JP7143147B2 - Superconducting coil and its manufacturing method - Google Patents

Superconducting coil and its manufacturing method Download PDF

Info

Publication number
JP7143147B2
JP7143147B2 JP2018155529A JP2018155529A JP7143147B2 JP 7143147 B2 JP7143147 B2 JP 7143147B2 JP 2018155529 A JP2018155529 A JP 2018155529A JP 2018155529 A JP2018155529 A JP 2018155529A JP 7143147 B2 JP7143147 B2 JP 7143147B2
Authority
JP
Japan
Prior art keywords
particles
resin
superconducting coil
fiber braid
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018155529A
Other languages
Japanese (ja)
Other versions
JP2020031128A (en
Inventor
玄 小宮
俊之 中野
寿朗 藤井
朝文 折笠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2018155529A priority Critical patent/JP7143147B2/en
Publication of JP2020031128A publication Critical patent/JP2020031128A/en
Application granted granted Critical
Publication of JP7143147B2 publication Critical patent/JP7143147B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

本発明の実施形態は,超電導コイルおよびその製造方法に関する。 TECHNICAL FIELD Embodiments of the present invention relate to superconducting coils and methods of manufacturing the same.

超電導コイルは、超伝導体を用いた電磁石であり、発熱せずに、大電流を流すことが可能であり、大きな磁力を必要とする種々の用途に用いられる。 A superconducting coil is an electromagnet that uses a superconductor, does not generate heat, can pass a large current, and is used in various applications that require a large magnetic force.

超電導体は、外乱の印加によって、超電導状態から常伝導状態に変移することがある(超電導破壊、以下、クエンチという)。超電導コイルでは、例えば、超電導体間を電気的に絶縁する絶縁体(例えば、樹脂)にクラックが生じると、クラック近傍で発熱して、クエンチを引き起こす可能性がある。大電流が流れる超電導コイルにクエンチが発生すると、超電導コイルが破壊されるおそれがある。
このため、超電導コイルにおいて、クエンチを防止するために、種々の技術が開発されている。
A superconductor may change from a superconducting state to a normal conducting state by the application of a disturbance (superconducting breakdown, hereinafter referred to as quench). In a superconducting coil, for example, if a crack occurs in an insulator (for example, resin) that electrically insulates between superconductors, heat is generated in the vicinity of the crack, possibly causing quenching. If a quench occurs in a superconducting coil through which a large current flows, the superconducting coil may be destroyed.
Therefore, various techniques have been developed to prevent quenching in superconducting coils.

特開平9-63366号公報JP-A-9-63366

超電導コイルのクエンチをより確実に抑制することが望まれている。
本発明は、クエンチのより確実な抑制を図った超電導コイルおよびその製造方法を提供することを目的とする。
It is desired to suppress the quenching of the superconducting coil more reliably.
SUMMARY OF THE INVENTION An object of the present invention is to provide a superconducting coil and a method of manufacturing the same in which quenching is suppressed more reliably.

一態様に係る超電導コイルは、超電導線材、繊維編組、および樹脂硬化物を有する。繊維編組は、超電導線材の外周を被覆する。樹脂硬化物は、繊維編組の少なくとも一部に含浸される。樹脂硬化物は、樹脂主剤、硬化剤、および第1、第2の粒子を含む。第1、第2の粒子は、無機材料の粒子である。第1の粒子は、繊維編組の隙間よりも大きな粒径を有する。第2の粒子は、この隙間よりも小さな粒径を有する。 A superconducting coil according to one aspect has a superconducting wire, a fiber braid, and a cured resin. The fiber braid covers the outer circumference of the superconducting wire. At least part of the fiber braid is impregnated with the cured resin. The cured resin contains a resin main agent, a curing agent, and first and second particles. The first and second particles are particles of an inorganic material. The first particles have a particle size larger than the interstices of the fiber braid. The second particles have a particle size smaller than this gap.

実施形態に係る超電導コイルの一部断面図である。1 is a partial cross-sectional view of a superconducting coil according to an embodiment; FIG. 図1の一部を拡大して表す拡大断面図である。2 is an enlarged cross-sectional view showing an enlarged part of FIG. 1; FIG. 実施形態に係る超電導コイルの超電導線材近傍の拡大断面図である。3 is an enlarged cross-sectional view of the vicinity of a superconducting wire of the superconducting coil according to the embodiment; FIG. 比較例1に係る超電導コイルの超電導線材近傍の拡大断面図である。8 is an enlarged cross-sectional view of the vicinity of a superconducting wire of a superconducting coil according to Comparative Example 1. FIG. 比較例2に係る超電導コイルの超電導線材近傍の拡大断面図である。8 is an enlarged cross-sectional view of the vicinity of a superconducting wire of a superconducting coil according to Comparative Example 2. FIG. 超電導コイルの製造工程の一例を表すフロー図である。FIG. 3 is a flowchart showing an example of a manufacturing process of a superconducting coil; 第2の粒子の添加量Rpとボイドの含有率の関係の一例を表すグラフである。5 is a graph showing an example of the relationship between the amount Rp of second particles added and the content of voids.

以下,図面を参照して,超電導コイルの実施形態を詳細に説明する。 Hereinafter, embodiments of the superconducting coil will be described in detail with reference to the drawings.

図1は、実施形態に係る超電導コイル10を表す一部断面図である。図2は、図1の部位R(超電導線材12近傍)を拡大して表す拡大断面図である。図3は、繊維編組13を拡大して表す拡大図である。 FIG. 1 is a partial cross-sectional view showing a superconducting coil 10 according to an embodiment. FIG. 2 is an enlarged cross-sectional view showing an enlarged portion R (near superconducting wire 12) in FIG. FIG. 3 is an enlarged view showing the fiber braid 13 in an enlarged manner.

超電導コイル10は、ボビン11,超電導線材12,繊維編組13,樹脂硬化物14を有する。
ボビン11は、中心軸11Aと側板11Bに区分される。中心軸11Aに、繊維編組13で被覆された超電導線材12が巻かれる。一対の側板11Bは、中心軸11Aに巻かれた超電導線材12を左右から保持する。
Superconducting coil 10 has bobbin 11 , superconducting wire 12 , fiber braid 13 , and cured resin 14 .
The bobbin 11 is divided into a central shaft 11A and side plates 11B. A superconducting wire 12 covered with a fiber braid 13 is wound around the central shaft 11A. The pair of side plates 11B hold the superconducting wire 12 wound around the central axis 11A from left and right.

超電導線材12は、少なくとも一部に、超電導体を有する。超電導線材12は、長尺(線状、棒状)であれば良く、その断面形状は、丸、平角など適宜に選択できる。なお、図1では、超電導線材12を四角線(断面が四角の線材)として表している。
ここでは、1本の超電導線材12を並列に4回、上下に3段(3層)に亘って巻かれている。これは一例であり、超電導線材12の層数、1層内の巻き数は、適宜に設定できる。
Superconducting wire 12 has a superconductor at least in part. The superconducting wire 12 may be long (linear or bar-shaped), and its cross-sectional shape can be selected appropriately from round, rectangular, or the like. Note that FIG. 1 shows the superconducting wire 12 as a square wire (a wire having a square cross section).
Here, one superconducting wire 12 is wound four times in parallel over three levels (three layers). This is just an example, and the number of layers of the superconducting wire 12 and the number of turns in one layer can be set as appropriate.

超電導線材12は、安定化材(例えば、CuまたはCu合金(ブロンズ))中に超電導体のフィラメント(極細線)を埋め込んだ複合構造とすることができる(図示せず)。超電導体のフィラメントとして、例えば、NbTi、NbSn等の金属系超電導体の極細線を用いることができる。 The superconducting wire 12 may be a composite structure (not shown) in which superconducting filaments (ultrafine wires) are embedded in a stabilizing material (eg, Cu or Cu alloy (bronze)). As the filament of the superconductor, for example, an ultrafine wire of a metallic superconductor such as NbTi, Nb 3 Sn or the like can be used.

繊維編組13は、2つ以上の方向に配置された繊維131の組み合わせである。繊維編組13は、筒形状を有し、超電導線材12の外周を被覆する。
繊維131は、超電導線材12間の短絡を防止するため、一般に絶縁性材料から構成される。繊維131として、例えば、ガラス、カーボン、または有機高分子のファイバを用いることができる。
A fiber braid 13 is a combination of fibers 131 arranged in two or more directions. Fiber braid 13 has a cylindrical shape and covers the outer periphery of superconducting wire 12 .
Fibers 131 are generally made of an insulating material to prevent short circuits between superconducting wires 12 . As the fibers 131, for example, glass, carbon, or organic polymer fibers can be used.

図3に示すように、繊維編組13は、繊維131の網目内に間隙132を有する。ここでは、繊維131が縦横2方向に配置されているため、間隙132の大きさは、2方向の幅Wx,Wyによって規定される。
幅Wx,Wyの内の小さい方を間隙132の幅Wsとする。このようにするのは、幅Wx,Wyの大きさが異なる場合、後述の第1、第2の粒子22,23がこの間隙132を通過できるか否かは、幅Wx,Wyの内の小さい方によって決まると考えられるためである。
間隙132の幅Wsは、例えば、1~2μm程度である。
この幅Wsは、電子顕微鏡(SEM)を用いて観察することで測定できる。
As shown in FIG. 3, fiber braid 13 has interstices 132 within the mesh of fibers 131 . Here, since the fibers 131 are arranged in two directions, the size of the gap 132 is defined by the widths Wx and Wy in the two directions.
The width Ws of the gap 132 is the smaller one of the widths Wx and Wy. The reason for this is that if the widths Wx and Wy are different, whether the first and second particles 22 and 23 described later can pass through the gap 132 depends on the smaller width Wx and Wy. This is because it is thought that it depends on the person.
The width Ws of the gap 132 is, for example, approximately 1 to 2 μm.
This width Ws can be measured by observation using an electron microscope (SEM).

樹脂硬化物14は、樹脂マトリクス21(樹脂成分),第1の粒子22,第2の粒子23を有する。
樹脂硬化物14は、繊維編組13に樹脂マトリクス21を含浸し硬化させたものである。樹脂硬化物14(樹脂マトリクス21)は、絶縁性を有し、超電導線材12間での短絡を防止する。
このための樹脂マトリクス21は、種々の材料(樹脂主剤)、例えば、エポキシ樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂等の熱硬化性樹脂を用いることができる。
The cured resin 14 has a resin matrix 21 (resin component), first particles 22 and second particles 23 .
The cured resin 14 is obtained by impregnating the fiber braid 13 with the resin matrix 21 and curing it. The cured resin 14 (resin matrix 21 ) has insulating properties and prevents short circuits between the superconducting wires 12 .
For the resin matrix 21 for this purpose, various materials (resin base resin), for example, thermosetting resins such as epoxy resin, phenol resin, urea resin, and melamine resin can be used.

以下、熱硬化性樹脂として、硬化剤、希釈材を適宜添加したエポキシ樹脂を例に挙げて説明する。すなわち、樹脂マトリクス21は、樹脂硬化物14の樹脂成分であり、エポキシ樹脂(樹脂主剤)と適量の硬化剤を含む。
樹脂主剤は、炭素原子2個と酸素原子1個とからなる三員環を1分子中に2個以上持ち、硬化可能な化合物であればよい。樹脂主剤の種類は特に限定されない。
硬化剤は、室温、あるいは低温で低粘度の液状材料である。硬化剤は、好ましくは、アミン類、より好ましくは、ポリエーテルアミン、脂肪族アミン、または脂環式アミンである。なお、希釈材は適宜添加される。場合によっては、希釈材を添加せずに樹脂マトリクス21(超電導コイル10)を作成する。
Hereinafter, as the thermosetting resin, an epoxy resin to which a curing agent and a diluent are appropriately added will be described as an example. That is, the resin matrix 21 is a resin component of the cured resin 14 and contains an epoxy resin (resin main ingredient) and an appropriate amount of curing agent.
The resin main agent may be a curable compound having two or more three-membered rings composed of two carbon atoms and one oxygen atom in one molecule. The type of resin base is not particularly limited.
The curing agent is a liquid material with low viscosity at room temperature or low temperature. Curing agents are preferably amines, more preferably polyetheramines, aliphatic amines, or cycloaliphatic amines. A diluent is added as appropriate. In some cases, the resin matrix 21 (superconducting coil 10) is created without adding a diluent.

第1、第2の粒子22,23は、無機材料の粒子であり、樹脂マトリクス21に充填され(無機充填材)、樹脂硬化物14の強度、絶縁性の向上が図られる。
ここで、第1の粒子22は繊維編組13の間隙132の幅Wsよりも大きな粒径を有し、第2の粒子23は幅Wsよりも小さな粒径を有する。
第1、第2の粒子22,23が、繊維編組13の間隙132の幅Wsと異なる粒径を有することから、繊維編組13の網目に引っかかって、繊維編組13が目詰まりすることが起き難くなる。また、粒径の異なる第1、第2の粒子22、23が混じり合っていることから、繊維編組13上に、第1の粒子22または第2の粒子23の堆積層(後述の層L)を形成することも防止できる。このため、樹脂マトリクス21が繊維編組13の間隙131を通過して超電導線材12と繊維編組13を欠陥なく含浸することが可能である。
The first and second particles 22 and 23 are particles of an inorganic material and filled in the resin matrix 21 (inorganic filler) to improve the strength and insulation of the cured resin 14 .
Here, the first particles 22 have a particle size larger than the width Ws of the gaps 132 of the fiber braid 13, and the second particles 23 have a particle size smaller than the width Ws.
Since the first and second particles 22 and 23 have a particle diameter different from the width Ws of the gaps 132 of the fiber braid 13, they are less likely to be caught in the mesh of the fiber braid 13 and clog the fiber braid 13. Become. Further, since the first and second particles 22 and 23 having different particle diameters are mixed, a deposited layer (a layer L described later) of the first particles 22 or the second particles 23 is formed on the fiber braid 13. can also be prevented from forming. Therefore, resin matrix 21 can pass through gaps 131 of fiber braid 13 and impregnate superconducting wire 12 and fiber braid 13 without defects.

比較的大粒径の第1の粒子22には、溶融シリカ、結晶性シリカ、アルミナ、酸化マグネシウムの少なくともいずれかを選択できる。
比較的小粒径の第2の粒子23には、フュームドシリカ(Fumed Silica)、ヒュームドアルミナ(Fumed Alumina)、コロイダルシリカ、コロイダルアルミナ、ベントナイト類の少なくともいずれかを選択できる。
この内、フュームドシリカは、一般に、4塩化珪素ガスを酸素と水素の混合ガスと反応させることで生成され、例えば、「AEROSIL(商品名)」として入手できる。
ベントナイト類は、ベントナイトなどの微少層状鉱物を精製あるいは変性させたものであり、一例として、ベントナイトを精製した「クニピアF(商品名)」、モンモリナイトを変性して有機ベントナイトとした「S-BEN(商品名)」、「ORGANITE(商品名)」などが挙げられる。
At least one of fused silica, crystalline silica, alumina, and magnesium oxide can be selected for the first particles 22 having a relatively large particle size.
At least one of fumed silica, fumed alumina, colloidal silica, colloidal alumina, and bentonites can be selected for the relatively small second particles 23 .
Among them, fumed silica is generally produced by reacting silicon tetrachloride gas with a mixed gas of oxygen and hydrogen, and is available, for example, as "AEROSIL (trade name)".
Bentonites are produced by refining or modifying microlayered minerals such as bentonite. Examples include "Kunipia F (trade name)," which is refined bentonite, and "S-BEN (product name)," which is organic bentonite by modifying montmorillite. product name)”, “ORGANITE (product name)”, and the like.

繊維編組13の間隙132の幅Wsが、1~2μm程度の場合、好ましくは、第1の粒子22の粒径(直径)が2μm~15μm程度、第2の粒子23の平均粒径(直径)が1nm~500nmであり、より好ましくは、第1の粒子22の粒径(直径)が3μm~5μm程度、第2の粒子23の平均粒径(直径)が10nm~100nmである。 When the width Ws of the gaps 132 of the fiber braid 13 is about 1 to 2 μm, preferably the particle size (diameter) of the first particles 22 is about 2 μm to 15 μm, and the average particle size (diameter) of the second particles 23 is about 2 μm to 15 μm. is 1 nm to 500 nm, more preferably, the particle size (diameter) of the first particles 22 is about 3 μm to 5 μm, and the average particle size (diameter) of the second particles 23 is 10 nm to 100 nm.

第1の粒子22の粒径は、レーザ回折・散乱法、あるいは電子顕微鏡によって測定できる。レーザ回折・散乱法では、粒子群にレーザ光を照射し、そこから発せられる回折・散乱光の強度分布パターンから計算によって粒度分布を求める。
本実施形態では、この内、レーザ回折・散乱法を用いるものとする(例えば、HORIBA社製のLA-700によって測定できる)。
The particle size of the first particles 22 can be measured by a laser diffraction/scattering method or an electron microscope. In the laser diffraction/scattering method, a particle group is irradiated with laser light, and the particle size distribution is obtained by calculation from the intensity distribution pattern of the diffracted/scattered light emitted therefrom.
In the present embodiment, among these methods, the laser diffraction/scattering method is used (for example, LA-700 manufactured by HORIBA can be used for measurement).

一方、第2の粒子23の粒径は、BET(Brunauer,Emmett,Teller)法、あるいは電子顕微鏡によって測定できる。
BET法では、第2の粒子23の集団(粉体)の吸着等温線を測定し、この等温線から粉体の比表面積、さらに平均粒径を求める。
まず、粉体への気体分子(吸着質)の吸着量VとP/P0(相対圧、P0は飽和蒸気圧)との関係(吸着等温線)を測定する。この等温線にBETの式を適用して、比表面積を求める。さらに比表面積から第2の粒子23の平均粒径を算出する。例えば、全ての第2の粒子23を径が同一の真球と仮定することで、この算出が可能となる。
本実施形態では、この内、透過型電子顕微鏡(TEM)を用いるものとする(例えば、日立ハイテック社製のH-F7100FAによって測定できる)。
On the other hand, the particle size of the second particles 23 can be measured by a BET (Brunauer, Emmett, Teller) method or an electron microscope.
In the BET method, the adsorption isotherm of a group (powder) of the second particles 23 is measured, and the specific surface area and average particle diameter of the powder are obtained from this isotherm.
First, the relationship (adsorption isotherm) between the adsorption amount V of the gas molecules (adsorbate) to the powder and P/P0 (relative pressure, P0 being the saturated vapor pressure) is measured. Apply the BET equation to this isotherm to determine the specific surface area. Furthermore, the average particle diameter of the second particles 23 is calculated from the specific surface area. For example, this calculation becomes possible by assuming that all the second particles 23 are true spheres having the same diameter.
In the present embodiment, among these, a transmission electron microscope (TEM) is used (for example, it can be measured by H-F7100FA manufactured by Hitachi High-Tech Co., Ltd.).

樹脂マトリクス21(樹脂成分)は、100質量部のエポキシ主剤(樹脂主剤)と、例えば、40質量部の硬化剤を含む。なお、硬化剤の量は、エポキシ主剤の状態に応じて、適宜変更される。 The resin matrix 21 (resin component) contains 100 parts by mass of epoxy main agent (resin main agent) and, for example, 40 parts by mass of a curing agent. In addition, the amount of the curing agent is appropriately changed according to the state of the epoxy main agent.

樹脂マトリクス21における100質量部のエポキシ主剤に対する、第1の粒子22の充填量は、好ましくは、100~300質量部、より好ましくは、120~200質量部である。充填量が少なすぎると、樹脂硬化物14の強度、絶縁性の向上が不十分となるおそれがある。充填量が多すぎると、硬化前の樹脂混合物(樹脂マトリクス21、第1、第2の粒子22,23の混合体)の粘度が大きくなり、繊維編組13の隙間を通り難くなる(不十分な含浸)。 The filling amount of the first particles 22 is preferably 100 to 300 parts by mass, more preferably 120 to 200 parts by mass, with respect to 100 parts by mass of the epoxy main agent in the resin matrix 21 . If the filling amount is too small, the strength and insulating properties of the cured resin 14 may not be sufficiently improved. If the filling amount is too large, the viscosity of the resin mixture (the mixture of the resin matrix 21 and the first and second particles 22 and 23) before curing increases, making it difficult to pass through the gaps of the fiber braid 13 (insufficient impregnation).

第1の粒子22の形状は、球状に近いことが好ましい。樹脂混合物の含浸性を向上させることができる。第1の粒子22のアスペクト比は、例えば、1.0~1.5が好ましい。 The shape of the first particles 22 is preferably nearly spherical. Impregnability of the resin mixture can be improved. The aspect ratio of the first particles 22 is preferably 1.0 to 1.5, for example.

樹脂マトリクス21における100質量部のエポキシ主剤に対する、第2の粒子23の充填量は、好ましくは、0.75~2.0質量部、より好ましくは、1.0~1.5質量部である。
充填量が少なすぎると、樹脂混合物の含浸性の向上(繊維編組13の目詰まりや、第1の粒子22または第2の粒子23の堆積層の形成防止)が不十分となるおそれがある。充填量が多すぎると、樹脂混合物の粘度が大きくなり、繊維編組13の隙間を通り難くなる(不十分な含浸)。
後述のように、第2の粒子23を適量充填することで、樹脂混合物の含浸性が向上し、ボイドの発生を低減できる。
The filling amount of the second particles 23 is preferably 0.75 to 2.0 parts by mass, more preferably 1.0 to 1.5 parts by mass with respect to 100 parts by mass of the epoxy main agent in the resin matrix 21. .
If the filling amount is too small, the impregnating property of the resin mixture (prevention of clogging of the fiber braid 13 and formation of a deposited layer of the first particles 22 or the second particles 23) may be insufficient. If the filling amount is too large, the viscosity of the resin mixture increases, making it difficult to pass through the interstices of the fiber braid 13 (insufficient impregnation).
As will be described later, by filling an appropriate amount of the second particles 23, the impregnating property of the resin mixture can be improved and the generation of voids can be reduced.

後述する比較例2に示すように、樹脂硬化物14は、繊維編組13の間隙132の幅Wsに近接する粒径の粒子(第1、第2の粒子22,23の中間の粒径の粒子、すなわち、後述の第3の粒子25)を実質的に含まないことが望ましい。
この観点からすると、100質量部のエポキシ主剤に対して、500nmを超え、2μm未満の粒径の粒子の含有量が、好ましくは、2.0質量部以下、より好ましくは、1.5質量部以下である。
As shown in Comparative Example 2, which will be described later, the cured resin 14 contains particles having a particle size close to the width Ws of the gap 132 of the fiber braid 13 (particles having a particle size intermediate between the first and second particles 22 and 23). That is, it is desirable to substantially not contain third particles 25) described later.
From this point of view, the content of particles having a particle size of more than 500 nm and less than 2 μm is preferably 2.0 parts by mass or less, more preferably 1.5 parts by mass, with respect to 100 parts by mass of the epoxy main agent. It is below.

第1の粒子22と第2の粒子23の量(質量)の比(第1の粒子の質量:第2の粒子の質量)は、好ましくは、100:1~150:1であり、より好ましくは120:1~130:1である。第1の粒子22に対する第2の粒子23の量が少なすぎると、第1の粒子22に起因する繊維編組13の目詰まりが生じるおそれがある。第1の粒子22に対する第2の粒子23の量が多すぎると、第2の粒子23に起因する繊維編組13の目詰まりが生じるおそれがある。
基本的に、第2の粒子23は、第1の粒子22の凝集を防ぐためのいわば潤滑材として機能する。このため、第2の粒子23が第1の粒子22に対して、少なすぎても多すぎても、この潤滑作用が阻害されることになる。
The ratio of the amount (mass) of the first particles 22 and the second particles 23 (mass of the first particles: mass of the second particles) is preferably 100: 1 to 150: 1, more preferably is between 120:1 and 130:1. If the amount of the second particles 23 relative to the first particles 22 is too small, clogging of the fiber braid 13 due to the first particles 22 may occur. If the amount of the second particles 23 relative to the first particles 22 is too large, the fiber braid 13 may be clogged due to the second particles 23 .
Basically, the second particles 23 function as a so-called lubricant to prevent the aggregation of the first particles 22 . Therefore, if the second particles 23 are too small or too large with respect to the first particles 22, this lubricating effect will be hindered.

(比較例1)
図4を参照して、比較例1に係る超電導コイルを説明する。符号について図1~3と重複するものは同様の符号を用いる。
図4は、比較例1に係る超電導コイルの超電導線材12近傍を拡大して表す拡大断面図である。
(Comparative example 1)
A superconducting coil according to Comparative Example 1 will be described with reference to FIG. The same reference numerals are used for the same reference numerals as those in FIGS.
FIG. 4 is an enlarged cross-sectional view showing the vicinity of superconducting wire 12 of a superconducting coil according to Comparative Example 1 in an enlarged manner.

比較例1の樹脂硬化物14xは、樹脂マトリクス21,第1の粒子22を含み、第2の粒子23を含まない。
第1の粒子22の粒径は、繊維編組13の間隙131の幅Wsより大きいため、繊維編組13が目詰まりすることはない。しかし、樹脂硬化物14xは、第2の粒子23(微粒子)を含まないため、第1の粒子22は樹脂マトリクス21から分離して堆積し、層(堆積層)Lを形成し易くなる。
The resin cured product 14 x of Comparative Example 1 contains the resin matrix 21 and the first particles 22 but does not contain the second particles 23 .
Since the particle size of the first particles 22 is larger than the width Ws of the gap 131 of the fiber braid 13, the fiber braid 13 is not clogged. However, since the cured resin 14x does not contain the second particles 23 (fine particles), the first particles 22 are separated from the resin matrix 21 and deposited to form a layer (deposition layer) L easily.

この層Lは、樹脂マトリクス21が繊維編組13を通過することを阻害する。このため、超電導線材12と繊維編組13への樹脂マトリクス21の含浸が阻害され、例えば、超電導線材12の近傍や繊維編組13の網目にボイドB(樹脂マトリクス21の未含浸部)が生じ易い。 This layer L prevents the resin matrix 21 from passing through the fiber braid 13 . For this reason, impregnation of the superconducting wire 12 and the fiber braid 13 with the resin matrix 21 is hindered, and for example, voids B (non-impregnated portions of the resin matrix 21) tend to occur in the vicinity of the superconducting wire 12 and in the mesh of the fiber braid 13.

超電導線材12および繊維-樹脂の複合構造(繊維編組13と樹脂硬化物14xの複合構造)は、励磁電流による電磁力を受ける。このため、超電導線材12の近傍や繊維編組13の網目の未含浸部に応力が集中し、クラックの起点となるおそれがある。超電導線材12周辺にクラックが発生すると、発熱してクエンチを誘発する可能性がある。 The superconducting wire 12 and the fiber-resin composite structure (the composite structure of the fiber braid 13 and the cured resin 14x) receive an electromagnetic force from the exciting current. Therefore, stress concentrates on the vicinity of the superconducting wire 12 and on the non-impregnated portion of the mesh of the fiber braid 13, which may become the origin of cracks. If a crack occurs around superconducting wire 12, it may generate heat and induce quenching.

(比較例2)
図5を参照して、比較例2に係る超電導コイルを説明する。符号について図1~4と重複するものは同様の符号を用いる。
図5は、比較例2に係る超電導コイルの超電導線材12近傍を拡大して表す拡大断面図である。
(Comparative example 2)
A superconducting coil according to Comparative Example 2 will be described with reference to FIG. The same reference numerals are used for the same reference numerals as in FIGS.
FIG. 5 is an enlarged cross-sectional view showing the vicinity of superconducting wire 12 of a superconducting coil according to Comparative Example 2 in an enlarged manner.

比較例2の樹脂硬化物14yは、樹脂マトリクス21,第3の粒子25を含み、第1、第2の粒子22,23を含まない。
第3の粒子25は、500nmを超え、2μm未満の粒径を有する無機材料の粒子である。すなわち、例えば、粒径が2μm~15μm程度の第1の粒子22と、例えば、粒径が1nm~500nm程度の第2の粒子23の中間の粒径を有する。言い換えれば、第3の粒子25の粒径は、繊維編組13の間隙132の幅Ws(例えば、1~2μm程度)と比較的近接している。
The resin cured product 14 y of Comparative Example 2 contains the resin matrix 21 and the third particles 25 but does not contain the first and second particles 22 and 23 .
The third particles 25 are particles of an inorganic material having a particle size greater than 500 nm and less than 2 μm. That is, for example, it has an intermediate particle size between the first particles 22 with a particle size of about 2 μm to 15 μm and the second particles 23 with a particle size of about 1 nm to 500 nm, for example. In other words, the particle diameter of the third particles 25 is relatively close to the width Ws of the gaps 132 of the fiber braid 13 (for example, about 1 to 2 μm).

このため、第3の粒子25は、繊維編組13の間隙(網目)131に詰まり易い。この目詰まりは、樹脂マトリクス21が繊維編組13を通過することを阻害し、超電導線材12近傍にボイドBが生じ易くなる。既述のように、このボイドBは、クラック、ひいてはクエンチの発生の原因となり得る。 Therefore, the third particles 25 tend to clog the gaps (mesh) 131 of the fiber braid 13 . This clogging prevents the resin matrix 21 from passing through the fiber braid 13 , and voids B are likely to occur in the vicinity of the superconducting wire 12 . As described above, this void B can cause cracks and eventually quenching.

以上から判るように、本実施形態では、繊維編組13の間隙131の幅Wsに近い粒径の第3の粒子25を用いず、幅Wsより十分大きな粒径の第1の粒子22,幅Wsより十分小さな粒径の第2の粒子23を用いている。小さな粒界の第2の粒子23が第1の粒子22の潤滑材として機能することで、第1の粒子22の凝集(既述の層Lの発生)を防止し、樹脂マトリクス21の含浸性の向上(ボイドBの発生の低減)を図っている。 As can be seen from the above, in the present embodiment, the third particles 25 having a particle size close to the width Ws of the gaps 131 of the fiber braid 13 are not used, and the first particles 22 having a particle size sufficiently larger than the width Ws and the width Ws Second particles 23 having a sufficiently smaller particle size are used. The second particles 23 with small grain boundaries function as a lubricant for the first particles 22, thereby preventing aggregation of the first particles 22 (generation of the layer L described above) and impregnating the resin matrix 21. improvement (reduction of generation of voids B).

(超電導コイル10の作成)
以下、超電導コイル10の作成につき説明する。
図6は、超電導コイル10の製造工程の一例を表すフロー図である。超電導コイル10は、次に示すように、塗り込み含浸法によって作成できる。
(Creation of superconducting coil 10)
The fabrication of the superconducting coil 10 will be described below.
FIG. 6 is a flowchart showing an example of the manufacturing process of the superconducting coil 10. As shown in FIG. The superconducting coil 10 can be produced by a coating impregnation method as described below.

(1a)1層目の超電導線材12の巻き付け(ステップS1(1))
ボビン11に1層目の超電導線材12を巻く。このとき、超電導線材12は、筒状の繊維編組13で被覆されている。以下も同様とする。
(1b)1層目の含浸(ステップS2(1))
1層目の超電導線材12(繊維編組13で被覆)に樹脂マトリクス21,第1の粒子22,および第2の粒子23を含む樹脂組成物を塗布する。この樹脂組成物は、繊維編組13の網間を通って、超電導線材12に到達する。すなわち、繊維編組13の網間内、繊維編組13と超電導線材12の間に樹脂組成物が充填される。
(1a) Winding of first-layer superconducting wire 12 (step S1(1))
A bobbin 11 is wound with a first layer of superconducting wire 12 . At this time, the superconducting wire 12 is covered with the tubular fiber braid 13 . The same shall apply hereinafter.
(1b) First layer impregnation (step S2(1))
A resin composition containing a resin matrix 21, first particles 22, and second particles 23 is applied to the first layer of superconducting wire 12 (covered with fiber braid 13). This resin composition reaches superconducting wire 12 through the mesh of fiber braid 13 . That is, the resin composition is filled between the fiber braid 13 and between the fiber braid 13 and the superconducting wire 12 .

(2a)2層目の超電導線材12の巻き付け(ステップS1(n))
1層目の超電導線材12上に2層目の超電導線材12を巻く。
(2b)2層目の含浸(ステップS2(n))
2層目の超電導線材12(繊維編組13で被覆)に樹脂組成物を塗布する。第2層目の繊維編組13の網間内、繊維編組13と超電導線材12の間に樹脂組成物が充填される。
また、ステップS2(1)で塗布された樹脂マトリクス21は、1層目と2層目の間に配置され、2層目下方の繊維編組13の間隙131を通過して超電導線材12と繊維編組13を欠陥なく含浸される。
(2a) Winding of second layer of superconducting wire 12 (step S1(n))
The superconducting wire 12 of the second layer is wound on the superconducting wire 12 of the first layer.
(2b) Second layer impregnation (step S2(n))
A resin composition is applied to the second layer of superconducting wire 12 (covered with fiber braid 13). The resin composition is filled between the fiber braid 13 of the second layer and between the fiber braid 13 and the superconducting wire 12 .
Moreover, the resin matrix 21 applied in step S2(1) is disposed between the first layer and the second layer, passes through the gap 131 of the fiber braid 13 below the second layer, and superconducting wire 12 and the fiber braid. 13 impregnated without defects.

以下同様に、3層目の超電導線材12の巻き付け、樹脂組成物の塗布を行う。層数nが4以上であれば、この巻き付け、塗布が繰り返される。 Thereafter, similarly, the third layer of superconducting wire 12 is wound and the resin composition is applied. If the number of layers n is 4 or more, this winding and application are repeated.

以上のように、巻き付け塗布が完了したら、ボビン11(樹脂組成物)を加熱し、樹脂組成物を硬化させ、樹脂硬化物14とする。この結果、超電導コイル10が作成される。 As described above, when the winding application is completed, the bobbin 11 (resin composition) is heated to cure the resin composition to obtain a cured resin 14 . As a result, the superconducting coil 10 is produced.

以下、実施例を説明する。
ここでは、100質量部のエポキシ主剤に対して、第1の粒子22の含有量を一定とし、第2の粒子23の含有量(添加量Rp)を0~2.0質量部の間で変化させて、超電導コイルを作製した。
なお、添加量Rpは、phr(per handred resin)を単位として、すなわち、エポキシ主剤100質量部に対する第2の粒子23の質量部の大きさとして表される。
Examples are described below.
Here, with respect to 100 parts by mass of the epoxy main agent, the content of the first particles 22 is constant, and the content of the second particles 23 (addition amount Rp) is varied between 0 and 2.0 parts by mass. Then, a superconducting coil was produced.
The addition amount Rp is expressed in units of phr (per handled resin), that is, the size of the second particles 23 in parts by mass with respect to 100 parts by mass of the epoxy main agent.

樹脂マトリクス21は、硬化剤を適宜添加したエポキシ樹脂を用いた。
100質量部のエポキシ主剤に対する第1の粒子22の含有量を180質量部とした。
繊維編組13の隙間の幅Wsは、1μmであった。
第1の粒子22の材料は、球状シリカ(アドマテックス社製 MSS-6)粒径は6μmとした。
第2の粒子23の材料は、アエロジル(EVONIK社製 AEROSIL RY200S) 平均粒径は12nmとした。
The resin matrix 21 used an epoxy resin to which a curing agent was appropriately added.
The content of the first particles 22 was 180 parts by mass with respect to 100 parts by mass of the epoxy main agent.
The width Ws of the gap of the fiber braid 13 was 1 μm.
The material of the first particles 22 was spherical silica (MSS-6 manufactured by Admatechs) with a particle size of 6 μm.
The material of the second particles 23 is Aerosil (AEROSIL RY200S manufactured by EVONIK) with an average particle size of 12 nm.

作成した超電導コイル10の断面を電子顕微鏡(SEM)で観察し、超電導線材12近傍のボイドの発生量(ボイド含有率Rb[%])を測定した。
次の表および図7は、この結果を纏めたものである。

Figure 0007143147000001
A cross section of the superconducting coil 10 thus produced was observed with an electron microscope (SEM), and the amount of voids generated (void content rate Rb [%]) near the superconducting wire 12 was measured.
The following table and Figure 7 summarize the results.
Figure 0007143147000001

ここでは、第2の粒子23の含有量Rpが0の場合を比較例(前述の比較例1に対応)とし、その他を実施例としている。
図7に示されるように、第2の粒子23の添加量Rp[phr]に応じて、ボイド含有率Rb[%]が変化している。
第2の粒子23の添加量Rpが0.75質量部の付近で、ボイド含有率Rbが大きく低減している。すなわち、超電導コイル10の信頼性向上の観点から、第2の粒子23の添加量は0.75質量部以上が好ましい。
Here, the case where the content Rp of the second particles 23 is 0 is taken as a comparative example (corresponding to the aforementioned comparative example 1), and the others are taken as examples.
As shown in FIG. 7, the void content rate Rb [%] changes according to the addition amount Rp [phr] of the second particles 23 .
When the addition amount Rp of the second particles 23 is around 0.75 parts by mass, the void content rate Rb is greatly reduced. That is, from the viewpoint of improving the reliability of the superconducting coil 10, the amount of the second particles 23 added is preferably 0.75 parts by mass or more.

本発明のいくつかの実施形態を説明したが,これらの実施形態は,例として提示したものであり,発明の範囲を限定することは意図していない。これら新規な実施形態は,その他の様々な形態で実施されることが可能であり,発明の要旨を逸脱しない範囲で,種々の省略,置き換え,変更を行うことができる。これら実施形態やその変形は,発明の範囲や要旨に含まれるとともに,特許請求の範囲に記載された発明とその均等の範囲に含まれる。 While several embodiments of the invention have been described, these embodiments have been presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be embodied in various other forms, and various omissions, replacements, and modifications can be made without departing from the scope of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are included in the scope of the invention described in the claims and its equivalents.

10: 超電導コイル、11: ボビン、11A: 中心軸、11B: 側板、12: 超電導線材、13: 繊維編組、14: 樹脂硬化物、21: 樹脂マトリクス、22: 第1の粒子、23: 第2の粒子、131: 繊維、132: 間隙 10: superconducting coil, 11: bobbin, 11A: center shaft, 11B: side plate, 12: superconducting wire, 13: fiber braid, 14: cured resin, 21: resin matrix, 22: first particles, 23: second particles, 131: fibers, 132: interstices

Claims (10)

超電導線材と、
前記超電導線材の外周を被覆する繊維編組と、
前記繊維編組の少なくとも一部に含浸される樹脂硬化物と、を具備し、
前記樹脂硬化物は、
樹脂主剤と、
硬化剤と、
前記繊維編組の隙間よりも大きな粒径を有する、無機材料の第1の粒子と、
前記隙間よりも小さな粒径を有する、無機材料の第2の粒子と、を有する、
超電導コイル。
a superconducting wire;
a fiber braid covering the outer periphery of the superconducting wire;
and a cured resin impregnated into at least part of the fiber braid,
The cured resin is
a resin base;
a curing agent;
first particles of an inorganic material having a particle size larger than the interstices of the fiber braid;
a second particle of an inorganic material having a particle size smaller than the gap;
superconducting coil.
前記第1の粒子の粒径が、2μm~15μmである
請求項1に記載の超電導コイル。
2. The superconducting coil according to claim 1, wherein the first particles have a particle size of 2 μm to 15 μm.
前記第2の粒子の平均粒径が、1nm~500nmである
請求項1または2に記載の超電導コイル。
3. The superconducting coil according to claim 1, wherein said second particles have an average particle size of 1 nm to 500 nm.
前記樹脂硬化物が、100質量部の前記樹脂主剤と、100質量部~300質量部の前記第1の粒子と、を含む
請求項1乃至3のいずれか1項に記載の超電導コイル。
The superconducting coil according to any one of claims 1 to 3, wherein the cured resin contains 100 parts by mass of the main resin and 100 to 300 parts by mass of the first particles.
前記樹脂硬化物が、100質量部の前記樹脂主剤と、0.75質量部以上の第2の粒子と、を含む
請求項4に記載の超電導コイル。
5. The superconducting coil according to claim 4, wherein the cured resin contains 100 parts by mass of the resin main agent and 0.75 parts by mass or more of the second particles.
前記第1の粒子のアスペクト比が、1.0~1.5である
請求項1乃至5のいずれか1項に記載の超電導コイル。
The superconducting coil according to any one of claims 1 to 5, wherein the first particles have an aspect ratio of 1.0 to 1.5.
前記第1の粒子が、溶融シリカ、結晶性シリカ、アルミナ、酸化マグネシウムのいずれか1種類以上を含む
請求項1乃至6のいずれか1項に記載の超電導コイル。
7. The superconducting coil according to any one of claims 1 to 6, wherein the first particles contain one or more of fused silica, crystalline silica, alumina, and magnesium oxide.
前記第2の粒子が、フュームドシリカ、ヒュームドアルミナ、コロイダルシリカ、コロイダルアルミナ、ベントナイト類のいずれか1種類以上を含む
請求項1乃至7のいずれか1項に記載の超電導コイル。
8. The superconducting coil according to any one of claims 1 to 7, wherein the second particles contain one or more of fumed silica, fumed alumina, colloidal silica, colloidal alumina, and bentonites.
前記樹脂主剤が、エポキシ樹脂であり、
前記硬化剤が、ポリエーテルアミン、脂肪族アミン、脂環式アミンの少なくとも1種類以上を含む
請求項1乃至8のいずれか1項に記載の超電導コイル。
The resin main agent is an epoxy resin,
The superconducting coil according to any one of claims 1 to 8, wherein the curing agent contains at least one of polyetheramine, aliphatic amine, and alicyclic amine.
繊維編組で被覆された超電導線材をボビンに巻く工程と、
前記巻かれた超電導線材に樹脂混合物を塗布する工程と、
前記樹脂混合物を硬化させる工程と、を具備し、
前記樹脂混合物が、樹脂主剤と、硬化剤と、前記繊維編組の隙間よりも大きな粒径を有する、無機材料の第1の粒子と、前記隙間よりも小さな粒径を有する、無機材料の第2の粒子と、を含む
超電導コイルの作成方法。
A step of winding a superconducting wire covered with a fiber braid around a bobbin;
applying a resin mixture to the wound superconducting wire;
and curing the resin mixture;
The resin mixture comprises a resin main agent, a curing agent, first particles of an inorganic material having a particle size larger than the interstices of the fiber braid, and second particles of an inorganic material having a particle size smaller than the interstices. and a method of making a superconducting coil.
JP2018155529A 2018-08-22 2018-08-22 Superconducting coil and its manufacturing method Active JP7143147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018155529A JP7143147B2 (en) 2018-08-22 2018-08-22 Superconducting coil and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018155529A JP7143147B2 (en) 2018-08-22 2018-08-22 Superconducting coil and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2020031128A JP2020031128A (en) 2020-02-27
JP7143147B2 true JP7143147B2 (en) 2022-09-28

Family

ID=69622801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018155529A Active JP7143147B2 (en) 2018-08-22 2018-08-22 Superconducting coil and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7143147B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7464408B2 (en) * 2020-02-27 2024-04-09 株式会社三共 Gaming Machines
JP7464407B2 (en) * 2020-02-27 2024-04-09 株式会社三共 Gaming Machines
JP7332508B2 (en) * 2020-03-17 2023-08-23 株式会社東芝 Superconducting coils and superconducting equipment
CN116569282A (en) * 2020-12-03 2023-08-08 Rimtec株式会社 Polymerizable composition and resin-impregnated superconducting coil

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004349115A (en) 2003-05-22 2004-12-09 Toshiba Corp Tape member, method for manufacturing the tape member, and electromagnetic coil and electromagnetic device using tape member
US20100265019A1 (en) 2009-04-20 2010-10-21 Peter Groeppel Superconducting coil cast in nanoparticle-containing sealing compound
JP2016072301A (en) 2014-09-26 2016-05-09 株式会社東芝 Insulation material, isolated coil using the insulation material, manufacturing method thereof and device including the isolated coil
JP2016119142A (en) 2014-12-18 2016-06-30 日立化成株式会社 Prepreg mica tape and inorganic/organic composite hardened material
JP2017066337A (en) 2015-10-02 2017-04-06 京セラ株式会社 Epoxy resin composition for coil impregnation and mold coil

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5488095A (en) * 1977-12-24 1979-07-12 Sumitomo Electric Ind Ltd Superconduction magnet and its manufacture
JPS61139008A (en) * 1984-12-11 1986-06-26 Hitachi Ltd Super-conductive field winding
JPH02199806A (en) * 1989-01-30 1990-08-08 Hitachi Ltd Superconducting coil and prepreg semicured tape
JPH0684662A (en) * 1992-09-01 1994-03-25 Toshiba Corp Molded coil
JP3932614B2 (en) * 1997-08-29 2007-06-20 日立化成工業株式会社 Epoxy resin composition and method for insulating electrical equipment using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004349115A (en) 2003-05-22 2004-12-09 Toshiba Corp Tape member, method for manufacturing the tape member, and electromagnetic coil and electromagnetic device using tape member
US20100265019A1 (en) 2009-04-20 2010-10-21 Peter Groeppel Superconducting coil cast in nanoparticle-containing sealing compound
JP2016072301A (en) 2014-09-26 2016-05-09 株式会社東芝 Insulation material, isolated coil using the insulation material, manufacturing method thereof and device including the isolated coil
JP2016119142A (en) 2014-12-18 2016-06-30 日立化成株式会社 Prepreg mica tape and inorganic/organic composite hardened material
JP2017066337A (en) 2015-10-02 2017-04-06 京セラ株式会社 Epoxy resin composition for coil impregnation and mold coil

Also Published As

Publication number Publication date
JP2020031128A (en) 2020-02-27

Similar Documents

Publication Publication Date Title
JP7143147B2 (en) Superconducting coil and its manufacturing method
JP6889153B2 (en) Coil for rotary electric machine, manufacturing method of coil for rotary electric machine, mica tape, cured product of mica tape and insulator
CN105637599B (en) Presoak mica tape and use its coil
US11276519B2 (en) Coil component
US20140286814A1 (en) Composite magnetic material, buried-coil magnetic element using same, and method for producing same
CN104838452B (en) Insulation tape, method for producing same and stator coil
JP2019160943A (en) Soft magnetic metal powder, powder magnetic core and magnetic component
JP2016162764A (en) Magnetic powder mixed resin material
JP2019057693A (en) Composite magnetic material and coil component using the same
TW201812801A (en) Dust core
JP2016051899A (en) Coil component
TW201939528A (en) Soft magnetic metal powder, dust core, and magnetic component
WO2016050557A1 (en) Formulation for an insulation system and insulation system
JP2016072301A (en) Insulation material, isolated coil using the insulation material, manufacturing method thereof and device including the isolated coil
JP6891551B2 (en) Powder magnetic core
WO2012013543A2 (en) Insulation system having improved partial discharge strength
KR20150003791A (en) Insulating material for rotating machines
JPWO2018003950A1 (en) Coil for rotating electrical machine, method for manufacturing coil for rotating electrical machine, mica tape, method for manufacturing mica tape, cured product and insulator of mica tape
JP2019157185A (en) Soft magnetic metal powder, powder magnetic core, and magnetic component
JP2019122099A (en) Coil for rotary electric machine, method for manufacturing coil for rotary electric machine, mica tape, hardened material and insulator of mica tape
JP6891887B2 (en) Coil for rotary electric machine, manufacturing method of coil for rotary electric machine, mica tape, cured product of mica tape and insulator
JP2020047739A (en) Superconducting coil and superconducting device
JP5945994B2 (en) Soft magnetic composite material and reactor
JP5253832B2 (en) Insulation sheet, stator coil and rotating electric machine
JP7255754B2 (en) coil parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220914

R150 Certificate of patent or registration of utility model

Ref document number: 7143147

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150