that causes a negative braking phenomenon) as a stabilization signal STB.

減算器8Mは、電流偏差信号Ieと安定化信号STBとを入力し、電流偏差信号Ieの値から安定化信号STBの値を減算して得られる値を安定化電流偏差信号Iesとして出力する。 The subtractor 8M inputs the current deviation signal Ie and the stabilization signal STB, and outputs a value obtained by subtracting the value of the stabilization signal STB from the value of the current deviation signal Ie as the stabilization current deviation signal Eyes.

上述した反限時タイマ8G、選択器8H、減算器8J、および減算器8Mは、電機子電流信号Igdの値から制限設定1(瞬時電流制限設定値)または制限設定2の値(時限電流制限設定値)を減算し更に安定化信号STBの値を減算して得られる値を安定化電流偏差信号Iesとして出力する安定化電流偏差信号生成手段を構成する。 The above-mentioned counter-time limit timer 8G, selector 8H, subtractor 8J, and subtractor 8M have a limit setting 1 (instantaneous current limit setting value) or a limit setting 2 value (timed current limit setting) from the value of the armature current signal Igd. The value) is subtracted, and the value obtained by further subtracting the value of the stabilization signal STB is output as the stabilization current deviation signal Eyes, which constitutes a stabilizing current deviation signal generation means.

減算器8Nは、無効電力の進相側不感帯の境界として予め定めた閾値(進相側不感帯設定値)DB1と無効電力検出値Qgdとを入力し、進相側不感帯設定値DB1から無効電力検出値Qgdを減算して得られる値を進相側不感帯偏差信号DBe1として出力する。 The subtractor 8N inputs a predetermined threshold value (phase advance side dead zone set value) DB1 and an invalid power detection value Qgd as a boundary of the phase advance side dead zone, and detects the invalid power from the phase advance side dead band set value DB1. The value obtained by subtracting the value Qgd is output as the phase advance side dead zone deviation signal DBe1.

低値選択器8Pは、安定化電流偏差信号Iesと進相側不感帯偏差信号DBe1とを入力し、低値選択して得られる信号を進相側電流偏差信号Iedとして出力する。 The low value selector 8P inputs the stabilized current deviation signal Ies and the phase-advancing side dead zone deviation signal DBe1, and outputs the signal obtained by selecting the low value as the phase-advancing side current deviation signal Ied.

増幅器8Qは、進相側電流偏差信号Iedを入力し、進相側電流偏差信号Iedの値に所定の正のゲインを乗じて得られる値を進相側電流制限信号Ildとして出力する。 The amplifier 8Q inputs the phase-advancing side current deviation signal Ied, and outputs a value obtained by multiplying the value of the phase-advancing side current deviation signal Ied by a predetermined positive gain as the phase-advancing side current limiting signal Ild.

上述した低値選択器8Pおよび増幅器8Qは、安定化電流偏差信号Iesおよび進相側不感帯偏差信号DBe1のうちの低値の信号を選択し増幅して得られる進相側電流制限信号Ildを同期機1の励磁強め信号として電圧調整手段81の高値選択器8Wに供給する低値選択増幅手段を構成する。 The low value selector 8P and the amplifier 8Q described above synchronize the phase advance side current limit signal Ild obtained by selecting and amplifying the low value signal among the stabilized current deviation signal Eyes and the phase advance side dead zone deviation signal DBe1. A low value selective amplification means supplied to the high value selector 8W of the voltage adjusting means 81 as an excitation strengthening signal of the machine 1 is configured.

減算器8Rは、無効電力検出値Qgdと無効電力の遅相側不感帯の境界として予め定めた閾値(遅相側不感帯設定値)DB2とを入力し、無効電力検出値Qgdから遅相側不感帯設定値DB2を減算して得られる値を遅相側不感帯偏差信号DBe2として出力する。 The subtractor 8R inputs a predetermined threshold value (slow-phase side dead zone setting value) DB2 as a boundary between the negative power detection value Qgd and the slow-phase side dead zone of the negative power, and sets the slow-phase side dead zone from the negative power detection value Qgd. The value obtained by subtracting the value DB2 is output as the late phase insensitive band deviation signal DBe2.

低値選択器8Sは、電流偏差信号Ieと遅相側不感帯偏差信号DBe2とを入力し、低値選択して得られる信号を遅相側電流偏差信号Iegとして出力する。 The low value selector 8S inputs the current deviation signal Ie and the slow phase side dead zone deviation signal DBe2, and outputs the signal obtained by selecting the low value as the late phase side current deviation signal Ieg.

増幅器8Tは、遅相側電流偏差信号Iegの値に所定の負のゲインを乗じて得られる値を遅相側電流制限信号Ilgとして出力する。 The amplifier 8T outputs a value obtained by multiplying the value of the slow-phase side current deviation signal Ieg by a predetermined negative gain as the slow-phase side current limiting signal Ilg.

上述した低値選択器8Sおよび増幅器8Tは、電流偏差信号Ieおよび遅相側不感帯偏差信号DBe2のうちの低値の信号を選択し符号反転増幅して得られる遅相側電流制限信号Ilgを同期機1の励磁弱め信号として電圧調整手段81の低値選択器8Xに供給する低値選択増幅手段を構成する。 The low value selector 8S and the amplifier 8T described above synchronize the slow phase side current limiting signal Ilg obtained by selecting the low value signal from the current deviation signal Ie and the slow phase side dead zone deviation signal DBe2 and amplifying the sign inversion. A low value selective amplification means supplied to the low value selector 8X of the voltage adjusting means 81 as an excitation weakening signal of the machine 1 is configured.

電圧設定器8Uは、予め定めた電圧設定値Vrを出力する。 The voltage setter 8U outputs a predetermined voltage set value Vr.

減算器8Vは、電圧設定値Vrから交流電圧検出値Vgdを減算して得られる値を電圧偏差信号Veとして出力する。 The subtractor 8V outputs a value obtained by subtracting the AC voltage detection value Vgd from the voltage set value Vr as a voltage deviation signal Ve.

高値選択器8Wは、電圧偏差信号Veと進相側電流制限信号Ildとを入力し、高値選択して得られる信号を電圧偏差信号Ve2として出力する。すなわち、高値選択器8Wは、高値選択して得られる信号を新たな電圧偏差信号として電圧調整器8Y側へ供給する。 The high value selector 8W inputs the voltage deviation signal Ve and the phase advance side current limiting signal Ild, and outputs the signal obtained by selecting the high value as the voltage deviation signal Ve2. That is, the high price selector 8W supplies the signal obtained by selecting the high price to the voltage regulator 8Y side as a new voltage deviation signal.

低値選択器8Xは、電圧偏差信号Ve2と遅相側電流制限信号Ilgとを入力し、低値選択して得られる値を電圧偏差信号Ve3として出力する。すなわち、低値選択器8Xは、低値選択して得られる値を新たな電圧偏差信号として電圧調整器8Y側へ供給する。 The low value selector 8X inputs the voltage deviation signal Ve2 and the slow phase side current limiting signal Ilg, and outputs the value obtained by selecting the low value as the voltage deviation signal Ve3. That is, the low value selector 8X supplies the value obtained by selecting the low value to the voltage regulator 8Y side as a new voltage deviation signal.

電圧調整器8Yは、電圧偏差信号Ve3を入力し、電圧偏差信号Ve3を増幅した位相制御信号αに応じたタイミングでサイリスタ整流器6のゲート信号Pを出力する。すなわち、電圧調整器8Yは、電圧偏差信号Ve3が0になるように、サイリスタ整流器6へ供給するゲート信号Pのタイミングを制御する。 The voltage regulator 8Y inputs the voltage deviation signal Ve3 and outputs the gate signal P of the thyristor rectifier 6 at a timing corresponding to the phase control signal α that amplifies the voltage deviation signal Ve3. That is, the voltage regulator 8Y controls the timing of the gate signal P supplied to the thyristor rectifier 6 so that the voltage deviation signal Ve3 becomes 0.

図1において、81は、同期機1の交流出力電圧Vgを目標値に一致させるように調整する電圧調整機能の基本部分(電圧調整手段)であり、上述した電圧設定器8U、減算器8V、高値選択器8W、低値選択器8X、および電圧調整器8Yを含む。 In FIG. 1, reference numeral 81 denotes a basic part (voltage adjusting means) of a voltage adjusting function for adjusting the AC output voltage Vg of the synchronous machine 1 so as to match a target value, and the voltage setter 8U, the subtractor 8V, described above. Includes high value selector 8W, low value selector 8X, and voltage regulator 8Y.

一方、80は、例えば同期機1の電機子電流Igの値が過電流設定値Iocを超過したときに当該電機子電流を制限設定2(時限電流制限設定値)まで引戻すように制御する過電流制限機能等を実現する部分(電機子電流制限手段)であり、上述した電圧検出器8A、有効電力検出器8B、無効電力検出器8C、除算器8D、除算器8E、電流算出器8F、反限時タイマ8G、選択器8H、減算器8J、微分器8K、増幅器8L、減算器8M、減算器8N、低値選択器8P、増幅器8Q、減算器8R、低値選択器8S、および増幅器8Tを含む。 On the other hand, 80 controls the armature current to be pulled back to the limit setting 2 (timed current limit set value) when, for example, the value of the armature current Ig of the synchronous machine 1 exceeds the overcurrent set value Ioc. It is a part (armature current limiting means) that realizes the current limiting function, etc., and is the voltage detector 8A, active power detector 8B, invalid power detector 8C, divider 8D, divider 8E, current calculator 8F, described above. Reverse time timer 8G, selector 8H, subtractor 8J, differentiator 8K, amplifier 8L, subtractor 8M, subtractor 8N, low value selector 8P, amplifier 8Q, subtractor 8R, low value selector 8S, and amplifier 8T including.

なお、上述した進相側不感帯設定値DB1には、それより遅相側では電機子電流制限を作動させない無効電力値が設定され、遅相側不感帯設定値DB2には、それより進相側では電機子電流制限を作動させない無効電力値が設定される。 The above-mentioned phase-advancing side dead zone setting value DB1 is set with an invalid power value that does not activate the armature current limit on the slower phase side, and the slow phase side dead zone setting value DB2 is set on the phase advance side. An invalid power value is set that does not activate the armature current limit.

また、微分器8Kは、1段又は直列接続された複数段の不完全微分回路を装備するものとするが、入力信号の直流成分を除去して変化分を出力する機能を有するものであれば、いかなる回路を用いて構成しても良い。 Further, the differentiator 8K shall be equipped with a one-stage or a plurality of stages of incomplete differentiating circuits connected in series, but if it has a function of removing the DC component of the input signal and outputting the change. , Any circuit may be used.

また、増幅器8Lの増幅ゲインとしては、任意の固定値が設定されてもよいが、有効電流信号IPdの値と電機子電流信号Igdの値との比が設定されてもよい。例えば、増幅器8Lの増幅ゲインとして、(2)式からもわかるようにIP/Ig(すなわち、IPd/Igd)を設定すれば、電機子電流信号Igdに含まれる有効電流変動に比例する成分を除去できる。増幅器8Lの増幅ゲインには、1倍または、それより小さい値が設定される。 Further, an arbitrary fixed value may be set as the amplification gain of the amplifier 8L, but the ratio of the value of the effective current signal IPd and the value of the armature current signal Igd may be set. For example, if IP / Ig (that is, IPd / Igd) is set as the amplification gain of the amplifier 8L as can be seen from Eq. (2), the component proportional to the effective current fluctuation contained in the armature current signal Igd is removed. it can. The amplification gain of the amplifier 8L is set to a value of 1 times or less.

(作用)
図1の構成において、並列用遮断器4が投入され、同期機1が電力系統5と並列運転している状態において、電機子電流信号Igdが制限設定2を下回っていれば電流偏差信号Ieが負の値となるため、進相側電流制限信号Ildは負の値を示し、遅相側電流制限信号Ilgは正の値を示す。このとき高値選択器8Wおよび低値選択器8Xでは電圧偏差信号Veが選択され、電圧偏差信号Ve3として電圧調整器8Yに入力される。電圧調整器8Yは電圧偏差信号Ve3が0になるようにゲート信号Pのタイミングを制御するので、結果的に交流電圧検出値Vgdが電圧設定値Vrと一致するように同期機1の交流出力電圧Vgが制御される。
(Action)
In the configuration of FIG. 1, when the parallel circuit breaker 4 is turned on and the synchronous machine 1 is operating in parallel with the power system 5, if the armature current signal Igd is less than the limit setting 2, the current deviation signal Ie is generated. Since it is a negative value, the phase-advancing side current limiting signal Ild shows a negative value, and the slow-phase side current limiting signal Ilg shows a positive value. At this time, the voltage deviation signal Ve is selected by the high value selector 8W and the low value selector 8X, and is input to the voltage regulator 8Y as the voltage deviation signal Ve3. Since the voltage regulator 8Y controls the timing of the gate signal P so that the voltage deviation signal Ve3 becomes 0, the AC output voltage of the synchronous machine 1 is eventually matched so that the AC voltage detection value Vgd matches the voltage set value Vr. Vg is controlled.

図2は、同期機1の電機子電流Igを制限する作用について説明するための概念図である。図2では横軸を有効電流IP、縦軸を無効電流IQとして同期機1の運転点を示しており、本例では過電流設定値Iocを1.05PU、制限設定2を1.0PU、進相側不感帯設定値DB1を−0.1PU、遅相側不感帯設定値DB2を0.3PUとしている。
ここでは4つのケースを挙げて説明する。
FIG. 2 is a conceptual diagram for explaining the action of limiting the armature current Ig of the synchronous machine 1. In FIG. 2, the horizontal axis is the active current IP and the vertical axis is the reactive current IQ, and the operating points of the synchronous machine 1 are shown. In this example, the overcurrent setting value Ioc is 1.05 PU, the limit setting 2 is 1.0 PU, and the advance is advanced. The phase side dead zone set value DB1 is −0.1 PU, and the late phase side dead zone set value DB2 is 0.3 PU.
Here, four cases will be described.

・「ケース1」
同期機1の電機子電流Igが増加し、図2中の運転点Aに到達したとする。このとき、電機子電流信号Igdの値が過電流設定値Iocを超過するので、その差分の積分値が過電流限時設定値Tocを超過した時点で電流制限動作信号OCがオン出力され、制限設定1に代えて制限設定2が制限設定信号ILとして出力され、これにより電機子電流信号Igdと制限設定信号ILとの差分である電流偏差信号Ieが正の値となる。
・ "Case 1"
It is assumed that the armature current Ig of the synchronous machine 1 increases and reaches the operating point A in FIG. At this time, since the value of the armature current signal Igd exceeds the overcurrent set value Ioc, the current limit operation signal OC is turned on and output when the integrated value of the difference exceeds the overcurrent time limit set value Toc, and the limit setting is performed. The limit setting 2 is output as the limit setting signal IL instead of 1, so that the current deviation signal Ie, which is the difference between the armature current signal Igd and the limit setting signal IL, becomes a positive value.

運転点Aでは進相側不感帯偏差信号DBe1(=DB1−Qgd)も正の値であるため、低値選択器8Pにより低値選択して得られる進相側電流偏差信号Ied、および増幅器8Qで増幅された進相側電流制限信号Ildも正の値となる。 Since the phase-advancing dead zone deviation signal DBe1 (= DB1-Qgd) is also a positive value at the operating point A, the phase-advancing current deviation signal Ied obtained by selecting a low value with the low value selector 8P and the amplifier 8Q The amplified phase-advancing current limiting signal Ild also has a positive value.

結果的に、高値選択器8Wにより進相側電流制限信号Ildが電圧偏差信号Ve2として選択され、電圧調整器8Yが界磁電流Ifを増加させるため、交流出力電圧Vgや無効電流IQも増加する。有効電流IPは、有効電力Pgが一定の場合、交流出力電圧Vgの増加に伴い減少する。 As a result, the phase-advancing current limiting signal Ild is selected as the voltage deviation signal Ve2 by the high value selector 8W, and the voltage regulator 8Y increases the field current If, so that the AC output voltage Vg and the reactive current IQ also increase. .. The active current IP decreases as the AC output voltage Vg increases when the active power Pg is constant.

本ケースでは、進相側不感帯偏差信号DBe1が0になる前に電流偏差信号Ieが0に到達するので、電機子電流Igが制限設定2に到達した時点、すなわち運転点A’で増幅器8Qが出力する進相側電流制限信号Ildが0となって定常状態に落ち着く。 In this case, since the current deviation signal Ie reaches 0 before the phase-advancing dead zone deviation signal DBe1 becomes 0, the amplifier 8Q operates at the time when the armature current Ig reaches the limit setting 2, that is, at the operating point A'. The output phase-advancing current limit signal Ild becomes 0 and settles in a steady state.

上記説明において、低値選択器8Pの入力信号の一つは、電流偏差信号Ieの値から安定化信号STBの値を減算して得られる安定化電流偏差信号Iesであるが、定常状態に落ち着いた後の安定化信号STBの値は0になるため、安定化信号STBによって定常状態に落ち着いた後の運転点が変わることはない。 In the above description, one of the input signals of the low value selector 8P is the stabilized current deviation signal Eyes obtained by subtracting the value of the stabilizing signal STB from the value of the current deviation signal Ie, but it settles in a steady state. Since the value of the stabilization signal STB after the operation becomes 0, the operating point after the stabilization signal STB has settled in the steady state does not change.

一方、電機子電流制限動作中は、安定化電流偏差信号Iesを増幅した信号で励磁制御が行われているが、安定化信号STBによって負制動現象の要因となる有効電流変動に比例する成分が電流偏差信号Ieから除去されるため、電機子電流制限動作中も負制動現象を起こすことなく安定な運転が行える。 On the other hand, during the armature current limiting operation, excitation control is performed by a signal obtained by amplifying the stabilized current deviation signal Eyes, but the stabilized signal STB has a component proportional to the effective current fluctuation that causes a negative braking phenomenon. Since it is removed from the current deviation signal Ie, stable operation can be performed without causing a negative braking phenomenon even during the armature current limiting operation.

・「ケース2」
別のケースとして、同期機1の電機子電流Igが増加し、図2中の運転点Bに到達したとする。この場合も、運転点Aのケースと同様の作用となるが、電流偏差信号Ieが0になる前に進相側不感帯偏差信号DBe1が0に到達するので、無効電力Qgが進相側不感帯設定値DB1に到達した時点、すなわち運転点B’で増幅器8Qが出力する進相側電流制限信号Ildが0となって定常状態に落ち着く。
・ "Case 2"
As another case, it is assumed that the armature current Ig of the synchronous machine 1 increases and reaches the operating point B in FIG. In this case as well, the operation is the same as in the case of the operating point A, but since the phase-advancing side dead zone deviation signal DBe1 reaches 0 before the current deviation signal Ie becomes 0, the ineffective power Qg is set to the phase-advancing side dead zone. When the value DB1 is reached, that is, at the operating point B', the phase-advancing current limiting signal Ild output by the amplifier 8Q becomes 0 and settles in a steady state.

本ケースでは、無効電力偏差信号(DB1−Qg)を増幅した信号で励磁制御が行われているので、ゲインを適切に設定していれば負制動現象は発生しない。 In this case, since the excitation control is performed by the signal obtained by amplifying the invalid power deviation signal (DB1-Qg), the negative braking phenomenon does not occur if the gain is set appropriately.

・「ケース3」
次に、遅相運転のケースとして、同期機1の電機子電流Igが増加し、図2中の運転点Cに到達したとする。このとき、電機子電流信号Igdの値が過電流設定値Iocを超過するので、その差分の積分値が過電流限時設定値Tocを超過した時点で電流制限動作信号OCがオン出力され、制限設定1に代えて制限設定2が制限設定信号ILとして出力され、これにより電機子電流信号Igdと制限設定信号ILとの差分である電流偏差信号Ieが正の値となる。
・ "Case 3"
Next, as a case of slow-phase operation, it is assumed that the armature current Ig of the synchronous machine 1 increases and reaches the operation point C in FIG. At this time, since the value of the armature current signal Igd exceeds the overcurrent set value Ioc, the current limit operation signal OC is turned on and output when the integrated value of the difference exceeds the overcurrent time limit set value Toc, and the limit setting is performed. The limit setting 2 is output as the limit setting signal IL instead of 1, so that the current deviation signal Ie, which is the difference between the armature current signal Igd and the limit setting signal IL, becomes a positive value.

運転点Cでは遅相側不感帯偏差信号DBe2(=Qgd−DB2)も正の値であるため、低値選択器8Sにより低値選択して得られる遅相側電流偏差信号Iegは正の値となり、増幅器8Tにより負のゲインで増幅された遅相側電流制限信号Ilgは負の値となる。 Since the slow-phase side dead zone deviation signal DBe2 (= Qgd-DB2) is also a positive value at the operating point C, the slow-phase side current deviation signal Ieg obtained by selecting a low value with the low value selector 8S becomes a positive value. The slow-phase current limiting signal Ilg amplified by the amplifier 8T with a negative gain has a negative value.

結果的に、低値選択器8Xにより遅相側電流制限信号Ilgが電圧偏差信号Ve3として選択され、電圧調整器8Yが界磁電流Ifを減少させるため、交流出力電圧Vgや無効電流IQも減少する。有効電流IPは、有効電力Pgが一定の場合、交流出力電圧Vgの減少に伴い増加する。 As a result, the slow-phase side current limiting signal Ilg is selected as the voltage deviation signal Ve3 by the low value selector 8X, and the voltage regulator 8Y reduces the field current If, so that the AC output voltage Vg and the reactive current IQ also decrease. To do. The active current IP increases as the AC output voltage Vg decreases when the active power Pg is constant.

本ケースでは、遅相側不感帯偏差信号DBe2が0になる前に電流偏差信号Ieが0に到達するので、電機子電流Igが制限設定2に到達した時点、すなわち運転点C’で増幅器8Tが出力する遅相側電流制限信号Ilgが0となって定常状態に落ち着く。また、本ケースでは、電流偏差信号Ieに含まれる電機子電流Igを符号反転した信号で励磁制御が行われるため、電機子電流Igに含まれる有効電流変動分が正の制動力として作用することになり、負制動現象は発生しない。 In this case, since the current deviation signal Ie reaches 0 before the slow-phase side dead zone deviation signal DBe2 becomes 0, the amplifier 8T operates at the time when the armature current Ig reaches the limit setting 2, that is, at the operating point C'. The output slow-phase side current limiting signal Ilg becomes 0 and settles in a steady state. Further, in this case, since the excitation control is performed by the signal obtained by inverting the sign of the armature current Ig included in the current deviation signal Ie, the active current fluctuation amount included in the armature current Ig acts as a positive braking force. Therefore, the negative braking phenomenon does not occur.

・「ケース4」
別のケースとして、同期機1の電機子電流Igが増加し、図2中の運転点Dに到達したとする。この場合も、運転点Cのケースと同様の作用となるが、電流偏差信号Ieが0になる前に遅相側不感帯偏差信号DBe2が0に到達するので、無効電力Qgが遅相側不感帯設定値DB2に到達した時点、すなわち運転点D’で増幅器8Tが出力する遅相側電流制限信号Ilgが0となって定常状態に落ち着く。
・ "Case 4"
As another case, it is assumed that the armature current Ig of the synchronous machine 1 increases and reaches the operating point D in FIG. In this case as well, the operation is the same as in the case of the operating point C, but since the late phase side dead zone deviation signal DBe2 reaches 0 before the current deviation signal Ie becomes 0, the ineffective power Qg is set to the late phase side dead zone. When the value DB2 is reached, that is, at the operating point D', the slow-phase side current limiting signal Ilg output by the amplifier 8T becomes 0 and settles in a steady state.

本ケースでは、無効電力偏差信号(DB2−Qg)を増幅した信号で励磁制御が行われているので、ゲインを適切に設定していれば負制動現象は発生しない。 In this case, since the excitation control is performed by the signal obtained by amplifying the invalid power deviation signal (DB2-Qg), the negative braking phenomenon does not occur if the gain is set appropriately.

(効果)
第1の実施形態によれば、励磁強め動作によって電機子電流制限制御を行う場合に、電流偏差信号Ieに含まれる有効電流変動成分を安定化信号STBによって除去することで、電機子電流制限制御中の負制動現象を防止し、安定した制限制御を実現することができる。
(effect)
According to the first embodiment, when the armature current limit control is performed by the excitation strengthening operation, the armature current limit control is performed by removing the effective current fluctuation component included in the current deviation signal Ie by the stabilization signal STB. It is possible to prevent the negative braking phenomenon inside and realize stable limiting control.

[第2の実施形態]
次に、図3を参照して第2の実施形態について説明する。
[Second Embodiment]
Next, a second embodiment will be described with reference to FIG.

(構成)
図3は、第2の実施形態に係る同期機の励磁装置の構成を示す図である。
(Constitution)
FIG. 3 is a diagram showing a configuration of an exciting device of the synchronous machine according to the second embodiment.

第2の実施形態は、上述した第1の実施形態(図1)において、自動電圧調整器8を自動電圧調整器8’に置き換えたものである。自動電圧調整器8との相違点は、増幅器8Lの代わりに、増幅器8L’を備えている点にある。 The second embodiment is the one in which the automatic voltage regulator 8 is replaced with the automatic voltage regulator 8'in the first embodiment (FIG. 1) described above. The difference from the automatic voltage regulator 8 is that the amplifier 8L'is provided instead of the amplifier 8L.

増幅器8L’は、有効電流偏差信号dIPと有効電流信号IPdと電機子電流信号Igdとを入力し、有効電流偏差信号dIPの値に有効電流信号IPdの値と電機子電流信号Igdの値との比を乗算して得られる安定化信号STBを出力する。増幅器8L’の増幅ゲインには、有効電流信号IPdの値と電機子電流信号Igdの値との比が適用される。 The amplifier 8L'inputs the effective current deviation signal dIP, the effective current signal IPd, and the armature current signal Igd, and sets the value of the effective current deviation signal dIP to the value of the effective current signal IPd and the value of the armature current signal Igd. The stabilization signal STB obtained by multiplying the ratio is output. The ratio of the value of the effective current signal IPd to the value of the armature current signal Igd is applied to the amplification gain of the amplifier 8L'.

(作用)
第1の実施形態との相違点は、増幅器8L’のゲインを運転状態に応じて可変にしたことにある。
(Action)
The difference from the first embodiment is that the gain of the amplifier 8L'is made variable according to the operating state.

前述したように、増幅器8L’の増幅ゲインは(2)式に示されるIP/Ig(すなわち、IPd/Igd)に設定される。これにより、電機子電流Igに含まれる有効電流変動に比例する成分が除去される。 As described above, the amplification gain of the amplifier 8L'is set to IP / Ig (that is, IPd / Igd) represented by the equation (2). As a result, the component proportional to the fluctuation of the effective current contained in the armature current Ig is removed.

従って、増幅器8L’は、同期機1の運転状態が変化しても、電機子電流信号Igdに含まれる有効電流変動成分を除去するのに必要十分な大きさの安定化信号STBを生成する。 Therefore, the amplifier 8L'generates a stabilization signal STB having a magnitude sufficiently large to remove the effective current fluctuation component included in the armature current signal Igd even if the operating state of the synchronous machine 1 changes.

(効果)
第2の実施形態によれば、第1の実施形態の効果に加え、励磁強め動作によって電機子電流制限制御を行う場合に、あらゆる運転状態において、電流偏差信号Ieに含まれる有効電流変動成分を必要十分な大きさの安定化信号STBによって除去できるため、電機子電流制限制御中の負制動現象を防止し、安定した制限制御を実現することができる。
(effect)
According to the second embodiment, in addition to the effect of the first embodiment, when the armature current limit control is performed by the excitation strengthening operation, the effective current fluctuation component included in the current deviation signal Ie is set in all operating states. Since it can be removed by a stabilization signal STB having a necessary and sufficient magnitude, it is possible to prevent a negative braking phenomenon during armature current limit control and realize stable limit control.

以上詳述したように、各実施形態によれば、同期機の励磁装置において過電流制限制御を行うに際し、安定した制限制御を行うことができる。 As described in detail above, according to each embodiment, stable limiting control can be performed when overcurrent limiting control is performed in the exciting device of the synchronous machine.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although some embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.

1…同期機、1A…電機子巻線、1B…界磁巻線、2…摺動接触部、3…主要変圧器、4…並列用遮断器、5…電力系統、6…サイリスタ整流器、7…励磁用変圧器、8…自動電圧調整器、8’…自動電圧調整器、8A…電圧検出器、8B…有効電力検出器、8C…無効電力検出器、8D…除算器、8E…除算器、8F…電流算出器、8G…反限時タイマ、8H…選択器、8J…減算器、8K…微分器、8L…増幅器、8L’…増幅器、8M…減算器、8N…減算器、8P…低値選択器、8Q…増幅器、8R…減算器、8S…低値選択器、8T…増幅器、8U…電圧設定器、8V…減算器、8W…高値選択器、8X…低値選択器、8Y…電圧調整器、9…計器用変圧器、10…計器用変流器、80…電機子電流制限手段、81…電圧調整手段。 1 ... Synchronous machine, 1A ... Armor winding, 1B ... Field winding, 2 ... Sliding contact part, 3 ... Main transformer, 4 ... Parallel circuit breaker, 5 ... Power system, 6 ... Cylister rectifier, 7 ... Excitation transformer, 8 ... Automatic voltage regulator, 8'... Automatic voltage regulator, 8A ... Voltage detector, 8B ... Active power detector, 8C ... Invalid power detector, 8D ... Divider, 8E ... Divider , 8F ... current calculator, 8G ... counter-time timer, 8H ... selector, 8J ... subtractor, 8K ... differential, 8L ... amplifier, 8L'... amplifier, 8M ... subtractor, 8N ... subtractor, 8P ... low Value selector, 8Q ... amplifier, 8R ... subtractor, 8S ... low value selector, 8T ... amplifier, 8U ... voltage setter, 8V ... subtractor, 8W ... high value selector, 8X ... low value selector, 8Y ... Voltage regulator, 9 ... Instrument transformer, 10 ... Instrument transformer, 80 ... Armature current limiting means, 81 ... Voltage adjusting means.

Claims (6)

同期機の交流出力電圧を電圧設定値に一致させるように調整する電圧調整手段と、前記同期機の電機子電流が予め定めた過電流設定値を超過したときに当該電機子電流を予め定めた電流制限設定値まで引戻すように制御する電機子電流制限手段とを備え、
前記電機子電流制限手段は、
前記同期機の有効電流信号を検出する有効電流検出手段と、
前記同期機の電機子電流信号を検出する電機子電流検出手段と、
前記有効電流信号の変化分を安定化信号として出力する安定化信号生成手段と、
前記電機子電流信号の値から前記電流制限設定値を減算し更に前記安定化信号の値を減算して得られる値を安定化電流偏差信号として出力する安定化電流偏差信号生成手段と、
前記安定化電流偏差信号および所定の信号のうちの低値の信号を選択し増幅して得られる信号を前記同期機の励磁強め信号として前記電圧調整手段に供給する増幅手段と、
を備えている、同期機の励磁装置。
A voltage adjusting means for adjusting the AC output voltage of the synchronous machine so as to match the voltage set value, and a predetermined armature current when the armature current of the synchronous machine exceeds a predetermined overcurrent set value. Equipped with an armature current limiting means that controls to pull back to the current limit set value,
The armature current limiting means is
The effective current detecting means for detecting the effective current signal of the synchronous machine and
An armature current detecting means for detecting an armature current signal of the synchronous machine, and
A stabilizing signal generating means that outputs a change in the effective current signal as a stabilizing signal,
A stabilized current deviation signal generating means that subtracts the current limit set value from the value of the armature current signal and further subtracts the value of the stabilized signal to output a value obtained as a stabilized current deviation signal.
Amplifying means for supplying the regulated current deviation signal and a signal obtained by selecting and amplifying a low value signal among predetermined signals to the voltage adjusting means as an excitation strengthening signal of the synchronous machine.
The exciter of the synchronous machine equipped with.
同期機の交流出力電圧を電圧設定値に一致させるように調整する電圧調整手段と、前記同期機の電機子電流が予め定めた過電流設定値を超過したときに当該電機子電流を予め定めた電流制限設定値まで引戻すように制御する電機子電流制限手段とを備え、
前記電機子電流制限手段は、
前記同期機の無効電力から無効電力検出値を得る無効電力検出手段と、
前記同期機の有効電流信号を検出する有効電流検出手段と、
前記同期機の電機子電流信号を検出する電機子電流検出手段と、
前記有効電流信号の変化分を安定化信号として出力する安定化信号生成手段と、
前記電機子電流信号の値から前記電流制限設定値を減算して得られる値を電流偏差信号として出力する電流偏差信号生成手段と、
前記電流偏差信号の値から前記安定化信号の値を減算して得られる値を安定化電流偏差信号として出力する安定化電流偏差信号生成手段と、
前記無効電力の進相側不感帯の境界として予め定めた進相側不感帯設定値から前記無効電力検出値を減算して得られる値を進相側不感帯偏差信号として出力する減算手段と、
前記安定化電流偏差信号および前記進相側不感帯偏差信号のうちの低値の信号を選択し増幅して得られる遅相側電流制限信号を前記同期機の励磁強め信号として前記自動電圧調整手段に供給する低値選択増幅手段と、
前記無効電力検出値から前記無効電力の遅相側不感帯の境界として予め定めた遅相側不感帯設定値を減算して得られる値を遅相側不感帯偏差信号として出力する減算手段と、
前記電流偏差信号および前記遅相側不感帯偏差信号のうちの低値の信号を選択し符号反転増幅して得られる遅相側電流制限信号を前記同期機の励磁弱め信号として前記自動電圧調整手段に供給する低値選択増幅手段と、
を備えている、同期機の励磁装置。
A voltage adjusting means for adjusting the AC output voltage of the synchronous machine so as to match the voltage set value, and a predetermined armature current when the armature current of the synchronous machine exceeds a predetermined overcurrent set value. Equipped with an armature current limiting means that controls to pull back to the current limit set value,
The armature current limiting means is
An ineffective power detecting means for obtaining an ineffective power detection value from the inactive power of the synchronous machine, and
The effective current detecting means for detecting the effective current signal of the synchronous machine and
An armature current detecting means for detecting an armature current signal of the synchronous machine, and
A stabilizing signal generating means that outputs a change in the effective current signal as a stabilizing signal,
A current deviation signal generating means that outputs a value obtained by subtracting the current limit set value from the value of the armature current signal as a current deviation signal.
A regulated current deviation signal generating means that outputs a value obtained by subtracting the value of the stabilized signal from the value of the current deviation signal as a stabilized current deviation signal.
A subtraction means that outputs a value obtained by subtracting the disabled power detection value from a predetermined phase-advancing dead zone setting value as a boundary of the phase-advancing dead zone of the dead power as a phase-advancing dead zone deviation signal.
The slow-phase side current limiting signal obtained by selecting and amplifying the low value signal among the stabilized current deviation signal and the phase-advancing side dead zone deviation signal is used as the excitation strengthening signal of the synchronous machine in the automatic voltage adjusting means. Low value selective amplification means to supply and
A subtraction means that outputs a value obtained by subtracting a predetermined slow-phase side dead zone set value as a boundary of the slow-phase side dead zone of the negative power from the negative power detection value as a slow-phase side dead band deviation signal.
The slow-phase side current limiting signal obtained by selecting a low-value signal from the current deviation signal and the slow-phase side dead zone deviation signal and inverting and amplifying the sign is used as the excitation weakening signal of the synchronous machine in the automatic voltage adjusting means. Low value selective amplification means to supply and
The exciter of the synchronous machine equipped with.
前記安定化信号生成手段は、1段又は直列接続された複数段の不完全微分回路を含む、
請求項1又は2に記載の同期機の励磁装置。
The stabilized signal generating means includes one stage or a plurality of stages of incomplete differential circuits connected in series.
The exciter for the synchronous machine according to claim 1 or 2.
前記安定化信号生成手段は、1段又は直列接続された複数段の不完全微分回路と、任意の固定値がゲインとして設定される増幅手段とを含む、
請求項1又は2に記載の同期機の励磁装置。
The stabilized signal generating means includes a one-stage or a plurality of stages of incomplete differential circuits connected in series, and an amplification means in which an arbitrary fixed value is set as a gain.
The exciter for the synchronous machine according to claim 1 or 2.
前記安定化信号生成手段は、1段又は直列接続された複数段の不完全微分回路と、前記同期機の有効電流信号の値と電機子電流の値との比がゲインとして設定される増幅手段とを含む、
請求項1又は2に記載の同期機の励磁装置。
The stabilized signal generating means is an amplification means in which a ratio of an effective current signal value of the synchronous machine and an armature current value is set as a gain of a one-stage or a plurality of stages of incomplete differential circuits connected in series. Including,
The exciter for the synchronous machine according to claim 1 or 2.
同期機の交流出力電圧を電圧設定値に一致させるように調整する電圧調整手段と、前記同期機の電機子電流が予め定めた過電流設定値を超過したときに当該電機子電流を予め定めた電流制限設定値まで引戻すように制御する電機子電流制限手段とを備えた同期機の励磁方法であって、
前記電機子電流制限手段により、
前記同期機の有効電流信号を検出し、
前記同期機の電機子電流信号を検出し、
前記有効電流信号の変化分を安定化信号として出力し、
前記電機子電流信号の値から前記電流制限設定値を減算し更に前記安定化信号の値を減算して得られる値を安定化電流偏差信号として出力し、
前記安定化電流偏差信号および所定の信号のうちの低値の信号を選択し増幅して得られる信号を前記同期機の励磁強め信号として前記電圧調整手段に供給する、
ことを含む、同期機の励磁方法。
A voltage adjusting means for adjusting the AC output voltage of the synchronous machine so as to match the voltage set value, and a predetermined armature current when the armature current of the synchronous machine exceeds a predetermined overcurrent set value. It is an excitation method of a synchronous machine equipped with an armature current limiting means for controlling the return to the current limit set value.
By the armature current limiting means
The active current signal of the synchronous machine is detected,
Detecting the armature current signal of the synchronous machine,
The change in the effective current signal is output as a stabilization signal.
The value obtained by subtracting the current limit set value from the value of the armature current signal and further subtracting the value of the stabilized signal is output as a stabilized current deviation signal.
A signal obtained by selecting and amplifying the stabilized current deviation signal and a predetermined signal having a low value is supplied to the voltage adjusting means as an excitation strengthening signal of the synchronous machine.
How to excite the synchronous machine, including that.
JP2019027671A 2019-02-19 2019-02-19 Excitation device and excitation method for synchronous machine Active JP7145780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019027671A JP7145780B2 (en) 2019-02-19 2019-02-19 Excitation device and excitation method for synchronous machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019027671A JP7145780B2 (en) 2019-02-19 2019-02-19 Excitation device and excitation method for synchronous machine

Publications (2)

Publication Number Publication Date
JP2020137262A true JP2020137262A (en) 2020-08-31
JP7145780B2 JP7145780B2 (en) 2022-10-03

Family

ID=72263817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019027671A Active JP7145780B2 (en) 2019-02-19 2019-02-19 Excitation device and excitation method for synchronous machine

Country Status (1)

Country Link
JP (1) JP7145780B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5323014A (en) * 1976-08-16 1978-03-03 Hitachi Ltd Excitation control device of synchronous machine
JP2001103668A (en) * 1999-09-28 2001-04-13 Toshiba Corp System-stabilizing device
JP2018007484A (en) * 2016-07-06 2018-01-11 株式会社東芝 Exciter and excitation method of synchronous machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5323014A (en) * 1976-08-16 1978-03-03 Hitachi Ltd Excitation control device of synchronous machine
JP2001103668A (en) * 1999-09-28 2001-04-13 Toshiba Corp System-stabilizing device
JP2018007484A (en) * 2016-07-06 2018-01-11 株式会社東芝 Exciter and excitation method of synchronous machine

Also Published As

Publication number Publication date
JP7145780B2 (en) 2022-10-03

Similar Documents

Publication Publication Date Title
JPWO2013084461A1 (en) Electric motor control device
KR20030070772A (en) Control method and controller for torque of inverter
JP2015023661A (en) Current control device for synchronous motor
JP2738605B2 (en) Magnet generator
JP6143984B1 (en) Inverter device
JP2007259587A (en) Power generation/regeneration system and excitation method of power generation/regeneration system, and power generation method of power generation/regeneration system
JP6736390B2 (en) Excitation device and excitation method for synchronous machine
JP2018057170A (en) Controller for alternating electric motor
JP5207910B2 (en) Operation control method and operation control apparatus for variable speed generator motor
JP2020137262A (en) Exciting arrangement of synchronous machine and excitation method
JP2006271071A (en) Motor controller
JP2010206946A (en) Sensorless controller of synchronous motor
US10224852B2 (en) Control device of induction motor
JP2003209996A (en) Controller of synchronous machine
JP4775012B2 (en) Induction motor control method
KR101552301B1 (en) Non-tuning synchronous generator for outputting high-quality power
JPH0648654A (en) Winding tension control device by inverter driving
JP3985210B2 (en) Induction motor control device
JPS61173698A (en) Controller of variable speed water wheel generator
JP2005020846A (en) Power converter
RU2666125C1 (en) Three phase device for power transformation with fixed neutral point
JP2891030B2 (en) Secondary excitation device for AC excitation synchronous machine
JP7337269B2 (en) Drive device and control method
JPH0767311B2 (en) Current and torque limiting circuit for AC motor drive inverter device
JP2001204199A (en) Control unit of permanent magnet type synchronous motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220920

R150 Certificate of patent or registration of utility model

Ref document number: 7145780

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150