JP7142753B1 - Method for recovering rhodium from rhodium-containing plating solutions - Google Patents

Method for recovering rhodium from rhodium-containing plating solutions Download PDF

Info

Publication number
JP7142753B1
JP7142753B1 JP2021125637A JP2021125637A JP7142753B1 JP 7142753 B1 JP7142753 B1 JP 7142753B1 JP 2021125637 A JP2021125637 A JP 2021125637A JP 2021125637 A JP2021125637 A JP 2021125637A JP 7142753 B1 JP7142753 B1 JP 7142753B1
Authority
JP
Japan
Prior art keywords
rhodium
exchange resin
containing plating
recovering
plating solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021125637A
Other languages
Japanese (ja)
Other versions
JP2023020332A (en
Inventor
大介 吉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsuda Sangyo Co Ltd
Original Assignee
Matsuda Sangyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsuda Sangyo Co Ltd filed Critical Matsuda Sangyo Co Ltd
Priority to JP2021125637A priority Critical patent/JP7142753B1/en
Priority to PCT/JP2022/029510 priority patent/WO2023008588A1/en
Application granted granted Critical
Publication of JP7142753B1 publication Critical patent/JP7142753B1/en
Publication of JP2023020332A publication Critical patent/JP2023020332A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/04Processes using organic exchangers
    • B01J39/05Processes using organic exchangers in the strongly acidic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/08Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/16Organic material
    • B01J39/18Macromolecular compounds
    • B01J39/20Macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/04Processes using organic exchangers
    • B01J41/07Processes using organic exchangers in the weakly basic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/08Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/12Macromolecular compounds
    • B01J41/13Macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/02Column or bed processes
    • B01J47/026Column or bed processes using columns or beds of different ion exchange materials in series
    • B01J47/028Column or bed processes using columns or beds of different ion exchange materials in series with alternately arranged cationic and anionic exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/02Column or bed processes
    • B01J47/04Mixed-bed processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/22Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
    • C22B3/24Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition by adsorption on solid substances, e.g. by extraction with solid resins
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

【課題】本開示は、ロジウム含有めっき溶液からロジウムを高回収率で回収する方法を提供することを課題とする。【解決手段】ロジウム含有めっき溶液からロジウムを回収する方法であって、ロジウム含有めっき溶液を、弱塩基性陰イオン交換樹脂および強酸性陽イオン交換樹脂に通液させて、前記陰イオン交換樹脂および陽イオン交換樹脂にロジウムを吸着させて、回収することを特徴とする。【選択図】なしAn object of the present disclosure is to provide a method for recovering rhodium from a rhodium-containing plating solution at a high recovery rate. A method for recovering rhodium from a rhodium-containing plating solution comprises passing a rhodium-containing plating solution through a weakly basic anion exchange resin and a strongly acidic cation exchange resin, and It is characterized by adsorbing rhodium on a cation exchange resin and recovering it. [Selection figure] None

Description

本発明は、ロジウムめっき工程で使用する、或いは発生するロジウム含有めっき溶液からロジウムを回収する方法に関する。 The present invention relates to a method for recovering rhodium from rhodium-containing plating solutions used or generated in rhodium plating processes.

白金族元素であるロジウム(Rh)は、化学的に非常に安定な材料であり、電子部材の表面にロジウムのめっき皮膜を形成することが行われている。ロジウムは、貴金属であって、高価な材料であるため、被めっき物を洗浄水(主に純水)に浸漬して、余剰のめっき液を洗浄し、その洗浄水から、皮膜形成に用いられなかったロジウムを回収することが求められる。 Rhodium (Rh), which is a platinum group element, is a chemically very stable material, and is used to form a rhodium plating film on the surface of electronic members. Rhodium is a precious metal and an expensive material. It is required to recover the missing rhodium.

一方、使用済みの電子部品を酸処理して、ロジウムを溶出した水溶液からロジウムを回収する技術が知られている。たとえば、特許文献1には、ロジウムを含む溶液に酸を不溶性化させたキトサンに接触させてロジウムを選択に吸着させ回収することが記載されている。また、ロジウムを回収するために、特許文献2は、キレート樹脂を用いること、文献3、4は、特殊な吸着剤を用いることが記載されている。 On the other hand, there is known a technique of acid-treating used electronic parts and recovering rhodium from an aqueous solution in which rhodium is eluted. For example, Patent Literature 1 describes that rhodium is selectively adsorbed and recovered by contacting chitosan obtained by insolubilizing acid in a solution containing rhodium. In order to recover rhodium, Patent Document 2 describes using a chelate resin, and Documents 3 and 4 describe using a special adsorbent.

また、特許文献5、6には、陰イオン交換樹脂などの樹脂を用いて、ロジウムを回収する技術が開示されている。白金族元素は、酸性溶液中において、陰イオン錯体として存在するため、陰イオン交換能力がある樹脂や吸着剤により吸着、回収することが可能であることから、上記のような手法によって、ロジウムの回収が行われているのが通常である。 Further, Patent Documents 5 and 6 disclose techniques for recovering rhodium using a resin such as an anion exchange resin. Since platinum group elements exist as anion complexes in acidic solutions, they can be adsorbed and recovered by resins or adsorbents that have anion exchange ability. Collection is usually done.

特開平4-36425号公報JP-A-4-36425 特開平5-33071号公報JP-A-5-33071 特開2012-31449号公報JP 2012-31449 A 特開2012-41593号公報JP 2012-41593 A 特開2016-132782号公報JP 2016-132782 A 特開平6-172090号公報JP-A-6-172090

本開示は、ロジウム含有めっき溶液からロジウムを高回収率で回収する方法を提供することを課題とする。 An object of the present disclosure is to provide a method for recovering rhodium from a rhodium-containing plating solution at a high recovery rate.

上記の課題を解決できる一態様は、ロジウム含有めっき溶液からロジウムを回収する方法であって、ロジウム含有めっき溶液を、弱塩基性陰イオン交換樹脂および強酸性陽イオン交換樹脂に通液させて、前記陰イオン交換樹脂および陽イオン交換樹脂にロジウムを吸着させて、回収することを特徴とする。 One aspect that can solve the above problems is a method for recovering rhodium from a rhodium-containing plating solution, wherein the rhodium-containing plating solution is passed through a weakly basic anion exchange resin and a strongly acidic cation exchange resin, Rhodium is adsorbed on the anion exchange resin and the cation exchange resin and recovered.

本発明によれば、ロジウム含有めっき溶液からロジウムを高回収率に回収することができるという優れた効果を有する。 ADVANTAGE OF THE INVENTION According to this invention, it has the outstanding effect that rhodium can be collect|recovered from a rhodium containing plating solution with a high recovery rate.

実施例、比較例で用いた吸着試験装置の模式図である。1 is a schematic diagram of an adsorption test apparatus used in Examples and Comparative Examples. FIG. 実施例、比較例の吸着試験結果を示す図である。It is a figure which shows the adsorption test result of an Example and a comparative example.

ロジウム(Rh)のめっき工程は、ロジウム含有めっき液に被めっき物を浸漬して、被めっき面にロジウムの被膜を形成することが行われる。その後、ロジウム被膜が形成された被めっき物を純水等からなる洗浄水に浸漬して、余剰のロジウム含有めっき液が洗浄される。洗浄後の洗浄水には、貴金属であるロジウムが含まれ、ロジウムは高価であることから、洗浄水中のロジウムを高回収率で回収することが求められる。 In the rhodium (Rh) plating step, an object to be plated is immersed in a rhodium-containing plating solution to form a rhodium coating on the surface to be plated. After that, the object to be plated on which the rhodium coating is formed is immersed in washing water such as pure water to wash away excess rhodium-containing plating solution. Washing water after washing contains rhodium, which is a noble metal, and rhodium is expensive, so it is required to recover rhodium in the washing water at a high recovery rate.

めっき液中、ロジウムは、硫酸ロジウム、リン酸ロジウムといった化合物で存在し、遊離酸として、硫酸、リン酸、硫酸+リン酸、その他応力緩衝材等が加えられている。めっき液中のロジウムは、陰イオン錯体として存在するため、通常、陰イオン交換樹脂を用いてロジウムを回収することが行われている。しかしながら、めっき液中、ロジウムの構造は複雑であるため、通常の陰イオン交換樹脂を用いてロジウムを分離しようとした場合、すぐにイオン交換樹脂に吸着破過してしまい、ロジウムを高回収率で回収を行うことが困難であるという問題がある。 In the plating solution, rhodium exists in the form of compounds such as rhodium sulfate and rhodium phosphate, and sulfuric acid, phosphoric acid, sulfuric acid + phosphoric acid, and other stress buffers are added as free acids. Since rhodium in the plating solution exists as an anion complex, rhodium is usually recovered using an anion exchange resin. However, since the structure of rhodium in the plating solution is complex, when rhodium is separated using a normal anion exchange resin, it quickly adsorbs and breaks through the ion exchange resin, resulting in a high recovery rate of rhodium. There is a problem that it is difficult to collect in

上記問題に鑑み、本発明者は鋭意研究を行ったところ、弱塩基性陰イオン樹脂と強酸性陽イオン交換樹脂を組み合わせて使用することで、高回収率でロジウムを回収できるとの知見が得られた。かかる知見に基づき、本発明の一実施形態は、ロジウム含有めっき溶液を、弱塩基性陰イオン交換樹脂および強酸性陽イオン交換樹脂に通液し、前記陰イオン交換樹脂および陽イオン交換樹脂にロジウムを吸着させて、回収することを特徴とするものである。 In view of the above problems, the present inventors conducted intensive research and found that rhodium can be recovered at a high recovery rate by using a combination of a weakly basic anion resin and a strongly acidic cation exchange resin. was taken. Based on such findings, one embodiment of the present invention is to pass a rhodium-containing plating solution through a weakly basic anion exchange resin and a strongly acidic cation exchange resin, and add rhodium to the anion exchange resin and the cation exchange resin. It is characterized by adsorbing and recovering.

本開示は、主として、ロジウムをめっきした被めっき物を洗浄して、余剰のロジウム含有めっき液を含む洗浄水からロジウムを高回収率で回収することを目的とするものであるが、本明細書中、ロジウム含有めっき溶液(以下、単にめっき溶液と称する場合がある。)には、上述するロジウム含有めっき液を含む洗浄水のみならず、使用済又は未使用のロジウム含有めっき液等も含むものである。すなわち、ロジウム含有めっき液を含む溶液であれば、本態様を適用できるものである。 The present disclosure is mainly intended to wash a rhodium-plated object to be plated and recover rhodium from the washing water containing excess rhodium-containing plating solution at a high recovery rate. The rhodium-containing plating solution (hereinafter sometimes simply referred to as plating solution) includes not only the washing water containing the rhodium-containing plating solution described above, but also the used or unused rhodium-containing plating solution. . That is, the present embodiment can be applied to any solution containing a rhodium-containing plating solution.

弱塩基性陰イオン交換樹脂を充填したカラムにめっき溶液を通液させてしばらくすると、通液後の液中に黄色の結晶が確認される。この黄色の結晶はロジウム水酸化物と考えられ、微細であるため、陰イオン交換樹脂の空隙を通過してカラム外に排出されることになる。この水酸化物が生成されるに従って、ロジウムの漏洩が多くなるため、ロジウムの回収率が低下する。水酸化物が生成される原因は、弱塩基性陰イオン交換樹脂がOH型であるため、ロジウム錯体(陰イオン錯体)が吸着するとOHイオンが放出されて、イオン交換樹脂内のpHが上昇するためと考えられる。 After passing the plating solution through a column filled with a weakly basic anion exchange resin, yellow crystals are observed in the solution after passing for a while. These yellow crystals are considered to be rhodium hydroxide, and since they are fine, they pass through the pores of the anion exchange resin and are discharged out of the column. As this hydroxide is produced, more rhodium leaks, resulting in a lower rhodium recovery rate. The cause of the generation of hydroxide is that the weakly basic anion exchange resin is in the OH type, so when the rhodium complex (anion complex) is adsorbed, OH ions are released and the pH in the ion exchange resin rises. It is considered to be for

一方、ロジウムは、陽イオン錯体でも存在し、陰イオン錯体と平衡状態になっていると推測される。この陽イオン錯体を強酸性陽イオン交換樹脂で吸着させることが重要である。強酸性陽イオン交換樹脂として、H(水素)型のものを用いることで、陽イオン錯体が吸着してHイオンが放出され、イオン交換樹脂内のpHを低く保ち、水酸化物の生成を抑制することが可能となり、ロジウムの漏洩を防止し、ロスを低減できる。 Rhodium, on the other hand, is also present in cationic complexes, presumably in equilibrium with anionic complexes. It is important to adsorb this cation complex with a strongly acidic cation exchange resin. By using an H (hydrogen) type as the strongly acidic cation exchange resin, the cation complex is adsorbed and H ions are released, keeping the pH in the ion exchange resin low and suppressing the generation of hydroxide. It is possible to prevent the leakage of rhodium and reduce the loss.

強酸性陽イオン交換樹脂として、Na(ナトリウム)型を用いた場合には、生成した水酸化物を吸着できずに、通液初期より一定濃度での漏洩がみられる。しかし、Na型は、H型に比べて体積当たりの官能基が多いため、H型に比べて陽イオンの吸着回収能力が高い。したがって、陽イオン交換樹脂それぞれの性能と通液段階に応じて、H型とNa型と
を適切に組み合わせることで、回収率の向上が期待できる。
When Na (sodium) type is used as the strongly acidic cation exchange resin, the generated hydroxide cannot be adsorbed, and leakage at a constant concentration is observed from the initial stage of passage. However, since the Na type has more functional groups per volume than the H type, it has a higher ability to adsorb and recover cations than the H type. Therefore, an improvement in the recovery rate can be expected by appropriately combining the H-type and the Na-type according to the performance of each cation exchange resin and the stage of passage.

弱塩基性陰イオン交換樹脂としては、(化1)に示すような弱塩基性の三級アミン-N(CHを交換基に持つ陰イオン交換樹脂を使用することが好ましい。強酸性陽イオン交換樹脂としては、(化2)に示すような強酸性のスルホン酸基-SOHを交換基に持つ陽イオン交換樹脂を使用することが好ましい。弱塩基性陰イオン交換樹脂と強酸性陽イオン交換樹脂のどちらか一方を先にして通液させてもよいが、両方を混合して、同時に通液させてもよい。また、混合する場合は、弱塩基性陰イオン交換樹脂と強酸性陽イオン交換樹脂とを体積比率で1:2~2:1とすることが好ましい。 As the weakly basic anion exchange resin, it is preferable to use an anion exchange resin having weakly basic tertiary amine-N + (CH 3 ) 2 as an exchange group as shown in Chemical Formula 1. As the strongly acidic cation exchange resin, it is preferable to use a cation exchange resin having a strongly acidic sulfonic acid group --SO 3 H as an exchange group, as shown in Chemical Formula 2. Either one of the weakly basic anion exchange resin and the strongly acidic cation exchange resin may be passed through first, or both may be mixed and passed through simultaneously. When mixed, the volume ratio of the weakly basic anion exchange resin and the strongly acidic cation exchange resin is preferably 1:2 to 2:1.

Figure 0007142753000001
Figure 0007142753000001

Figure 0007142753000002
Figure 0007142753000002

陰イオン交換樹脂や陽イオン交換樹脂からロジウムを回収する方法としては、公知の手段を用いることができる。例えば、ロジウムが吸着した樹脂を焼成した後、王水などの酸に溶解することで、ロジウムのみを回収することができる。また、ロジウムが化学的に非常に安定な材料であることから、必要に応じて、還元やアルカリ溶融などの操作を加えてもよい。 As a method for recovering rhodium from the anion exchange resin or the cation exchange resin, known means can be used. For example, rhodium alone can be recovered by baking a resin in which rhodium is adsorbed and then dissolving it in an acid such as aqua regia. Further, since rhodium is a chemically very stable material, operations such as reduction and alkali fusion may be added as necessary.

次に、本発明の実施例及び比較例について説明する。なお、以下の実施例はあくまで代表的な例を示しているもので、本願発明は、これらの実施例に制限される必要はなく、明細書の記載される技術思想の範囲で解釈されるべきものである。 Next, examples of the present invention and comparative examples will be described. The following examples are merely representative examples, and the present invention should not be limited to these examples, and should be interpreted within the scope of the technical ideas described in the specification. It is.

ロジウム含有めっき溶液(硫酸ロジウム、ロジウム濃度:66.1mg/L、pH:1.6)を図1に示す吸着試験装置を用いて、ロジウムの回収率を調査した。ロジウム含有めっき廃液1を、カラム通液ポンプ2を用いてガラスカラム3に通液し、ガラスカラム3内に充填した各種イオン交換樹脂4によってロジウムを抽出し、樹脂通液後の廃液を回収槽5で回収した。イオン交換樹脂の充填量は5mLとし、2種のイオン交換樹脂を混合して用いる場合は、各充填量を2.5mLとし、よく混合して充填した。通液速度はSV=5(1/Hr)とした。 A rhodium-containing plating solution (rhodium sulfate, rhodium concentration: 66.1 mg/L, pH: 1.6) was examined for rhodium recovery using the adsorption test apparatus shown in FIG. A rhodium-containing plating waste liquid 1 is passed through a glass column 3 using a column feeding pump 2, rhodium is extracted by various ion exchange resins 4 filled in the glass column 3, and the waste liquid after passing through the resin is collected in a recovery tank. 5 was recovered. The filling amount of the ion-exchange resin was 5 mL, and when two kinds of ion-exchange resins were mixed and used, each filling amount was 2.5 mL, and they were well mixed and filled. The flow rate was SV=5 (1/Hr).

(実施例1)
弱塩基性陰イオン交換樹脂とNa型陽イオン交換樹脂を1:1(体積比率)で混合し、混合したものをカラムに充填し、ロジウム含有めっき廃液を該カラム内に通液し、一定期間ごとに通液後の液を回収して、ロジウム吸着量を測定した。その結果、通液量が60Lの時点で、4.0g/樹脂Lであり、通液量が100Lの時点では、6.2g/樹脂Lであった。それぞれロジウムの回収率は88.4%、89.0%であった。以上の結果をまとめたものを表1に示す。
(Example 1)
Weakly basic anion exchange resin and Na-type cation exchange resin are mixed at 1:1 (volume ratio), the mixture is filled in a column, rhodium-containing plating waste liquid is passed through the column, and a certain period of time After each passage, the liquid was collected and the amount of rhodium adsorbed was measured. As a result, it was 4.0 g/L of resin when the flow rate was 60 L, and 6.2 g/L of resin when the flow rate was 100 L. The recovery rates of rhodium were 88.4% and 89.0%, respectively. Table 1 shows a summary of the above results.

Figure 0007142753000003
Figure 0007142753000003

(実施例2)
弱塩基性陰イオン交換樹脂とH型陽イオン交換樹脂を1:1(体積比率)で混合し、混合したものをカラムに充填し、ロジウム含有めっき廃液を該カラム内に通液し、一定期間ごとに通液後の液を回収して、ロジウム吸着量を測定した。その結果、通液量が60Lの時点で、4.4g/樹脂Lであり、通液量が100Lの時点では、5.8g/樹脂Lであった。それぞれロジウムの回収率は99.8%、83.0%であった。
(Example 2)
A weakly basic anion exchange resin and an H-type cation exchange resin are mixed at 1:1 (volume ratio), the mixture is filled in a column, and a rhodium-containing plating waste solution is passed through the column for a certain period of time. After each passage, the liquid was collected and the amount of rhodium adsorbed was measured. As a result, it was 4.4 g/L of resin when the flow rate was 60 L, and 5.8 g/L of resin when the flow rate was 100 L. The recovery rates of rhodium were 99.8% and 83.0%, respectively.

(比較例1)
Na型強酸性陽イオン交換樹脂をカラムに充填し、ロジウム含有めっき廃液を該カラム内に通液し、一定期間ごとに通液後の液を回収して、ロジウム吸着量を測定した。その結果、通液量が60Lの時点で、3.4g/樹脂Lであり、ロジウムの回収率は81.0%であった。
(Comparative example 1)
A column was filled with a Na-type strongly acidic cation exchange resin, and a rhodium-containing plating waste solution was passed through the column. As a result, when the amount of liquid passed was 60 L, it was 3.4 g/L of resin, and the rhodium recovery rate was 81.0%.

(比較例2)
H型強酸性陽イオン交換樹脂をカラムに充填し、ロジウム含有めっき廃液を該カラム内に通液し、一定期間ごとに通液後の液を回収して、ロジウム吸着量を測定した。その結果、通液量が60Lの時点で、3.3g/樹脂Lであり、ロジウムの回収率は77.6%であった。
(Comparative example 2)
A column was packed with an H-type strongly acidic cation exchange resin, and rhodium-containing plating waste liquid was passed through the column. As a result, when the amount of liquid passed was 60 L, it was 3.3 g/L of resin, and the rhodium recovery rate was 77.6%.

(比較例3)
弱塩基性陰イオン交換樹脂をカラムに充填し、ロジウム含有めっき廃液を該カラム内に通液し、一定期間ごとに通液後の液を回収して、ロジウム吸着量を測定した。その結果、通液量が60Lの時点で、3.0g/樹脂Lであり、通液量が100Lの時点では、3.6g/樹脂Lであった。それぞれロジウムの回収率は79.0%、53.0%であった。
(Comparative Example 3)
A column was packed with a weakly basic anion exchange resin, and a rhodium-containing plating waste solution was passed through the column. As a result, it was 3.0 g/L of resin when the flow rate was 60 L, and 3.6 g/L of resin when the flow rate was 100 L. The recovery rates of rhodium were 79.0% and 53.0%, respectively.

実施例、比較例の結果をまとめたグラフを図2に示す。図2に示す通り、通液初期において、実施例2では、カラム出口でロジウムはほとんど検出されなかったが、比較例1-3では、ロジウムの検出が見られた。また、実施例1についても、ロジウムが一定濃度で漏洩していることが確認された。一方、通液量を増やしていくと、実施例1での回収率が最も高い結果となり、実施例2での回収率が低下した。 FIG. 2 shows a graph summarizing the results of Examples and Comparative Examples. As shown in FIG. 2, almost no rhodium was detected at the column outlet in Example 2 at the initial stage of passage, but rhodium was detected in Comparative Examples 1-3. It was also confirmed that rhodium leaked at a constant concentration in Example 1 as well. On the other hand, when the amount of liquid passing was increased, the recovery rate in Example 1 was the highest, and the recovery rate in Example 2 decreased.

上記の結果より、通液初期での回収率は、実施例2の「弱塩基性陰イオン交換樹脂」と「H型強酸性陽イオン交換樹脂」とを組み合わせたものが最も良いが、実施例1の「弱塩基性陰イオン交換樹脂」と「Na型強酸性陽イオン交換樹脂」とを組み合わせたものに比べて、ロジウムの漏洩が早く、通液を継続していこうとで、実施例2と実施例1とは、ロジウムの回収量及び回収率が逆転することが分かる。発生する液量や濃度に合わせて、「H型強酸性陽イオン交換樹脂」と「Na型強酸性陽イオン交換樹脂」それぞれ単独で使用する、あるいは、組み合わせて使用することで、より効率的に回収できることが推測できる。 From the above results, the recovery rate at the initial stage of liquid passage is the best when the "weakly basic anion exchange resin" and "H-type strongly acidic cation exchange resin" of Example 2 are combined. Compared to the combination of the "weakly basic anion exchange resin" and the "Na-type strongly acidic cation exchange resin" in 1, rhodium leaked faster, and trying to continue the liquid flow, Example 2 and Example 1 are reversed in terms of rhodium recovery amount and recovery rate. Depending on the amount and concentration of the generated liquid, "H-type strongly acidic cation exchange resin" and "Na-type strongly acidic cation exchange resin" can be used alone or in combination to make it more efficient. It can be assumed that it can be recovered.

本発明は、ロジウム含有めっき溶液からロジウムを高回収率に回収することができるという優れた効果を有する。ロジウムは非常に安定な材料であるため、電子部品の電解めっき皮膜材料として使用され、特に、近年では自動車の排気ガスに含まれる有害成分を浄化するための触媒として使用されている。ロジウムの需要が拡大する一方、供給の不足が発生していることから、ロジウムの回収率を高めることができる本発明は、特に有用である。

The present invention has the excellent effect of being able to recover rhodium from a rhodium-containing plating solution at a high recovery rate. Since rhodium is a very stable material, it is used as an electroplating film material for electronic parts, and in particular, in recent years, it is used as a catalyst for purifying harmful components contained in exhaust gas from automobiles. Since the demand for rhodium is increasing while the supply is in short supply, the present invention, which can increase the recovery rate of rhodium, is particularly useful.

Claims (2)

ロジウム含有めっき溶液からロジウムを回収する方法であって、ロジウム含有めっき溶液を、弱塩基性陰イオン交換樹脂および強酸性陽イオン交換樹脂に通液させて、前記陰イオン交換樹脂および陽イオン交換樹脂にロジウムを吸着させ、回収し、前記弱塩基性陰イオン交換樹脂が三級アミン-N(CHを交換基に持つ陰イオン交換樹脂であり、前記強酸性陽イオン交換樹脂がH型である、ことを特徴とするロジウムの回収方法。 A method for recovering rhodium from a rhodium-containing plating solution, wherein the rhodium-containing plating solution is passed through a weakly basic anion exchange resin and a strongly acidic cation exchange resin to obtain the anion exchange resin and the cation exchange resin. Rhodium is adsorbed on and recovered, the weakly basic anion exchange resin is an anion exchange resin having a tertiary amine -N + (CH 3 ) 2 as an exchange group, and the strongly acidic cation exchange resin is H A method for recovering rhodium, characterized in that it is a mold. ロジウムが吸着したイオン交換樹脂を焼成した後、酸で溶解してロジウムを回収することを特徴とする請求項1に記載のロジウムの回収方法。

2. The method for recovering rhodium according to claim 1, wherein the rhodium is recovered by baking the ion-exchange resin to which rhodium has been adsorbed and then dissolving it in an acid.

JP2021125637A 2021-07-30 2021-07-30 Method for recovering rhodium from rhodium-containing plating solutions Active JP7142753B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021125637A JP7142753B1 (en) 2021-07-30 2021-07-30 Method for recovering rhodium from rhodium-containing plating solutions
PCT/JP2022/029510 WO2023008588A1 (en) 2021-07-30 2022-08-01 Method for recovering rhodium from rhodium-containing plating solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021125637A JP7142753B1 (en) 2021-07-30 2021-07-30 Method for recovering rhodium from rhodium-containing plating solutions

Publications (2)

Publication Number Publication Date
JP7142753B1 true JP7142753B1 (en) 2022-09-27
JP2023020332A JP2023020332A (en) 2023-02-09

Family

ID=83436653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021125637A Active JP7142753B1 (en) 2021-07-30 2021-07-30 Method for recovering rhodium from rhodium-containing plating solutions

Country Status (2)

Country Link
JP (1) JP7142753B1 (en)
WO (1) WO2023008588A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5041717A (en) * 1973-08-17 1975-04-16
JPS542226A (en) * 1977-06-07 1979-01-09 Yamanashi Prefecture Method of recovering and utilizing rhodium metal from rhodium plating drain
JPH03277731A (en) * 1990-03-27 1991-12-09 Tanaka Kikinzoku Kogyo Kk Method for refining rhodium
JP2014055331A (en) * 2012-09-13 2014-03-27 Sanyo Shoten:Kk Method for separating/recovering platinum group element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5041717A (en) * 1973-08-17 1975-04-16
JPS542226A (en) * 1977-06-07 1979-01-09 Yamanashi Prefecture Method of recovering and utilizing rhodium metal from rhodium plating drain
JPH03277731A (en) * 1990-03-27 1991-12-09 Tanaka Kikinzoku Kogyo Kk Method for refining rhodium
JP2014055331A (en) * 2012-09-13 2014-03-27 Sanyo Shoten:Kk Method for separating/recovering platinum group element

Also Published As

Publication number Publication date
JP2023020332A (en) 2023-02-09
WO2023008588A1 (en) 2023-02-02

Similar Documents

Publication Publication Date Title
CN101374769B (en) Method and apparatus for removing hydrogen peroxide
WO2019037421A1 (en) Selective separation and comprehensive recovery method for nickel in alkali chemical nickel waste water
TW200808663A (en) Method of purifying aqueous alkali solution
KR101806823B1 (en) METHOD FOR PRODUClNG AQUEOUS SOLUTION OF TETRAALKYL AMMONIUM SALT
JP6082192B2 (en) Pure water production equipment
JP7142753B1 (en) Method for recovering rhodium from rhodium-containing plating solutions
JP5651164B2 (en) Method for producing ammonium tungstate aqueous solution
JPWO2020013070A1 (en) Acid solution regeneration device and regeneration method
JP5320723B2 (en) Ultrapure water manufacturing method and apparatus, and electronic component member cleaning method and apparatus
JP2013023442A (en) Method and apparatus for purifying alcohol
JP2012219040A (en) Method for producing high-purity urea water
JP5739687B2 (en) Alcohol purification method, apparatus and system
CN114272961B (en) Ion exchange resin regeneration method for removing impurities from lithium sulfate solution
ES2850848T3 (en) Catalytic resin regeneration for antimony removal
US2264402A (en) Process for removing salts from water
TW201509885A (en) Method for producing high-concentration solution of tetraalkylammonium salt
JP3896423B2 (en) Method for recovering palladium from palladium-containing liquid
EP0149792B1 (en) Method for treating aqueous solutions with weakly acidic cation exhange resins
JPS60187389A (en) Method of treating aqueous solution by weak acidic cation exchange resin
JPS60187390A (en) Method of treating aqueous solution by weak acidic cation exchange resin
JP2009084673A (en) Selective separation/recovery method for specified metal ion
RU2010889C1 (en) Method of copper regenerating from copper contained ammonium solution
CN117427372A (en) Reactivation method of alcohol amine solution
JPS58174241A (en) Method for regenerating boron selective ion exchange resin
JP3963599B2 (en) Acid component removal method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220127

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220913

R150 Certificate of patent or registration of utility model

Ref document number: 7142753

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150