JP2019049234A - Extraction control method of steam turbine generator, and controller thereof - Google Patents

Extraction control method of steam turbine generator, and controller thereof Download PDF

Info

Publication number
JP2019049234A
JP2019049234A JP2017174027A JP2017174027A JP2019049234A JP 2019049234 A JP2019049234 A JP 2019049234A JP 2017174027 A JP2017174027 A JP 2017174027A JP 2017174027 A JP2017174027 A JP 2017174027A JP 2019049234 A JP2019049234 A JP 2019049234A
Authority
JP
Japan
Prior art keywords
steam
extraction
amount
generator
factory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017174027A
Other languages
Japanese (ja)
Other versions
JP6684453B2 (en
Inventor
裕一 大関
Yuichi Ozeki
裕一 大関
篤史 加藤
Atsushi Kato
篤史 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2017174027A priority Critical patent/JP6684453B2/en
Priority to PH12018000262A priority patent/PH12018000262A1/en
Publication of JP2019049234A publication Critical patent/JP2019049234A/en
Application granted granted Critical
Publication of JP6684453B2 publication Critical patent/JP6684453B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Turbines (AREA)

Abstract

To propose an extraction control method of a steam turbine generator capable of properly coping with even fluctuation of an extracted steam amount due to scale adhesion to the turbine or reduction of degree of vacuum in a condenser.SOLUTION: A steam turbine generator comprises a steam flow rate meter at an extraction outlet of a steam turbine, and an automatic-control-system atmosphere release valve at an extraction line. The steam turbine generator can input generator output and an extracted steam amount as parameters to change each approximate peak and inclination, without directly programming an approximate expression obtained from the relationship between the generator output and the extracted steam amount.SELECTED DRAWING: Figure 2

Description

本発明は、タービンの中間段より蒸気を抽気し工場へ送気する蒸気タービン発電機の抽気制御方法に係り、より詳しくはタービンの特性から導く発電機出力の維持に必要な抽気蒸気量にて大気放出弁を自動制御する方式において、発電機負荷や抽気蒸気の変動に適切に対応できるのみならず、タービンへのスケール付着や復水器の真空度低下等による抽気蒸気量の変動にも適切に対応するための、蒸気タービン発電機の抽気制御方法及びその制御装置に関する。   The present invention relates to an extraction control method for a steam turbine generator that extracts steam from an intermediate stage of a turbine and sends it to a factory. More specifically, the extraction steam amount necessary for maintaining the generator output derived from the characteristics of the turbine. In the system that automatically controls the atmospheric discharge valve, not only can it respond appropriately to fluctuations in the generator load and extraction steam, but it is also appropriate for fluctuations in the extraction steam due to scale adhesion to the turbine and a decrease in the vacuum level of the condenser. It is related with the extraction control method and control apparatus of a steam turbine generator in order to cope with this.

タービンの中間段より蒸気を抽気し工場へ送気する蒸気タービン発電機として、タービンのケーシング内部に圧力制御弁を設けて、この圧力制御弁より上流側の圧力制御を行い、抽気圧力を一定に保つことで、タービンの低負荷から定格まで安定した圧力の送気が可能な内部抽気圧力制御型タービン発電機が知られている。この内部抽気圧力制御型タービン発電機は、図5にそのシステム構成例を示すように、過熱蒸気生成用のボイラ(図示せず)から導入される蒸気の熱エネルギーを駆動エネルギーに変換する抽気タービン型の蒸気タービン21、蒸気導入口22−1より導入される蒸気の流量を調節する蒸気加減弁22、抽気減弁23、抽気圧力計24、回転計25、調速機26、復水器27、大気放出弁28から構成されている。蒸気タービン21は高圧段21−1と低圧段21−2を有し、蒸気タービン21の高圧段21−1に流入した蒸気は、抽気減弁23の前で抽気され、抽気減弁23により低圧段21−2に入る蒸気の流入が制御され、抽気ライン29から蒸気が工場へ送気される構成となしている。   As a steam turbine generator that extracts steam from the intermediate stage of the turbine and sends it to the factory, a pressure control valve is provided inside the turbine casing, and pressure control is performed upstream from the pressure control valve to keep the extraction pressure constant. There is known an internal extraction pressure control type turbine generator capable of supplying a stable pressure from a low load of a turbine to a rating by maintaining the pressure. This internal extraction pressure control type turbine generator is an extraction turbine that converts thermal energy of steam introduced from a boiler (not shown) for generating superheated steam into drive energy as shown in FIG. Type steam turbine 21, steam control valve 22 for adjusting the flow rate of steam introduced from the steam inlet 22-1, extraction valve 23, extraction pressure gauge 24, tachometer 25, governor 26, condenser 27 The air release valve 28 is configured. The steam turbine 21 has a high-pressure stage 21-1 and a low-pressure stage 21-2, and the steam that has flowed into the high-pressure stage 21-1 of the steam turbine 21 is extracted before the extraction valve 23, and is reduced by the extraction valve 23. The inflow of steam entering the stage 21-2 is controlled, and the steam is supplied from the extraction line 29 to the factory.

この内部抽気圧力制御型タービン発電機における抽気タービン型の蒸気タービン21の制御には、回転計25にて測定される回転速度と抽気圧力計24にて測定される抽気圧力が必要であり、蒸気タービン21の負荷や抽気の必要量が変われば、蒸気加減弁22や抽気減弁23の限度が制御される必要がある。このため内部抽気圧力制御型タービン発電機には、該蒸気タービン21の回転速度、発電機出力及び抽気を維持するために、蒸気加減弁22、抽気減弁23の両方のバルブを自動制御する機構を備えている。   In order to control the extraction turbine type steam turbine 21 in this internal extraction pressure control type turbine generator, the rotational speed measured by the tachometer 25 and the extraction pressure measured by the extraction pressure gauge 24 are required. If the load on the turbine 21 and the required amount of extraction change, the limits of the steam control valve 22 and the extraction reduction valve 23 need to be controlled. For this reason, the internal bleed pressure control type turbine generator has a mechanism for automatically controlling both the steam control valve 22 and the bleed air reduction valve 23 in order to maintain the rotation speed of the steam turbine 21, the generator output and the bleed air. It has.

上記大気放出弁28としては、手動弁又は自動制御方式の調節弁が使用されている。大気放出弁28に手動弁を使用している場合、発電機負荷及び入口蒸気流量を目安に、予め余裕を持った弁開度に調節している。一方、自動制御方式の調節弁を使用する方式としては、抽気ラインに大気放出用の調節弁を設置し、抽気圧力が設定圧力以上になった場合に、抽気圧力にて調節弁の開度を自動制御する方式が特許文献1、特許文献2に開示されている。特許文献1に開示されている方法は、速度又は負荷制御装置と抽気制御装置とで構成される蒸気タービンの制御装置において、抽気調圧弁が全開又は最低開度となった場合、もしくは調節弁が全開となった場合は、速度又は負荷を制御から除外し、抽気制御を優先して行う制御方法である。又、特許文献2に開示されている方法は、抽気蒸気経路に余剰蒸気を復水器側に放出するタービンバイパス回路と、発電機負荷に対応させて蒸気タービンに導入するボイラ蒸気を制御する負荷制御装置を備えたボイラタービン発電機において、抽気蒸気経路より余剰蒸気を復水器側に放出するタービンバイパス回路により常時復水器へ放出させておき、該バイパス回路のバイパス量を制御するバイパス装置の入力信号を抽気蒸気経路より取込んで、負荷変動に対応するバイパス蒸気量の制御を、負荷制御装置よりも優先させて行う方法である。   As the atmospheric release valve 28, a manual valve or an automatic control type control valve is used. When a manual valve is used for the air release valve 28, the valve opening is adjusted in advance with a margin based on the generator load and the inlet steam flow. On the other hand, as a method of using a control valve of the automatic control method, a control valve for releasing air is installed in the extraction line, and when the extraction pressure exceeds the set pressure, the opening of the control valve is adjusted by the extraction pressure Methods for automatic control are disclosed in Patent Document 1 and Patent Document 2. In the method disclosed in Patent Document 1, in the steam turbine control device constituted by the speed or load control device and the bleed control device, when the bleed pressure regulating valve is fully opened or at the minimum opening, or the control valve is In the case of full opening, the speed or load is excluded from the control and the extraction control is performed with priority. The method disclosed in Patent Document 2 includes a turbine bypass circuit that discharges surplus steam to the condenser side in the extraction steam path, and a load that controls boiler steam that is introduced into the steam turbine in response to the generator load. In a boiler turbine generator provided with a control device, a bypass device that always discharges surplus steam from an extraction steam path to a condenser by a turbine bypass circuit that discharges the steam to a condenser side, and controls a bypass amount of the bypass circuit This is a method in which the control of the bypass steam amount corresponding to the load fluctuation is given priority over the load control device by taking the input signal from the extraction steam path.

しかしながら、前記した従来の蒸気タービン発電機の抽気制御技術には、以下に示す問題点があった。
タービンの中間段より蒸気を抽気し工場へ送気する蒸気タービン発電機において、発電機負荷及び抽気蒸気の工場使用量の変動に対応するために設けられている大気放出弁に手動弁を使用している場合、発電機負荷及び入口蒸気流量を目安に、予め余裕を持った開度に調節するために、過剰な蒸気の大気放出が発生すること、又、手動弁のために、発電機負荷や抽気蒸気の工場使用量の予期せぬ急激な変動には対応できないおそれがあった。
一方、大気放出弁を前記特許文献1、2に開示されている、自動制御方式の調節弁に置き換え、該調節弁を抽気圧力で制御する方法では、大気放出弁の開閉で抽気圧力が変動するため、同じく抽気圧力で制御されている蒸気加減弁や抽気減弁等の制御に影響が出てこれらの制御を安定して行うことができないという問題があった。
However, the above-described conventional steam turbine generator extraction control technology has the following problems.
In a steam turbine generator that extracts steam from the middle stage of the turbine and sends it to the factory, a manual valve is used as the air release valve that is provided to cope with fluctuations in the factory load of the generator load and extracted steam. In order to adjust the opening with sufficient margin in advance using the generator load and the inlet steam flow as a guide, excessive steam release to the atmosphere occurs, and because of the manual valve, the generator load There was a risk that it would not be possible to cope with unexpected and sudden fluctuations in the amount of extracted steam used in the factory.
On the other hand, in the method in which the atmospheric discharge valve is replaced with an automatic control type control valve disclosed in Patent Documents 1 and 2, and the control valve is controlled by the extraction pressure, the extraction pressure fluctuates by opening and closing the atmospheric release valve. Therefore, there is a problem that the control of the steam control valve and the extraction valve that are controlled by the extraction pressure is affected, and these controls cannot be performed stably.

この従来技術の問題点を解決するため、従来、発電機負荷に応じた適切な抽気蒸気量に基づいて、大気放出弁を独立して自動制御することにより、大気放出される過剰な抽気蒸気を削減し、発電機負荷及び抽気蒸気の工場使用量の予期せぬ急激な変動に対しても安定した発電機出力を維持することが可能な蒸気タービン発電機の抽気制御方法がある。
その蒸気タービン発電機の抽気制御方法は、蒸気タービンの中間段より蒸気を抽気し工場へ送気されるように構成され、かつ蒸気タービンの抽気出口に蒸気流量計と、抽気ラインに自動制御方式の大気放出弁を備えた蒸気タービン発電機において、蒸気タービン発電機の有する発電機出力に対する入口蒸気流量と抽気蒸気量の特性に基づいて発電機負荷に応じた抽気蒸気量の設定値を演算して求め、この設定値に基づいて前記大気放出弁により、余剰蒸気を独立して制御する方法であり、又、前記蒸気タービン発電機の抽気制御方法において、図6に示す前記発電機出力と抽気蒸気量の設定値の関係より、抽気が不要な領域(A領域)、既存の抽気制御が安定しない領域(B領域)、タービン出力に応じて抽気蒸気量を増加させる必要がある領域(C領域)を設定し、抽気が不要な領域(A領域)では、抽気蒸気量を0T/Hrに設定し、既存の抽気制御が安定しない領域(B領域)では、排気量を一定とし、タービン出力に応じて抽気蒸気量を増加させる必要がある領域(C領域)では、抽気蒸気量が発電機負荷に比例するよう設定する方法である。
In order to solve this problem of the prior art, excessively extracted steam released to the atmosphere has been conventionally controlled automatically by independently controlling the atmosphere release valve based on an appropriate amount of extracted steam corresponding to the generator load. There is a steam turbine generator extraction control method that can reduce and maintain a stable generator output against unexpected and sudden fluctuations in generator load and extraction steam factory usage.
The extraction control method for the steam turbine generator is configured to extract steam from the intermediate stage of the steam turbine and send it to the factory, and a steam flow meter at the extraction outlet of the steam turbine and an automatic control system to the extraction line In a steam turbine generator equipped with an atmospheric discharge valve, the extraction steam amount set value corresponding to the generator load is calculated based on the characteristics of the inlet steam flow rate and extraction steam amount with respect to the generator output of the steam turbine generator. The excess steam is independently controlled by the atmospheric discharge valve based on the set value, and in the extraction control method of the steam turbine generator, the generator output and extraction shown in FIG. From the relationship of the steam amount setting value, it is necessary to increase the amount of extracted steam in accordance with the region where extraction is not required (A region), the region where existing extraction control is not stable (B region), and the turbine output. Set the area (C area), set the extraction steam amount to 0 T / Hr in the area where extraction is not required (A area), and keep the exhaust amount constant in the area (B area) where the existing extraction control is not stable. In the region (C region) where it is necessary to increase the amount of extracted steam according to the turbine output, this is a method of setting the amount of extracted steam to be proportional to the generator load.

図7は上記の内部抽気圧力制御型タービン発電機における、発電機出力と入口蒸気流量、抽気蒸気量の関係を例示したもので、「A領域」は入口蒸気流量を増やせば、抽気蒸気量0T/Hrでも発電機出力を出すことができる領域である。ただし、復水器の能力以上に入口蒸気流量を増やせば抽気が必要となる。発電機出力がA領域を超える場合は復水器の能力を超えるため、抽気しなければ必要な発電機出力を出すことができない。そのため、A領域からB領域に移る際には、急激に抽気を実施することが必要になり、抽気蒸気量のラインは不連続となる。   FIG. 7 illustrates the relationship between the generator output, the inlet steam flow rate, and the extraction steam amount in the above-described internal extraction pressure control type turbine generator. In the “A region”, if the inlet steam flow rate is increased, the extraction steam amount is 0T. This is an area where the generator output can be output even at / Hr. However, if the inlet steam flow rate is increased beyond the capacity of the condenser, extraction is required. When the generator output exceeds the A region, it exceeds the capacity of the condenser, so that the necessary generator output cannot be output unless the air is extracted. For this reason, when moving from the A region to the B region, it is necessary to perform the extraction rapidly, and the extraction steam amount line becomes discontinuous.

即ち、工場が完全停止し蒸気による加熱・保温等を必要としない場合は、抽気が不要なA領域で運転し、工場稼働時は抽気蒸気を加熱・保温等のための蒸気として使用しているため、B領域以上で運転する。工場の電力負荷が高い場合はC領域で運転する。又、工場の蒸気使用量<抽気蒸気量となったときは余剰分を大気放出する。発電機出力がA領域を超えて運転する時には、発電機出力を維持するために一定量以上の入口蒸気流量が必要となる。
ここで、「B領域」は発電機出力に応じて、入口蒸気流量は増加するが、抽気蒸気量は、一定量が送気される領域で、既存の抽気制御が安定しない領域でもある。また、「C領域」は、発電機出力に応じて、入口蒸気流量は増加し、抽気蒸気量も合わせて増加する領域で、発電機出力に応じて抽気蒸気量を増加させる必要がある領域でもある。図中の点線ラインと実線の差異が抽気蒸気量を示している。
In other words, when the factory is completely shut down and heating or heat insulation with steam is not required, operation is performed in the A region where extraction is not required, and the extraction steam is used as steam for heating or heat insulation during factory operation. Therefore, it operates in B area or more. If the power load of the factory is high, operate in the C region. When the amount of steam used in the factory is less than the amount of extracted steam, the surplus is released to the atmosphere. When the generator output is operated beyond the A region, an inlet steam flow rate of a certain amount or more is required to maintain the generator output.
Here, “B region” is a region where the inlet steam flow rate increases in accordance with the generator output, but the extraction steam amount is a region where a constant amount is supplied, and the existing extraction control is not stable. Further, “C region” is a region where the inlet steam flow rate increases and the amount of extracted steam increases in accordance with the generator output, and also in the region where the amount of extracted steam needs to be increased in accordance with the generator output. is there. The difference between the dotted line and the solid line in the figure indicates the amount of extracted steam.

発電機出力を増加させることを考えた場合、A領域では入口蒸気流量を増やしても抽気蒸気量0T/Hrで発電可能である。B、C領域以上に出力を上げるためには、復水器の能力を超えてしまうため、抽気蒸気量を増やす必要がある。なお、A領域の左端が当該発電機の最小能力、C領域の右端が当該発電機の最大能力をそれぞれ示している。   In consideration of increasing the generator output, in the A region, even if the inlet steam flow rate is increased, power can be generated with the extraction steam amount of 0 T / Hr. In order to increase the output beyond the B and C regions, the capacity of the condenser is exceeded, so it is necessary to increase the amount of extracted steam. The left end of the A region indicates the minimum capacity of the generator, and the right end of the C region indicates the maximum capacity of the generator.

このため、この発電機出力の維持に必要な抽気蒸気量が工場使用量を上回るときに余剰蒸気を大気放出する大気放出弁を設けているのである。そして、B領域、C領域では、工場の電力使用量の変動に伴う発電機出力の変動及び、工場使用量の変動に伴う工場送気・抽気蒸気量の変動時には、この大気放出弁を開閉することで、発電機出力の維持に必要な抽気蒸気量を維持している。   For this reason, an atmospheric discharge valve is provided for releasing excess steam to the atmosphere when the amount of extracted steam necessary for maintaining the generator output exceeds the amount used in the factory. In the B region and the C region, the atmospheric discharge valve is opened and closed when the output of the generator is fluctuated due to fluctuations in the power consumption of the factory and when the factory supply / bleeding steam quantity is fluctuated due to fluctuations in the factory usage. Thus, the amount of extracted steam necessary to maintain the generator output is maintained.

この蒸気タービン発電機の抽気制御方法によれば、発電機負荷に応じた適切な抽気蒸気量に基づいて、抽気ラインに設置した自動制御方式の大気放出弁を独立して自動制御することができるので、大気放出される過剰な抽気蒸気を削減できるとともに、発電機負荷及び抽気蒸気の工場使用量の予期せぬ急激な変動に対しても安定した発電機出力を維持することができ、さらに抽気ラインに設置した蒸気流量計及び自動制御方式の大気放出弁を既存のタービン発電機制御装置に変更を加えることなく容易に追加設置することができるので設備コストが高くつくこともないという優れた効果を奏する。   According to this steam turbine generator extraction control method, it is possible to independently and automatically control the automatic control type atmospheric discharge valve installed in the extraction line based on the appropriate amount of extraction steam corresponding to the generator load. As a result, excess bleed steam released to the atmosphere can be reduced, and stable generator output can be maintained against unexpected sudden fluctuations in the generator load and the amount of bleed steam used in the factory. The steam flow meter installed in the line and the automatic control type atmospheric release valve can be installed easily without any changes to the existing turbine generator control device, so that the equipment cost is not high. Play.

しかしながら、この蒸気タービン発電機の抽気制御方法には、次に記載する課題がある。
即ち、蒸気タービンの中間段より蒸気を抽気し工場へ送気するタービン発電機において、発電機出力に対する抽気蒸気量はタービンの特性により決まるため、発電機出力と抽気蒸気量の関係から求めた近似式を使用し大気放出弁を自動制御することができるが、タービンに供給される蒸気には、シリカや塩化物イオン等の不純物やガスが含まれており、タービンへのスケール付着や復水器の真空度低下等により復水器の能力低下をきたし、排気側への抜けが悪くなるとタービンの発電機出力を維持するためには抽気蒸気量の増加が必要となる。そのような状況において、前記近似式にて大気放出弁を自動制御し運転を継続した場合、演算結果から得られる抽気蒸気量の設定値が実際の抽気蒸気量を下回ることで大気放出量が不足し抽気蒸気圧力が上昇、抽気蒸気量が不足し発電機出力を維持できなくなる可能性がある。それを防ぐためには、プログラムされた演算式を見直し、大気放出弁の自動制御を停止し書き換える必要がある。又、複数のタービンを保有する工場においては、それぞれのタービンの特性に合わせ近似式を導き出し、タービン毎に異なる演算式をプログラムする必要がある。
However, this steam turbine generator extraction control method has the following problems.
In other words, in a turbine generator that extracts steam from the middle stage of the steam turbine and sends it to the factory, the amount of extracted steam relative to the generator output is determined by the characteristics of the turbine, so the approximation obtained from the relationship between the generator output and the amount of extracted steam The atmospheric discharge valve can be automatically controlled using the equation, but the steam supplied to the turbine contains impurities and gases such as silica and chloride ions. If the capacity of the condenser is reduced due to a decrease in the degree of vacuum, and the escape to the exhaust side becomes worse, an increase in the amount of extracted steam is required to maintain the generator output of the turbine. In such a situation, when the atmospheric discharge valve is automatically controlled by the above approximate expression and the operation is continued, the set value of the extraction steam amount obtained from the calculation result is less than the actual extraction steam amount, and the amount of atmospheric release is insufficient. However, there is a possibility that the extraction steam pressure will rise and the amount of extraction steam will be insufficient to maintain the generator output. In order to prevent this, it is necessary to review the programmed arithmetic expression, stop the automatic control of the atmospheric release valve, and rewrite it. Further, in a factory having a plurality of turbines, it is necessary to derive an approximate expression in accordance with the characteristics of each turbine and to program different arithmetic expressions for each turbine.

特開平07−166808号公報JP 07-166808 A 特開平11−343814号公報Japanese Patent Laid-Open No. 11-343814

本発明は、前記した従来技術の課題を解決するためになされたもので、発電機出力と抽気蒸気量の関係から求めた近似式を直接プログラムせず、発電機出力と抽気蒸気量をパラメータとして入力し、近似した折れ線の起点及び傾きを変更できるようにすることにより、タービンへのスケール付着や復水器の真空度低下等による抽気蒸気量の変動にも適切に対応できる蒸気タービン発電機の抽気制御方法およびその制御装置を提案しようとするものである。   The present invention has been made to solve the above-described problems of the prior art, and does not directly program the approximate expression obtained from the relationship between the generator output and the amount of extracted steam, but uses the generator output and the amount of extracted steam as parameters. By making it possible to change the starting point and inclination of the approximate polygonal line, the steam turbine generator that can appropriately cope with fluctuations in the amount of extracted steam due to scale adhesion to the turbine or a decrease in the vacuum level of the condenser, etc. An extraction control method and a control device therefor are proposed.

本発明に係る蒸気タービン発電機の抽気制御方法は、蒸気タービンの中間段より蒸気を抽気し工場へ送気されるように構成され、かつ蒸気タービンの抽気出口に蒸気流量計と、抽気ラインに自動制御方式の大気放出弁を備え、発電機出力に応じた抽気蒸気量の設定値を求めて前記大気放出弁を制御するための演算・制御装置を有する蒸気タービン発電機の抽気制御方法であって、蒸気タービンの特性から導く抽気蒸気量にて前記大気放出弁を自動制御する際に、発電機出力と抽気蒸気量の関係を、変更できる折れ線の各頂点及び傾きをパラメータとして設定し、前記パラメータの特性に基づいて発電機出力に応じた抽気蒸気量の設定値を演算して求め、この設定値と、設定工場蒸気使用量に基づいて前記大気放出弁により、余剰蒸気を独立して制御することを特徴とするものである。
この本発明の抽気制御方法は、蒸気タービンの特性に合わせて前記変更できる折れ線の各頂点となる発電機出力と抽気蒸気量の組み合わせをパラメータとして複数点設定することを好ましい態様とするものである。
又、本発明に係る蒸気タービン発電機の抽気制御装置は、蒸気タービンの中間段に設けられた抽気出口より蒸気を抽気し工場へ送気する抽気ラインと、その抽気ラインに設置された蒸気流量計と、抽気ラインの前記蒸気流量計より工場側の前記抽気ラインから分岐して設けられ、抽気した蒸気を大気に排出する自動制御方式の制御器付き大気放出弁とを備える機器装置と、蒸気タービン発電機から送られる発電機出力と、工場から送られる工場の蒸気使用量を入力する入力部と、予め求めた、蒸気タービンの特性に合わせて変更できる折れ線の各頂点となる「発電機出力と抽気蒸気量の組み合わせによる頂点座標」及び「隣接頂点間の傾き」をパラメータとして格納したデータベース領域と、それらのパラメータから発電機出力に応じて求めた抽気蒸気量の設定値と、工場の蒸気使用量に基づいた大気放出弁を制御するための命令信号を発生させ、その命令信号を出力する演算ユニットと、その演算ユニットから出力された命令信号を、大気放出弁の制御器へと出力する出力部と、発電機出力と、工場の蒸気使用量と、設定値と、命令信号を、同期して格納する操業データ領域とを含む演算・制御装置を有することを特徴とする蒸気タービン発電機の抽気制御装置である。
A steam turbine generator bleed control method according to the present invention is configured to extract steam from an intermediate stage of a steam turbine and send it to a factory, and to a steam flow meter and a bleed line at a bleed outlet of the steam turbine. This is an extraction control method for a steam turbine generator that includes an automatic control type atmospheric discharge valve and has a calculation / control device for controlling the atmospheric discharge valve by obtaining a set value of the extraction steam amount according to the generator output. Then, when the atmospheric discharge valve is automatically controlled with the amount of extracted steam derived from the characteristics of the steam turbine, the relationship between the generator output and the amount of extracted steam is set as a parameter for each vertex and inclination of a broken line, Based on the characteristics of the parameter, the set value of the extraction steam amount corresponding to the generator output is calculated and obtained, and the surplus steam is made independent by the atmospheric release valve based on this set value and the set factory steam consumption. It is characterized in that the control.
This extraction control method of the present invention is a preferred embodiment in which a plurality of points are set with a combination of a generator output and extraction steam amount serving as the vertices of the broken line that can be changed according to the characteristics of the steam turbine as parameters. .
Further, the extraction control device for a steam turbine generator according to the present invention includes an extraction line for extracting steam from an extraction outlet provided at an intermediate stage of the steam turbine and sending it to a factory, and a steam flow rate installed in the extraction line. A device that includes a meter, and an air release valve with a controller of an automatic control system that is provided by branching from the extraction line on the factory side from the steam flow meter of the extraction line and that discharges the extracted steam to the atmosphere; The generator output sent from the turbine generator, the input unit for inputting the steam usage of the factory sent from the factory, and the “generator output that becomes the apex of the polygonal line that can be changed in accordance with the characteristics of the steam turbine obtained in advance. And the database area that stores the “vertex coordinates based on the combination of extraction steam volume” and “inclination between adjacent vertices” as parameters, and the parameters are determined according to the generator output. Generate a command signal for controlling the atmospheric discharge valve based on the set value of the extraction steam amount and the amount of steam used in the factory, output the command signal, and the command signal output from the calculation unit An operation / control device including an output unit for outputting to the controller of the atmospheric discharge valve, a generator output, a factory steam consumption, a set value, and an operation data area for storing command signals in synchronization A bleed control device for a steam turbine generator.

本発明の蒸気タービン発電機の抽気制御方法及びその制御装置によれば、発電機出力と抽気蒸気量の関係から求めた近似式を直接プログラムせず、発電機出力と抽気蒸気量をパラメータとして入力し、近似した各頂点及び傾きを変更できるようにすることで、タービンへのスケール付着や復水器の真空度低下等による復水器の能力低下により、抽気蒸気量の増加が生じた場合においても、プログラムされた演算式を見直し、大気放出弁の自動制御を停止し書き換えることなく、大気放出弁の制御特性を変更し、大気放出量の不足による抽気蒸気圧力の上昇や、抽気蒸気量不足を補正し安定した発電機出力を維持することができる。   According to the steam turbine generator extraction control method and control apparatus of the present invention, the approximate expression obtained from the relationship between the generator output and the extraction steam amount is not directly programmed, and the generator output and the extraction steam amount are input as parameters. However, by making it possible to change the approximate apex and inclination, in the case of an increase in the amount of extracted steam due to a decrease in condenser capacity due to scale adhesion to the turbine or a reduction in the vacuum degree of the condenser, etc. Also, review the programmed calculation formula, change the control characteristics of the air release valve without stopping and rewriting the automatic control of the air release valve, increase the extraction steam pressure due to the lack of air release, or the insufficient amount of extraction steam And stable generator output can be maintained.

又、複数の蒸気タービンを保有する工場においても、それぞれのタービンの特性に合わせ、近似式を導き出し、タービン毎に異なる演算式をプログラムすることなく、同一の演算式を使用しパラメータの変更のみで対応することができる。   Even in factories that have multiple steam turbines, an approximate expression can be derived according to the characteristics of each turbine, and the same calculation expression can be used to change parameters without programming different calculation expressions for each turbine. Can respond.

本発明の蒸気タービン発電機の抽気制御方法を実施するためのシステム構成例を示す概略図である。It is the schematic which shows the system structural example for enforcing the extraction control method of the steam turbine generator of this invention. 同じく図1に示すシステム構成例における本発明の蒸気タービン発電機の抽気制御方法を示すフローチャートである。2 is a flowchart showing a bleed control method for the steam turbine generator of the present invention in the system configuration example shown in FIG. 1. 同じく図1に示すシステム構成例における本発明の発電機出力に対する抽気蒸気量の設定例を示す説明図である。It is explanatory drawing which shows the example of a setting of the amount of extraction steam with respect to the generator output of this invention in the system configuration example similarly shown in FIG. 本発明の蒸気タービン発電機の抽気制御装置の構成例を示す概略図である。It is the schematic which shows the structural example of the extraction control apparatus of the steam turbine generator of this invention. 従来の内部抽気圧力制御型タービン発電機のシステム構成例を示す概略図である。It is the schematic which shows the system structural example of the conventional internal extraction pressure control type turbine generator. 従来の発電機出力と抽気蒸気量の設定例を示す説明図である。It is explanatory drawing which shows the example of a setting of the conventional generator output and the amount of extraction steam. 従来の発電機出力と入口蒸気流量と抽気蒸気量の関係を示す図である。It is a figure which shows the relationship between the conventional generator output, an inlet steam flow rate, and the amount of extracted steam.

図1に示す本発明の蒸気タービン発電機の抽気制御方法を実施するためのシステム構成は、過熱蒸気生成用のボイラ(図示せず)から導入される蒸気の熱エネルギーを駆動エネルギーに変換する抽気タービン型の蒸気タービン1、蒸気導入口2−1より導入される蒸気の流量を調節する蒸気加減弁2、抽気減弁3、抽気圧力計4、回転計5、調速機6、復水器7、抽気ライン8、蒸気タービン1の抽気出口に設置した蒸気流量計9、演算・制御装置10、自動制御方式の制御器付大気放出弁(調節弁)12により構成されている。本発明のシステム構成においても、蒸気タービン1は高圧段1−1と低圧段1−2を有し、高圧段1−1に流入した蒸気は、抽気減弁3の前、即ちタービン1の中間段で抽気され、抽気減弁3により低圧段1−2に入る蒸気の流入が制御され、タービン1の中間段に設けられた抽気ライン8から蒸気が工場へ送気される構成となしているが、かかるシステム構成例において、蒸気流量計9、演算・制御装置10、自動制御方式の制御器付大気放出弁12以外の構成は、図5に示す従来技術と同様である。又、本発明のシステム構成における蒸気流量計9及び制御器付き大気放出弁12は十分な蒸気を流すことができるものを使用する。又、タービン抽気出口の蒸気流量の計測には、タービン入口の蒸気流量とタービン排気を処理した復水器7の出口の水流量の差を用いることもできる。   The system configuration for carrying out the steam turbine generator extraction control method of the present invention shown in FIG. 1 is an extraction that converts the thermal energy of steam introduced from a boiler (not shown) for generating superheated steam into drive energy. Turbine-type steam turbine 1, steam control valve 2 for adjusting the flow rate of steam introduced from the steam inlet 2-1, extraction valve 3, extraction pressure gauge 4, tachometer 5, governor 6, condenser 7, an extraction line 8, a steam flow meter 9 installed at an extraction outlet of the steam turbine 1, an arithmetic / control device 10, and an atmospheric discharge valve (control valve) 12 with a controller of an automatic control system. Also in the system configuration of the present invention, the steam turbine 1 has a high-pressure stage 1-1 and a low-pressure stage 1-2, and the steam that has flowed into the high-pressure stage 1-1 flows before the extraction valve 3, that is, in the middle of the turbine 1. The steam is extracted at the stage, the inflow of steam entering the low pressure stage 1-2 is controlled by the extraction valve 3, and the steam is supplied to the factory from the extraction line 8 provided in the intermediate stage of the turbine 1. However, in this system configuration example, the configuration other than the steam flow meter 9, the calculation / control device 10, and the automatic control type atmospheric release valve 12 with a controller is the same as that of the prior art shown in FIG. In addition, the steam flow meter 9 and the atmospheric release valve 12 with a controller in the system configuration of the present invention are those capable of flowing sufficient steam. Further, the measurement of the steam flow rate at the turbine bleed outlet can use the difference between the steam flow rate at the turbine inlet and the water flow rate at the outlet of the condenser 7 that has processed the turbine exhaust.

この蒸気タービン発電機のシステム構成例は、蒸気タービン1の抽気出口に設置された抽気蒸気量を計測するための蒸気流量計9の指示に対し、抽気蒸気量を設定することにより、大気放出弁12の開度を調節するシステムとなっている。抽気蒸気を工場へ送気する場合は、抽気蒸気の設定工場使用量と大気放出量の和が抽気蒸気量となる。そのため、抽気蒸気の設定工場使用量が抽気蒸気量より上回る場合は、大気放出弁12の開度を閉じる。又、設定工場使用量が抽気蒸気量を下回る場合は、大気放出弁12の開度を開き余剰蒸気を大気放出することで、抽気蒸気量を維持するように自動制御される仕組みとなっている。   The system configuration example of this steam turbine generator includes an air release valve by setting the extraction steam amount in response to an instruction from the steam flow meter 9 for measuring the extraction steam amount installed at the extraction outlet of the steam turbine 1. 12 is a system for adjusting the opening degree. When the extracted steam is sent to the factory, the sum of the set factory use amount of the extracted steam and the amount released to the atmosphere is the amount of extracted steam. Therefore, the opening degree of the atmospheric release valve 12 is closed when the set factory use amount of the extraction steam exceeds the extraction steam amount. In addition, when the set factory use amount is less than the extraction steam amount, the opening of the atmosphere release valve 12 is opened and the surplus steam is released into the atmosphere so that the amount of extraction steam is automatically controlled. .

この蒸気タービン発電機のシステム構成例において、蒸気タービン1の中間段より蒸気を抽気し工場へ送気するタービン発電機で、大気放出弁12を蒸気タービン1の特性から導く抽気蒸気量にて自動制御する場合において、蒸気タービン1へのスケール付着や復水器7の真空度低下等により、抽気蒸気量が増加した場合、大気放出弁12の制御特性を変更する必要がある。本発明はそれらの変動に対応するために、以下に記載する手段をとるのである。
即ち、発電機出力と抽気蒸気量の関係から求めた近似式を直接プログラムせず、発電機出力と抽気蒸気量をパラメータとして入力し、近似した折れ線の各頂点及び傾きを変更する。具体的には、例えば図3に示すように、蒸気タービン1の特性に合わせ折れ線の各頂点となる発電機出力と抽気蒸気量の組み合わせをパラメータとしてP1からP10までの10点を設定する。実際の発電機出力とP1からP10に設定された発電機出力を該当する区間が見つかるまで順次比較し、対応する区間が見つかると2点間をつなぐ線分との交点となる値を抽気蒸気量として演算し、その結果を、大気放出弁12を制御する抽気蒸気量制御の設定値に出力する。例えば、実際の発電機出力がP7とP8間にあるとき、P7を始点、P8を終点とする線分との交点となる値Aを抽気蒸気量として抽気蒸気量制御の設定値に出力し、この設定値と設定工場蒸気使用量に基づいて前記大気放出弁12により、余剰蒸気を独立して制御することができる。
In this steam turbine generator system configuration example, a steam generator is used to extract steam from the intermediate stage of the steam turbine 1 and send it to the factory. The atmospheric discharge valve 12 is automatically set based on the amount of extracted steam derived from the characteristics of the steam turbine 1. In the case of control, when the amount of extracted steam increases due to scale adhesion to the steam turbine 1 or a decrease in the vacuum degree of the condenser 7, it is necessary to change the control characteristics of the atmospheric discharge valve 12. The present invention takes the measures described below in order to cope with these variations.
That is, the approximate expression obtained from the relationship between the generator output and the amount of extracted steam is not directly programmed, but the generator output and the amount of extracted steam are input as parameters, and each vertex and inclination of the approximate broken line are changed. Specifically, as shown in FIG. 3, for example, 10 points from P1 to P10 are set with the combination of the generator output and the amount of extracted steam at each vertex of the polygonal line in accordance with the characteristics of the steam turbine 1 as parameters. The actual generator output and the generator output set from P1 to P10 are sequentially compared until the corresponding section is found, and when the corresponding section is found, the value that is the intersection of the line segment connecting the two points is extracted. And the result is output as a set value for the extraction steam amount control for controlling the atmospheric discharge valve 12. For example, when the actual generator output is between P7 and P8, the value A that is the intersection of the line segment starting from P7 and ending at P8 is output as the extraction steam amount to the setting value of the extraction steam amount control, Excess steam can be independently controlled by the atmospheric discharge valve 12 based on the set value and the set factory steam consumption.

この蒸気タービン発電機の抽気制御方法を図2に示すフローチャートに基づいて説明すると、まず発電機出力と抽気蒸気量の関係からパラメータを設定する。次に、前記パラメータ特性に基づいて、発電機出力に応じた抽気蒸気量の設定値を求め、この設定抽気蒸気量と設定工場蒸気使用量とを比較する。その結果、設定抽気蒸気量が設定工場蒸気使用量より大きい場合は、大気放出弁12の開度を開き、反対に設定抽気蒸気量が設定工場蒸気使用量より小さい場合は、大気放出弁12の開度を閉じる。このような演算及び比較が連続的に行われることで、パラメータの変更においても大気放出弁の制御を停止することなく、折れ線の各起点及び傾きといった大気放出弁の制御特性を補正することができる。   The extraction method for the steam turbine generator will be described with reference to the flowchart shown in FIG. 2. First, parameters are set from the relationship between the generator output and the amount of extracted steam. Next, based on the parameter characteristics, a set value of the extraction steam amount corresponding to the generator output is obtained, and the set extraction steam amount and the set factory steam use amount are compared. As a result, when the set extraction steam amount is larger than the set factory steam use amount, the opening degree of the atmospheric discharge valve 12 is opened, and conversely, when the set extraction steam amount is smaller than the set factory steam use amount, Close the opening. By performing such calculation and comparison continuously, it is possible to correct the control characteristics of the atmospheric release valve such as the starting point and inclination of the broken line without stopping the control of the atmospheric release valve even when the parameter is changed. .

図4は、上記で説明してきた本発明に係る蒸気タービン発電機の抽気制御方法を実行するための蒸気タービン発電機の抽気制御装置の例を示す概略図である。
図4において、100は抽気制御装置(一点鎖線で囲まれた範囲)、1Aは抽気出口、10は抽気制御装置の演算・制御装置、12aは大気放出弁12の制御器、101は入力部、102出力部、103は演算ユニット、104はデータベース領域、105は操業データ領域、EQは抽気制御装置の機器部、Sは命令信号、Pは発電機出力、Uは工場の蒸気使用量、Tは抽気蒸気量の設定値である。
FIG. 4 is a schematic diagram showing an example of a steam turbine generator bleed control device for executing the steam turbine generator bleed control method according to the present invention described above.
In FIG. 4, 100 is an extraction control device (range surrounded by a one-dot chain line), 1 A is an extraction outlet, 10 is a calculation / control device of the extraction control device, 12 a is a controller of the atmospheric release valve 12, 101 is an input unit, 102 output unit, 103 is an arithmetic unit, 104 is a database area, 105 is an operation data area, EQ is an equipment unit of a bleed control device, S is a command signal, P is a generator output, U is a steam consumption of a factory, T is It is a set value of the amount of extracted steam.

本発明に係る抽気制御装置100は、蒸気タービンの中間段に設けられた抽気出口1Aより蒸気を抽気し、工場へ送気する抽気ライン(蒸気送気配管)8と、その抽気ライン8に設置された蒸気流量計9と、抽気ライン8に設置された蒸気流量計9より工場側の抽気ライン8から分岐して設けられ、抽気した蒸気を大気に排出する自動制御方式の制御器付き大気放出弁12とで構成された機器部(EQ)を有し、その制御器付き大気放出弁12を演算・制御装置(10)からの命令信号Sにより動作させることで、安定した発電機出力を維持するものである。   The extraction control device 100 according to the present invention is installed in an extraction line (steam supply piping) 8 for extracting steam from an extraction outlet 1A provided in an intermediate stage of the steam turbine and supplying it to a factory, and the extraction line 8 The steam flow meter 9 and the steam flow meter 9 installed in the bleed line 8 are branched from the bleed line 8 on the factory side, and are released into the atmosphere with an automatic control system controller that discharges the extracted steam to the atmosphere. It has an equipment unit (EQ) composed of a valve 12 and operates the atmospheric release valve 12 with a controller in response to a command signal S from the arithmetic / control device (10), thereby maintaining a stable generator output. To do.

本発明における演算・制御装置10は、蒸気タービン発電機から送られる発電機出力と、工場から送られる工場の蒸気使用量を入力する入力部101と、予め求めた、蒸気タービンの特性に合わせて変更できる折れ線の各頂点となる「発電機出力と抽気蒸気量の組み合わせによる頂点座標」及び「隣接頂点間の傾き」をパラメータとして格納したデータベース領域104と、そのパラメータから発電機出力に応じて求めた抽気蒸気量の設定値Tと、入力された工場の蒸気使用量Uに基づき、その両者を比較することで大気放出弁12の開閉動作を制御するための命令信号Sを発生させ、その命令信号Sを出力する演算ユニット103と、その演算ユニット103から出力された命令信号Sを、大気放出弁12の制御器12aへと出力する出力部102と、発電機出力Pと、工場の蒸気使用量Uと、抽気蒸気量の設定値Tと、命令信号Sを、同期して格納する操業データ領域105とを含む構成となっています。   The arithmetic / control device 10 according to the present invention includes a generator output sent from a steam turbine generator, an input unit 101 for inputting a steam usage amount of the factory sent from the factory, and a previously obtained characteristic of the steam turbine. A database area 104 storing “vertex coordinates based on the combination of generator output and amount of extracted steam” and “inclination between adjacent vertices” as parameters at each vertex of the changeable broken line, and the parameters are obtained according to the generator output. A command signal S for controlling the opening / closing operation of the atmospheric release valve 12 is generated by comparing the extracted steam amount set value T and the input steam consumption amount U of the factory, and the command The arithmetic unit 103 that outputs the signal S, and the output that outputs the command signal S output from the arithmetic unit 103 to the controller 12a of the atmospheric discharge valve 12 And 102, and the generator output P, a steam usage U factory, the set value T of the extracted steam amount, the command signal S, has composition including the operational data area 105 for storing in synchronism.

本発明に係る抽気制御装置100では、図2のフローチャートで示す本発明に係る蒸気タービン発電機の抽気制御方法に沿って、測定・入力された発電機出力Pに基づき、演算・制御装置10において、データベース領域104に格納されているパラメータから抽気蒸気量の設定値Tが算出され、その設定値Tと、発電機出力Pと同期した工場の蒸気使用量Uとを比較した結果により、大気放出弁12の開閉指令の命令信号Sを、制御器12aに送信し、その開閉指令により大気放出弁12が動作するものである。   In the extraction control device 100 according to the present invention, in the calculation / control device 10 based on the generator output P measured and inputted in accordance with the extraction control method for the steam turbine generator according to the present invention shown in the flowchart of FIG. From the parameters stored in the database area 104, a set value T of the extracted steam amount is calculated, and the set value T is compared with the factory steam use amount U synchronized with the generator output P, so that the atmospheric discharge A command signal S for opening / closing command of the valve 12 is transmitted to the controller 12a, and the atmospheric release valve 12 is operated by the opening / closing command.

以上説明したように、本発明に係る蒸気タービン発電機の抽気制御方法及びその制御装置は、発電機出力と抽気蒸気量の関係から求めた近似式を直接プログラムせず、発電機出力と抽気蒸気量をパラメータとして入力し、近似した折れ線の起点及び傾きを変更できるようにすることにより、タービンへのスケール付着や復水器の真空度低下等による抽気蒸気量の変動にも適切に対応することができる。   As described above, the steam turbine generator extraction control method and control apparatus according to the present invention do not directly program the approximate expression obtained from the relationship between the generator output and the amount of extraction steam, but the generator output and extraction steam. Appropriately cope with fluctuations in the amount of extracted steam due to scale adhesion to the turbine and lowering of the vacuum level of the condenser, etc. by inputting the amount as a parameter so that the origin and inclination of the approximate broken line can be changed Can do.

1 蒸気タービン
1A 抽気出口
1−1 高圧段
1−2 低圧段
2 蒸気加減弁
2−1 蒸気導入口
3 抽気減弁
4 抽気圧力計
5 回転計
6 調速機
7 復水器
8 抽気ライン
9 蒸気流量計
10 演算・制御装置
12 大気放出弁
12a 大気放出弁の制御器
100 抽気制御装置
101 入力部
102 出力部
103 演算ユニット
104 データベース領域
105 操業データ領域
EQ 抽気制御装置の機器部
S 命令信号
P 発電機出力
U 工場の蒸気使用量
T 抽気蒸気量の設定値
DESCRIPTION OF SYMBOLS 1 Steam turbine 1A Extraction outlet 1-1 High pressure stage 1-2 Low pressure stage 2 Steam control valve 2-1 Steam inlet 3 Extraction valve 4 Extraction pressure gauge 5 Tachometer 6 Speed governor 7 Condenser 8 Extraction line 9 Steam Flow meter 10 Arithmetic / control device 12 Atmospheric release valve 12a Atmospheric release valve controller 100 Extraction control device 101 Input unit 102 Output unit 103 Operation unit 104 Database region 105 Operation data region EQ Equipment unit of extraction control device S Command signal P Power generation Unit output U Factory steam consumption T Set value of extraction steam quantity

Claims (3)

蒸気タービンの中間段より蒸気を抽気し工場へ送気されるように構成され、かつ蒸気タービンの抽気出口に蒸気流量計と、抽気ラインに自動制御方式の大気放出弁を備え、発電機出力に応じた抽気蒸気量の設定値を求めて前記大気放出弁を制御するための演算制御装置を有する蒸気タービン発電機の抽気制御方法であって、
蒸気タービンの特性から導く抽気蒸気量にて前記大気放出弁を自動制御する際に、発電機出力と抽気蒸気量の関係を、変更できる折れ線の各頂点及び傾きをパラメータとして設定し、前記パラメータの特性に基づいて発電機出力に応じた抽気蒸気量の設定値を演算して求め、この設定値と、設定工場蒸気使用量に基づいて前記大気放出弁により、余剰蒸気を独立して制御することを特徴とする蒸気タービン発電機の抽気制御方法。
Steam is extracted from the middle stage of the steam turbine and sent to the factory, and a steam flow meter is installed at the extraction outlet of the steam turbine, and an automatic discharge air release valve is installed in the extraction line, and the generator output A steam turbine generator bleed control method having a calculation control device for obtaining a set value of a corresponding bleed steam amount and controlling the atmospheric discharge valve,
When automatically controlling the atmospheric discharge valve with the amount of extracted steam derived from the characteristics of the steam turbine, the relationship between the generator output and the amount of extracted steam is set as a parameter for each vertex and slope of a broken line that can be changed. Calculate the set value of the extraction steam amount according to the generator output based on the characteristics, and control the surplus steam independently by the atmospheric release valve based on this set value and the set factory steam consumption An extraction control method for a steam turbine generator.
蒸気タービンの特性に合わせて前記変更できる折れ線の各頂点となる発電機出力と抽気蒸気量の組み合わせをパラメータとして複数点設定することを特徴とする請求項1に記載の蒸気タービン発電機の抽気制御方法。   2. The extraction control of a steam turbine generator according to claim 1, wherein a combination of a generator output and an extraction steam amount at each vertex of the broken line that can be changed according to the characteristics of the steam turbine is set as a parameter at a plurality of points. Method. 蒸気タービンの中間段に設けられた抽気出口より蒸気を抽気し工場へ送気する抽気ライン(蒸気送気配管)と、
前記抽気ラインに設置された蒸気流量計と、
前記抽気ラインの前記蒸気流量計より工場側の前記抽気ラインから分岐して設けられ、抽気した蒸気を大気に排出する自動制御方式の制御器付き大気放出弁とを備える機器部と、
前記蒸気タービンの発電機から送られる発電機出力と、前記工場へ送られる工場の蒸気使用量を入力する入力部と、
予め求めた、蒸気タービンの特性に合わせて変更できる折れ線の各頂点となる「発電機出力と抽気蒸気量の組み合わせによる頂点座標」及び「隣接頂点間の傾き」をパラメータとして格納したデータベース領域と、
前記パラメータから前記発電機出力に応じて求めた抽気蒸気量の設定値と、前記工場の蒸気使用量に基づいた前記大気放出弁を制御するための命令信号を発生させ、前記命令信号を出力する演算ユニットと、
前記演算ユニットから出力された命令信号を、前記大気放出弁の制御器へと出力する出力部と、
前記発電機出力と、前記工場の蒸気使用量と、前記設定値と、前記命令信号を、同期して格納する操業データ領域とを含む演算・制御装置を有することを特徴とする蒸気タービン発電機の抽気制御装置。
An extraction line (steam supply piping) for extracting steam from the extraction outlet provided in the intermediate stage of the steam turbine and supplying it to the factory;
A steam flow meter installed in the extraction line;
An apparatus unit provided with an air release valve with a controller of an automatic control system that is provided by branching from the extraction line on the factory side from the steam flow meter of the extraction line, and that discharges the extracted steam to the atmosphere;
A generator output sent from the generator of the steam turbine, and an input unit for inputting the amount of steam used in the factory sent to the factory;
A database area that stores, as parameters, “vertex coordinates by a combination of generator output and extracted steam amount” and “inclinations between adjacent vertices”, which are the vertices of a broken line that can be changed according to the characteristics of the steam turbine obtained in advance
Generate a command value for controlling the atmospheric discharge valve based on the set value of the extracted steam amount determined from the parameter according to the generator output and the steam usage amount of the factory, and output the command signal An arithmetic unit;
An output unit that outputs a command signal output from the arithmetic unit to the controller of the atmospheric release valve;
A steam turbine generator comprising a calculation / control device including the generator output, the steam usage of the factory, the set value, and an operation data area for storing the command signal in synchronization. Bleed control device.
JP2017174027A 2017-09-11 2017-09-11 Extraction control method and control device for steam turbine generator Active JP6684453B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017174027A JP6684453B2 (en) 2017-09-11 2017-09-11 Extraction control method and control device for steam turbine generator
PH12018000262A PH12018000262A1 (en) 2017-09-11 2018-09-11 Extraction control method for steam turbine generator and control device for the steam turbine generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017174027A JP6684453B2 (en) 2017-09-11 2017-09-11 Extraction control method and control device for steam turbine generator

Publications (2)

Publication Number Publication Date
JP2019049234A true JP2019049234A (en) 2019-03-28
JP6684453B2 JP6684453B2 (en) 2020-04-22

Family

ID=65904979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017174027A Active JP6684453B2 (en) 2017-09-11 2017-09-11 Extraction control method and control device for steam turbine generator

Country Status (2)

Country Link
JP (1) JP6684453B2 (en)
PH (1) PH12018000262A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111854862A (en) * 2019-04-26 2020-10-30 中国石油天然气股份有限公司 Turbine flowmeter flow metering correction system for natural gas
CN111854859A (en) * 2019-04-26 2020-10-30 中国石油天然气股份有限公司 Turbine flowmeter flow metering correction method for natural gas
CN114396327A (en) * 2021-12-09 2022-04-26 广西电网有限责任公司电力科学研究院 Method for adjusting power grid frequency by steam extraction of steam turbine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111854862A (en) * 2019-04-26 2020-10-30 中国石油天然气股份有限公司 Turbine flowmeter flow metering correction system for natural gas
CN111854859A (en) * 2019-04-26 2020-10-30 中国石油天然气股份有限公司 Turbine flowmeter flow metering correction method for natural gas
CN111854862B (en) * 2019-04-26 2021-07-02 中国石油天然气股份有限公司 Turbine flowmeter flow metering correction system for natural gas
CN111854859B (en) * 2019-04-26 2021-07-02 中国石油天然气股份有限公司 Turbine flowmeter flow metering correction method for natural gas
CN114396327A (en) * 2021-12-09 2022-04-26 广西电网有限责任公司电力科学研究院 Method for adjusting power grid frequency by steam extraction of steam turbine

Also Published As

Publication number Publication date
JP6684453B2 (en) 2020-04-22
PH12018000262A1 (en) 2019-04-15

Similar Documents

Publication Publication Date Title
JP5916043B2 (en) Method and apparatus for controlling a moisture separator reheater
CN102374519B (en) Dynamic tuning of dynamic matrix control of steam temperature
US7053341B2 (en) Method and apparatus for drum level control for drum-type boilers
CN102374518B (en) Steam temperature control using dynamic matrix control
JP2015161176A (en) Fuel controller, combustor, gas turbine, control method, and program
JP6684453B2 (en) Extraction control method and control device for steam turbine generator
JP6593024B2 (en) Boiler system
CN111123770B (en) Method and device for determining opening of bypass model under FCB working condition
US20130133594A1 (en) Steam generation systems and methods for controlling operation of same
US9476584B2 (en) Controlling boiler drum level
JP2010007665A (en) Method for primary control of combined gas and steam turbine arrangement
JP2007211705A (en) Air pressure control device in integrated gasification combined cycle system
JP7143094B2 (en) Systems and methods for operating a combined cycle power plant
JP5783458B2 (en) Increased output operation method in steam power plant
JP7461201B2 (en) Gas turbine control device, gas turbine control method, and gas turbine control program
JP6192707B2 (en) Method for determining at least one combustion temperature for controlling a gas turbine, and gas turbine for performing the method
KR20170114943A (en) Steam turbine plant
KR100681241B1 (en) Method for controlling process steam supply
JP6516209B2 (en) Bleeding control method of steam turbine generator
JP2001295607A (en) Method and device for controlling load of thermal power plant
CN110264867B (en) Steam generator secondary side dynamic characteristic test simulation device
JP2013174223A (en) Speed governing controller for steam turbine, method for controlling the same and steam turbine
JP5922538B2 (en) Gas turbine control device, gas turbine, and gas turbine control method
KR102252205B1 (en) Systems and methods for controlling flow valves in turbines
JP2006316687A (en) Pressure feed method of fluid, pressure feed device, fuel gas supply device and relay station of gas transportation line

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200311

R150 Certificate of patent or registration of utility model

Ref document number: 6684453

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150