JP7144751B2 - Steam plant and steam flow control method - Google Patents

Steam plant and steam flow control method Download PDF

Info

Publication number
JP7144751B2
JP7144751B2 JP2019185731A JP2019185731A JP7144751B2 JP 7144751 B2 JP7144751 B2 JP 7144751B2 JP 2019185731 A JP2019185731 A JP 2019185731A JP 2019185731 A JP2019185731 A JP 2019185731A JP 7144751 B2 JP7144751 B2 JP 7144751B2
Authority
JP
Japan
Prior art keywords
steam
equipment
facility
flow rate
steam turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019185731A
Other languages
Japanese (ja)
Other versions
JP2021060020A (en
Inventor
俊彦 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2019185731A priority Critical patent/JP7144751B2/en
Publication of JP2021060020A publication Critical patent/JP2021060020A/en
Application granted granted Critical
Publication of JP7144751B2 publication Critical patent/JP7144751B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Turbines (AREA)

Description

本発明は、蒸気発生設備と蒸気使用設備との間の蒸気輸送に伴う、蒸気配管中のドレン発生抑止のために流しておく、最低負荷蒸気流量を制御する蒸気プラントおよびその蒸気流量制御方法に関する。 TECHNICAL FIELD The present invention relates to a steam plant for controlling the minimum load steam flow rate, which is kept flowing to suppress the generation of condensate in steam pipes accompanying steam transport between steam generating equipment and steam using equipment, and a method for controlling the steam flow rate thereof. .

従来、蒸気プラントにおける蒸気の運用において、蒸気発生設備で製造した蒸気を、蒸気使用設備で使用することは一般的である。例えば、鉄鋼プロセス等における蒸気発生設備として、転炉排熱回収ボイラーや、焼結排熱回収ボイラー、コークス乾式冷却設備のように、プロセス上で発生する排熱を省エネルギーの観点から、有効利用することはよく知られている。一方、蒸気使用設備としては、蒸気タービンを駆動して、大型回転機の駆動源とする蒸気タービン設備や、更に減圧して所内低圧蒸気として活用する減圧設備がある。 2. Description of the Related Art Conventionally, in operation of steam in a steam plant, it is common to use steam produced in a steam generating facility in a steam using facility. For example, as steam generation equipment in the steel process, exhaust heat generated in the process is effectively used from the viewpoint of energy saving, such as a converter exhaust heat recovery boiler, a sintering exhaust heat recovery boiler, and a coke dry cooling equipment. is well known. On the other hand, steam-using equipment includes steam turbine equipment that drives a steam turbine and serves as a driving source for a large rotating machine, and decompression equipment that further reduces the pressure and utilizes it as in-house low-pressure steam.

また、蒸気タービンに発電機を併設して、発電を行い、エネルギー回収設備として利用する場合もある。ここで、蒸気発生設備と蒸気使用設備の負荷バランスが取れている場合は、問題無いが、蒸気発生量と使用量に差異がある場合は、蒸気発生設備側では燃料焚きボイラーで蒸気発生量の調整を行ったり、蒸気使用設備側では蒸気タービンの負荷量を調整したりする負荷調整が行われる。蒸気タービンに発電機を併設したエネルギー回収設備等は、負荷調整が行いやすいため、余剰蒸気が発生するようなプロセスの場合、負荷調整用の設備として、よく利用されている。 In some cases, a generator is attached to the steam turbine to generate power and use it as an energy recovery facility. Here, if the load balance between the steam generation facility and the steam usage facility is balanced, there is no problem. On the side of the steam using facility, load adjustment is performed to adjust the amount of load on the steam turbine. Energy recovery equipment, in which a generator is attached to a steam turbine, is easy to adjust the load, so it is often used as equipment for load adjustment in the case of processes that generate excess steam.

ただし、蒸気タービンの運転範囲には蒸気流量の上下限制約があり、余剰蒸気を下限蒸気流量以下では活用することはできないため、蒸気タービンの下限蒸気流量までは、余剰蒸気を減圧設備で低圧蒸気として回収し、余剰蒸気が蒸気タービンの下限値を越えて発生すれば、蒸気タービン発電機でエネルギー回収を行う、というような負荷調整が実施される。この場合の負荷調整は、各蒸気発生量のバランスを見ながら、オペレーターが手動で設備の稼働、停止を行うことが多い。 However, the operating range of the steam turbine has upper and lower steam flow restrictions, and surplus steam cannot be utilized below the lower limit steam flow rate. If the surplus steam exceeds the lower limit of the steam turbine and is generated, the steam turbine generator recovers the energy. For load adjustment in this case, the operator often manually starts and stops the equipment while checking the balance of each steam generation amount.

また、鉄鋼プロセスのように、広大な敷地にプラントが配置されているような場合、蒸気発生設備と、蒸気使用設備間の距離が長く、蒸気輸送配管中にドレンが発生するケースがあり、ドレンを蒸気使用設備側に持ち込むと、設備の蒸気使用条件を満足することができなくなり、設備トラブルに繋がることがある。このためドレン抑止対策として、蒸気輸送配管にドレントラップを設け、ドレンを排出させたり、ドレンを発生させない程度の蒸気を常に蒸気配管中に流しておいたりするような対策がとられる。たとえば、特許文献1には、ドレン発生抑止について、蒸気使用設備側の蒸気温度と蒸気圧力を検出し、蒸気発生設備側の過熱器の制御を行うような技術が開示されている。 In addition, when a plant is located on a large site, such as in the steel process, the distance between the steam generating equipment and the steam using equipment is long, and there are cases where drainage occurs in the steam transportation piping. brought into the steam-using equipment side, it becomes impossible to satisfy the steam-using conditions of the equipment, which may lead to equipment troubles. Therefore, as a measure to prevent drain, a drain trap is installed in the steam transport pipe to discharge the drain, or a measure is taken such that the steam that does not generate drain is always flowing in the steam pipe. For example, Patent Literature 1 discloses a technique for suppressing drain generation by detecting the steam temperature and steam pressure on the side of steam-using equipment and controlling the superheater on the side of steam generating equipment.

特開平 9-137911号公報Japanese Patent Application Laid-Open No. 9-137911

しかしながら、上記従来の技術には、未だ解決すべき以下のような問題があった。
蒸気発生設備と蒸気使用設備の全体の負荷バランスを見ながら、オペレーターが全体の負荷調整を行う場合、オペレーターの熟練度や、見落としによっては、蒸気タービン発電機によるエネルギー回収が可能な状態であるのに、低圧蒸気への減圧回収を継続し、エネルギー回収の機会を逸してしまうケースがあった。また、長距離蒸気輸送配管のドレン発生抑止のために、ドレントラップを設置する場合においては、多数のドレントラップを設置する必要があり、設備費がかさみ、また、これら設備の定期的な保守費用も必要となる。蒸気輸送配管構成によっては、曲がりくねった配管で、ドレントラップを設置しても、うまく、ドレンが排出できないケースもある。一方、常にドレンが発生しない程度の蒸気を蒸気輸送配管中に流しておく方法もあるが、制御弁の開度を一定にしてしまうと、ドレン発生抑止に必要な蒸気量より、余分な蒸気を流してしまうことがある。
However, the conventional technique described above still has the following problems to be solved.
When the operator adjusts the overall load while looking at the overall load balance of the steam generating equipment and the steam using equipment, depending on the operator's skill level and oversight, it may be possible to recover energy by the steam turbine generator. In addition, there were cases in which decompression recovery to low-pressure steam was continued and opportunities for energy recovery were missed. In addition, when installing drain traps in order to suppress the generation of drain in long-distance steam transportation piping, it is necessary to install a large number of drain traps, which increases equipment costs, and regular maintenance costs for these facilities. is also required. Depending on the structure of the steam transport piping, there are cases in which drainage cannot be discharged well even if a drain trap is installed in a winding piping. On the other hand, there is also a method to keep enough steam flowing in the steam transportation pipe to prevent the generation of drainage, but if the opening of the control valve is kept constant, excess steam will be generated more than the amount of steam required to suppress the generation of drainage. It may flow.

また、上記特許文献1に記載された技術では、蒸気発生設備、蒸気使用設備の距離が短い場合はフィードバック制御が適用可能であるが、この間が長距離となる設備においては、時定数が長いため、過熱しすぎになったり、過熱不足で、ドレンが発生してしまったりする場合があり、制御が困難であるうえ、蒸気発生設備側の蒸気の過熱度を調整するための装置が必要となる。 In addition, in the technology described in Patent Document 1, feedback control can be applied when the distance between the steam generating equipment and the steam using equipment is short. In addition to being difficult to control, a device is required to adjust the degree of superheat of the steam on the steam generation equipment side. .

本発明は上記事情に鑑みてなされたものであり、その目的とするところは、蒸気発生設備と蒸気使用設備との間の蒸気輸送に伴うドレンの発生抑止とともに、エネルギー回収機会の逸失を削減し、蒸気の有効利用が可能な蒸気プラントを提供し、その設備を用いた蒸気流量の制御方法を提案することにある。 The present invention has been made in view of the above circumstances, and its object is to suppress the generation of drain accompanying steam transport between steam generating equipment and steam using equipment, and to reduce the loss of energy recovery opportunities. 1. To provide a steam plant capable of effectively utilizing steam, and to propose a steam flow rate control method using the facility.

上記課題を解決し、上記の目的を実現するため開発した本発明にかかる蒸気プラントは、蒸気発生設備と、蒸気タービン設備、エネルギー回収設備および減圧設備を含む蒸気使用設備と、を、配管系統で接続する蒸気プラントであって、
前記配管系統に、前記蒸気タービン設備と該蒸気タービン設備以外の蒸気使用設備とへの第1の分岐と、
前記蒸気タービン設備以外の蒸気使用設備への配管に、前記エネルギー回収設備と前記減圧設備とへの第2の分岐と、を設け、
前記第1の分岐の下流側配管の少なくとも一方に蒸気制御弁と、前記蒸気タービン設備への配管に第1の流量計と、前記蒸気タービン設備以外の蒸気使用設備への配管の前記第2の分岐より上流側に第2の流量計と、を具え、
前記第1の分岐の下流側配管に分流されたそれぞれの蒸気流量に応じて前記蒸気制御弁の弁開度を調節する弁開度調節機構と、
前記蒸気タービン設備以外の蒸気使用設備への配管に分流された蒸気流量に応じて前記エネルギー回収設備の起動および停止を制御するエネルギー回収設備起動停止判定機構と、を有し、
前記弁開度調節機構が、外気温度に応じて調節する温度補償機構から長距離蒸気輸送配管の最低負荷蒸気流量の値を得るように構成されていることを特徴としている。
A steam plant according to the present invention, which has been developed to solve the above problems and achieve the above objects, comprises a steam generating facility, steam turbine facilities, energy recovery facilities, and steam using facilities including pressure reducing facilities, which are connected in a piping system. A connecting steam plant comprising:
a first branch to the steam turbine equipment and steam using equipment other than the steam turbine equipment in the piping system;
a second branch to the energy recovery equipment and the pressure reducing equipment is provided in the piping to the steam using equipment other than the steam turbine equipment;
a steam control valve in at least one of the downstream pipes of the first branch; a first flow meter in the pipe to the steam turbine equipment; a second flow meter upstream from the branch,
a valve opening degree adjusting mechanism that adjusts the valve opening degree of the steam control valve according to the flow rate of each steam branched to the downstream pipe of the first branch;
an energy recovery facility start/stop determination mechanism for controlling the start and stop of the energy recovery facility according to the flow rate of the steam diverted to the piping to the steam using facility other than the steam turbine facility;
The valve opening control mechanism is characterized in that it is configured to obtain the value of the minimum load steam flow rate of the long-distance steam transportation pipe from a temperature compensating mechanism that adjusts according to the outside air temperature.

なお、本発明にかかる蒸気プラントについては、
a前記エネルギー回収設備が、蒸気タービン発電機であること、
がより好ましい解決手段になり得るものと考えられる。
Regarding the steam plant according to the present invention,
a said energy recovery facility is a steam turbine generator;
is considered to be a more preferable solution.

上記課題を解決し、上記の目的を実現するため開発した本発明にかかる蒸気流量制御方法は、蒸気発生設備で発生した蒸気を、蒸気タービン設備、エネルギー回収設備および減圧設備を含む蒸気使用設備に分配する際に、
前記蒸気タービン設備と該蒸気タービン設備以外の蒸気使用設備とへの配管の第1の分岐の少なくとも一方の下流側に具えた蒸気制御弁の弁開度を、前記第1の分岐の下流側のそれぞれの蒸気流量に応じて調節し、
前記蒸気タービン設備以外の蒸気使用設備への蒸気流量に応じて、前記エネルギー回収設備の起動および停止を制御し、
前記蒸気制御弁の弁開度を調節するに当たり、外気温度に応じて得た、長距離蒸気輸送配管の最低負荷蒸気流量の値を用いることを特徴としている。
A steam flow rate control method according to the present invention, which has been developed to solve the above problems and achieve the above objects, is a method for supplying steam generated in a steam generating facility to steam using facilities including a steam turbine facility, an energy recovery facility, and a pressure reduction facility. When distributing
The degree of valve opening of a steam control valve provided on the downstream side of at least one of the first branch of the piping leading to the steam turbine equipment and the steam using equipment other than the steam turbine equipment Adjust according to each steam flow rate,
controlling start and stop of the energy recovery equipment according to the steam flow rate to the steam using equipment other than the steam turbine equipment;
In adjusting the valve opening of the steam control valve, it is characterized in that the value of the minimum load steam flow rate of the long-distance steam transportation pipe, which is obtained according to the outside air temperature, is used.

なお、本発明にかかる蒸気流量制御方法については、
a前記エネルギー回収設備として、蒸気タービン発電機を用いること、
がより好ましい解決手段になり得るものと考えられる。
In addition, regarding the steam flow rate control method according to the present invention,
a using a steam turbine generator as the energy recovery equipment;
is considered to be a more preferable solution.

以上説明したように、本発明に係る蒸気プラントによれば、蒸気発生設備と、蒸気タービン設備、エネルギー回収設備および減圧設備を含む蒸気使用設備と、を、配管系統で接続する蒸気プラントであって、前記配管系統に、前記蒸気タービン設備と該蒸気タービン設備以外の蒸気使用設備とへの第1の分岐と、前記蒸気タービン設備以外の蒸気使用設備への配管に、前記エネルギー回収設備と前記減圧設備とへの第2の分岐と、を設け、前記第1の分岐の下流側配管の少なくとも一方に蒸気制御弁と、前記蒸気タービン設備への配管に第1の流量計と、前記蒸気タービン設備以外の蒸気使用設備への配管の前記第2の分岐より上流側に第2の流量計と、を具え、前記第1の分岐の下流側配管に分流されたそれぞれの蒸気流量に応じて前記蒸気制御弁の弁開度を調節する弁開度調節機構と、前記蒸気タービン設備以外の蒸気使用設備への配管に分流された蒸気流量に応じて前記エネルギー回収設備の起動および停止を制御するエネルギー回収設備起動停止判定機構と、を有し、前記弁開度調節機構が、外気温度に応じて調節する温度補償機構から長距離蒸気輸送配管の最低負荷蒸気流量の値を得るように構成されているので、蒸気発生設備の蒸気発生量にかかわらず、また、外気温度の変化にもかかわらず、蒸気の有効利用、特に、エネルギー回収機会の逸失の削減を図ることができるようになった。 As described above, according to the steam plant according to the present invention, the steam generating equipment, the steam using equipment including the steam turbine equipment, the energy recovery equipment, and the pressure reducing equipment are connected by a piping system. , the piping system includes a first branch to the steam turbine equipment and the steam using equipment other than the steam turbine equipment, and the piping to the steam using equipment other than the steam turbine equipment includes the energy recovery equipment and the pressure reduction. a steam control valve in at least one of the piping downstream of said first branch; a first flow meter in piping to said steam turbine equipment; and said steam turbine equipment. and a second flow meter on the upstream side of the second branch of the piping to the steam using facility other than the steam according to the flow rate of each steam branched to the downstream piping of the first branch. A valve opening adjustment mechanism that adjusts the valve opening of a control valve, and an energy recovery that controls start and stop of the energy recovery equipment in accordance with the flow rate of the steam diverted to the piping to the steam using equipment other than the steam turbine equipment. and a facility start/stop determination mechanism, wherein the valve opening adjustment mechanism is configured to obtain a value of the minimum load steam flow rate of the long-distance steam transportation pipe from a temperature compensation mechanism that adjusts according to the outside air temperature. Therefore, regardless of the amount of steam generated by the steam generating equipment and regardless of changes in the outside air temperature, it has become possible to effectively use steam, particularly to reduce loss of energy recovery opportunities.

また、本発明に係る蒸気流量制御方法によれば、蒸気発生設備で発生した蒸気を、蒸気タービン設備、エネルギー回収設備および減圧設備を含む蒸気使用設備に分配する際に、
前記蒸気タービン設備と該蒸気タービン設備以外の蒸気使用設備とへの配管の第1の分岐の少なくとも一方の下流側に具えた蒸気制御弁の弁開度を、前記第1の分岐の下流側のそれぞれの蒸気流量に応じて調節し、前記蒸気タービン設備以外の蒸気使用設備への蒸気流量に応じて、前記エネルギー回収設備の起動および停止を制御し、前記蒸気制御弁の弁開度を調節するに当たり、外気温度に応じて得た、長距離蒸気輸送配管の最低負荷蒸気流量の値を用いるので、蒸気発生設備の蒸気発生量にかかわらず、また、外気温度の変化にもかかわらず、蒸気の有効利用、特に、エネルギー回収機会の逸失の削減を図ることができるようになった。
Further, according to the steam flow rate control method according to the present invention, when distributing the steam generated by the steam generating equipment to the steam using equipment including the steam turbine equipment, the energy recovery equipment and the decompression equipment,
The degree of valve opening of a steam control valve provided on the downstream side of at least one of the first branch of the piping leading to the steam turbine equipment and the steam using equipment other than the steam turbine equipment Adjust according to each steam flow rate, control start and stop of the energy recovery equipment according to the steam flow rate to the steam using equipment other than the steam turbine equipment, and adjust the valve opening degree of the steam control valve , the value of the minimum load steam flow rate of the long-distance steam transportation pipe obtained according to the outside temperature is used, so regardless of the amount of steam generated by the steam generation equipment and regardless of changes in the outside temperature, the amount of steam It is now possible to make effective use of energy, especially to reduce the loss of energy recovery opportunities.

さらに、エネルギー回収設備が蒸気タービン発電機であると、より効率よくエネルギー回収することができる。 Furthermore, if the energy recovery facility is a steam turbine generator, energy can be recovered more efficiently.

本発明の一実施形態にかかる蒸気プラントの蒸気供給配管および制御フローを説明する概略系統図である。1 is a schematic system diagram illustrating steam supply piping and a control flow of a steam plant according to one embodiment of the present invention; FIG. 上記実施形態で用いる弁開度調節機構の調節計出力/弁開度変換折線の一例を表すグラフである。It is a graph showing an example of a controller output/valve opening degree conversion polygonal line of the valve opening degree adjustment mechanism used in the above embodiment. 上記実施形態で用いる温度補償機構のドレン発生抑止流量設定値温度補正折線の一例を表すグラフである。FIG. 5 is a graph showing an example of a polygonal line for temperature correction of set value of drain generation suppression flow rate of the temperature compensating mechanism used in the above embodiment. FIG. 上記実施形態における各流量計で測定した蒸気流量の変化の一例を表すグラフである。It is a graph showing an example of the change of the steam flow measured with each flow meter in the said embodiment.

以下、本発明の実施の形態について図面を参照して説明する。
図1は、本発明の一実施形態にかかる蒸気プラントの蒸気供給配管および制御フローを説明する概略系統図である。蒸気プラント100は、蒸気発生設備1と配管系統2よって接続された蒸気使用設備である蒸気タービン設備3、エネルギー回収設備4および減圧設備5を有している。蒸気タービン設備3としては、高圧の蒸気によって大型回転機等の負荷を駆動する蒸気タービンやコンプレッサ駆動用メカニカルドライブタービンが例示される。エネルギー回収設備4としては、蒸気タービンに発電機を併設した蒸気タービン発電機が例示される。減圧設備5では、減圧弁12によって、必要とする圧力まで下げて、低圧蒸気ライン51に供給する。なお、図1では、蒸気発生設備を1系統、蒸気使用設備を3系統として例示しているが、複数の蒸気発生設備や、その他の蒸気使用設備を組み合わせてもよい。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic system diagram illustrating steam supply piping and a control flow of a steam plant according to one embodiment of the present invention. The steam plant 100 has a steam turbine facility 3, an energy recovery facility 4, and a pressure reducing facility 5, which are steam using facilities connected to the steam generating facility 1 by a piping system 2. Examples of the steam turbine equipment 3 include a steam turbine that drives a load such as a large rotating machine with high-pressure steam, and a mechanical drive turbine for driving a compressor. An example of the energy recovery facility 4 is a steam turbine generator in which a steam turbine is provided with a generator. In the decompression equipment 5 , the decompression valve 12 reduces the pressure to the required level and supplies it to the low-pressure steam line 51 . In FIG. 1, one system of steam generating equipment and three systems of steam using equipment are illustrated, but a plurality of steam generating equipment and other steam using equipment may be combined.

配管系統2には、蒸気タービン設備3とそれ以外の蒸気使用設備(以下、その他の蒸気使用設備という。)とへの第1の分岐6を設け、その他の蒸気使用設備側の配管には、エネルギー回収設備4と減圧設備5とへの第2の分岐7を設けている。第1の分岐6の下流側配管の少なくとも一方に蒸気制御弁11(図1の例ではその他の蒸気使用設備側)と、蒸気タービン設備側の配管に第1の流量計F2と、その他の蒸気使用設備側の配管の第2の分岐7より上流側に第2の流量計F3を具えている。なお、図1の例では、その他の蒸気使用設備側に蒸気制御弁11を設けているが、蒸気タービン設備3側に設けたり、両側に設けたりしてもよい。そのほか、図1では、蒸気発生設備蒸気流量計F1、蒸気タービン発電機蒸気流量計F4および蒸気減圧弁蒸気流量計F5を設置している。 The piping system 2 is provided with a first branch 6 to the steam turbine equipment 3 and other steam using equipment (hereinafter referred to as other steam using equipment). A second branch 7 to the energy recovery facility 4 and the pressure reduction facility 5 is provided. A steam control valve 11 (in the example of FIG. 1, on the side of other steam-using equipment) in at least one of the downstream piping of the first branch 6, a first flow meter F2 in the piping on the steam turbine equipment side, and other steam. A second flowmeter F3 is provided on the upstream side of the second branch 7 of the piping on the equipment side. In addition, in the example of FIG. 1, the steam control valve 11 is provided on the other steam using equipment side, but it may be provided on the steam turbine equipment 3 side or on both sides. In addition, in FIG. 1, a steam generation facility steam flow meter F1, a steam turbine generator steam flow meter F4, and a steam pressure reducing valve steam flow meter F5 are installed.

第1の流量計F2で計測した蒸気タービン設備3側の蒸気流量と、第2の流量計F3で計測したその他の蒸気使用設備側の蒸気流量とを用いて、蒸気制御弁11の弁開度を調節する弁開度調節機構16を有している。第2の流量計F3で計測したその他の蒸気使用設備側の蒸気流量を用いて、エネルギー回収設備4の起動や停止を制御するエネルギー回収設備起動停止判定機構18を有している。 The valve opening degree of the steam control valve 11 is calculated using the steam flow rate on the side of the steam turbine facility 3 measured by the first flow meter F2 and the steam flow rate on the side of the other steam-using facility measured by the second flow meter F3. It has a valve opening adjustment mechanism 16 that adjusts the It has an energy recovery facility start/stop determination mechanism 18 that controls the start and stop of the energy recovery facility 4 using the steam flow rate of the other steam using facility side measured by the second flow meter F3.

弁開度調節機構16は、その他の蒸気使用設備側の必要最低蒸気流量である長距離蒸気輸送配管の最低負荷蒸気流量を、外気温度に応じて調節する温度補償機構17から得て、その他の蒸気使用設備側の蒸気流量を最低負荷蒸気流量以上とするように構成されている。ここで、最低負荷蒸気流量とは、その他の蒸気使用設備側の配管中にドレンが発生しない蒸気流量をいう。 The valve opening adjustment mechanism 16 obtains the minimum load steam flow rate of the long-distance steam transportation pipe, which is the required minimum steam flow rate of other steam using equipment, from the temperature compensation mechanism 17 that adjusts according to the outside air temperature, It is configured such that the steam flow rate on the side of the steam using equipment is equal to or higher than the minimum load steam flow rate. Here, the minimum load steam flow rate refers to a steam flow rate at which no drain occurs in piping on the side of other steam-using equipment.

上記のような構成の蒸気プラントとすることで、蒸気発生設備1と蒸気使用設備の蒸気負荷バランスにおいて、蒸気発生設備1の発生蒸気を、常時運用する蒸気タービン等の蒸気タービン設備3と余剰蒸気が発生したときに運用する蒸気タービン発電機等のエネルギー回収設備4及び減圧設備5からなるその他の蒸気使用設備とに分配する。蒸気発生設備1の蒸気発生量が、蒸気タービン設備3の蒸気使用量より多いときは、たとえば、その他の蒸気使用設備側への蒸気制御弁11を開放し、エネルギー回収を実施する。このとき、その他の蒸気使用設備側へ流れる蒸気流量が、蒸気タービン発電機4の下限蒸気流量より多くなった場合、蒸気タービン発電機4を起動し、少なくなった場合、たとえば、蒸気タービン発電機を停止するガイダンスをエネルギー回収設備起動停止判定機構18から出力し、オペレーターは、そのガイダンスに従い、蒸気タービン発電機の起動、停止を行うことで、蒸気タービン発電機4が発電できるのに減圧設備5に蒸気を供給して発電機会の逸失するのを防止することができる。蒸気タービン発電機4が自動で起動や停止が可能な設備の場合、エネルギー回収設備起動停止判定機構18からの起動-停止の出力を連携して自動化することで、更に、発電回収を精度よく効率的に実施することができる。 With the steam plant configured as described above, in the steam load balance between the steam generating equipment 1 and the steam using equipment, the steam generated by the steam generating equipment 1 can be distributed to the steam turbine equipment 3 such as a steam turbine that is constantly operated and the surplus steam. Energy recovery equipment 4 such as a steam turbine generator operated when is generated and other steam using equipment consisting of pressure reducing equipment 5 are distributed. When the amount of steam generated by the steam generation facility 1 is greater than the amount of steam used by the steam turbine facility 3, for example, the steam control valve 11 is opened to the side of other steam using facilities to recover energy. At this time, if the flow rate of steam flowing to the other steam-using equipment side becomes larger than the lower limit steam flow rate of the steam turbine generator 4, the steam turbine generator 4 is started, and if it becomes smaller, for example, the steam turbine generator is output from the energy recovery equipment start/stop determination mechanism 18, and the operator follows the guidance to start and stop the steam turbine generator, so that the steam turbine generator 4 can generate power, but the decompression equipment 5 It is possible to prevent the loss of the power generation opportunity by supplying steam to the In the case where the steam turbine generator 4 is a facility that can be automatically started and stopped, the output of start-stop from the energy recovery equipment start-stop determination mechanism 18 is linked and automated to further improve the accuracy and efficiency of power generation recovery. can be effectively implemented.

一方、その他の蒸気使用設備側へ流れる蒸気流量が、蒸気タービン発電機4の下限蒸気流量より少なくなった場合、減圧設備5の低圧蒸気の圧力制御を作動させることによって、減圧設備5側へ蒸気を供給する。圧力制御のSV値は、通常の低圧蒸気ライン圧力より、少し高く設定することによって、蒸気回収が実施される。なお、エネルギー回収設備起動停止判定機構18からの出力を用いて、蒸気タービン発電機を起動する場合に、減圧設備の減圧弁12を強制的に閉操作することで、蒸気タービン発電機4側に蒸気を回収することが好ましい。 On the other hand, when the flow rate of steam flowing to the other steam using equipment side becomes less than the lower limit steam flow rate of the steam turbine generator 4, the pressure control of the low-pressure steam of the pressure reducing equipment 5 is operated to supply. Vapor recovery is implemented by setting the pressure control SV value slightly higher than the normal low pressure steam line pressure. When starting the steam turbine generator using the output from the energy recovery equipment start/stop determination mechanism 18, by forcibly closing the pressure reducing valve 12 of the pressure reducing equipment, the steam turbine generator 4 side Vapor recovery is preferred.

蒸気発生設備1の蒸気発生量が、蒸気タービン設備3の蒸気使用量より少ないときは、その他の蒸気使用設備側の流量制御弁11の開度を最小値とし、蒸気タービン設備3側へ、発生蒸気の大部分を回収する。このとき、流量制御弁11の最小開度は、蒸気輸送配管内のドレン発生を抑止できるだけの最低負荷蒸気量を流すのに必要な開度とする。この開度は、外気温度の高い夏場は少なく、外気温度の低い冬場は多く開くことで、無駄な蒸気流量を削減することが可能となる。そこで、温度補償機構17では、外気温度から、ドレンが発生しない適正な蒸気流量設定値を算出して弁開度調節機構16に出力し、弁開度調節機構16では、その値とその他の蒸気使用設備側へ流れる蒸気流量を比較し、偏差がある場合、その偏差を解消する方向に、流量制御弁11の弁開度制御出力を補正することによって、適正な弁開度の制御を実現する。 When the amount of steam generated by the steam generating equipment 1 is less than the amount of steam used by the steam turbine equipment 3, the opening degree of the flow control valve 11 of the other steam using equipment is set to the minimum value, and steam is generated to the steam turbine equipment 3 side. Recover most of the vapor. At this time, the minimum degree of opening of the flow control valve 11 is set to the degree of opening required to flow the minimum load steam amount that can suppress the generation of drain in the steam transportation pipe. The degree of opening is small in the summer when the outside temperature is high, and is widened in the winter when the outside temperature is low, thereby reducing wasteful steam flow. Therefore, the temperature compensating mechanism 17 calculates an appropriate steam flow rate setting value that does not generate drain from the outside air temperature and outputs it to the valve opening degree adjustment mechanism 16, and the valve opening degree adjustment mechanism 16 calculates that value and other steam Comparing the flow rate of steam flowing to the use equipment side, and if there is a deviation, correcting the valve opening control output of the flow control valve 11 in the direction of eliminating the deviation realizes proper valve opening control. .

次に、本発明の他の実施形態である上記蒸気プラントを用いた蒸気流量制御方法について説明する。
蒸気発生設備1から発生した蒸気は、配管系統2を介して、蒸気タービン設備3、エネルギー回収設備である蒸気タービン発電機4および減圧設備5に分配して供給される。
Next, a steam flow rate control method using the above steam plant, which is another embodiment of the present invention, will be described.
The steam generated from the steam generation equipment 1 is distributed and supplied to the steam turbine equipment 3 , the steam turbine generator 4 as energy recovery equipment, and the pressure reduction equipment 5 via the piping system 2 .

ラインの蒸気流量を測定するため、蒸気発生設備蒸気流量計F1、蒸気タービン設備蒸気流量計F2、エネルギー回収設備等蒸気流量計F3、蒸気タービン発電機蒸気流量計F4、蒸気減圧弁蒸気流量計F5を設置し、また、低圧蒸気ラインの蒸気圧力を計測する低圧蒸気圧力計P1を設置する。蒸気タービン設備蒸気流量計F2で計測された信号であるPV2値(プロセスバリュー)は、蒸気タービン設備蒸気流量調節計13に入力され、蒸気タービン設備蒸気流量調節計13を正作動とすることで、PV2値が閾値であるSV2値(セットバリュー)より低い場合、操作出力は減方向に作動する。ここで、蒸気タービン設備蒸気流量調節計13のSV2値には、蒸気タービン設備の定常負荷値f2max(蒸気流量に相当)を設定しておく。 In order to measure the steam flow rate of the line, steam flow meter F1 for steam generation equipment, steam flow meter F2 for steam turbine equipment, steam flow meter F3 for energy recovery equipment, steam turbine generator steam flow meter F4, steam pressure reducing valve steam flow meter F5 is installed, and a low-pressure steam pressure gauge P1 for measuring the steam pressure of the low-pressure steam line is installed. A PV2 value (process value), which is a signal measured by the steam turbine equipment steam flow meter F2, is input to the steam turbine equipment steam flow controller 13, and by setting the steam turbine equipment steam flow controller 13 to direct operation, When the PV2 value is lower than the SV2 value (set value), which is the threshold value, the operation output operates in the decreasing direction. Here, the SV2 value of the steam turbine facility steam flow rate controller 13 is set to the steady load value f2max (corresponding to the steam flow rate) of the steam turbine facility.

一方、エネルギー回収設備等蒸気流量F3で計測された信号であるPV3値は、エネルギー回収設備蒸気流量調節計14に入力され、エネルギー回収設備蒸気流量調節計14を逆作動とすることで、PV3値がSV3値より低い場合、操作出力は増方向に作動する。ここで、エネルギー回収設備蒸気流量調節計14のSV3値には、蒸気タービン発電機入口蒸気流量上限値f4maxを設定しておく。 On the other hand, the PV3 value, which is the signal measured by the energy recovery facility steam flow rate F3, is input to the energy recovery facility steam flow rate controller 14, and by operating the energy recovery facility steam flow rate controller 14 in reverse, the PV3 value is lower than the SV3 value, the manipulated output operates in the increasing direction. Here, the SV3 value of the energy recovery facility steam flow rate controller 14 is set to the steam turbine generator inlet steam flow rate upper limit value f4max.

この二つの調節計13、14の出力は、低位選択器LSによって選択され、低い方の信号が、調節計出力/弁開度変換折線16に入力され、変換された信号が蒸気タービン発電機側の入口蒸気制御弁11に出力され、蒸気流量の制御を実施する。図2に調節計出力/弁開度変換折線16における調節計信号出力と入口蒸気制御弁11の開度の関係を概念グラフで示す。変換折線は、調節計の出力が0%でも、入口蒸気制御弁11が全閉にならないようにベースラインを確保しておき、ドレン発生抑止のための最低負荷蒸気量を確保できるようにする。従って、蒸気発生設備1の蒸気流量が、蒸気タービン設備定常負荷設定値SV2に到達するまでは、蒸気タービン設備蒸気流量調節計13の作用によって、減方向の操作信号が出力され、本信号によって、入口蒸気制御弁11の開度が、ベースラインの弁開度に調整される。 The outputs of these two controllers 13 and 14 are selected by a low-order selector LS, the lower signal is input to a controller output/valve opening conversion polygonal line 16, and the converted signal is sent to the steam turbine generator side. is output to the inlet steam control valve 11 to control the steam flow rate. FIG. 2 is a conceptual graph showing the relationship between the controller signal output and the opening of the inlet steam control valve 11 on the controller output/valve opening conversion polygonal line 16 . The conversion polygonal line secures a baseline so that the inlet steam control valve 11 does not fully close even if the output of the controller is 0%, and secures the minimum load steam amount for suppressing drain generation. Therefore, until the steam flow rate of the steam generation facility 1 reaches the steam turbine facility steady load set value SV2, the steam turbine facility steam flow rate controller 13 operates to output a downward operation signal. The opening of the inlet steam control valve 11 is adjusted to the baseline valve opening.

ベースラインの弁開度は、常時は、その他の蒸気使用設備側の蒸気輸送配管にドレンを発生させないための最低負荷蒸気流量を確保するために必要な弁開度として、最低開度規定値を設定しておく。しかし、この値は常に一定では無く、外気温度の高い夏場は、外気温度の低い冬場に比べて、少ない開度で最低負荷蒸気量を確保することが可能である。このため、外気温度を測定する外気温度計T1を設置し、測定した温度信号をドレン発生抑止流量設定値温度補正折線17に入力し、大気温度に見合った適正な蒸気流量設定値に変換する。図3にドレン発生抑止流量設定値温度補正折線の概念グラフを示す。 The baseline valve opening is normally the minimum opening specified value as the valve opening required to ensure the minimum load steam flow rate to prevent drain from occurring in the steam transportation piping of other steam-using equipment. be set. However, this value is not always constant, and in the summer when the outdoor temperature is high, it is possible to secure the minimum load steam amount with a smaller opening than in the winter when the outdoor temperature is low. For this reason, an outside air thermometer T1 is installed to measure the outside air temperature, and the measured temperature signal is input to the drain generation suppression flow rate set value temperature correction polygonal line 17 to convert it to an appropriate steam flow rate set value that matches the atmospheric temperature. FIG. 3 shows a conceptual graph of the set value temperature correction polygonal line for the set value of the drain generation suppression flow rate.

図3の例では、ドレン発生抑止流量設定値温度補正折線17は、外気温度Tとその他の蒸気使用設備側の蒸気輸送配管の流量f3との関係としてドレン発生状態のデータを取り、適切な値を設定することが好ましい。図1の例では、ドレン発生抑止流量設定値温度補正折線17から得られた流量の信号をXとし、エネルギー回収設備等蒸気流量計F3の信号をYとし、比較器Cで比較し、Y≧Xの場合、最低開度規定値LLの値を減方向(-)に調整する(S11)。また、Y<Xの場合は、最低開度規定値LLの値を増方向(+)に調整する(S12)。この調整による信号の増減は、t1時間にα1量を増(+)、t2時間にβ1量を減(-)し、補正量α1、β1を小さく、補正時間t1、t2を長くすることで、制御がバタつかないようにすることが好ましい。入口蒸気制御弁11の外気温度による最低開度規定値の調整制御については、図1に例示した以外の方法も適用可能である。 In the example of FIG. 3, the drain generation suppression flow rate set value temperature correction polygonal line 17 takes the data of the drain generation state as the relationship between the outside air temperature T and the flow rate f3 of the steam transportation pipe on the other side of the steam using equipment, and obtains an appropriate value. is preferably set. In the example of FIG. 1, the signal of the flow rate obtained from the drain generation suppression flow rate set value temperature correction polygonal line 17 is set to X, the signal of the steam flow meter F3 such as the energy recovery equipment is set to Y, and compared by the comparator C, Y≧ In the case of X, the value of the minimum opening specified value LL is adjusted downward (-) (S11). Also, if Y<X, the value of the minimum opening prescribed value LL is adjusted in the increasing direction (+) (S12). The increase or decrease in the signal due to this adjustment is achieved by increasing (+) the amount of α1 at time t1, decreasing (-) the amount of β1 at time t2, decreasing the correction amounts α1 and β1, and lengthening the correction times t1 and t2. It is preferable to keep the control from flapping. Methods other than those exemplified in FIG. 1 can also be applied to the adjustment control of the minimum opening prescribed value of the inlet steam control valve 11 based on the outside air temperature.

また、この外気温度による最低開度規定値の調整制御が必要な期間は、蒸気タービン設備蒸気流量調節計13の制御出力が低位選択器LSで選択されている期間のみであり、蒸気タービン設備蒸気流量調節計13とエネルギー回収設備蒸気流量計14の出力の低位選択器LSによって選択された信号と、蒸気タービン設備蒸気流量調節計13の出力を一致判定EQし、一致している場合のみ、補正動作が作動するようにする(S13)。α1、β1の補正量によって補正された最低負荷開度規定値は、上限リミットHMを経由し、必要以上に大きな値にならないように制限したあと、調節計出力/弁開度変換折線16に入力され、ベースラインとなることで、ドレン発生抑止の最低負荷蒸気流量値が補正され、外気温度に応じた、適正な最低負荷蒸気流量となる。 In addition, the period during which the adjustment control of the minimum opening specified value based on the outside air temperature is required is only the period during which the control output of the steam turbine equipment steam flow controller 13 is selected by the low-order selector LS, and the steam turbine equipment steam The signal selected by the low-order selector LS of the output of the flow rate controller 13 and the energy recovery facility steam flow rate meter 14 and the output of the steam turbine facility steam flow rate controller 13 are matched and EQed, and correction is made only when they match. The operation is activated (S13). The specified minimum load opening specified value corrected by the correction amounts of α1 and β1 passes through the upper limit HM, and is input to the controller output/valve opening conversion polygonal line 16 after being restricted so that the value does not become larger than necessary. As a result, the minimum load steam flow rate value for suppressing drain generation is corrected, and an appropriate minimum load steam flow rate corresponding to the outside air temperature is obtained.

次に、蒸気発生設備1の蒸気流量が増加して、蒸気タービン設備蒸気流量計F2の測定信号PV2値が、蒸気タービン設備蒸気流量調節計13のSV2値より大きくなってくると、蒸気タービン設備蒸気流量調節計13の出力は増方向に作動し、エネルギー回収設備蒸気流量調節計14の出力が低位選択器LSで選択され、エネルギー回収設備蒸気流量調節計14の制御に切替る。 Next, when the steam flow rate of the steam generation facility 1 increases and the measured signal PV2 value of the steam turbine facility steam flow meter F2 becomes larger than the SV2 value of the steam turbine facility steam flow controller 13, the steam turbine facility The output of the steam flow controller 13 operates in the increasing direction, the output of the energy recovery facility steam flow controller 14 is selected by the low-order selector LS, and control is switched to the energy recovery facility steam flow controller 14 .

エネルギー回収設備蒸気流量調節計14の制御は、エネルギー回収設備等蒸気流量計F3の流量信号PV3値が、蒸気タービン発電機入口蒸気流量上限値SV3になるまで、入口蒸気弁11を開放する。その過程で、エネルギー回収設備等蒸気流量計F3の測定値PV3値を、蒸気タービン発電機の起動/停止判定18に入力する。蒸気タービン発電機の起動/停止判定18では、たとえば、入力されたPV3値が、蒸気タービン発電機の下限蒸気流量+γより大きくなったら、蒸気タービン発電機の起動ガイダンスを通知し、PV3値が、蒸気タービン発電機の下限蒸気流量より小さくなったら、蒸気タービン発電機の停止ガイダンスを通知し、オペレーターに蒸気タービン発電機の起動、停止を促す(S14)。そうすることで、エネルギーとしての発電回収が可能であるのに、蒸気を減圧回収してしまう発電チャンスロスを削減する。 The control of the energy recovery facility steam flow rate controller 14 opens the inlet steam valve 11 until the flow rate signal PV3 value of the energy recovery facility steam flow meter F3 reaches the steam turbine generator inlet steam flow rate upper limit value SV3. In the process, the measured value PV3 of the steam flow meter F3 such as the energy recovery equipment is input to the start/stop determination 18 of the steam turbine generator. In the steam turbine generator start/stop determination 18, for example, when the input PV3 value becomes larger than the steam turbine generator lower limit steam flow rate +γ, the steam turbine generator startup guidance is notified, and the PV3 value is When it becomes smaller than the lower limit steam flow rate of the steam turbine generator, guidance for stopping the steam turbine generator is notified to urge the operator to start and stop the steam turbine generator (S14). By doing so, it is possible to recover power generation as energy.

もちろん、蒸気タービン発電機は自動起動、停止が可能な設備であれば、蒸気タービン発電機の起動/停止判定18の出力を用いて自動起動停止を行ってもよい。その場合、入力されたPV3値が、蒸気タービン発電機の下限蒸気流量+γより大きくなったら、蒸気タービン発電機を起動制御し、PV3値が、蒸気タービン発電機の下限蒸気流量+γより小さくなったら、蒸気タービン発電機を停止制御する(S14)。 Of course, if the steam turbine generator can be automatically started and stopped, the output of the steam turbine generator start/stop determination 18 may be used to automatically start and stop. In that case, when the input PV3 value becomes larger than the lower limit steam flow rate +γ of the steam turbine generator, start control is performed on the steam turbine generator, and when the PV3 value becomes smaller than the lower limit steam flow rate +γ of the steam turbine generator , to stop the steam turbine generator (S14).

また、γは、制御のチャタリングを防止するための定数であり、蒸気発生設備1から供給される蒸気流量の定常状態でのばらつきとしてもよい。この動作と合わせて、エネルギー回収設備等蒸気流量計F3の測定値PV3値が、蒸気タービン発電機の下限蒸気流量+γより大きくなったら、低圧蒸気圧力制御調節計15の操作出力を強制的に0%にすることで、減圧弁12を全閉として、蒸気タービン発電機側に蒸気を回収し、エネルギー回収設備等蒸気流量計F3が、蒸気タービン発電機の下限蒸気流量+γより小さくなったら、低圧蒸気圧力制御調節計15の圧力制御を作動させることによって、低圧蒸気ラインへ蒸気を回収する(S15)。低圧蒸気圧力制御調節計15のSV1値は、通常の低圧蒸気ライン圧力より、+β分だけ、少し高く設定することによって、圧力差により蒸気回収が実施される。 Also, γ is a constant for preventing control chattering, and may be a variation in the flow rate of steam supplied from the steam generation facility 1 in a steady state. Together with this operation, when the measured value PV3 of the steam flow meter F3 of the energy recovery equipment becomes larger than the lower limit steam flow rate +γ of the steam turbine generator, the operation output of the low-pressure steam pressure control controller 15 is forced to 0. %, the pressure reducing valve 12 is fully closed and steam is recovered to the steam turbine generator side. Steam is recovered to the low-pressure steam line by activating the pressure control of the steam pressure control controller 15 (S15). By setting the SV1 value of the low-pressure steam pressure control controller 15 slightly higher than the normal low-pressure steam line pressure by +β, steam recovery is performed due to the pressure difference.

蒸気プラントを図1の設備、配管系統および制御系統で構成し、実際に蒸気発生設備から、蒸気を流した。図4に、各流量計F1-5で測定した蒸気流量f1-5の時間変化を示す。 A steam plant was constructed with the equipment, piping system and control system shown in FIG. 1, and steam was actually flowed from the steam generating equipment. FIG. 4 shows temporal changes in steam flow rate f1-5 measured by each flow meter F1-5.

当初、蒸気発生設備1から発生した、蒸気発生設備蒸気流量f1は、蒸気発生設備1の操業開始とともに除々に蒸気流量を増し、最終的には、平均的な蒸気発生量f1ave[t/h]で落ち着き、±γ[t/h]の変動幅で変動しながら、操業を継続する。蒸気発生設備1の操業停止時は、除々に蒸気流量が減少し、最終的には、0t/hになる。この蒸気増減の途中で、蒸気バランス上、蒸気発生設備蒸気流量f1が、蒸気タービン設備の定常負荷値より少ない状態での運転状態を、期間Aで示す。 Initially, the steam generation facility steam flow rate f1 generated from the steam generation facility 1 gradually increases with the start of operation of the steam generation facility 1, and finally reaches the average steam generation rate f1ave [t/h]. , and the operation is continued while fluctuating within the fluctuation range of ±γ [t/h]. When the operation of the steam generating facility 1 is stopped, the steam flow rate gradually decreases and finally becomes 0 t/h. In the middle of this steam increase/decrease, period A indicates an operating state in which the steam flow rate f1 of the steam generating facility is less than the steady load value of the steam turbine facility due to the steam balance.

発生した蒸気は、蒸気タービン設備3及び、エネルギー回収設備4の方向へ流れてくるが、このとき、入口蒸気制御弁11が、最低開度規定値分だけ開いているので、最低負荷蒸気流量X[t/h]分だけの蒸気が、その他の蒸気使用設備側蒸気流量f3として確保される。これが、長距離蒸気輸送配管のドレン発生抑止用の蒸気となる。なお、通常、最低負荷蒸気流量Xは、エネルギー回収設備4の蒸気タービンの下限蒸気流量f4minより小さいので、減圧設備5側にのみ供給され、エネルギー回収設備側蒸気流量f4は0[t/h]となる。蒸気発生設備蒸気流量f1がXを超えるt1以降は、蒸気発生設備蒸気流量f1の増分蒸気が、蒸気タービン設備蒸気流量f2として流れ、蒸気タービン設備定常負荷値f2max[t/h]まで増加し(t2)、この蒸気量で使用される。更に増えた蒸気発生設備蒸気流量f1の増分蒸気は、今度は、蒸気減圧弁蒸気流量f5として増加し、蒸気タービン発電機の下限蒸気流量f4min+γ[t/h]まで増加した(t3)あと、減圧弁12が閉まり、蒸気減圧弁蒸気流量f5が0[t/h]になるとともに、当該蒸気は、蒸気タービン発電機蒸気流量f4として、蒸気タービン発電機側に流れ、エネルギーの発電回収を実施する。この蒸気量は、蒸気タービン発電機の下限蒸気流量をf4min[t/h]とすると、f4min+γ[t/h]を中心とし、f4min~f4min+2γ[t/h]の間で蒸気発生設備1の発生蒸気流量の変動を吸収するように設定する。その他の蒸気使用設備側蒸気流量f3は、蒸気タービン発電機蒸気流量f4と、蒸気減圧弁蒸気流量f5を加算した蒸気量である。 The generated steam flows in the direction of the steam turbine equipment 3 and the energy recovery equipment 4. At this time, the inlet steam control valve 11 is opened by the minimum opening specified value, so the minimum load steam flow rate X Steam for [t/h] is secured as the other steam using equipment side steam flow rate f3. This becomes the steam for suppression of drain generation in the long-distance steam transportation pipe. In addition, since the minimum load steam flow rate X is usually smaller than the lower limit steam flow rate f4min of the steam turbine of the energy recovery facility 4, it is supplied only to the decompression facility 5 side, and the energy recovery facility side steam flow rate f4 is 0 [t/h]. becomes. After t1 when the steam generation facility steam flow rate f1 exceeds X, the incremental steam of the steam generation facility steam flow rate f1 flows as the steam turbine facility steam flow rate f2, and increases to the steam turbine facility steady load value f2max [t/h] ( t2), used with this amount of steam. The incremental steam of the further increased steam generation facility steam flow rate f1 this time increases as the steam pressure reducing valve steam flow rate f5, and increases to the lower limit steam flow rate f4min+γ [t/h] of the steam turbine generator (t3). When the valve 12 is closed and the steam pressure reducing valve steam flow rate f5 becomes 0 [t/h], the steam flows to the steam turbine generator side as the steam turbine generator steam flow rate f4, and the energy is recovered by power generation. . Assuming that the lower limit steam flow rate of the steam turbine generator is f4min [t/h], the amount of steam generated by the steam generation facility 1 is centered at f4min+γ [t/h] and is between f4min and f4min+2γ [t/h]. Set to absorb fluctuations in steam flow rate. The other steam using equipment side steam flow rate f3 is a steam amount obtained by adding the steam turbine generator steam flow rate f4 and the steam pressure reducing valve steam flow rate f5.

本発明は、蒸気発生設備から蒸気使用設備までの配管系統が長距離に亘る蒸気プラントに適用して好適である。 INDUSTRIAL APPLICABILITY The present invention is suitably applied to a steam plant in which the piping system from the steam generating equipment to the steam using equipment extends over a long distance.

100 蒸気プラント
1 蒸気発生設備
2 配管系統
3 蒸気タービン設備
4 エネルギー回収設備(蒸気タービン発電機)
5 減圧設備
51 低圧蒸気ライン
6 第1の分岐
7 第2の分岐
11 蒸気制御弁
12 減圧弁
13 蒸気タービン設備蒸気流量調節計
14 エネルギー回収設備蒸気流量調節計
15 低圧蒸気圧力制御調節計
16 弁開度調節機構(調節計出力/弁開度変換折線)
17 温度補償機構
18 エネルギー回収設備起動停止判定機構
20 信号系統
C 比較判定
EQ 一致判定
F1 蒸気発生設備蒸気流量計
F2 第1の流量計(蒸気タービン設備蒸気流量計)
F3 第2の流量計(エネルギー回収設備等蒸気流量計)
F4 蒸気タービン発電機蒸気流量計
F5 蒸気減圧弁蒸気流量計
LL 最低開度規定値
LS 低位選択器
HM 上限リミット
P1 低圧蒸気圧力計
T1 外気温度計
SV1 低圧蒸気圧力+β
SV2 蒸気タービン設備定常負荷設定値
SV3 蒸気タービン発電機入口蒸気流量上限値
100 steam plant 1 steam generation equipment 2 piping system 3 steam turbine equipment 4 energy recovery equipment (steam turbine generator)
5 pressure reducing equipment 51 low pressure steam line 6 first branch 7 second branch 11 steam control valve 12 pressure reducing valve 13 steam turbine equipment steam flow controller 14 energy recovery equipment steam flow controller 15 low pressure steam pressure control controller 16 valve open degree adjustment mechanism (controller output/valve opening degree conversion polygonal line)
17 Temperature compensating mechanism 18 Energy recovery equipment start/stop determination mechanism 20 Signal system C Comparison determination EQ Coincidence determination F1 Steam generation facility steam flow meter F2 First flow meter (steam turbine facility steam flow meter)
F3 Second flowmeter (steam flowmeter for energy recovery equipment)
F4 Steam turbine generator steam flow meter F5 Steam pressure reducing valve steam flow meter LL Minimum opening specified value LS Low selector HM Upper limit P1 Low pressure steam pressure gauge T1 Outside air temperature gauge SV1 Low pressure steam pressure +β
SV2 Steam turbine facility steady load set value SV3 Steam turbine generator inlet steam flow upper limit value

Claims (3)

蒸気発生設備と、蒸気タービン設備、エネルギー回収設備および減圧設備を含む蒸気使用設備と、を、配管系統で接続する蒸気プラントであって、
前記配管系統に、前記蒸気タービン設備と該蒸気タービン設備以外の蒸気使用設備とへの第1の分岐と、
前記蒸気タービン設備以外の蒸気使用設備への配管に、前記エネルギー回収設備と前記減圧設備とへの第2の分岐と、を設け、
前記第1の分岐の下流側配管の少なくとも一方に蒸気制御弁と、前記蒸気タービン設備への配管に第1の流量計と、前記蒸気タービン設備以外の蒸気使用設備への配管の前記第2の分岐より上流側に第2の流量計と、を具え、
前記第1の分岐の下流側配管に分流されたそれぞれの蒸気流量に応じて前記蒸気制御弁の弁開度を調節する弁開度調節機構と、
前記蒸気タービン設備以外の蒸気使用設備への配管に分流された蒸気流量に応じて前記エネルギー回収設備の起動および停止を制御するエネルギー回収設備起動停止判定機構と、
を有し、
前記弁開度調節機構が、外気温度に応じて調節する温度補償機構から長距離蒸気輸送配管の最低負荷蒸気流量の値を得るように構成されていることを特徴とする蒸気プラント。
A steam plant that connects a steam generating facility and a steam using facility including a steam turbine facility, an energy recovery facility and a pressure reducing facility with a piping system,
a first branch to the steam turbine equipment and steam using equipment other than the steam turbine equipment in the piping system;
a second branch to the energy recovery equipment and the pressure reducing equipment is provided in the piping to the steam using equipment other than the steam turbine equipment;
a steam control valve in at least one of the downstream pipes of the first branch; a first flow meter in the pipe to the steam turbine equipment; a second flow meter upstream from the branch,
a valve opening degree adjusting mechanism that adjusts the valve opening degree of the steam control valve according to the flow rate of each steam branched to the downstream pipe of the first branch;
an energy recovery facility start/stop determination mechanism for controlling the start and stop of the energy recovery facility according to the flow rate of the steam diverted to the piping to the steam using facility other than the steam turbine facility;
has
A steam plant, wherein the valve opening adjustment mechanism is configured to obtain a value of the minimum load steam flow rate of the long-distance steam transportation pipe from a temperature compensation mechanism that adjusts according to the outside air temperature.
前記エネルギー回収設備が、蒸気タービン発電機であることを特徴とする請求項1に記載の蒸気プラント。 2. The steam plant according to claim 1, wherein said energy recovery facility is a steam turbine generator. 蒸気発生設備で発生した蒸気を、蒸気タービン設備、エネルギー回収設備および減圧設備を含む蒸気使用設備に分配する際に、
前記蒸気タービン設備と該蒸気タービン設備以外の蒸気使用設備とへの配管の第1の分岐の少なくとも一方の下流側に具えた蒸気制御弁の弁開度を、前記第1の分岐の下流側のそれぞれの蒸気流量に応じて調節し、
前記蒸気タービン設備以外の蒸気使用設備への蒸気流量に応じて、前記エネルギー回収設備の起動および停止を制御し、
前記蒸気制御弁の弁開度を調節するに当たり、外気温度に応じて得た、長距離蒸気輸送配管の最低負荷蒸気流量の値を用い
前記エネルギー回収設備として、蒸気タービン発電機を用いることを特徴とする蒸気流量制御方法。
When distributing the steam generated by the steam generating facility to steam using facilities including steam turbine facilities, energy recovery facilities and pressure reduction facilities,
The degree of valve opening of a steam control valve provided on the downstream side of at least one of the first branch of the piping leading to the steam turbine equipment and the steam using equipment other than the steam turbine equipment Adjust according to each steam flow rate,
controlling start and stop of the energy recovery equipment according to the steam flow rate to the steam using equipment other than the steam turbine equipment;
In adjusting the valve opening of the steam control valve, using the value of the minimum load steam flow rate of the long-distance steam transportation pipe obtained according to the outside air temperature ,
A steam flow rate control method , wherein a steam turbine generator is used as the energy recovery equipment .
JP2019185731A 2019-10-09 2019-10-09 Steam plant and steam flow control method Active JP7144751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019185731A JP7144751B2 (en) 2019-10-09 2019-10-09 Steam plant and steam flow control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019185731A JP7144751B2 (en) 2019-10-09 2019-10-09 Steam plant and steam flow control method

Publications (2)

Publication Number Publication Date
JP2021060020A JP2021060020A (en) 2021-04-15
JP7144751B2 true JP7144751B2 (en) 2022-09-30

Family

ID=75379824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019185731A Active JP7144751B2 (en) 2019-10-09 2019-10-09 Steam plant and steam flow control method

Country Status (1)

Country Link
JP (1) JP7144751B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013144948A (en) 2012-01-13 2013-07-25 Mitsubishi Heavy Ind Ltd Combined cycle power generation plant, and control method thereof
JP2014202170A (en) 2013-04-09 2014-10-27 Jfeスチール株式会社 Steam pressure difference energy recovery system
JP2017186952A (en) 2016-04-05 2017-10-12 三菱日立パワーシステムズ株式会社 Steam turbine plant

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013144948A (en) 2012-01-13 2013-07-25 Mitsubishi Heavy Ind Ltd Combined cycle power generation plant, and control method thereof
JP2014202170A (en) 2013-04-09 2014-10-27 Jfeスチール株式会社 Steam pressure difference energy recovery system
JP2017186952A (en) 2016-04-05 2017-10-12 三菱日立パワーシステムズ株式会社 Steam turbine plant

Also Published As

Publication number Publication date
JP2021060020A (en) 2021-04-15

Similar Documents

Publication Publication Date Title
CN100529528C (en) Method and apparatus for drum level control for drum-type boilers
EP3715593B1 (en) Power plant and power output increase controlling method for power plant
US6301895B1 (en) Method for closed-loop output control of a steam power plant, and steam power plant
JP5495938B2 (en) Gas turbine fuel control mechanism and gas turbine
JPH02104906A (en) Exhaust heat recovering boiler system and its operation
JP2010121890A (en) Tank water level control system
JPS6337844B2 (en)
JP2007211705A (en) Air pressure control device in integrated gasification combined cycle system
JP5659973B2 (en) Steam supply system, control method therefor, and steam supply method
US20120167581A1 (en) Method of controlling a combined-cycle system in single-shaft configuration, and combined-cycle system in single-shaft configuration
JP4764255B2 (en) Small once-through boiler power generation system and operation control method thereof
JP7144751B2 (en) Steam plant and steam flow control method
JP5967652B2 (en) Operation method of municipal waste incineration plant with steam turbine generator and arithmetic controller for adjusting steam pressure at the inlet of the steam turbine used therefor
JP4898409B2 (en) Steam supply equipment
US7059132B2 (en) Steam generator feedwater control system for power plant
JP2019049234A (en) Extraction control method of steam turbine generator, and controller thereof
JP4905941B2 (en) Waste heat recovery boiler and its steam pressure control method
JP4901335B2 (en) How to deal with auxiliary boiler trip while boiler unit is running
EP2993398B1 (en) Flue-gas treatment apparatus and its method of operation
JP2016005830A (en) Flue gas treatment apparatus, and operational method of flue gas treatment apparatus
JP2014125892A (en) Steam turbine plant
JP5890221B2 (en) Coal gasification combined power plant and its operation control method
JPS60501422A (en) Steam generator control device
JPS6211283Y2 (en)
JP2023032523A (en) Start-up control device and start-up control method for combined cycle power generation plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220830

R150 Certificate of patent or registration of utility model

Ref document number: 7144751

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150