JP3932614B2 - Epoxy resin composition and method for insulating electrical equipment using the same - Google Patents

Epoxy resin composition and method for insulating electrical equipment using the same Download PDF

Info

Publication number
JP3932614B2
JP3932614B2 JP23429697A JP23429697A JP3932614B2 JP 3932614 B2 JP3932614 B2 JP 3932614B2 JP 23429697 A JP23429697 A JP 23429697A JP 23429697 A JP23429697 A JP 23429697A JP 3932614 B2 JP3932614 B2 JP 3932614B2
Authority
JP
Japan
Prior art keywords
weight
parts
epoxy resin
resin composition
anhydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23429697A
Other languages
Japanese (ja)
Other versions
JPH1171503A (en
Inventor
利之 藤田
克彦 安
尋佳 進藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP23429697A priority Critical patent/JP3932614B2/en
Publication of JPH1171503A publication Critical patent/JPH1171503A/en
Application granted granted Critical
Publication of JP3932614B2 publication Critical patent/JP3932614B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Insulating Of Coils (AREA)
  • Organic Insulating Materials (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、エポキシ樹脂組成物及びこれを用いた電気機器の絶縁処理法に関する。
【0002】
【従来の技術】
従来、電気機器の絶縁処理方法としては、ケースにコイルや部品をセットし、これに樹脂と無機充填剤との均一混合物を常圧又は真空下で注入して硬化するポッティング法が知られている。
しかし、この方法では作業性の面から、混合する無機充填剤の添加量に限界があり、硬化する際に体積収縮を生じるため、硬化物にクラックが生じ、内蔵されているコイル及び部品に剥離やクラックが発生しやすく、さらに注型した硬化物の線膨張率が大きいためにヒートサイクル性に劣る。また、熱伝導率が小さいため、機器の温度が高くなり、使用する温度が制限されるなどの問題がある。さらに、樹脂組成物と無機充填剤を混合して真空下で脱泡した後に注入作業を行うため、樹脂組成物は可使時間の長いものを使用する必要があり、したがって、注入後の硬化時間が長くなり、作業工程の合理化、省エネルギー化に限界がある。
【0003】
【発明が解決しようとする課題】
本発明は、上記の従来技術の問題点を解消し、注型作業性に優れ、なおかつ保管時の無機充填剤の沈降が少なく、絶縁性に優れたエポキシ樹脂組成物及びこの組成物を用いて電気機器を絶縁処理し、絶縁性及び熱伝導性に優れた電気機器を得ることのできる方法を提供するものである。
【0004】
【課題を解決するための手段】
本発明は、メチルテトラヒドロ無水フタル酸及びメチルヘキサヒドロ無水フタル酸を必須成分として含む酸無水物と、平均粒径2μm以下の球状シリカを必須成分として含む無機充填剤と、硬化促進剤とを配合したものをA剤とし、エポキシ樹脂をB剤とした2液型のエポキシ樹脂組成物及びこの組成物を用いることを特徴とする電気機器の絶縁処理法に関する。
本発明はまた、メチルテトラヒドロ無水フタル酸50重量部及びメチルヘキサヒドロ無水フタル酸10〜90重量部からなる酸無水物100重量部と、平均粒径0.05〜2μmの球状シリカを1〜40重量%含む無機充填剤50〜500重量部と、硬化促進剤0.1〜10重量部と、エポキシ樹脂70〜170重量部とを含む2液型のエポキシ樹脂組成物及びこの組成物を用いることを特徴とする電気機器の絶縁処理法に関する。
【0005】
【発明の実施の形態】
本発明の2液型のエポキシ樹脂組成物は、上記のように、酸無水物と無機充填剤と硬化促進剤を配合したA剤及びエポキシ樹脂からなるB剤からなるものである。
A剤中の酸無水物は、メチルテトラヒドロ無水フタル酸及びメチルヘキサヒドロ無水フタル酸を必須成分として含む。これらの市販品としては、HN−2000、HN−5500(日立化成工業(株)製、商品名)、QH−200(日本ゼオン(株)製、商品名)、PH−5000(東燃石油化学工業(株)製、商品名)などが挙げられる。
酸無水物としては、上記必須成分の他に、メチル無水ハイミック酸、ドデセニル無水フタル酸などを用いることもできる。これらの酸無水物は、必須成分100重量部に対して0〜100重量部の範囲が好ましい。
【0006】
メチルテトラヒドロ無水フタル酸及びメチルヘキサヒドロ無水フタル酸の使用量は、メチルテトラヒドロ無水フタル酸50重量部に対して、メチルヘキサヒドロ無水フタル酸10〜90重量部が好ましく、15〜85重量部がさらに好ましく、30〜70重量部が特に好ましい。この範囲よりメチルテトラヒドロ無水フタル酸が多く、メチルヘキサヒドロ無水フタル酸が少ないと、ガラス転移温度が下がり、逆であれば粘度が上昇し、注型作業性が低下する。
【0007】
酸無水物の硬化促進剤としては、イミダゾール、2−エチル−4−メチルイミダゾール、1−シアノエチル−4−メチルイミダゾール、1−ベンジル−2−エチルイミダゾール等のイミダゾール誘導体、トリスジメチルアミノフェノール、ベンジルジメチルアミン等の第三級アミン類などが挙げられ、これらは単独で又は2種以上組み合わせて使用することができる。市販品としては、2E4MZ、2E4MZ−CN(四国化成工業(株)製、商品名)、BDMA(花王(株)製、商品名)などが挙げられる。硬化促進剤の配合量は、酸無水物100重量部当たり0.1〜10重量部が好ましく、0.1〜5重量部がさらに好ましく、0.1〜3重量部が特に好ましい。
【0008】
A剤に配合する無機充填剤は、平均粒径2μm以下、好ましくは平均粒径0.05〜2μmの球状シリカを必須成分として含む。この市販品としては、アドマファインSO−25R(株式会社アドマテックス製、商品名)などが挙げられる。これら平均粒径2μm以下の球状シリカの配合量は、配合する無機充填剤全量中の1〜40重量%であることが好ましく、1〜30重量%であることがさらに好ましく、2〜20重量%が特に好ましい。平均粒径2μm以下の球状シリカの配合量が1重量%未満であると、保管時の無機充填剤の沈降抑制効果が発現せず、40重量%を超えると粘度が上がり、注型作業性が低下する。
【0009】
平均粒径2μm以下の球状シリカ以外の無機充填剤としては、平均粒径8〜10μmの無機充填剤が好ましく、例えば、結晶シリカ、溶融シリカ、水和アルミナ、酸化アルミナ、タルク、炭酸カルシウム、マイカ、ガラス繊維、ガラスビーズ、水酸化マグネシウム、クレーなどが用いられる。この市販品としては、CRT−AA、CRT−D、RD−8(株式会社龍森製、商品名)、COX−31 (株式会社マイクロン製、商品名、C−303H、C−315H、C−308 (住友化学工業株式会社製、商品名)、SL−700(竹原化学工業株式会社製、商品名)などが挙げられる。これらの無機充填剤は、単独で又は2種類以上組み合わせて用いることができる。
【0010】
無機充填剤の合計配合量は、酸無水物100重量部に対して50〜500重量部が好ましく、80〜400重量部がさらに好ましく、100〜300重量部が特に好ましい。無機充填剤が50重量部未満であると、硬化物にしたときの熱伝導率又は線膨張係数に悪影響を及ぼし、500重量部を超えると、無機充填剤が多すぎて注入操作性に劣る。
【0011】
エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、多価アルコールのポリグリシジルエーテルなどが挙げられる。これらの樹脂としては、特に制限はないが、常温で液状のものが好ましく、市販品としては、エピコート828 (油化シェルエポキシ(株)製、商品名)、GY−260(チバガイギー社製、商品名)、DER−331(ダウケミカル日本(株)製、商品名)などが挙げられる。これらは併用して用いることができる。
エポキシ樹脂としては、ポリプロピレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、ブタンジオールジグリシジルエーテル等の反応性希釈剤となる低分子量エポキシ樹脂を、より高分子量のものと併用することが好ましい。低分子量エポキシ樹脂は、エポキシ樹脂総量に対して40重量%以下で使用することが好ましい。
【0012】
本発明のエポキシ樹脂としては、1分子中にエポキシ基を1個だけ有するエポキシ化合物を含んでいてもよい。このようなエポキシ化合物は、エポキシ樹脂全量に対して0〜40重量%の範囲で使用することが好ましく、0〜20重量%の範囲で使用することがより好ましい。このようなエポキシ化合物としては、n−ブチルグリシジルエーテル、フェニルグリシジルエーテル、ジブロモフェニルグリシジルエーテル、ジブロモクレジルグリシジルエーテル等がある。
これらのエポキシ樹脂の配合量は、酸無水物100重量部に対して70〜170重量部であるのが好ましく、90〜150重量部がより好ましく、100〜140重量部が特に好ましい。エポキシ樹脂が70重量部未満、又は150重量部を超えると、酸無水物とエポキシ樹脂のバランスが崩れて、充分に硬化が進まない。
【0013】
本発明のエポキシ樹脂組成物には、さらに、必要に応じて、赤リン、ヘキサブロモベンゼン、三酸化アンチモン等の難燃剤、ベンガラ、酸化第二鉄、カーボン、チタンホワイト等の着色剤、シラン系カップリング剤、シリコーン剤等の消泡剤などを配合することができる。これらは、前記B剤に配合することが好ましい。
【0014】
本発明のエポキシ樹脂組成物を用いて電気機器を絶縁処理するには、上記A剤とB剤を均一に混合してから、好ましくは30〜70℃で予熱し、好ましくは1Torr以下の減圧で脱泡した後、電気・電子部品が搭載されたケース又は金型に注入し、好ましくは60〜170℃(特に好ましくは80〜160℃)で1〜8時間、加熱硬化させればよく、また、金型を用いた場合には硬化後、金型から取り外せばよい。
本発明の絶縁処理法の対象となる電気機器としては、例えば、プラスチック又は金属製のケース又は金型内に部品を収納したトランス、フライバックトランス、ネオントランス、イグニッションコイル又はこれらのケースレスタイプのトランスなどが挙げられる。
【0015】
【実施例】
次に、本発明を実施例によりさらに具体的に説明するが、本発明はこれによって制限されるものではない。
【0016】
また、諸特性の評価は、下記の方法で行った。
▲1▼ 粘度
エポキシ樹脂組成物の粘度を25℃の恒温槽中でJIS−C2105に準じて東京計器(株)製のB型回転粘度計を用いて測定した。
▲2▼ 無機充填剤の保管沈降性
図1に示す測定装置を準備した。直径110mm、高さ130mmの金属製円筒形の缶1の蓋に、図1に示すように直径8mmのガラス管2を取り付け、その上端に重さ50gの分銅3を載せた。ガラス管2にはマーク4を付け、無機充填剤が沈降していないときに、缶1の蓋の高さと同じ高さをマーキングした。
この測定装置の缶1内にA剤を1500g装缶し、25℃で保管したとき、無機充填剤が沈降し、図2に示すように、沈降層5が生じた場合、その沈降層の高さ分だけガラス管2の位置が上がり、マーク4の位置も上がる。したがって、缶1の蓋の表面からマーク4までの高さ(h)を測定し、これを沈降層の高さとした。
【0017】
▲3▼ ガラス転移温度及び線膨張係数
エポキシ樹脂組成物を60℃に加温し、0.5Torrで5分間脱泡した後、80℃で2時間、135℃で2時間硬化させる。その後、5×5×5mmの試験片を切り出し、TMA熱物理試験器(株式会社リガク製)を用いてガラス転移温度及び線膨張係数を測定した。
▲4▼ 熱伝導率
直径50mm、厚さ10mmの円盤状の金型内で上記▲3▼に記載したのと同様にして硬化させた。得られた円盤を取り出し、熱伝導率測定装置(ダイナテック株式会社製シーマテック)を用いて測定した。
【0018】
実施例1〜3及び比較例1〜3
表1に示す配合のエポキシ樹脂組成物を調製し、諸特性の評価結果を表1に示す。なお、表1に記載した物質は下記のとおりである。
【0019】
A剤
酸無水物
HN−2000(メチルテトラヒドロ無水フタル酸、日立化成工業株式会社製)
HN−5000(メチルヘキサヒドロ無水フタル酸、日立化成工業株式会社製)
無機充填剤
CRT−AA(平均粒子径7μmの結晶シリカ、株式会社龍森製)
SO−25R(平均粒子径0.5μmの球状シリカ、株式会社アドマティックス製)
硬化促進剤
2E4MZ−CN(1−シアノエチル−4−メチル−2−エチルイミダゾール、四国化成工業株式会社製)
B剤
エポキシ樹脂
エピコート828(ビスフェノールA型エポキシ樹脂、油化シェル株式会社製)
【0020】
【表1】

Figure 0003932614
【0021】
表1に示す配合のエポキシ樹脂組成物について諸特性を上記方法で評価した結果、実施例1〜3の組成物は、無機充填剤の配合量が多いにもかかわらず、低粘度で注型作業性に優れ、保管時の無機充填剤の沈降も少ないことに加えて、比較例のものと同様にガラス転移温度が高く、耐熱性に優れ、線膨張係数が小さく、ヒートサイクル性に優れる。
比較例1〜3のものは、実施例1〜3のものと比較して保管時の無機充填剤の沈降が多いことから、使用前に無機充填剤の再分散が必要となるため、作業性が著しく劣る。
【0022】
【発明の効果】
本発明になるエポキシ樹脂組成物は、保管時の無機充填剤の沈降が少なく、低粘度で注入作業性に優れ、線膨張係数が小さく、耐ヒートサイクル性に優れ、さらに、ガラス転移温度が高く、熱伝導率が大きいために耐熱性に優れた電気機器を提供することができる。
また、本発明になるエポキシ樹脂組成物を注入して製造された電気機器は、絶縁性及び熱伝導性に優れ、高信頼性を有する。
【図面の簡単な説明】
【図1】無機充填剤の保管沈降性の測定装置の説明図である。
【図2】無機充填剤の沈降層が形成された状態で示す図1の測定装置の説明図である。
【符号の説明】
1 缶
2 ガラス管
3 分銅
4 マーク
5 沈降層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an epoxy resin composition and an insulating treatment method for electrical equipment using the same.
[0002]
[Prior art]
Conventionally, as an insulation method for electrical equipment, a potting method is known in which a coil or component is set in a case, and a uniform mixture of a resin and an inorganic filler is injected and cured under normal pressure or vacuum. .
However, in this method, from the viewpoint of workability, there is a limit to the amount of inorganic filler to be mixed, and volume shrinkage occurs during curing, resulting in cracks in the cured product and separation of the built-in coils and components. In addition, cracks are likely to occur, and the cast cured product has a large coefficient of linear expansion, which is inferior in heat cycleability. Moreover, since heat conductivity is small, there exists a problem that the temperature of an apparatus becomes high and the temperature to be used is restrict | limited. Furthermore, since the injection operation is performed after the resin composition and the inorganic filler are mixed and degassed under vacuum, it is necessary to use a resin composition with a long pot life. However, there is a limit to rationalization of work processes and energy saving.
[0003]
[Problems to be solved by the invention]
The present invention solves the above-mentioned problems of the prior art, uses an epoxy resin composition excellent in casting workability, having a small amount of sedimentation of the inorganic filler during storage, and having excellent insulating properties, and this composition. It is an object of the present invention to provide a method capable of insulating an electric device and obtaining an electric device having excellent insulation and thermal conductivity.
[0004]
[Means for Solving the Problems]
The present invention comprises an acid anhydride containing methyltetrahydrophthalic anhydride and methylhexahydrophthalic anhydride as essential components, an inorganic filler containing spherical silica having an average particle size of 2 μm or less as essential components, and a curing accelerator. The present invention relates to a two-pack type epoxy resin composition in which the product A is used and the epoxy resin B is used, and an electrical equipment insulation treatment method using the composition.
The present invention also provides 100 parts by weight of an acid anhydride composed of 50 parts by weight of methyltetrahydrophthalic anhydride and 10 to 90 parts by weight of methylhexahydrophthalic anhydride, and 1 to 40 spherical silicas having an average particle size of 0.05 to 2 μm. Use of a two-pack type epoxy resin composition containing 50 to 500 parts by weight of an inorganic filler containing 50% by weight, 0.1 to 10 parts by weight of a curing accelerator, and 70 to 170 parts by weight of an epoxy resin, and this composition The present invention relates to an insulation treatment method for electrical equipment.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
As described above, the two-pack type epoxy resin composition of the present invention is composed of an agent A containing an acid anhydride, an inorganic filler, and a curing accelerator, and an agent B made of an epoxy resin.
The acid anhydride in agent A contains methyltetrahydrophthalic anhydride and methylhexahydrophthalic anhydride as essential components. These commercial products include HN-2000, HN-5500 (trade name, manufactured by Hitachi Chemical Co., Ltd.), QH-200 (trade name, manufactured by Nippon Zeon Co., Ltd.), PH-5000 (Tonen Petrochemical Industries, Ltd.). Product name).
As the acid anhydride, methyl hymic anhydride, dodecenyl phthalic anhydride and the like can be used in addition to the above essential components. These acid anhydrides are preferably in the range of 0 to 100 parts by weight with respect to 100 parts by weight of the essential components.
[0006]
The amount of methyltetrahydrophthalic anhydride and methylhexahydrophthalic anhydride used is preferably 10 to 90 parts by weight, more preferably 15 to 85 parts by weight, with respect to 50 parts by weight of methyltetrahydrophthalic anhydride. Preferably, 30 to 70 parts by weight are particularly preferable. If the amount of methyltetrahydrophthalic anhydride is larger than this range and the amount of methylhexahydrophthalic anhydride is small, the glass transition temperature is lowered, and if vice versa, the viscosity is increased and casting workability is lowered.
[0007]
Examples of acid anhydride curing accelerators include imidazole derivatives such as imidazole, 2-ethyl-4-methylimidazole, 1-cyanoethyl-4-methylimidazole, 1-benzyl-2-ethylimidazole, trisdimethylaminophenol, and benzyldimethyl. Examples include tertiary amines such as amines, and these can be used alone or in combination of two or more. Commercially available products include 2E4MZ, 2E4MZ-CN (trade name, manufactured by Shikoku Kasei Kogyo Co., Ltd.), BDMA (trade name, manufactured by Kao Corp.), and the like. The blending amount of the curing accelerator is preferably 0.1 to 10 parts by weight, more preferably 0.1 to 5 parts by weight, and particularly preferably 0.1 to 3 parts by weight per 100 parts by weight of the acid anhydride.
[0008]
The inorganic filler to be blended with the agent A contains spherical silica having an average particle size of 2 μm or less, preferably 0.05 to 2 μm as an essential component. Examples of this commercially available product include Admafine SO-25R (trade name, manufactured by Admatechs Co., Ltd.). The blending amount of the spherical silica having an average particle size of 2 μm or less is preferably 1 to 40% by weight, more preferably 1 to 30% by weight, and more preferably 2 to 20% by weight in the total amount of the inorganic filler to be blended. Is particularly preferred. When the blending amount of spherical silica having an average particle size of 2 μm or less is less than 1% by weight, the effect of suppressing the sedimentation of the inorganic filler during storage does not appear, and when it exceeds 40% by weight, the viscosity increases and the casting workability is improved. descend.
[0009]
As inorganic fillers other than spherical silica having an average particle diameter of 2 μm or less, inorganic fillers having an average particle diameter of 8 to 10 μm are preferable. For example, crystalline silica, fused silica, hydrated alumina, alumina oxide, talc, calcium carbonate, mica Glass fiber, glass beads, magnesium hydroxide, clay and the like are used. As this commercially available product, CRT-AA, CRT-D, RD-8 (trade name, manufactured by Tatsumori Co., Ltd.), COX-31 (trade name, manufactured by Micron Co., Ltd., C-303H, C-315H, C- 308 (trade name, manufactured by Sumitomo Chemical Co., Ltd.), SL-700 (trade name, manufactured by Takehara Chemical Co., Ltd.), etc. These inorganic fillers may be used alone or in combination of two or more. it can.
[0010]
The total amount of the inorganic filler is preferably 50 to 500 parts by weight, more preferably 80 to 400 parts by weight, and particularly preferably 100 to 300 parts by weight with respect to 100 parts by weight of the acid anhydride. If the inorganic filler is less than 50 parts by weight, the thermal conductivity or the linear expansion coefficient when cured is adversely affected. If it exceeds 500 parts by weight, the inorganic filler is too much and the injection operability is poor.
[0011]
Examples of the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, polyglycidyl ether of polyhydric alcohol, and the like. These resins are not particularly limited, but are preferably liquid at room temperature, and commercially available products include Epicoat 828 (manufactured by Yuka Shell Epoxy Co., Ltd., trade name), GY-260 (manufactured by Ciba-Geigy Corporation, product) Name), DER-331 (manufactured by Dow Chemical Japan Co., Ltd., trade name) and the like. These can be used in combination.
As the epoxy resin, it is preferable to use a low molecular weight epoxy resin that becomes a reactive diluent such as polypropylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, butanediol diglycidyl ether, or the like with a higher molecular weight. The low molecular weight epoxy resin is preferably used at 40% by weight or less based on the total amount of the epoxy resin.
[0012]
The epoxy resin of the present invention may contain an epoxy compound having only one epoxy group in one molecule. Such an epoxy compound is preferably used in the range of 0 to 40% by weight, more preferably 0 to 20% by weight, based on the total amount of the epoxy resin. Examples of such an epoxy compound include n-butyl glycidyl ether, phenyl glycidyl ether, dibromophenyl glycidyl ether, and dibromocresyl glycidyl ether.
The compounding amount of these epoxy resins is preferably 70 to 170 parts by weight, more preferably 90 to 150 parts by weight, and particularly preferably 100 to 140 parts by weight with respect to 100 parts by weight of the acid anhydride. When the epoxy resin is less than 70 parts by weight or more than 150 parts by weight, the balance between the acid anhydride and the epoxy resin is lost, and the curing does not proceed sufficiently.
[0013]
The epoxy resin composition of the present invention further includes a flame retardant such as red phosphorus, hexabromobenzene, and antimony trioxide, a colorant such as bengara, ferric oxide, carbon, titanium white, and the like, if necessary. A defoaming agent such as a coupling agent or a silicone agent can be blended. These are preferably added to the B agent.
[0014]
In order to insulate an electrical device using the epoxy resin composition of the present invention, the above-mentioned agent A and agent B are mixed uniformly, and then preheated preferably at 30 to 70 ° C., preferably at a reduced pressure of 1 Torr or less. After defoaming, it may be poured into a case or mold on which electrical / electronic components are mounted, and preferably cured by heating at 60 to 170 ° C. (particularly preferably 80 to 160 ° C.) for 1 to 8 hours. When a mold is used, it may be removed from the mold after curing.
Examples of the electrical equipment to be subjected to the insulation treatment method of the present invention include a transformer, flyback transformer, neon transformer, ignition coil, or a caseless type of these parts housed in a plastic or metal case or mold. For example, a transformer.
[0015]
【Example】
EXAMPLES Next, although an Example demonstrates this invention further more concretely, this invention is not restrict | limited by this.
[0016]
Various characteristics were evaluated by the following methods.
(1) Viscosity The viscosity of the epoxy resin composition was measured in a thermostatic bath at 25 ° C. using a B-type rotational viscometer manufactured by Tokyo Keiki Co., Ltd. according to JIS-C2105.
(2) Storage sedimentation property of inorganic filler A measuring apparatus shown in FIG. 1 was prepared. As shown in FIG. 1, a glass tube 2 having a diameter of 8 mm was attached to the lid of a metal cylindrical can 1 having a diameter of 110 mm and a height of 130 mm, and a weight 3 having a weight of 50 g was placed on the upper end thereof. The glass tube 2 was marked 4 and marked with the same height as the lid of the can 1 when the inorganic filler had not settled.
When 1500 g of the agent A is loaded into the can 1 of this measuring apparatus and stored at 25 ° C., the inorganic filler settles down and, as shown in FIG. The position of the glass tube 2 is raised by that amount, and the position of the mark 4 is also raised. Therefore, the height (h) from the surface of the lid of the can 1 to the mark 4 was measured, and this was taken as the height of the sedimentation layer.
[0017]
(3) Glass transition temperature and linear expansion coefficient The epoxy resin composition is heated to 60 ° C., defoamed at 0.5 Torr for 5 minutes, and then cured at 80 ° C. for 2 hours and at 135 ° C. for 2 hours. Thereafter, a 5 × 5 × 5 mm test piece was cut out, and the glass transition temperature and the linear expansion coefficient were measured using a TMA thermophysical tester (manufactured by Rigaku Corporation).
(4) Cured in the same manner as described in (3) above in a disk-shaped mold having a thermal conductivity diameter of 50 mm and a thickness of 10 mm. The obtained disk was taken out and measured using a thermal conductivity measurement device (Dynatech Co., Ltd. Cimatech).
[0018]
Examples 1-3 and Comparative Examples 1-3
An epoxy resin composition having the composition shown in Table 1 is prepared, and the evaluation results of various properties are shown in Table 1. The substances listed in Table 1 are as follows.
[0019]
Agent A acid anhydride HN-2000 (Methyltetrahydrophthalic anhydride, manufactured by Hitachi Chemical Co., Ltd.)
HN-5000 (Methylhexahydrophthalic anhydride, manufactured by Hitachi Chemical Co., Ltd.)
Inorganic filler CRT-AA (crystalline silica with an average particle diameter of 7 μm, manufactured by Tatsumori Co., Ltd.)
SO-25R (spherical silica with an average particle size of 0.5 μm, manufactured by Admatics Co., Ltd.)
Curing accelerator 2E4MZ-CN (1-cyanoethyl-4-methyl-2-ethylimidazole, manufactured by Shikoku Chemicals Co., Ltd.)
B agent epoxy resin Epicoat 828 (bisphenol A type epoxy resin, manufactured by Yuka Shell Co., Ltd.)
[0020]
[Table 1]
Figure 0003932614
[0021]
As a result of evaluating the properties of the epoxy resin composition having the composition shown in Table 1 by the above method, the compositions of Examples 1 to 3 had a low viscosity and a casting operation despite a large amount of the inorganic filler. In addition to the low sedimentation of the inorganic filler during storage, the glass transition temperature is high, the heat resistance is excellent, the linear expansion coefficient is small, and the heat cycle property is excellent, as in the comparative example.
Since the comparative examples 1 to 3 have more sedimentation of the inorganic filler during storage compared to those of Examples 1 to 3, the inorganic filler needs to be redispersed before use. Is significantly inferior.
[0022]
【The invention's effect】
The epoxy resin composition according to the present invention has low sedimentation of inorganic filler during storage, low viscosity, excellent injection workability, low coefficient of linear expansion, excellent heat cycle resistance, and high glass transition temperature. In addition, since the thermal conductivity is large, it is possible to provide an electric device having excellent heat resistance.
Moreover, the electrical device manufactured by injecting the epoxy resin composition according to the present invention is excellent in insulation and thermal conductivity and has high reliability.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is an explanatory view of an apparatus for measuring storage sedimentation properties of an inorganic filler.
FIG. 2 is an explanatory view of the measuring apparatus of FIG. 1 shown in a state where a sedimentation layer of an inorganic filler is formed.
[Explanation of symbols]
1 Can 2 Glass tube 3 Weight 4 Mark 5 Sedimentation layer

Claims (5)

メチルテトラヒドロ無水フタル酸及びメチルヘキサヒドロ無水フタル酸を必須成分として含む酸無水物と、平均粒径2μm以下の球状シリカを必須成分として含む無機充填剤と、硬化促進剤とを配合したものをA剤とし、エポキシ樹脂をB剤とした2液型のエポキシ樹脂組成物。  A blend of an acid anhydride containing methyltetrahydrophthalic anhydride and methylhexahydrophthalic anhydride as essential components, an inorganic filler containing spherical silica having an average particle size of 2 μm or less as essential components, and a curing accelerator. A two-pack type epoxy resin composition containing an epoxy resin as an agent. 前記メチルテトラヒドロ無水フタル酸及び前記メチルヘキサヒドロ無水フタル酸の使用量は、前記メチルテトラヒドロ無水フタル酸50重量部に対して、前記メチルヘキサヒドロ無水フタル酸10〜90重量部である請求項1に記載の2液型のエポキシ樹脂組成物。The amount of the methyltetrahydrophthalic anhydride and the methylhexahydrophthalic anhydride used is 10 to 90 parts by weight of the methylhexahydrophthalic anhydride with respect to 50 parts by weight of the methyltetrahydrophthalic anhydride. The two-component epoxy resin composition described. 前記無機充填剤の合計配合量は、前記酸無水物100重量部に対して50〜500重量部である請求項1又は2に記載の2液型のエポキシ樹脂組成物。The two-component epoxy resin composition according to claim 1 or 2, wherein the total amount of the inorganic filler is 50 to 500 parts by weight with respect to 100 parts by weight of the acid anhydride. メチルテトラヒドロ無水フタル酸50重量部及びメチルヘキサヒドロ無水フタル酸10〜90重量部からなる酸無水物100重量部と、平均粒径0.05〜2μmの球状シリカを1〜40重量%含む無機充填剤50〜500重量部と、硬化促進剤0.1〜10重量部と、エポキシ樹脂70〜170重量部とを含む2液型のエポキシ樹脂組成物。Inorganic packing containing 100 parts by weight of an acid anhydride comprising 50 parts by weight of methyltetrahydrophthalic anhydride and 10 to 90 parts by weight of methylhexahydrophthalic anhydride, and 1 to 40% by weight of spherical silica having an average particle size of 0.05 to 2 μm A two-pack type epoxy resin composition comprising 50 to 500 parts by weight of an agent, 0.1 to 10 parts by weight of a curing accelerator, and 70 to 170 parts by weight of an epoxy resin. 請求項1〜4のいずれか一項に記載の2液型のエポキシ樹脂組成物を用いることを特徴とする電気機器の絶縁処理法。An insulation treatment method for electrical equipment, comprising using the two-component epoxy resin composition according to any one of claims 1 to 4 .
JP23429697A 1997-08-29 1997-08-29 Epoxy resin composition and method for insulating electrical equipment using the same Expired - Lifetime JP3932614B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23429697A JP3932614B2 (en) 1997-08-29 1997-08-29 Epoxy resin composition and method for insulating electrical equipment using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23429697A JP3932614B2 (en) 1997-08-29 1997-08-29 Epoxy resin composition and method for insulating electrical equipment using the same

Publications (2)

Publication Number Publication Date
JPH1171503A JPH1171503A (en) 1999-03-16
JP3932614B2 true JP3932614B2 (en) 2007-06-20

Family

ID=16968778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23429697A Expired - Lifetime JP3932614B2 (en) 1997-08-29 1997-08-29 Epoxy resin composition and method for insulating electrical equipment using the same

Country Status (1)

Country Link
JP (1) JP3932614B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4540997B2 (en) * 2004-02-06 2010-09-08 京セラケミカル株式会社 Two-component casting epoxy resin composition and electrical / electronic component equipment
EP1754733A1 (en) * 2005-07-26 2007-02-21 Huntsman Advanced Materials (Switzerland) GmbH Composition
JP2008075069A (en) * 2006-08-23 2008-04-03 Toshiba Corp Casting resin composition and insulating material and insulating structure using the same
WO2009008509A1 (en) 2007-07-11 2009-01-15 Nissan Chemical Industries, Ltd. Epoxy resin-forming liquid preparation containing inorganic particle
JPWO2009069429A1 (en) 2007-11-29 2011-04-07 日産化学工業株式会社 Silica-containing epoxy curing agent and epoxy resin cured product
JP5253211B2 (en) * 2009-02-04 2013-07-31 京セラケミカル株式会社 Casting epoxy resin composition, ignition coil and method for producing the same
JP7143147B2 (en) * 2018-08-22 2022-09-28 株式会社東芝 Superconducting coil and its manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6460625A (en) * 1987-08-31 1989-03-07 Toshiba Corp Casting epoxy resin composition
JPH03157420A (en) * 1989-11-15 1991-07-05 Toshiba Corp Thermosetting epoxy resin composition, casting material of epoxy resin and mold coil
JP2524011B2 (en) * 1991-05-23 1996-08-14 株式会社日立製作所 Thermosetting resin composition for high-voltage coil casting, mold coil and panel obtained by casting and curing with the composition

Also Published As

Publication number Publication date
JPH1171503A (en) 1999-03-16

Similar Documents

Publication Publication Date Title
JPH02117914A (en) Epoxy resin composition
JP6101122B2 (en) Epoxy resin composition for mold transformer, mold transformer, and method for producing mold transformer
JP3932614B2 (en) Epoxy resin composition and method for insulating electrical equipment using the same
JPS6230215B2 (en)
JP2009091471A (en) Epoxy resin composition for casting, and ignition coil and method for producing the same
JP2018002923A (en) Method for producing electric/electronic component, epoxy resin composition for injection molding, and electric/electronic component
JP3705704B2 (en) Epoxy resin composition, inductance component
JP3821253B2 (en) Epoxy resin composition and method for producing electrical device
JP2000086869A (en) Epoxy resin composition and coil
JP2000336249A (en) Epoxy resin composition and high-voltage electricai and electronic part
JPH11236491A (en) Epoxy resin composition and high voltage electric/ electronic part using the same
JP2000001527A (en) Epoxy resin composition and method for insulating electrical equipment therewith
JP2001294728A (en) Epoxy resin composition and high voltage electric or electronic part prepared by using the same
JPH07230931A (en) Manufacture of high tension transformer
JPH08294924A (en) Manufacture of electric apparatus
JP2020002346A (en) Epoxy resin composition for casting, electronic component and method for manufacturing electronic component
JP2002121359A (en) Epoxy resin composition and electronic parts of high- pressure electricity using the same
JPH115890A (en) Epoxy resin composition
JP2001081288A (en) Epoxy resin composition and high voltage electric/ electronic component using the same
JPS59159819A (en) Epoxy resin composition
JPH06212058A (en) Epoxy resin composition for sealing
JP2002155193A (en) Epoxy resin composition and electrical/electronic component device
JP2522432B2 (en) High voltage transformer manufacturing method
JPS60115620A (en) Flame-retarding epoxy resin composition
JP2009260122A (en) High voltage coil and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061012

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070312

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term