JP2014055331A - Method for separating/recovering platinum group element - Google Patents

Method for separating/recovering platinum group element Download PDF

Info

Publication number
JP2014055331A
JP2014055331A JP2012201195A JP2012201195A JP2014055331A JP 2014055331 A JP2014055331 A JP 2014055331A JP 2012201195 A JP2012201195 A JP 2012201195A JP 2012201195 A JP2012201195 A JP 2012201195A JP 2014055331 A JP2014055331 A JP 2014055331A
Authority
JP
Japan
Prior art keywords
separation
rhodium
adsorbent
platinum
recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012201195A
Other languages
Japanese (ja)
Other versions
JP6025468B2 (en
Inventor
Kazuharu Yoshizuka
和治 吉塚
Toshinori Matsui
利憲 松井
Shohei Nishihama
章平 西浜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANYO SHOTEN KK
Sanyo Shoten Co Ltd
Original Assignee
SANYO SHOTEN KK
Sanyo Shoten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANYO SHOTEN KK, Sanyo Shoten Co Ltd filed Critical SANYO SHOTEN KK
Priority to JP2012201195A priority Critical patent/JP6025468B2/en
Publication of JP2014055331A publication Critical patent/JP2014055331A/en
Application granted granted Critical
Publication of JP6025468B2 publication Critical patent/JP6025468B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a safe and simple method with a light environmental load for separating/recovering a platinum group element that is a recovery process of platinum group metals using a wet method and an ion exchange method and has an excellent rate of separation/recovery of each platinum group element.SOLUTION: A method for separating/recovering a platinum group element includes a leaching step for leaching a mixture of platinum group elements into a hydrochloric acid solution to prepare a leachate, a first separation/recovery step for separating/recovering palladium by bringing a palladium adsorbent into contact with the leachate, a second separation/recovery step for separating/recovering platinum by bringing a platinum adsorbent into contact with a leachate after the first separation/recovery obtained in the first separation/recovery step at a high velocity, the velocity at which rhodium being hardly adsorbed, and a third separation/recovery step for batchwise separating/recovering rhodium by bringing a rhodium adsorbent into contact with a leachate after the second separation/recovery obtained in the second separation/recovery step. The palladium adsorbent includes a porous resin and an extraction agent supported by the porous resin, while the platinum adsorbent and rhodium adsorbent are each a weak base ion exchange resin.

Description

本発明は、自動車廃触媒等から得られる白金族混合物から個々の白金族元素、特にパラジウム、白金、ロジウム、を分離回収する白金族の分離回収法に関する。   The present invention relates to a platinum group separation and recovery method for separating and recovering individual platinum group elements, particularly palladium, platinum, and rhodium, from a platinum group mixture obtained from an automobile waste catalyst or the like.

白金族とは、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)、イリジウム(Ir)、ルテニウム(Ru)、オスミウム(Os)の6金属の総称である。周期表において第5および第6周期、第8〜10族に位置する元素で、物理的性質、化学的性質が互いに類似しており、融点が高く、耐熱性耐食性に優れるほか、特異な触媒特性を有している。
かつては発熱材や万年筆のペン先など生活用品で馴染みが深かった白金の用途は、今では、自動車触媒や電子部品、化学工業の触媒などとしての利用が著しく増加している。その中でも、白金族の大部分(パラジウム50%,白金55%,ロジウム87%)が自動車触媒に使用されている。これは、他の触媒材料に比べて触媒活性が高く、耐久性もよいからである。また、自動車触媒については、現時点で白金族を含むものよりも性能の優れた触媒は開発されていない。現在、排ガス規制の強化などから、自動車触媒における白金族の需要が増加している。
The platinum group is a generic name for six metals of platinum (Pt), palladium (Pd), rhodium (Rh), iridium (Ir), ruthenium (Ru), and osmium (Os). In the periodic table, elements located in the 5th and 6th periods and groups 8 to 10 have similar physical and chemical properties, high melting point, excellent heat resistance and corrosion resistance, and unique catalytic properties have.
The use of platinum, which was once familiar with daily necessities, such as heat-generating materials and fountain pen nibs, is now increasingly used as a catalyst for automobile catalysts, electronic parts, and chemical industries. Among them, most of the platinum group (50% palladium, 55% platinum, 87% rhodium) is used for automobile catalysts. This is because the catalytic activity is higher and the durability is better than other catalyst materials. In addition, as for automobile catalysts, no catalyst having a performance superior to that including a platinum group has been developed at present. Currently, demand for the platinum group in automobile catalysts is increasing due to stricter exhaust gas regulations.

しかし、白金族は稀少な元素で生産量に制限があるだけでなく、一次供給源となる鉱山はごく限られた国の特定地域に偏っており、また、現在の供給ルートでは、莫大な採掘コストや環境負荷がかかっているため、非常な高価な金属となっている。このような背景から、自動車廃触媒をはじめとする白金族を含有している使用済み製品、すなわち都市鉱山(二次資源)からのパラジウム, 白金, ロジウムの効率的な分離回収プロセスの開発が必要とされている。   However, the platinum group is a rare element and has limited production, and the mine that is the primary source is biased to specific regions in a very limited country. Due to cost and environmental burden, it is a very expensive metal. Against this background, it is necessary to develop an efficient process for separating and recovering palladium, platinum, and rhodium from used products containing platinum group metals such as automobile waste catalysts, that is, urban mines (secondary resources). It is said that.

従来、白金族を分離回収する方法としては、ロジウムを回収精製する方法として、ロジウム塩酸溶液に塩酸を加えて塩酸濃度を1規定〜6規定としたのち2価の塩化スズを添加し、ジアルキルスルフィドを含有させた多孔質樹脂と接触させてロジウムを吸着する方法が開示されている。(特許文献1)
また、(特許文献2)には、「白金族元素と不純物元素を含む塩化物溶液から白金族元素を回収する方法において、塩化物溶液をポリアミン型アニオン交換樹脂と接触させて白金族元素を選択的に吸着させる第一の工程、吸着処理後の樹脂を洗浄処理する第二の工程、及び洗浄処理後の樹脂から白金族元素を溶離させる第三の工程を含むことを特徴とする白金族元素の分離回収方法」が開示されている。
Conventionally, as a method for separating and recovering the platinum group, as a method for recovering and purifying rhodium, after adding hydrochloric acid to a rhodium hydrochloric acid solution to adjust the hydrochloric acid concentration to 1 to 6 N, divalent tin chloride is added and dialkyl sulfide is added. Discloses a method of adsorbing rhodium by contacting with a porous resin containing. (Patent Document 1)
Further, (Patent Document 2) states that “in the method of recovering a platinum group element from a chloride solution containing a platinum group element and an impurity element, the platinum group element is selected by contacting the chloride solution with a polyamine type anion exchange resin. A platinum group element characterized by comprising a first step of mechanically adsorbing, a second step of washing the resin after the adsorption treatment, and a third step of eluting the platinum group element from the resin after the washing treatment Is disclosed.

特許第2826158号Japanese Patent No. 2826158 特開2004−131745JP 2004-131745 A

しかしながら上記従来の技術においては、以下のような課題を有していた。
(1)(特許文献1)に開示の技術は、吸着速度が遅いロジウムに対してモル比で10〜50倍の塩化スズを添加しなければならず、浸出液のロジウムの含有量の計測や塩酸濃度の調整や塩化スズの添加量の調整等が必要であるとともに、浸出液中のロジウムが低濃度である場合、ロジウムを十分に吸着できないという課題を有していた。
(2)(特許文献2)に開示の技術は、白金族を分離回収できるが、溶液に含まれる白金族を個々の金属元素別に分離回収できず、かつ、個々の金属の純度や回収率も低いという課題を有していた。
However, the above conventional techniques have the following problems.
(1) The technique disclosed in (Patent Document 1) requires addition of 10 to 50 times the molar ratio of tin chloride to rhodium, which has a slow adsorption rate, and the measurement of rhodium content in the leachate and hydrochloric acid In addition to the need to adjust the concentration and the amount of tin chloride added, there is a problem that rhodium cannot be sufficiently adsorbed when the rhodium in the leachate is at a low concentration.
(2) Although the technique disclosed in (Patent Document 2) can separate and recover the platinum group, the platinum group contained in the solution cannot be separated and recovered for each individual metal element, and the purity and recovery rate of each individual metal are also low. It had the problem of being low.

本発明は上記従来の課題を解決するもので、自動車廃触媒等から得られる白金族混合物から個々の白金族元素、特にパラジウム,白金,ロジウム、を分離回収する白金族の分離回収法に関し、添加剤なしには、短時間で回収が困難であったロジウムを、添加剤等の調整なしに、選択的かつ、短時間で回収することができ、廃触媒等を直接塩酸溶液で浸出するので、環境負荷が小さく、パラジウム,白金,ロジウム等の低濃度金属の回収効率に優れ、更に各分離回収プロセスにおいてイオン交換法を用いているので、操作が容易で、効率的に、白金族元素を分離回収するができ、作業性に優れ安全で簡素であるため、低原価で生産性に優れる白金族の分離回収法を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and relates to a platinum group separation and recovery method for separating and recovering individual platinum group elements, particularly palladium, platinum and rhodium, from a platinum group mixture obtained from an automobile waste catalyst or the like. Without the agent, rhodium, which was difficult to recover in a short time, can be recovered selectively and in a short time without adjustment of additives, etc. Low environmental impact, excellent recovery efficiency for low-concentration metals such as palladium, platinum, and rhodium. Furthermore, the ion exchange method is used in each separation and recovery process, making operation easy and efficient. An object of the present invention is to provide a platinum group separation and recovery method that can be recovered, is excellent in workability, is safe and simple, and is low in cost and excellent in productivity.

この目的を達成するために、本発明の白金族の分離回収法は、以下の構成を有している。
請求項1に記載の白金族の分離回収法は、
(a)パラジウム、ロジウム、白金を含む自動車廃触媒等からなる白金族混合物を、塩酸溶液に浸出させて浸出液を作製する浸出工程と、(b)前記浸出液と、パラジウム吸着剤と、を第1吸着分離器内で接触させて前記パラジウムを分離回収する第1分離回収工程と、(c)白金吸着剤が充填された第2吸着分離器内に、前記第1分離回収工程で得られる第1分離回収後浸出液を前記ロジウムが吸着され難い速い空間速度で通液し、前記白金を分離回収する第2分離回収工程と、(d)前記第2分離回収工程後の第2分離回収後浸出液と、ロジウム吸着剤と、を撹拌式吸着槽内で接触させて前記ロジウムをバッチ式に分離回収する第3分離回収工程と、を有し、(e)前記パラジウム吸着剤が、多孔質樹脂と、前記多孔質樹脂に含浸された抽出剤と、を備え、(f)前記白金吸着剤及び前記ロジウム吸着剤が、弱塩基性イオン交換樹脂である構成を有している。
この構成により、以下のような作用が得られる。
(1)自動車廃触媒等からなる白金族混合物を直接塩酸溶液で浸出を行う湿式法を用いた浸出工程を有しているので、環境負荷が小さく、パラジウム、ロジウム、白金を、選択的に高含有率で塩酸溶液に抽出できるので、各々の回収工程を備えることで、パラジウム、ロジウム、白金を分離回収することができる。
(2)吸着速度の違いを利用し、白金の回収にはカラム法、ロジウムの回収にはバッチ法を用いることで、白金とロジウムを別々に回収することができ、分離回収工程を高効率で安定して行うことができる。
(3)第1分離回収工程において、多孔質樹脂に抽出剤を含浸させたパラジウム吸着剤と浸出液を接触させるので、白金やロジウムを吸着せず、パラジウムのみを選択的に回収することができる。
(4)弱塩基性イオン交換樹脂は、白金及びロジウムを選択的に吸着することができるが、第2分離回収工程において、白金及びロジウムを含む第1分離回収後、浸出液をロジウムが吸着でき難い速い空間速度で白金吸着剤(弱塩基性イオン交換樹脂)と接触させるので、吸着速度の遅いロジウムが吸着し難く、白金を選択的に分離回収できる。
(5)第3分離回収工程において、ロジウムをバッチ法によって分離回収するので、カラム法では1カ月半かかる吸着時間を数時間から数十時間程度まで短縮することができ、生産性や省力性に優れるとともに、第2分離回収後浸出液中のロジウム濃度が低くても分離回収率に優れている。
In order to achieve this object, the platinum group separation and recovery method of the present invention has the following configuration.
The platinum group separation and recovery method according to claim 1,
(A) a leaching step of leaching a platinum group mixture composed of an automobile waste catalyst containing palladium, rhodium, platinum, etc. into a hydrochloric acid solution to prepare a leaching solution; and (b) a first leaching solution and a palladium adsorbent. A first separation / recovery step for separating and recovering the palladium by contacting in an adsorption separator; and (c) a first adsorption / recovery step packed in a second adsorption separator filled with a platinum adsorbent. A second separation and recovery step for separating and recovering the platinum by passing the leachate after separation and recovery at a high space velocity at which rhodium is not easily adsorbed; and (d) a second post-separation and recovery leachate after the second separation and recovery step; A rhodium adsorbent, and a third separation and recovery step for separating and recovering the rhodium in a batch manner by contacting the rhodium adsorbent in a stirred adsorption tank, and (e) the palladium adsorbent is a porous resin, Impregnated in the porous resin Comprising a polishes and, (f) the platinum adsorbent and the rhodium adsorbent has a structure which is weakly basic ion exchange resin.
With this configuration, the following effects can be obtained.
(1) Since it has a leaching process using a wet method in which a platinum group mixture comprising automobile waste catalyst or the like is directly leached with a hydrochloric acid solution, the environmental load is small, and palladium, rhodium, and platinum are selectively increased. Since it can extract to a hydrochloric acid solution with a content rate, palladium, rhodium, and platinum can be separated and recovered by providing each recovery step.
(2) Utilizing the difference in adsorption rate, platinum and rhodium can be recovered separately by using the column method for recovering platinum and the batch method for recovering rhodium. It can be performed stably.
(3) In the first separation and recovery step, the palladium adsorbent obtained by impregnating the porous resin with the extractant and the leachate are brought into contact with each other, so that only palladium or palladium can be selectively recovered without adsorbing platinum or rhodium.
(4) Although the weakly basic ion exchange resin can selectively adsorb platinum and rhodium, it is difficult for rhodium to adsorb the leachate after the first separation and recovery including platinum and rhodium in the second separation and recovery step. Since it is brought into contact with the platinum adsorbent (weakly basic ion exchange resin) at a high space velocity, rhodium having a low adsorption rate is difficult to adsorb and platinum can be selectively separated and recovered.
(5) In the third separation and recovery process, rhodium is separated and recovered by the batch method, so that the adsorption time required for one and a half months can be shortened from several hours to several tens of hours in the column method. In addition to being excellent, the separation and recovery rate is excellent even if the rhodium concentration in the leachate after the second separation and recovery is low.

ここで、浸出工程で使用される白金族混合物としては、自動車や自動二輪車のマフラー用の触媒、船舶やボイラーの排ガス用の触媒、燃料電池触媒等の白金族を含むものであれば、特に限定されず、廃触媒の形状としては、網目状、半渦巻き状、ペレット状等どのような形状の物を用いても良い。
また、廃触媒は0.01〜5mm程度の粒径に粉砕等しても良い。廃触媒を粉砕等すると、廃触媒の搬送が行い易く、浸出工程における、廃触媒の投入や、濾過等の作業性を高めることができる。
廃触媒の粉砕方法としては、ハンマー等で粗く粉砕した後に、ボールミルや擂潰器等によって任意の粒径に粉砕する方法等が好適に選択される。
Here, the platinum group mixture used in the leaching step is particularly limited as long as it contains a platinum group such as a catalyst for mufflers of automobiles and motorcycles, a catalyst for exhaust gas from ships and boilers, and a fuel cell catalyst. The shape of the waste catalyst may be any shape such as a mesh shape, a semi-spiral shape, or a pellet shape.
Further, the waste catalyst may be pulverized to a particle size of about 0.01 to 5 mm. When the waste catalyst is pulverized, it is easy to transport the waste catalyst, and it is possible to improve workability such as introduction of the waste catalyst and filtration in the leaching process.
As a method for pulverizing the waste catalyst, a method of pulverizing roughly with a hammer or the like and then pulverizing to an arbitrary particle size with a ball mill or a crusher is preferably selected.

浸出液の調整方法としては、温度条件にもよるが、50〜80℃に加温した0.5〜10mol/L塩酸溶液に1時間以上廃触媒を浸漬し、廃触媒中の金属を浸出したものを、濾過分離する方法等が好適に用いられる。
浸出液は、塩酸溶液を撹拌しながら調整を行うことで調整時間を短縮することができる。但し、浸出液の調整量が少量の場合、撹拌せず放置する方が、手間がかからず、利便性を向上させることができる。
浸出液の調製において、塩酸溶液(c)と廃触媒(d)の重量混合比は、塩酸溶液の濃度等にもよるが、c/d≧10,好ましくはc/d≧20であることが好ましい。重量比が20より小さくなるにつれ、塩酸溶液の濃度や温度にもよるが貴金属類の浸出率が悪くなる傾向にあり、10より小さくなるにつれこの傾向が著しくなるので好ましくない。
As a method for adjusting the leachate, although depending on the temperature conditions, the waste catalyst was immersed in a 0.5 to 10 mol / L hydrochloric acid solution heated to 50 to 80 ° C. for 1 hour or more, and the metal in the waste catalyst was leached. For example, a method of filtering and separating is preferably used.
The adjustment time can be shortened by adjusting the leachate while stirring the hydrochloric acid solution. However, when the adjustment amount of the leachate is small, it is less time-consuming to leave it without stirring and the convenience can be improved.
In the preparation of the leachate, the weight mixing ratio of the hydrochloric acid solution (c) and the waste catalyst (d) depends on the concentration of the hydrochloric acid solution and the like, but preferably c / d ≧ 10, preferably c / d ≧ 20. . As the weight ratio becomes smaller than 20, the leaching rate of noble metals tends to deteriorate although it depends on the concentration and temperature of the hydrochloric acid solution.

浸出液としては、塩酸溶液の他、過塩素酸−塩酸や硝酸−塩酸(王水を含む)の混酸等を用いることもできる。中でも、塩酸溶液は各分離回収工程における吸着剤を酸化せず、劣化させ難いので好ましい。
また、塩酸溶液に過塩素酸ナトリウム等を添加することで、廃触媒からの白金族の浸出時間の短縮等の効果が得られるので好ましい。
浸出工程で用いる塩酸溶液の濃度としては、温度条件にもよるが0.5mol/L〜10mol/L、好ましくは、1mol/L〜5mol/Lが好適に選ばれる。1mol/Lより低くなるにつれ、廃触媒からの白金族の抽出が不十分となり、浸出効率が低くなる傾向になり0.5mol/L以下ではその傾向が著しくなるため好ましくない。また、5mol/Lより高くなるにつれ、第1分離回収工程での、パラジウム吸着剤のパラジウムの選択性が低くなる傾向にあり、10mol/Lを超えると、この傾向が著しくなるため好ましくない。
As the leachate, a mixed acid of perchloric acid-hydrochloric acid or nitric acid-hydrochloric acid (including aqua regia) can be used in addition to a hydrochloric acid solution. Among these, hydrochloric acid solution is preferable because it does not oxidize the adsorbent in each separation and recovery step and hardly deteriorates.
Further, it is preferable to add sodium perchlorate or the like to the hydrochloric acid solution because an effect such as shortening the leaching time of the platinum group from the spent catalyst can be obtained.
The concentration of the hydrochloric acid solution used in the leaching step is suitably selected from 0.5 mol / L to 10 mol / L, preferably from 1 mol / L to 5 mol / L, depending on the temperature conditions. As it becomes lower than 1 mol / L, the extraction of the platinum group from the spent catalyst becomes insufficient, and the leaching efficiency tends to decrease. Further, as it becomes higher than 5 mol / L, the selectivity of palladium of the palladium adsorbent in the first separation / recovery process tends to be low, and when it exceeds 10 mol / L, this tendency becomes remarkable, which is not preferable.

第1分離回収工程のパラジウム吸着剤おいて、抽出剤としては、硫黄を官能基とするジ−n−ヘキシルスルフィド(以下、DHSと記す)やジ−n−オクチルスルフィド等の、一般式R1−S−R2(式中、R1及びR2は炭素原子数5〜10のアルキル基又はアリル基,アリール基等であり、R1及びR2が同時に水素となることはない)で表される抽出剤等を用いることができる。
多孔質樹脂としては、疎水性が高く、抽出剤を疎水性相互作用により担持させることが可能なものであれば、特に限定されず、エステル系合成吸着剤やスチレン−ジビニルベンゼン共重合吸着剤等を用いることができる。また、多孔質樹脂は、比表面積が500〜2000,好ましくは500〜1200m2/dry−gであることが好ましい。樹脂の吸着溶離反応は、樹脂内部への拡散が律速とされるため、樹脂が多孔性に優れるほど溶離速度が増し分離し易くなる。
多孔性樹脂に含浸させる抽出剤の含浸量が少なくなるにつれ、パラジウムの吸着量が減少する傾向にあるので、多孔性樹脂には、含浸させることができる最大量の抽出剤を含浸させることが好ましい。例えば、DHSの場合は1.4mmol/g−resinが好ましい。
In the palladium adsorbent of the first separation and recovery step, the extractant may be a general formula R 1 such as di-n-hexyl sulfide (hereinafter referred to as DHS) having sulfur as a functional group or di-n-octyl sulfide. —S—R 2 (wherein R 1 and R 2 are an alkyl group having 5 to 10 carbon atoms, an allyl group, an aryl group, etc., and R 1 and R 2 are not simultaneously hydrogen). Or the like can be used.
The porous resin is not particularly limited as long as it has high hydrophobicity and can support the extractant by hydrophobic interaction. Ester-based synthetic adsorbent, styrene-divinylbenzene copolymer adsorbent, etc. Can be used. The porous resin has a specific surface area of 500 to 2000, preferably 500 to 1200 m 2 / dry-g. In the adsorption / elution reaction of the resin, the diffusion into the resin is controlled, so that the better the resin is, the easier the elution rate is and the easier it is to separate.
Since the amount of palladium adsorbed tends to decrease as the amount of extractant impregnated into the porous resin decreases, the porous resin is preferably impregnated with the maximum amount of extractant that can be impregnated. . For example, in the case of DHS, 1.4 mmol / g-resin is preferable.

第1分離回収工程の第1吸着分離器としては、パラジウム吸着剤と浸出液を収容でき接触させることができればよいが、パラジウム吸着剤からの抽出剤の漏洩を最小限に防止するために、固定層方式が好ましい。
また、パラジウムの吸着方法としてはカラム法や、バッチ法があるが、カラム法を用いる方が好ましい。バッチ法の場合、パラジウム吸着剤と浸出液を流動接触させるため、多孔質樹脂に含浸させた抽出剤が漏出し易くなり好ましくないからである。
The first adsorption / separator in the first separation / recovery step is not limited as long as the palladium adsorbent and the leachate can be accommodated and brought into contact with each other. In order to prevent leakage of the extractant from the palladium adsorbent, a fixed bed is used. The method is preferred.
Also, palladium adsorption methods include column methods and batch methods, but it is preferable to use the column method. This is because, in the case of the batch method, the palladium adsorbent and the leachate are brought into fluid contact, so that the extractant impregnated in the porous resin is liable to leak and is not preferable.

第2分離回収工程において、白金吸着剤としては、弱塩基性陰イオン交換樹脂が好ましいが、強塩基性陰イオン交換樹脂を用いることもできる。これら弱塩基性陰イオン交換樹脂や強塩基性陰イオン交換樹脂の官能基が中和されている場合、アミノ基の対イオンをヒドロキシル基に置換することで白金の吸着性が向上するので好ましい。   In the second separation and recovery step, the platinum adsorbent is preferably a weakly basic anion exchange resin, but a strong basic anion exchange resin can also be used. When the functional groups of these weakly basic anion exchange resins and strong basic anion exchange resins are neutralized, it is preferable because the adsorption property of platinum is improved by substituting the amino group counter ion with a hydroxyl group.

第2分離回収工程において、白金の吸着方法としては、ロジウムが吸着され難い速い空間速度で第1分離回収後浸出液を通液できれば良く、カラム法を使用することができる。これにより、第1分離回収後浸出液と白金吸着剤の接触時間を、空間速度を調節するだけで容易に調整でき、ロジウムの吸着を防止し易いので好ましい。
第2分離回収工程の第2吸着分離器としては、固定層方式、移動層方式、流動層方式等を使用することができる。
In the second separation / recovery step, as a platinum adsorption method, it is sufficient that the leachate can be passed after the first separation / recovery at a high space velocity at which rhodium is hardly adsorbed, and a column method can be used. This is preferable because the contact time between the first separated and recovered leachate and the platinum adsorbent can be easily adjusted only by adjusting the space velocity and it is easy to prevent the adsorption of rhodium.
As the second adsorptive separator in the second separation and recovery step, a fixed bed system, a moving bed system, a fluidized bed system, or the like can be used.

第3分離回収工程において、ロジウム吸着剤としては、弱塩基性陰イオン交換樹脂が好ましい。また、弱塩基性陰イオン交換樹脂の官能基が中和されている場合、アミノ基の対イオンをヒドロキシル基に置換することで白金の吸着性が向上するので好ましい。   In the third separation and recovery step, the rhodium adsorbent is preferably a weakly basic anion exchange resin. Further, when the functional group of the weakly basic anion exchange resin is neutralized, it is preferable because the adsorption property of platinum is improved by replacing the counter ion of the amino group with a hydroxyl group.

第3分離回収工程において、ロジウムの吸着方法としては、バッチ法を用いることが好ましい。バッチ法はカラム法に比べて能率は悪いが、ロジウムはロジウム吸着剤に対する吸着速度が遅く、カラム法では1ヶ月半かかるロジウムの吸着が、バッチ法であればロジウム吸着剤と第2分離回収後浸出液が接触し易く、他の条件にもよるが数時間から数十時間程度でロジウムを吸着できるので好ましい。また、ロジウムの分離回収の際に沈殿を生じる場合、バッチ法の場合はカラムの目詰まり等が無いため好都合である。
第3分離回収工程の撹拌式吸着槽は、バッチ法で行うことができればどのようなものでも良く、撹拌槽や振とう機等が用いられる。
また、第3分離回収工程の前に、第2分離回収後浸出液を加熱等により濃縮する濃縮工程を備えることで、ロジウムがロジウム吸着剤に吸着され易くなり、回収率を増すことができるので好ましい。
In the third separation and recovery step, a batch method is preferably used as the rhodium adsorption method. The batch method has a lower efficiency than the column method, but rhodium has a slower adsorption rate to the rhodium adsorbent, and the rhodium adsorption takes one and a half months in the column method. It is preferable because the leachate can be easily contacted and rhodium can be adsorbed in several hours to several tens of hours depending on other conditions. Further, when precipitation occurs during the separation and recovery of rhodium, the batch method is advantageous because there is no clogging of the column.
The stirring type adsorption tank in the third separation / recovery step may be anything as long as it can be performed by a batch method, and a stirring tank, a shaker, or the like is used.
Further, it is preferable to provide a concentration step for concentrating the exudate after the second separation / recovery by heating or the like before the third separation / recovery step, so that rhodium is easily adsorbed by the rhodium adsorbent and the recovery rate can be increased. .

なお、第1分離回収工程、第2分離回収工程、第3分離回収工程において、反応温度は特に限定されず、室温で行うことができるので、各工程に使用する装置に温度管理の為のセンサー、温度調節機、ヒーター等の機器や断熱材等が必要なく、省資源性に優れ、装置全体をコンパクトにすることが出来る為、省スペース性に優れる。   In the first separation / recovery step, the second separation / recovery step, and the third separation / recovery step, the reaction temperature is not particularly limited, and can be performed at room temperature. In addition, there is no need for equipment such as a temperature controller, a heater, or a heat insulating material, and it is excellent in resource saving, and the entire apparatus can be made compact, so that it is excellent in space saving.

第3分離回収工程後の廃液中の金属は、沈殿分離して回収することができるので、白金族以外の金属やレアアース等も再利用することができる。   Since the metal in the waste liquid after the third separation and recovery step can be recovered by precipitation separation, metals other than the platinum group, rare earths, and the like can also be reused.

本発明の請求項2に記載の発明は、請求項1に記載の白金族の分離回収法であって、前記抽出剤が一般式R1−S−R2(式中、R1及びR2は炭素原子数5〜10のアルキル基又はアリル基,アリール基等であり、R1及びR2が同時に水素となることはない)で表される化合物である構成を有している。
この構成により、請求項1で得られる作用に加え、以下のような作用が得られる。
(1)抽出剤が一般式R1−S−R2で表される化合物であるため、第一分離回収工程においてパラジウムをより選択的に吸着することができ、パラジウムの分離回収効率を高めることができる。
The invention according to claim 2 of the present invention is the platinum group separation and recovery method according to claim 1, wherein the extractant is represented by the general formula R 1 -SR 2 (wherein R 1 and R 2 Is an alkyl group having 5 to 10 carbon atoms, an allyl group, an aryl group or the like, and R 1 and R 2 do not simultaneously become hydrogen).
With this configuration, in addition to the operation obtained in the first aspect, the following operation can be obtained.
(1) Since the extractant is a compound represented by the general formula R 1 —S—R 2 , palladium can be more selectively adsorbed in the first separation and recovery step, and the separation and recovery efficiency of palladium is increased. Can do.

ここで、抽出剤としては、一般式R1−S−R2(式中、R1及びR2は炭素原子数5〜10のアルキル基又はアリル基,アリール基等であり、R1及びR2が同時に水素となることはない)で表される化合物が用いられるが、中でもジ−n−ヘキシルスルフィド(以下、DHSと記す)は、入手し易く、生産性に優れるので好ましい。 Here, as the extractant, the general formula R 1 —S—R 2 (wherein R 1 and R 2 are an alkyl group having 5 to 10 carbon atoms, an allyl group, an aryl group, etc., and R 1 and R 2) 2 is not hydrogen at the same time. Among them, di-n-hexyl sulfide (hereinafter referred to as DHS) is preferable because it is easily available and excellent in productivity.

本発明の請求項3に記載の発明は、請求項1又は2に記載の白金族の分離回収法であって、前記多孔質樹脂がエステル系合成吸着剤である構成を有している。
この構成により、請求項1又は2で得られる作用に加え、以下のような作用が得られる。
(1)多孔質樹脂として多孔性に優れるエステル系合成吸着剤を使用するので、溶離速度が高く、パラジウムをより分離し易くすることができる。
(2)前記多孔質樹脂がエステル系合成吸着剤であるので、疎水性が高く、抽出剤を疎水性相互作用により担持させることができ、DHS等の抽出剤をイオン交換法に適用することができる。
The invention according to claim 3 of the present invention is the platinum group separation and recovery method according to claim 1 or 2, wherein the porous resin is an ester-based synthetic adsorbent.
With this configuration, in addition to the operation obtained in the first or second aspect, the following operation can be obtained.
(1) Since an ester-based synthetic adsorbent excellent in porosity is used as the porous resin, the elution rate is high and palladium can be more easily separated.
(2) Since the porous resin is an ester-based synthetic adsorbent, the hydrophobic resin is highly hydrophobic, and the extractant can be supported by hydrophobic interaction, and an extractant such as DHS can be applied to the ion exchange method. it can.

本発明の請求項4に記載の発明は、請求項1乃至3の内いずれか1に記載の白金族の分離回収法であって、前記パラジウム吸着剤に親水性処理を施さない構成を有している。
この構成により、請求項1乃至3の内いずれか1で得られる作用に加え、以下のような作用が得られる。
(1)パラジウム吸着剤に親水性処理を施さないので、第1分離回収工程において連続使用等でのDHSの漏出を抑えることができ、パラジウムの吸着率の低下を抑えることができる。
The invention according to claim 4 of the present invention is the platinum group separation and recovery method according to any one of claims 1 to 3, wherein the palladium adsorbent is not subjected to a hydrophilic treatment. ing.
According to this configuration, in addition to the action obtained in any one of claims 1 to 3, the following action is obtained.
(1) Since the palladium adsorbent is not subjected to hydrophilic treatment, leakage of DHS due to continuous use or the like can be suppressed in the first separation and recovery step, and a decrease in the adsorption rate of palladium can be suppressed.

ここで、パラジウム吸着剤は、親水性処理を施さないことが好ましい。パラジウム吸着剤にイオン交換水やドデシル硫酸ナトリウム溶液等による親水性処理を施すと、DHS等の抽出剤とドデシル硫酸ナトリウムがミセルを形成することが原因となり、多孔質樹脂に含浸された抽出剤が漏出し易くなるからである。   Here, the palladium adsorbent is preferably not subjected to hydrophilic treatment. When the palladium adsorbent is subjected to hydrophilic treatment with ion-exchanged water, sodium dodecyl sulfate solution, etc., the extractant impregnated in the porous resin is caused by the extraction agent such as DHS and sodium dodecyl sulfate forming micelles. It is because it becomes easy to leak.

本発明の請求項5に記載の発明は、請求項1乃至4の内いずれか1に記載の白金族の分離回収法であって、前記第2分離回収工程がカラム法であり、前記第1分離回収後浸出液の前記空間速度が2〜10h-1である構成を有している。
この構成により、請求項1乃至4の内いずれか1で得られる作用に加え、以下のような作用が得られる。
(1)第2分離回収工程がカラム式であり、第1分離回収後浸出液の空間速度が2〜10h-1である構成を有しているので、第2分離回収工程において吸着速度の遅いロジウムが吸着され難く、白金を選択的性に優れる。
The invention according to claim 5 of the present invention is the platinum group separation and recovery method according to any one of claims 1 to 4, wherein the second separation and recovery step is a column method. The space velocity of the leachate after separation / recovery is 2 to 10 h −1 .
With this configuration, in addition to the action obtained in any one of claims 1 to 4, the following action is obtained.
(1) Since the second separation and recovery step is a column type and the space velocity of the leachate after the first separation and recovery is 2 to 10 h −1 , rhodium having a slow adsorption rate in the second separation and recovery step Is hardly adsorbed and platinum is excellent in selectivity.

ここで、空間速度とは、カラム内を流れる液体の流量をカラム内側の体積で割ったものである。
第2分離回収工程において空間速度は2〜10h-1であることが好適である。空間速度が2h-1より小さくなるにつれて、白金吸着剤へのロジウムの吸着量が増え、第2分離回収工程における白金の選択性が低下する傾向にあり好ましくない。また、10より大きくなるにつれて、白金吸着剤へ白金が吸着できなくなる傾向にあり好ましくない。
Here, the space velocity is the flow rate of the liquid flowing in the column divided by the volume inside the column.
In the second separation and recovery step, the space velocity is preferably 2 to 10 h −1 . As the space velocity becomes smaller than 2 h −1 , the amount of rhodium adsorbed on the platinum adsorbent increases, and the selectivity of platinum in the second separation and recovery step tends to decrease. Further, as it becomes larger than 10, platinum tends to be unable to be adsorbed to the platinum adsorbent, which is not preferable.

本発明の請求項6に記載の発明は、請求項1乃至5の内いずれか1に記載の白金族の分離回収法であって、前記第3分離回収工程の前記ロジウム吸着剤量と前記第2分離回収後浸出液量の固液比が1.5〜5g/Lである構成を有している。
この構成により、請求項1乃至5のうちいずれか1項で得られる作用に加え、以下のような作用が得られる。
(1)第3分離回収工程のロジウム吸着剤と第2分離回収後浸出液との1.5〜5g/Lである構成を有しているので、第2分離回収工程後浸出液から、ロジウム濃度が低濃度であっても、ロジウムの吸収率を高くすることができる。
A sixth aspect of the present invention is the platinum group separation and recovery method according to any one of the first to fifth aspects, wherein the rhodium adsorbent amount and the third amount in the third separation and recovery step are the same. The solid-liquid ratio of the amount of leachate after 2 separation and recovery is 1.5 to 5 g / L.
With this configuration, in addition to the action obtained in any one of claims 1 to 5, the following action is obtained.
(1) Since the rhodium adsorbent in the third separation / recovery step and the leaching liquid after the second separation / recovery are configured to be 1.5 to 5 g / L, the rhodium concentration is increased from the leachate after the second separation / recovery step. Even at low concentrations, the rhodium absorption rate can be increased.

第3分離回収工程のロジウム吸着剤量とバッチ内の第2分離回収後浸出液量の固液比としては、1.5〜5g/L、好ましくは3〜5g/Lが好適に用いられる。固液比が3g/Lより小さくなると、ロジウム吸着剤に対する第2分離回収後浸出液の液量が充分でなく、ロジウムの吸着率が落ちる傾向にあり、1.5g/Lより小さくなるにつれこれらの傾向が著しくなるので好ましくない。また、固液比が5g/Lより大きくなるにつれ、吸着剤に比べ第2分離回収後浸出液の液量が少なくなるので、吸着剤へのロジウムの吸着量が少なくなり、ロジウムを溶出させる際に使用する溶離液の液量を少なくする必要があり、生産性が悪くなるため、好ましくない。   As the solid-liquid ratio between the rhodium adsorbent amount in the third separation and recovery step and the amount of leachate after the second separation and recovery in the batch, 1.5 to 5 g / L, preferably 3 to 5 g / L is suitably used. When the solid-liquid ratio is smaller than 3 g / L, the amount of the leachate after the second separation and recovery with respect to the rhodium adsorbent is not sufficient, and the adsorption rate of rhodium tends to decrease. Since a tendency becomes remarkable, it is not preferable. Moreover, as the solid-liquid ratio becomes larger than 5 g / L, the amount of the leachate after the second separation and recovery becomes smaller than that of the adsorbent, so that the amount of rhodium adsorbed on the adsorbent decreases, and rhodium is eluted. This is not preferable because the amount of the eluent to be used needs to be reduced and the productivity is deteriorated.

以上のように、本発明の白金族の分離回収法によれば、以下のような有利な効果が得られる。
請求項1に記載の発明によれば、
(1)高含有率で別個に、パラジウム、ロジウム、白金を分離回収することができる白金族の分離回収法を提供することができる。
As described above, according to the platinum group separation and recovery method of the present invention, the following advantageous effects can be obtained.
According to the invention of claim 1,
(1) A platinum group separation and recovery method capable of separating and recovering palladium, rhodium and platinum separately at a high content can be provided.

請求項2に記載の発明によれば、請求項1の効果に加え
(1)パラジウムの分離回収率に優れる白金族の分離回収法を提供することができる。
According to the second aspect of the present invention, in addition to the effect of the first aspect, (1) a platinum group separation and recovery method having an excellent palladium separation and recovery rate can be provided.

請求項3に記載の発明によれば、請求項1又は2の効果に加え
(1)操作性に優れ、パラジウムの分離回収率に優れる白金族の分離回収法を提供することができる。
According to the invention described in claim 3, in addition to the effect of claim 1 or 2, (1) it is possible to provide a platinum group separation and recovery method which is excellent in operability and excellent in palladium separation and recovery.

請求項4に記載の発明によれば、請求項1乃至3の内いずれか1項の効果に加え
(1)パラジウム吸着剤中の抽出剤の漏出を抑えることができ、パラジウムの吸着率の低下が起き難い白金族の分離回収法を提供することができる。
According to the invention of claim 4, in addition to the effect of any one of claims 1 to 3, (1) leakage of the extractant in the palladium adsorbent can be suppressed, and the adsorption rate of palladium is reduced. It is possible to provide a method for separating and recovering platinum group which is difficult to cause.

請求項5に記載の発明によれば、請求項1乃至4の内いずれか1項の効果に加え
(1)吸着速度の遅いロジウムが吸着され難く、白金を選択的に吸着することができる白金族の分離回収法を提供することができる。
According to the invention of claim 5, in addition to the effect of any one of claims 1 to 4, (1) platinum capable of selectively adsorbing platinum is difficult to adsorb rhodium having a low adsorption rate. A method for separating and recovering tribes can be provided.

請求項6に記載の発明によれば、請求項1乃至5の内いずれか1項の効果に加え
(1)ロジウムの吸着率を高めることができる白金族の分離回収法を提供することができる。
According to the sixth aspect of the present invention, in addition to the effect of any one of the first to fifth aspects, (1) a platinum group separation and recovery method capable of increasing the adsorption rate of rhodium can be provided. .

実施の形態1の白金族の分離回収方法のフローチャートFlowchart of Platinum Group Separation and Recovery Method of Embodiment 1 各塩酸濃度の浸出液中の金属のパラジウム吸着剤に対する吸着性を示す図The figure which shows the adsorptivity to the palladium adsorbent of the metal in the leachate of each hydrochloric acid concentration 親水性処理と金属吸着性の変化を示した図Figure showing changes in hydrophilic treatment and metal adsorption 実施例3における白金とロジウムの破過曲線Breakthrough curve of platinum and rhodium in Example 3 実施例3の溶離液の溶離曲線Elution curve of eluent of Example 3 ロジウムの吸着に対する振とう時間の影響を示す図Diagram showing the effect of shaking time on rhodium adsorption 比較例1の破過曲線を示す図The figure which shows the breakthrough curve of the comparative example 1 ロジウムの吸着率と固液比の関係図Relationship diagram between rhodium adsorption rate and solid-liquid ratio 実施例5におけるpHと沈殿率の関係図Relationship between pH and precipitation rate in Example 5 実施例6におけるpHと沈殿率の関係図Relationship between pH and precipitation rate in Example 6 実施例7におけるpHと沈殿率の関係図Relationship between pH and precipitation rate in Example 7

以下、本発明を実施するための最良の形態を、図面を参照しながら説明する。
(実施の形態1)
図1は実施の形態1における白金族の分離回収法を示すフローチャートである。
図1中、S1は廃触媒を液温50〜80℃の0.5〜10mol/L塩酸溶液に浸漬しパラジウム,ロジウム及び白金が浸出した浸出液を得る浸出液調整工程、S2は多孔質樹脂に抽出剤を含浸させパラジウム吸着剤を得るパラジウム吸着剤調整工程、S3はパラジウム吸着剤調整工程S2で得られたパラジウム吸着剤が充填されたカラム等の第1吸着分離器に浸出液調整工程S1で得られた浸出液を供給してパラジウム吸着剤にパラジウムを選択的に吸着させた後,アンモニア溶液等の溶離液でパラジウム吸着剤からパラジウムを溶離してパラジウム溶離液を回収する第1分離回収工程、S4は第1分離回収工程S3で得られたパラジウム溶離液からパラジウムを含有する沈殿物を分離回収し還元焼成を行うことでパラジウムの単体を得るパラジウム沈殿焼成工程、S5は白金吸着剤である弱塩基性陰イオン交換樹脂の官能基であるアミノ基の対イオンをヒドロキシル基に置換する白金吸着剤調整工程、S5は白金吸着剤調整工程S5で得られた白金吸着剤が充填されたカラム等の第2吸着分離器に第1分離回収工程S3によってパラジウムが分離された第1分離回収後浸出液を2〜10h-1の空間速度で供給して白金吸着剤に白金を選択的に吸着させた後,チオ尿素−塩酸溶液等の溶離液で白金吸着剤から白金を溶離して白金溶離液を回収する第2分離回収工程、S7は第2分離回収工程S6で得られた白金溶離液から白金を含有する沈殿物を分離回収し還元焼成することで白金の単体を得る白金沈殿焼成工程、S8はロジウム吸着剤である弱塩基性陰イオン交換樹脂の官能基であるアミノ基の対イオンをヒドロキシル基に置換するロジウム吸着剤調整工程、S9はロジウム吸着剤調整工程S8で得られたロジウム吸着剤と第2分離工程S6で白金が分離された第2分離回収後浸出液を撹拌式吸着槽内で固液比1.5〜5g/Lになるように混合し撹拌してロジウムを選択的に吸着させた後,塩素酸ナトリウム−塩酸溶液等の溶離液でロジウム吸着剤からロジウムを溶離してロジウム溶離液を回収する第3分離回収工程、S10は第3分離回収工程で得られたロジウム溶離液からロジウムを含有する沈殿物を分離回収し還元焼成することでロジウムの単体を得るロジウム沈殿焼成工程である。
Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.
(Embodiment 1)
FIG. 1 is a flowchart showing a platinum group separation and recovery method in the first embodiment.
In FIG. 1, S1 is a leachate adjustment step in which a waste catalyst is immersed in a 0.5 to 10 mol / L hydrochloric acid solution having a liquid temperature of 50 to 80 ° C. to obtain a leachate from which palladium, rhodium and platinum have been leached, and S2 is extracted into a porous resin. Pd adsorbent adjustment step for impregnating the adsorbent to obtain a palladium adsorbent, S3 is obtained in the leachate adjustment step S1 in the first adsorption separator such as a column packed with the palladium adsorbent obtained in the palladium adsorbent adjustment step S2. A first separation and recovery step of recovering the palladium eluent by eluting palladium from the palladium adsorbent with an eluent such as an ammonia solution after supplying the leachate and selectively adsorbing palladium on the palladium adsorbent; A palladium simple substance is obtained by separating and recovering a precipitate containing palladium from the palladium eluent obtained in the first separation and recovery step S3 and performing reduction firing. Radiation precipitation firing step, S5 is a platinum adsorbent adjustment step of substituting a counter ion of an amino group, which is a functional group of a weakly basic anion exchange resin as a platinum adsorbent, with a hydroxyl group, and S5 is a platinum adsorbent adjustment step S5. The first separated and recovered leachate from which palladium has been separated in the first separation and recovery step S3 is supplied at a space velocity of 2 to 10 h −1 to a second adsorption separator such as a column packed with the obtained platinum adsorbent. A second separation and recovery step of recovering the platinum eluent by eluting platinum from the platinum adsorbent with an eluent such as a thiourea-hydrochloric acid solution after platinum is selectively adsorbed on the platinum adsorbent, and S7 is the second separation. A platinum precipitation firing step for separating and recovering platinum-containing precipitates from the platinum eluent obtained in the recovery step S6 and reducing and firing them to obtain a simple substance of platinum. S8 is a weakly basic anion exchange resin which is a rhodium adsorbent. Functional group A rhodium adsorbent adjustment step of substituting a counter ion of an amino group with a hydroxyl group, S9 after the second separation and recovery in which the rhodium adsorbent obtained in the rhodium adsorbent adjustment step S8 and platinum in the second separation step S6 are separated The leachate is mixed in a stirred adsorption tank so that the solid-liquid ratio is 1.5 to 5 g / L and stirred to selectively adsorb rhodium, followed by rhodium adsorption with an eluent such as sodium chlorate-hydrochloric acid solution. The third separation and recovery step of eluting rhodium from the agent and recovering the rhodium eluent, S10 separates and recovers the rhodium-containing precipitate from the rhodium eluent obtained in the third separation and recovery step, followed by reduction firing. This is a rhodium precipitation firing step for obtaining a simple substance.

浸出液調整工程S1において、廃触媒は塩酸溶液に直接浸漬しても良いが、0.01〜5mm程度の大きさに破砕したものを用いても良い。
廃触媒を破砕する方法としては、ボールミル、擂潰器等を用いることができる。
In the leachate adjustment step S1, the waste catalyst may be directly immersed in a hydrochloric acid solution, but a catalyst crushed to a size of about 0.01 to 5 mm may be used.
As a method for crushing the waste catalyst, a ball mill, a crusher, or the like can be used.

塩酸溶液の濃度は、温度等の条件にもよるが0.5〜10mol/Lであることが好ましい。
廃触媒と塩酸溶液は、廃触媒量cと塩酸溶液量dの重量比が、c/d≧10,好ましくはc/d≧20であることが望ましい。
浸出液には、塩酸溶液の他、過塩素酸−塩酸や硝酸−塩酸の混酸等を用いることもできる。また、塩酸溶液に過塩素酸ナトリウム等を添加することで、廃触媒からの白金族の抽出時間の短縮、各分離回収工程における白金族の吸着率の向上の効果が得られる。
The concentration of the hydrochloric acid solution is preferably 0.5 to 10 mol / L depending on conditions such as temperature.
Regarding the waste catalyst and the hydrochloric acid solution, the weight ratio of the waste catalyst amount c and the hydrochloric acid solution amount d is preferably c / d ≧ 10, preferably c / d ≧ 20.
In addition to the hydrochloric acid solution, a perchloric acid-hydrochloric acid, a mixed acid of nitric acid-hydrochloric acid, or the like can also be used for the leachate. Further, by adding sodium perchlorate or the like to the hydrochloric acid solution, the effect of shortening the extraction time of the platinum group from the spent catalyst and improving the adsorption rate of the platinum group in each separation and recovery step can be obtained.

パラジウム吸着剤調整工程S2において、抽出剤としては一般式R1−S−R2(式中、R1及びR2は炭素原子数5〜10のアルキル基又はアリル基,アリール基であり、R1及びR2が同時に水素となることはない)で表される抽出剤であるDHSやジ−n−オクチルスルフィド等を用いることができる。
また、多孔質樹脂としては、エステル系合成吸着剤や、スチレン−ジビニルベンゼン共重合吸着剤等を用いることができる。
パラジウム吸着剤からパラジウムを溶離させる溶離液としては、0.5〜5mol/Lアンモニア溶液を用いることが好ましいが、チオ尿素−塩酸溶液等を用いることもできる。また、溶離液の濃度は溶離条件等によって適宜変更しても良い。
In the palladium adsorbent adjustment step S2, the extractant is represented by the general formula R 1 —S—R 2 (wherein R 1 and R 2 are an alkyl group, an allyl group or an aryl group having 5 to 10 carbon atoms, R DHS and di-n-octyl sulfide which are extractants represented by 1 and R 2 are not simultaneously hydrogen) can be used.
In addition, as the porous resin, an ester-based synthetic adsorbent, a styrene-divinylbenzene copolymer adsorbent, or the like can be used.
As an eluent for eluting palladium from a palladium adsorbent, a 0.5 to 5 mol / L ammonia solution is preferably used, but a thiourea-hydrochloric acid solution or the like can also be used. Further, the concentration of the eluent may be appropriately changed depending on elution conditions and the like.

第1分離回収工程S3で使用する第1吸着分離器としては、パラジウム吸着剤と浸出液を収容でき接触させることができればよいが、パラジウム吸着剤からの抽出剤の漏洩を最小限に防止するために、固定層方式が好ましい。   The first adsorption / separator used in the first separation / recovery step S3 only needs to be able to contain and contact the palladium adsorbent and the leachate, but to prevent leakage of the extractant from the palladium adsorbent to a minimum. The fixed layer method is preferred.

パラジウム沈殿焼成工程S4において、パラジウムの回収方法はパラジウム溶離液からパラジウムを回収できればどのような方法でも良く、パラジウム溶離液をpH1付近に調整し、得られた沈殿物を還元焼成する方法等が用いられる。   In the palladium precipitation baking step S4, any method may be used for recovering palladium as long as palladium can be recovered from the palladium eluent, such as a method in which the palladium eluent is adjusted to around pH 1 and the resulting precipitate is reduced and fired. It is done.

白金吸着剤調整工程S5において、白金吸着剤としては弱塩基性陰イオン交換樹脂や強塩基性陰イオン交換樹脂等を用いることができる。   In the platinum adsorbent adjusting step S5, a weak basic anion exchange resin, a strong basic anion exchange resin, or the like can be used as the platinum adsorbent.

第2分離回収工程S6において、白金の吸着には、カラム法を用いることが好ましく、カラム内の第1分離回収後浸出液の空間速度としては2〜10h-1であることが好ましい。
第2分離回収工程S6の第2吸着分離器としては、第1分離回収後浸出液を空間速度が2〜10h-1となるように通液できれば良く、カラム法を好適に使用することができる。カラム法は、第1分離回収後浸出液と白金吸着剤の接触時間を、空間速度を調節するだけで容易に調整でき、ロジウムの吸着を防止し易いので好ましい。
白金吸着剤から白金を溶離させる溶離液としては、0.01〜1mol/Lチオ尿素−0.1〜5mol/L塩酸溶液を用いることが好ましい。また、溶離液の濃度は溶離条件等によって適宜変更しても良い。
In the second separation / recovery step S6, the column method is preferably used for the adsorption of platinum, and the space velocity of the first separated and recovered leachate in the column is preferably 2 to 10 h −1 .
As the second adsorptive separator in the second separation / recovery step S6, the column method can be suitably used as long as the leachate after the first separation / recovery can be passed so that the space velocity becomes 2 to 10 h −1 . The column method is preferable because the contact time between the leachate after the first separation and recovery and the platinum adsorbent can be easily adjusted only by adjusting the space velocity and it is easy to prevent the adsorption of rhodium.
As an eluent for eluting platinum from a platinum adsorbent, it is preferable to use a 0.01-1 mol / L thiourea-0.1-5 mol / L hydrochloric acid solution. Further, the concentration of the eluent may be appropriately changed depending on elution conditions and the like.

白金沈殿焼成工程S7において、白金の回収方法は白金溶離液から白金を回収できればどのような方法でも良く、白金溶離液をpH10付近に調整し、得られた沈殿物を還元焼成する方法等が用いられる。   In the platinum precipitation baking step S7, any platinum recovery method can be used as long as platinum can be recovered from the platinum eluent, and a method of adjusting the platinum eluent to around pH 10 and reducing and baking the obtained precipitate is used. It is done.

ロジウム吸着剤調整工程S8において、ロジウム吸着剤としては弱塩基性陰イオン交換樹脂等を用いることができる。   In the rhodium adsorbent adjustment step S8, a weakly basic anion exchange resin or the like can be used as the rhodium adsorbent.

第3分離回収工程S9において、ロジウムは吸着速度が遅いので、ロジウムの吸着にはバッチ法を用いることが好ましい。
また、第3分離回収工程S9の撹拌式吸着槽は、撹拌槽や振とう機等ロジウムの分離回収をバッチ法で行うことができればどのようなものでも使用することができる。
ロジウム吸着剤からロジウムを溶離させる溶離液としては、0.1〜2mol/L塩素酸ナトリウム−1〜5mol/L塩酸溶液を用いることが好ましいが、王水等を用いることもできる。溶離液の濃度は溶離条件等によって適宜変更しても良い。
In the third separation and recovery step S9, rhodium has a slow adsorption rate, and therefore, it is preferable to use a batch method for rhodium adsorption.
Any stirring type adsorption tank in the third separation and recovery step S9 can be used as long as it can perform separation and recovery of rhodium such as a stirring tank and a shaker by a batch method.
As an eluent for eluting rhodium from the rhodium adsorbent, a 0.1 to 2 mol / L sodium chlorate-1 to 5 mol / L hydrochloric acid solution is preferably used, but aqua regia and the like can also be used. The concentration of the eluent may be appropriately changed depending on elution conditions and the like.

ロジウム沈殿焼成工程10において、ロジウムの回収方法はロジウム溶離液からロジウムを回収できればどのような方法でも良く、ロジウム溶離液をpH10付近に調整し、得られた沈殿物を還元焼成する方法等が用いられる。   In the rhodium precipitation firing step 10, any method may be used for collecting rhodium as long as rhodium can be recovered from the rhodium eluent. The rhodium eluent is adjusted to around pH 10 and the resulting precipitate is reduced and fired. It is done.

第1分離回収工程S3、第2分離回収工程S6、第3分離回収工程S9において、反応温度は室温で行うことができる。   In the first separation / recovery step S3, the second separation / recovery step S6, and the third separation / recovery step S9, the reaction temperature may be room temperature.

以下、白金族の分離回収法を説明する。
浸出液調整工程S1において、まず、自動車廃触媒を、50〜80℃に加熱した0.5〜10mol/L塩酸溶液に24時間浸漬して浸出液を作製する。
The platinum group separation and recovery method will be described below.
In the leachate adjustment step S1, first, an automobile waste catalyst is immersed in a 0.5 to 10 mol / L hydrochloric acid solution heated to 50 to 80 ° C. for 24 hours to prepare a leachate.

パラジウム吸着剤調整工程S2において、比表面積が500〜1200m2/dry−gの多孔質樹脂と、DHSと、アセトンをナスフラスコに入れ、室温で真空乾燥を行い、パラジウム吸着剤を得る。 In the palladium adsorbent adjustment step S2, a porous resin having a specific surface area of 500 to 1200 m 2 / dry-g, DHS, and acetone are placed in an eggplant flask and vacuum dried at room temperature to obtain a palladium adsorbent.

次に、第1分離回収工程S3において、まず、パラジウム吸着剤調整工程で得たパラジウム吸着剤をカラム(第1吸着分離器)へと充填し、両端にはガラスウールを詰める。次に、イオン交換水を通液させて洗浄、脱気することで第1分離回収工程S3の準備を行う。この時、パラジウム吸着剤はカラムに最密充填することが好ましい。
次いで、浸出液調整工程S1で得られた浸出液を通液し、パラジウムを吸着させ、吸着が破過に達した後、再びイオン交換水で洗浄し、最後に、1.5mol/Lアンモニア溶液を通液させ、吸着したパラジウムを溶離し、パラジウム溶離液を得る。
Next, in the first separation and recovery step S3, first, the palladium adsorbent obtained in the palladium adsorbent adjusting step is packed into a column (first adsorption separator), and both ends are filled with glass wool. Next, preparation of the first separation and recovery step S3 is performed by allowing ion-exchanged water to pass through and washing and degassing. At this time, the palladium adsorbent is preferably packed in a close-packed manner in the column.
Next, the leachate obtained in the leachate adjustment step S1 is passed through to adsorb palladium, and after the adsorption reaches breakthrough, it is washed again with ion-exchanged water. Finally, a 1.5 mol / L ammonia solution is passed through. And the adsorbed palladium is eluted to obtain a palladium eluent.

パラジウム沈殿焼成工程S4において、まず、第1分離回収工程S3で採取した溶離液に1mol/L塩酸溶液を加え、pH=1付近に調整し、一晩放置する。次に、該溶離液に遠心分離等を行い、沈殿物と上澄み液に分ける。得られた沈殿物はイオン交換水で洗浄を行い、真空乾燥機にて105℃以上の温度で恒量まで乾燥させる。次いで、この沈殿物を石英製の還元管に入れ、水素雰囲気中300〜400℃程度で約2時間還元焼成を行い純度は99.99%以上のパラジウム金属単体を得る。   In the palladium precipitation firing step S4, first, a 1 mol / L hydrochloric acid solution is added to the eluent collected in the first separation and recovery step S3, adjusted to around pH = 1, and left overnight. Next, the eluate is subjected to centrifugation and the like, and separated into a precipitate and a supernatant. The obtained precipitate is washed with ion-exchanged water and dried to a constant weight at a temperature of 105 ° C. or higher in a vacuum dryer. Next, the precipitate is put into a quartz reducing tube and reduced and fired at about 300 to 400 ° C. for about 2 hours in a hydrogen atmosphere to obtain a simple palladium metal having a purity of 99.99% or more.

次に、白金吸着剤調整工程S5において、弱塩基性陰イオン交換樹脂の官能基であるアミノ基の対イオンをヒドロキシル基に置換する為に、該弱塩基性陰イオン交換樹脂を1mol/L塩酸溶液、イオン交換水、1mol/L水酸化ナトリウム溶液、イオン交換水、の順で複数回洗浄した後に真空乾燥を行ったものを白金吸着剤として調整する。   Next, in the platinum adsorbent adjustment step S5, in order to substitute the counter group of the amino group, which is a functional group of the weak basic anion exchange resin, with a hydroxyl group, the weak basic anion exchange resin is added with 1 mol / L hydrochloric acid. A platinum adsorbent is prepared by washing the solution, ion-exchanged water, 1 mol / L sodium hydroxide solution, and ion-exchanged water multiple times in this order, followed by vacuum drying.

第2分離回収工程S6において、まず、白金吸着剤調整工程S5で得た白金吸着剤をカラム(第2吸着分離器)に最密充填し、その両端にはガラスウールを詰める。次に、イオン交換水を通液させて洗浄、脱気して第2分離回収工程S6の準備を行う。
次いで、第1分離回収工程後浸出液を空間速度2〜10h-1になるように通液し、白金吸着剤に白金を吸着させ、吸着が破過に達した後、再びイオン交換水で洗浄し、最後に溶離液として、0.1mol/Lチオ尿素−1.0mol/L塩酸溶液を通液させ、吸着した金属を溶離した白金溶離液を得る。
In the second separation and recovery step S6, the platinum adsorbent obtained in the platinum adsorbent adjustment step S5 is first packed in a column (second adsorption separator), and both ends thereof are filled with glass wool. Next, ion-exchanged water is passed through, washed and degassed to prepare for the second separation and recovery step S6.
Next, after the first separation and recovery step, the leachate is passed through at a space velocity of 2 to 10 h −1 to adsorb platinum to the platinum adsorbent, and after the adsorption reaches breakthrough, it is washed again with ion exchange water. Finally, a 0.1 mol / L thiourea-1.0 mol / L hydrochloric acid solution is passed as an eluent to obtain a platinum eluent from which the adsorbed metal has been eluted.

白金沈殿焼成工程S7において、まず、第2分離回収工程S6で得られた溶離液中ではチオ尿素が白金と錯体形成した沈殿物が存在しているため、白金溶離液を遠心分離等で、チオ尿素と白金が錯体形成した沈殿物と上澄み液に分ける。
次に、上澄み液に1moL/L水酸化ナトリウム溶液を加えpH=10に調整し、一晩放置し、該上澄み液を遠心分離等により、更に沈殿物と上澄み液を分け、沈殿物に関しては遠心分離を用いて超純水で洗浄を行い、真空乾燥機にて105℃以上の温度で恒量まで乾燥させる。
次いで、得られた沈殿物とチオ尿素と白金が錯体形成した沈殿物を混合し、水素雰囲気下において300〜500℃で2時間還元焼成し、純度は99.99%以上の白金単体を得た。
In the platinum precipitation baking step S7, first, in the eluent obtained in the second separation and recovery step S6, a precipitate in which thiourea is complexed with platinum is present. Divide into a precipitate and a supernatant of complexed urea and platinum.
Next, 1 moL / L sodium hydroxide solution is added to the supernatant to adjust to pH = 10, and the mixture is allowed to stand overnight. The supernatant is further separated by centrifugation, etc., and the precipitate is centrifuged. It wash | cleans with an ultrapure water using separation, and it is made to dry to a constant weight at the temperature of 105 degreeC or more with a vacuum dryer.
Next, the resulting precipitate, a precipitate in which thiourea and platinum were complexed were mixed, and reduced and calcined at 300 to 500 ° C. for 2 hours in a hydrogen atmosphere to obtain platinum alone having a purity of 99.99% or more. .

ロジウム吸着剤調整工程S8において、弱塩基性陰イオン交換樹脂の官能基であるアミノ基の対イオンをヒドロキシル基に置換する為に、該弱塩基性陰イオン交換樹脂を1mol/L塩酸溶液、イオン交換水、1mol/L水酸化ナトリウム溶液、イオン交換水、の順で複数回洗浄した後に真空乾燥を行ったものをロジウム吸着剤とする。(S8)   In the rhodium adsorbent adjustment step S8, in order to replace the counter ion of the amino group, which is a functional group of the weakly basic anion exchange resin, with a hydroxyl group, the weakly basic anion exchange resin is added with a 1 mol / L hydrochloric acid solution, an ion A rhodium adsorbent is obtained by performing vacuum drying after washing a plurality of times in the order of exchange water, 1 mol / L sodium hydroxide solution, and ion exchange water. (S8)

第3分離回収工程S9において、ロジウム吸着剤調整工程S8で得られたロジウム吸着剤と第2分離回収後浸出液を固液比1.5〜5g/Lで混合し、撹拌槽を用いて60〜150rpmで数時間から数十時間振とうさせ、ロジウムの吸着を行う。
次に、ロジウム吸着後のロジウム吸着剤と1.0 mol/L塩素酸ナトリウム−2.0mol/L塩酸溶液を容器に入れ、48時間振とうさせロジウムの溶離を行い、振とう後濾過し、ロジウム溶離液を得る。
In the third separation and recovery step S9, the rhodium adsorbent obtained in the rhodium adsorbent adjustment step S8 and the second separated and recovered leachate are mixed at a solid-liquid ratio of 1.5 to 5 g / L, and 60 to 60 using a stirring tank. The rhodium is adsorbed by shaking at 150 rpm for several hours to several tens of hours.
Next, the rhodium adsorbent after rhodium adsorption and 1.0 mol / L sodium chlorate-2.0 mol / L hydrochloric acid solution are put in a container, shaken for 48 hours to elute rhodium, shake and filter, A rhodium eluent is obtained.

ロジウム沈殿焼成工程S10において、まず、第3分離回収工程S9で得られたロジウム溶離液を80℃付近まで温度を上昇させ2mol/L水酸化ナトリウム溶液を添加しpH=10に調整し、ロジウムを含有する沈殿を生じさせる。次に、沈殿を生じた溶離液は濾過を行い、得られた沈殿物は遠心分離等を用いて超純水で洗浄を行い真空乾燥にて105℃以上の温度で恒量まで乾燥する。
次いで、得られた沈殿物を、水素雰囲気下において約500℃で2時間程還元焼成し、純度は99.99%以上のロジウムを得る。
In the rhodium precipitation firing step S10, first, the temperature of the rhodium eluent obtained in the third separation and recovery step S9 is increased to about 80 ° C., and a 2 mol / L sodium hydroxide solution is added to adjust pH = 10. A containing precipitate is produced. Next, the eluent that has precipitated is filtered, and the resulting precipitate is washed with ultrapure water using centrifugation or the like, and dried to a constant weight at a temperature of 105 ° C. or higher by vacuum drying.
Next, the obtained precipitate is reduced and calcined at about 500 ° C. for about 2 hours in a hydrogen atmosphere to obtain rhodium having a purity of 99.99% or more.

以上のような実施の形態1における白金族の分離回収法によれば、以下のような作用が得られる。
(1)自動車廃触媒を直接塩酸溶液で浸出を行う湿式法を用いた浸出工程を有しているので、環境負荷が小さく、パラジウム、ロジウム、白金を、選択的に高含有率で塩酸溶液に抽出できるので、各々の回収工程によってパラジウム、ロジウム、白金を各々選択的に分離回収することができる。
(2)第1分離工程S3において、多孔質樹脂に抽出剤を含浸させたパラジウム吸着剤と浸出液を接触させるので、白金やロジウムを吸着せず、パラジウムのみを選択的に分離回収することができる。
(3)第2分離回収工程S6において空間速度を上げることで、吸着速度の遅いロジウムを白金吸着剤に吸着させずに白金のみを分離回収出来る。
(4)第3分離回収工程S9において、ロジウムをバッチ法によってロジウム吸着剤に吸着させるので、カラム法では1カ月半かかる吸着時間を数時間から数十時間程度まで短縮することができ、生産性や省力性に優れるとともに、第2分離回収後浸出液中のロジウム濃度が低くても分離回収率に優れる。
(6)第一分離回収工程S3において、抽出剤がDHSの場合、パラジウムをより選択的に吸着することができるので、パラジウムの分離回収効率を高めることができる。
(7)多孔質樹脂として多孔性に優れる(比表面積の大きい)エステル系合成吸着剤を使用した場合、溶離速度が高く、パラジウムをより分離し易くすることができる。
(8)パラジウム吸着剤に親水性処理を施さないので、第1分離回収工程S3において連続使用等におけるDHSの漏出を抑えることができ、パラジウムの吸着率の低下を抑えることができる。
(9)第2分離回収工程S6がカラム式であり、第1分離回収後浸出液の空間速度が2〜10h-1である構成を有しているので、吸着速度の遅いロジウムが吸着され難く、白金を選択的に吸着することが出来る。
(10)第3分離回収工程S9のロジウム吸着剤と第2分離回収後浸出液との固液比が1.5〜5g/Lである構成を有しているので、第2分離回収工程後浸出液から、ロジウム濃度が低濃度であっても、ロジウムの吸収率を高くすることができる。
According to the platinum group separation and recovery method in the first embodiment as described above, the following effects are obtained.
(1) Since it has a leaching process using a wet method in which automobile waste catalyst is leached directly with hydrochloric acid solution, the environmental load is small, and palladium, rhodium and platinum are selectively converted into hydrochloric acid solution at high content. Since extraction can be performed, palladium, rhodium, and platinum can be selectively separated and recovered in each recovery step.
(2) In the first separation step S3, the palladium adsorbent impregnated with the extractant in the porous resin and the leachate are brought into contact with each other, so that only palladium or palladium can be selectively separated and recovered without adsorbing platinum or rhodium. .
(3) By increasing the space velocity in the second separation and recovery step S6, only platinum can be separated and recovered without adsorbing rhodium having a low adsorption rate on the platinum adsorbent.
(4) In the third separation and recovery step S9, rhodium is adsorbed on the rhodium adsorbent by the batch method, so that the adsorption time of one and a half months can be shortened from several hours to several tens of hours in the column method. In addition, the separation and recovery rate is excellent even if the rhodium concentration in the leachate after the second separation and recovery is low.
(6) In the first separation and recovery step S3, when the extractant is DHS, palladium can be adsorbed more selectively, so that the efficiency of separation and recovery of palladium can be increased.
(7) When an ester-based synthetic adsorbent excellent in porosity (large specific surface area) is used as the porous resin, the elution rate is high and palladium can be more easily separated.
(8) Since the hydrophilic treatment is not performed on the palladium adsorbent, leakage of DHS in continuous use or the like can be suppressed in the first separation and recovery step S3, and a decrease in the adsorption rate of palladium can be suppressed.
(9) Since the second separation and recovery step S6 is a column type, and the space velocity of the leachate after the first separation and recovery is 2 to 10 h −1 , rhodium having a low adsorption rate is difficult to be adsorbed, Platinum can be selectively adsorbed.
(10) Since the solid-liquid ratio between the rhodium adsorbent in the third separation / recovery step S9 and the second separation / recovery leachate is 1.5 to 5 g / L, the leachate after the second separation / recovery step. Therefore, even if the rhodium concentration is low, the absorption rate of rhodium can be increased.

以下、本発明を実施例により具体的に説明する。なお、本発明はこれらの実施例に限定されるものではない。
(実施例1)
<浸出液の塩酸濃度によるパラジウム吸着剤の選択性の変化>
1,3, 5, 7, 9mol/Lの塩酸溶液にパラジウム、ロジウム、白金、セリウム、鉄、マグネシウム、アルミニウムが50mg/L含まれるように溶かした各金属塩酸溶液を其々20 mL準備した。
次に、500mLナスフラスコに多孔質樹脂(三菱化学株式会社製:ダイアイオンHP2MG)27.26gと、DHS(大八工業株式会社製)11.48gと、をナスフラスコに入れ、更にアセトン200mLを加え、真空乾燥機(EYELA東京理化機器株式会社製:VOS−201SD)を用い、105℃で12時間乾燥を行い、DHSが1.46mmol/g含浸したパラジウム吸着剤を得た。
調製したパラジウム吸着剤20 mgと準備した塩酸溶液20mLを50 mL三角フラスコに入れ、振とう機(EYELA東京理化機器株式会社:NTS−4000C)で24時間、25℃で60rpmの振動条件で振とうした。その後、塩酸溶液を濾過して濾液を得た。得られた濾液は誘導プラズマ発光分光分析装置ICP−AES(株式会社島津製作所製:ICP−7000)を用いて各金属濃度を測定した。結果を表1及び図2に示す。
Hereinafter, the present invention will be specifically described by way of examples. The present invention is not limited to these examples.
Example 1
<Change in selectivity of palladium adsorbent due to hydrochloric acid concentration in leachate>
20 mL of each metal hydrochloric acid solution prepared by dissolving 50 mg / L of palladium, rhodium, platinum, cerium, iron, magnesium, and aluminum in a 1,3,5,7,9 mol / L hydrochloric acid solution was prepared.
Next, 27.26 g of porous resin (manufactured by Mitsubishi Chemical Corporation: Diaion HP2MG) and 11.48 g of DHS (manufactured by Daihachi Kogyo Co., Ltd.) are placed in a eggplant flask in a 500 mL eggplant flask, and 200 mL of acetone is further added. In addition, drying was performed at 105 ° C. for 12 hours using a vacuum dryer (EYELA Tokyo Rika Co., Ltd .: VOS-201SD) to obtain a palladium adsorbent impregnated with 1.46 mmol / g of DHS.
20 mg of the prepared palladium adsorbent and 20 mL of the prepared hydrochloric acid solution are placed in a 50 mL Erlenmeyer flask and shaken with a shaker (EYELA Tokyo Rika Co., Ltd .: NTS-4000C) for 24 hours at 25 ° C. and 60 rpm. did. Thereafter, the hydrochloric acid solution was filtered to obtain a filtrate. The obtained filtrate was measured for each metal concentration using an induction plasma emission spectroscopic analyzer ICP-AES (manufactured by Shimadzu Corporation: ICP-7000). The results are shown in Table 1 and FIG.

Figure 2014055331
Figure 2014055331

図2は各塩酸濃度の浸出液中の金属のパラジウム吸着剤に対する吸着性を示す図である。
図2より、塩酸濃度が1〜5mol/Lの時、DHS含浸した多孔質樹脂からなるパラジウム吸着剤はパラジウムに対して高い選択性を示し、7mol/Lになると微量に他の金属を吸着することが分かる。更に9mol/Lの時、鉄などは吸着率が30%近くなり、選択性が悪いことが分かる。このように、1〜5mol/L塩酸溶液で浸出液を作製する時、パラジウム吸着剤はパラジウムに対して非常に高い選択性を有することが分かった。これは、HSAB則に従って、柔らかい酸であるパラジウムと柔らかい塩基である硫黄が安定な錯体を形成することに起因していると考えられる。
FIG. 2 is a diagram showing the adsorptivity of the metal in the leachate having various hydrochloric acid concentrations to the palladium adsorbent.
As shown in FIG. 2, when the hydrochloric acid concentration is 1 to 5 mol / L, the palladium adsorbent made of DHS-impregnated porous resin shows high selectivity to palladium, and when it becomes 7 mol / L, it adsorbs other metals in minute amounts. I understand that. Furthermore, at 9 mol / L, it can be seen that the adsorption rate of iron and the like is close to 30%, and the selectivity is poor. Thus, when preparing a leaching solution with a 1-5 mol / L hydrochloric acid solution, it turned out that a palladium adsorbent has very high selectivity with respect to palladium. This is considered to be due to the fact that palladium, which is a soft acid, and sulfur, which is a soft base, form a stable complex according to the HSAB rule.

<パラジウム吸着剤の抽出剤の漏出>
(実施例2)
各金属塩酸溶液の代わりに50,100,150,200,250mg/Lのパラジウムを含む1mol/L塩酸溶液20mLを用いた以外は、実施例1と同様にした。
<Leakage of palladium adsorbent extractant>
(Example 2)
Example 1 was carried out in the same manner as in Example 1 except that 20 mL of a 1 mol / L hydrochloric acid solution containing 50, 100, 150, 200, and 250 mg / L of palladium was used instead of each metal hydrochloric acid solution.

(比較例1)
50mL三角フラスコに実施例1のパラジウム吸着剤20mgに、イオン交換水20mLを入れ、振とう機で24時間、25℃で60rpmの振動条件で振とうさせてパラジウム吸着剤に親水性処理を施した以外は、実施例2と同様にした。
(Comparative Example 1)
Into a 50 mL Erlenmeyer flask, 20 mL of the palladium adsorbent of Example 1 was charged with 20 mL of ion-exchanged water, and the palladium adsorbent was subjected to a hydrophilic treatment by shaking for 24 hours at 25 ° C. and 60 rpm. Except for this, the procedure was the same as in Example 2.

(比較例2)
50mL三角フラスコに実施例1のパラジウム吸着剤20mgに、10wt%のドデシル硫酸ナトリウム溶液20mLを入れ、振とう機で24時間、25℃で60rpmの振動条件で振とうさせてパラジウム吸着剤に親水性処理を施した以外は、実施例2と同様にした。
実施例2及び比較例1,2の金属吸着性を表2及び図3に、抽出剤(DHS)の漏出率を表3に示す。
(Comparative Example 2)
Into a 50 mL Erlenmeyer flask, 20 mg of the palladium adsorbent of Example 1 was added 20 mL of a 10 wt% sodium dodecyl sulfate solution, and the mixture was shaken with a shaker for 24 hours at 25 ° C. and 60 rpm, so that the palladium adsorbent was hydrophilic. The procedure was the same as Example 2 except that the treatment was performed.
Table 2 and FIG. 3 show the metal adsorptivity of Example 2 and Comparative Examples 1 and 2, and Table 3 shows the leakage rate of the extractant (DHS).

Figure 2014055331
Figure 2014055331

Figure 2014055331
Figure 2014055331

図3は親水性処理と金属吸着性の変化を示した図であり、表3は親水性処理の違いと抽出剤(DHS)の漏出量を示した表である。尚、漏出率は、実施例1のパラジウム吸着剤のパラジウム吸着量に対する比較例1及び2のパラジウム吸着量の比率から算出した。
図3より、親水性処理を施していないパラジウムの吸着量は、約0.75mmol/gであるのに比べ、親水性処理を施した比較例1の吸着量は約0.35mmol/g、比較例2の吸着量は約0.6mmol/gであった。
また表1より、親水性処理を行っていない実施例1のパラジウム吸着剤に比べ、イオン交換水でパラジウム吸着剤の親水性処理を行った比較例1では20%、ドデシル硫酸ナトリウム溶液でパラジウム吸着剤の親水性処理を行った比較例2では47%、DHSが漏出した。これは、DHSとドデシル硫酸ナトリウムがミセルを形成することが原因であると考えられる。
以上のことから、パラジウム吸着剤は親水性処理を施さずに用いた方が良いことが示された。
FIG. 3 is a diagram showing changes in hydrophilic treatment and metal adsorption properties, and Table 3 is a table showing the difference in hydrophilic treatment and the amount of extractant (DHS) leakage. The leakage rate was calculated from the ratio of the palladium adsorption amount of Comparative Examples 1 and 2 to the palladium adsorption amount of the palladium adsorbent of Example 1.
From FIG. 3, the adsorption amount of palladium not subjected to hydrophilic treatment is about 0.75 mmol / g, while the adsorption amount of Comparative Example 1 subjected to hydrophilic treatment is about 0.35 mmol / g. The adsorption amount of Example 2 was about 0.6 mmol / g.
Further, from Table 1, compared with the palladium adsorbent of Example 1 that was not subjected to hydrophilic treatment, 20% was obtained in Comparative Example 1 in which the hydrophilic treatment of the palladium adsorbent was performed with ion-exchanged water, and palladium was adsorbed with a sodium dodecyl sulfate solution. In Comparative Example 2 in which the agent was subjected to hydrophilic treatment, 47% of DHS leaked out. This is considered due to the fact that DHS and sodium dodecyl sulfate form micelles.
From the above, it was shown that the palladium adsorbent should be used without being subjected to hydrophilic treatment.

(実施例3)
<白金の分離回収の空間速度最適化>
弱塩基性陰イオン交換樹脂(三菱化学株式会社製:ダイアイオンWA‐21)110gを準備し、1mol/L塩酸溶液300mL(和光純薬工業株式会社製)、イオン交換水300
mL、1mol/L水酸化ナトリウム溶液300mL(和光純薬工業株式会社製)、イオン交換
水300mL、の順に洗浄し、これを3回繰り返した後に真空乾燥機(EYELA東京理化機器株式会社製:VOS−201SD)を用い、105℃で12時間乾燥して、白金吸着剤を得た。
次に、WA−21の親水性処理として、0.1wt%ドデシル硫酸ナトリウムと白金吸着剤を加え、振とう機(EYELA東京理化機器株式会社:NTS−4000C)で24時間振とうした。振とう後、ろ過を行い、親水性処理済の白金吸着剤(1.75g)を内径8mm、長さ100mmのカラムに充填した両端にはガラスウールを詰めた。次に、イオン交換水を通液させて洗浄、脱気した後、表4に記載の組成の塩酸溶液([HCl]=5mol/L)を金属の吸着が破過に達するまで空間速度2.5h-1の条件で通液した後、再びイオン交換水で洗浄し、最後に溶離液として0.1mol/Lチオ尿素−1.0mol/L塩酸溶液及び1.0mol/L硫酸を通液させ、吸着した金属を溶離し、溶離液を得た。
通液はペリスタルティックポンプ(EYELA東京理化機器株式会社,SMP−21)を用い、吸着、または溶離の際、サンプル液はフラクションコレクター(EYELA東京理化機器株式会社,DC−1500)を用いて採取し、金属濃度は誘導プラズマ発光分光分析装置ICP−AES(株式会社島津製作所製:ICP−7000Ver.2)を用いて測定した。破過曲線の結果を図4、溶離曲線の結果を図5に示す。
(Example 3)
<Optimization of space velocity for separation and recovery of platinum>
110 g of weakly basic anion exchange resin (Mitsubishi Chemical Corporation: Diaion WA-21) was prepared, 300 mL of 1 mol / L hydrochloric acid solution (manufactured by Wako Pure Chemical Industries, Ltd.), ion-exchanged water 300
mL, 1 mol / L sodium hydroxide solution 300 mL (manufactured by Wako Pure Chemical Industries, Ltd.) and ion-exchanged water 300 mL were washed in this order, and after repeating this three times, a vacuum dryer (EYELA Tokyo Rika Equipment Co., Ltd .: VOS) -201SD) and dried at 105 ° C. for 12 hours to obtain a platinum adsorbent.
Next, as a hydrophilic treatment of WA-21, 0.1 wt% sodium dodecyl sulfate and a platinum adsorbent were added, and the mixture was shaken for 24 hours with a shaker (EYELA Tokyo Rika Co., Ltd .: NTS-4000C). After shaking, filtration was performed, and glass wool was packed at both ends of a hydrophilically treated platinum adsorbent (1.75 g) packed in a column having an inner diameter of 8 mm and a length of 100 mm. Next, after passing ion-exchanged water through washing and deaeration, a hydrochloric acid solution ([HCl] = 5 mol / L) having the composition shown in Table 4 is used until the space velocity of the metal adsorption reaches breakthrough. After passing under the condition of 5 h −1, the solution was washed again with ion exchange water, and finally 0.1 mol / L thiourea-1.0 mol / L hydrochloric acid solution and 1.0 mol / L sulfuric acid were passed as eluents. The adsorbed metal was eluted to obtain an eluent.
Peristaltic pump (EYELA Tokyo Rika Equipment Co., Ltd., SMP-21) is used for liquid flow, and sample liquid is collected using a fraction collector (EYELA Tokyo Rika Equipment Co., Ltd., DC-1500) for adsorption or elution. The metal concentration was measured using an induction plasma emission spectrometer ICP-AES (manufactured by Shimadzu Corporation: ICP-7000 Ver. 2). FIG. 4 shows the result of the breakthrough curve, and FIG. 5 shows the result of the elution curve.

Figure 2014055331
Figure 2014055331

図4は実施例3における白金とロジウムの破過曲線であり、図5は実施例3の溶離液の溶離曲線である。
図4より、白金はB.V.=100付近で破過し始め、B.V.=500で飽和状態に達し、ロジウムの吸着は見られるものの、供給液を通液した直後から破過し始め、ほとんど吸着することができなかった。これは、ロジウムの吸着速度が遅いことが原因だと考えられる。また、白金吸着剤は白金族金属以外の共雑イオンの吸着特性に対する影響はなく、白金,ロジウムに対する選択的吸着特性を示した。
図5より、溶離においては、0.1mol/Lチオ尿素−1.0mol/L塩酸溶液を用いることで白金を、最大濃縮濃度は2800mg/Lまで濃縮できることが分かった。この時、白金の溶出率を破過曲線と溶離曲線の積分値から算出したところ、100%溶離していることが分かった。また、B.V.=30から1.0mol/L硫酸を通液させたことで、ロジウムが溶離された。しかし、ロジウムの溶離率は79%であった。
以上のことから、白金吸着剤には、白金及びロジウムに対する選択的吸着特性があるが、空間速度2.5h-1以上にすることでロジウムの吸着を抑え、白金を選択的に吸着できることが分かった。また、0.1mol/Lチオ尿素−1.0mol/L塩酸溶液を用いることで白金を100%溶離できることが分かった。
4 is a breakthrough curve of platinum and rhodium in Example 3, and FIG. 5 is an elution curve of the eluent of Example 3.
As shown in FIG. V. = Begins breaking through around 100. V. = 500, saturation was reached, and rhodium was adsorbed, but started to break through immediately after the feed liquid was passed through, and hardly adsorbed. This is thought to be due to the slow adsorption rate of rhodium. In addition, the platinum adsorbent had no effect on the adsorption characteristics of the mixed ions other than platinum group metals, and showed selective adsorption characteristics for platinum and rhodium.
From FIG. 5, it was found that in elution, platinum can be concentrated to a maximum concentration of 2800 mg / L by using a 0.1 mol / L thiourea-1.0 mol / L hydrochloric acid solution. At this time, when the elution rate of platinum was calculated from the integral value of the breakthrough curve and the elution curve, it was found that 100% was eluted. B. V. = Rhodium was eluted by passing sulfuric acid through 30 to 1.0 mol / L sulfuric acid. However, the rhodium elution rate was 79%.
From the above, the platinum adsorbent has selective adsorption characteristics for platinum and rhodium, but it is understood that the adsorption of rhodium can be suppressed and platinum can be selectively adsorbed by setting the space velocity to 2.5 h −1 or more. It was. It was also found that platinum can be eluted at 100% by using a 0.1 mol / L thiourea-1.0 mol / L hydrochloric acid solution.

<ロジウムの分離回収方法の最適化>
(実施例4)
弱塩基性陰イオン交換樹脂(三菱化学株式会社製:ダイアイオンWA‐21)110gを準備し、1mol/L塩酸溶液300mL(和光純薬工業株式会社製)、イオン交換水300mL、1mol/L水酸化ナトリウム溶液300mL(和光純薬工業株式会社製)、イオン交換水300mL、の順に洗浄し、これを3回繰り返した後に真空乾燥機(EYELA東京理化機器株式会社製:VOS−201SD)を用い、105℃で12時間乾燥して、ロジウム吸着剤を得た。
次に、該ロジウム吸着剤0.25gを、ロジウムを30mg/L含んだ5mol/L塩酸溶液150、250、350、600 mLにそれぞれ混合し、1Lの三角フラスコ内でマグネットスターラーバーを60rpmの速度で撹拌し、108時間振とうした。振とう後、濾過を行い、実施例1と同様に濾液の金属濃度を測定し、吸着が飽和に達する時間を計測した。結果を表5及び図6に示す。
また、吸着が飽和に達した0.25gのロジウム吸着剤と1.0mol/L塩素酸ナトリウム−1.0mol/L塩酸溶液及び1.0mol/L塩素酸ナトリウム−2.0mol/L塩酸溶液を10,20,50,150,250 mLをそれぞれ混合し、48時間振とうさせロジウムの溶離を行い、溶離液を得た。溶離液は振とう後濾過し、濾液の金属濃度を測定した。また、金属濃度は、実施例1と同様に測定した。結果を表6に示す。
<Optimization of rhodium separation and recovery method>
Example 4
110 g of weakly basic anion exchange resin (Mitsubishi Chemical Corporation: Diaion WA-21) is prepared, 300 mL of 1 mol / L hydrochloric acid solution (manufactured by Wako Pure Chemical Industries, Ltd.), 300 mL of ion exchange water, 1 mol / L water Washing in the order of 300 mL of sodium oxide solution (manufactured by Wako Pure Chemical Industries, Ltd.) and 300 mL of ion-exchanged water, and after repeating this three times, using a vacuum dryer (manufactured by EYELA Tokyo Rika Co., Ltd .: VOS-201SD) The rhodium adsorbent was obtained by drying at 105 ° C. for 12 hours.
Next, 0.25 g of the rhodium adsorbent was mixed with 5 mol / L hydrochloric acid solutions 150, 250, 350, and 600 mL each containing 30 mg / L of rhodium, and a magnetic stirrer bar was set at a speed of 60 rpm in a 1 L Erlenmeyer flask. And shaken for 108 hours. After shaking, filtration was performed, and the metal concentration of the filtrate was measured in the same manner as in Example 1 to measure the time for the adsorption to reach saturation. The results are shown in Table 5 and FIG.
In addition, 0.25 g of rhodium adsorbent that reached saturation, 1.0 mol / L sodium chlorate-1.0 mol / L hydrochloric acid solution and 1.0 mol / L sodium chlorate-2.0 mol / L hydrochloric acid solution were added. 10, 20, 50, 150, and 250 mL were mixed, shaken for 48 hours, and rhodium was eluted to obtain an eluent. The eluent was filtered after shaking, and the metal concentration of the filtrate was measured. The metal concentration was measured in the same manner as in Example 1. The results are shown in Table 6.

(比較例1)
ミニプラントの内径20mm、長さ180 mmのカラムを準備し、実施例4に記載のロジウム吸着剤を充填し、該カラムの両端にはガラスウールを詰め、イオン交換水を通液して洗浄、脱気を行った。
次に、30mg/Lのロジウムを含む5mol/Lの塩酸溶液を準備し、該カラムに空間速度5.0h-1の条件で通液した。通液は、ロジウムの吸着が飽和に達するまで行った。通液後の塩酸溶液中のロジウム濃度の測定は実施例1と同様にした。この時の破過曲線を図7に示す。
(Comparative Example 1)
Prepare a column of 20 mm in inner diameter and 180 mm in length of the mini plant, and fill it with the rhodium adsorbent described in Example 4. The column is filled with glass wool, washed by passing ion-exchanged water, Deaerated.
Next, a 5 mol / L hydrochloric acid solution containing 30 mg / L of rhodium was prepared and passed through the column at a space velocity of 5.0 h- 1 . The liquid flow was continued until rhodium adsorption reached saturation. The rhodium concentration in the hydrochloric acid solution after passing was measured in the same manner as in Example 1. The breakthrough curve at this time is shown in FIG.

Figure 2014055331
Figure 2014055331

Figure 2014055331
Figure 2014055331

図6はロジウムの吸着に対する振とう時間の影響を示す図であり、図7は比較例1の破過曲線を示す図である。
図6より、ロジウムの吸着が飽和に達するまでの時間は、液量に関係なく48時間を要することが確認された。また、図7より、カラム法でロジウムの吸着を行った比較例1の破過曲線の立ち上がりは非常に緩やかであった。また、カラム法においてロジウムの吸着が飽和に達した時間は1月半であった。
このことから、バッチ法で吸着を行った実施例4は、カラム法で吸着を行った比較例1のロジウムの吸着が飽和に達する時間(1月半)と比較すると、大幅に吸着速度が改善されたことがわかる。また、供給液量150mLの場合において48時間振とうすることで吸着率が90%を達成出来ることが示された。
6 is a diagram showing the influence of shaking time on rhodium adsorption, and FIG. 7 is a diagram showing a breakthrough curve of Comparative Example 1. FIG.
From FIG. 6, it was confirmed that the time required for rhodium adsorption to reach saturation required 48 hours regardless of the amount of liquid. Moreover, from FIG. 7, the rise of the breakthrough curve of Comparative Example 1 in which rhodium was adsorbed by the column method was very gradual. In addition, the time when rhodium adsorption reached saturation in the column method was January and a half.
From this, the adsorption rate in Example 4 which was adsorbed by the batch method was significantly improved compared to the time (1/2 months) when the adsorption of rhodium in Comparative Example 1 which was adsorbed by the column method reached saturation. You can see that In addition, it was shown that the adsorption rate can be 90% by shaking for 48 hours in the case of a supply liquid amount of 150 mL.

表3より、2種類の溶離液双方において、溶離液量が減少するに従って濃縮濃度は上昇した。1.0mol/L塩素酸ナトリウム−1.0mol/L塩酸溶液を用いた場合、最大濃縮濃度は溶離液量10mLのときで465mg/L(供給液濃度の約15倍)となった。しかし、この場合溶離率は53%に留まった。一方、1.0mol/L塩素酸ナトリウム−2.0mol/L塩酸溶液を用いた場合、最大濃縮濃度は溶離液量10mLのときで812mg/L(供給液濃度の約27倍)となり、溶離率は92%まで到達した。
以上のことから、ロジウム吸着剤によるRhの分離回収においてはカラム法ではなくバッチ法の方が適していることが明らかとなり、溶離液には1.0 mol/L塩素酸ナトリウム−2.0mol/L塩酸溶液を用いることが最適であることが分かった。
From Table 3, the concentration of concentration increased as the amount of the eluent decreased in both types of eluent. When a 1.0 mol / L sodium chlorate-1.0 mol / L hydrochloric acid solution was used, the maximum concentration concentration was 465 mg / L (about 15 times the supply solution concentration) when the amount of the eluent was 10 mL. In this case, however, the elution rate remained at 53%. On the other hand, when a 1.0 mol / L sodium chlorate-2.0 mol / L hydrochloric acid solution was used, the maximum concentration concentration was 812 mg / L (about 27 times the supply solution concentration) when the eluent amount was 10 mL, and the elution rate was Reached 92%.
From the above, it has become apparent that the batch method rather than the column method is more suitable for the separation and recovery of Rh with a rhodium adsorbent, and 1.0 mol / L sodium chlorate-2.0 mol / It has been found optimal to use L hydrochloric acid solution.

次にロジウム吸着剤と第2分離回収後浸出液の混合比を最適化するため、実施例4のロジウム吸着剤0.25 gと、ロジウムを30mg/L含んだ5mol/L塩酸溶液を固液比S/A=0.4〜4g/Lとなるようにそれぞれ混合し、1Lの三角フラスコ内でマグネットスターラーバーを60rpmの速度で撹拌し、72時間振とうした。振とう後、濾過を行い、実施例1と同様に濾液の金属濃度を測定した。結果を図8に示す。   Next, in order to optimize the mixing ratio of the rhodium adsorbent and the second separated and recovered leachate, 0.25 g of the rhodium adsorbent of Example 4 and a 5 mol / L hydrochloric acid solution containing 30 mg / L of rhodium were in a solid-liquid ratio. Each was mixed so that S / A = 0.4-4 g / L, and the magnetic stirrer bar was stirred at a speed of 60 rpm in a 1 L Erlenmeyer flask and shaken for 72 hours. After shaking, filtration was performed, and the metal concentration of the filtrate was measured in the same manner as in Example 1. The results are shown in FIG.

図8はロジウムの吸着率と固液比の関係図である。
図8より、固液比S/Aが大きくなるにつれ吸着率は上昇し、固液比S/Aが1.5g/Lより大きくなると、ロジウムの吸着率が80〜90%程度となり、3g/Lを超えるとロジウムの吸着率が100%になることが分かった。このことから、ロジウム吸着剤と第2分離回収後浸出液量の固液比S/Aが3g/L以上であれば、ロジウムを100%吸着できることが示された。
FIG. 8 is a relationship diagram of rhodium adsorption rate and solid-liquid ratio.
From FIG. 8, the adsorption rate increases as the solid-liquid ratio S / A increases, and when the solid-liquid ratio S / A exceeds 1.5 g / L, the rhodium adsorption rate becomes about 80 to 90% and 3 g / L. When L was exceeded, it was found that the adsorption rate of rhodium was 100%. From this, it was shown that rhodium can be adsorbed 100% when the solid-liquid ratio S / A of the rhodium adsorbent and the amount of leachate after the second separation and recovery is 3 g / L or more.

<白金族の沈殿率の変化>
(実施例5)
実施例1のパラジウム吸着剤(1.59g)を内径8mm、長さ100mmのカラムに充填した両端にはガラスウールを詰めた。次に、イオン交換水を通液させて洗浄、脱気した後、実施例1に記載の1mol/L塩酸溶液を金属の吸着が破過に達するまで空間速度6.25h-1の条件で通液した後、再びイオン交換水で洗浄し、最後に溶離液として1.5mol/Lアンモニア溶液を通液させ、吸着した金属を溶離した。
次いで、得られたパラジウム溶離液3mLを試験管に入れ、1mol/L塩酸溶液を加え、1晩放置した。その後、該溶離液を3000rpmの条件で5分間遠心分離器にかけ、沈殿物と上澄みに分け、上澄み液はpH測定器(株式会社堀場製作所製)を用いてpHを測定し、pH1〜7におけるパラジウムを含む沈殿物の沈殿率の変化を測定した。
<Change in platinum group precipitation rate>
(Example 5)
Glass wool was packed into both ends of the palladium adsorbent (1.59 g) of Example 1 packed in a column having an inner diameter of 8 mm and a length of 100 mm. Next, after passing ion-exchanged water for washing and degassing, the 1 mol / L hydrochloric acid solution described in Example 1 was passed under conditions of a space velocity of 6.25 h −1 until the metal adsorption reached breakthrough. Then, the solution was washed again with ion-exchanged water, and finally a 1.5 mol / L ammonia solution was passed as an eluent to elute the adsorbed metal.
Next, 3 mL of the obtained palladium eluent was placed in a test tube, a 1 mol / L hydrochloric acid solution was added, and the mixture was allowed to stand overnight. Thereafter, the eluent is centrifuged at 3000 rpm for 5 minutes, separated into a precipitate and a supernatant, and the supernatant is measured for pH using a pH meter (manufactured by Horiba, Ltd.), and palladium at pH 1 to 7 The change in the precipitation rate of the precipitate containing was measured.

(実施例6)
実施例3の白金溶離液(約pH1)白金溶離液を遠心分離にかけ、上澄み液とチオ尿素及び白金の錯体である沈殿物を分離した。
次いで、分離して得られた上澄み液3mLを試験管に入れ、1mol/L水酸化ナトリウム水溶液を加え、1晩放置した。その後、該溶離液を遠心分離にかけ、更に沈殿物と上澄みに分け、該上澄み液はpHメーター(株式会社堀場製作所製)を用いてpHを測定し、pH1〜12における白金を含む沈殿物の沈殿率の変化を測定した。
(Example 6)
The platinum eluent of Example 3 (about pH 1) The platinum eluent was centrifuged to separate the supernatant and the precipitate that was a complex of thiourea and platinum.
Next, 3 mL of the supernatant obtained by separation was placed in a test tube, a 1 mol / L aqueous sodium hydroxide solution was added, and the mixture was allowed to stand overnight. Thereafter, the eluate is centrifuged, and further separated into a precipitate and a supernatant. The supernatant is measured for pH using a pH meter (manufactured by Horiba, Ltd.), and a precipitate containing a platinum-containing precipitate at pH 1-12 is precipitated. The change in rate was measured.

(実施例7)
実施例4のロジウム溶離液を遠心分離にかけ、上澄み液とチオ尿素とロジウムの錯体である沈殿物を分離した。
次いで、分離して得られた上澄み液3mLを試験管に入れ、80℃まで加熱し、2mol/L水酸化ナトリウム水溶液を加え、濾過を行い、沈殿物と濾液に分離し、濾液はpH測定器(株式会社堀場製作所製)を用いてpHを測定し、pH1〜12におけるロジウムを含む沈殿物の沈殿率の変化を測定した。
実施例5乃至7の結果を図9乃至11に示す。尚、沈殿率は、沈殿前の溶離液中の金属濃度と沈殿後の溶離液中の金属濃度から算出した。
(Example 7)
The rhodium eluent of Example 4 was centrifuged to separate the supernatant and the precipitate that was a complex of thiourea and rhodium.
Next, 3 mL of the supernatant obtained by separation is put into a test tube, heated to 80 ° C., 2 mol / L sodium hydroxide aqueous solution is added, filtered, and separated into a precipitate and a filtrate. The pH was measured using (manufactured by Horiba, Ltd.), and the change in the precipitation rate of the precipitate containing rhodium at pH 1 to 12 was measured.
The results of Examples 5 to 7 are shown in FIGS. The precipitation rate was calculated from the metal concentration in the eluent before precipitation and the metal concentration in the eluent after precipitation.

図9は実施例5におけるpHと沈殿率の関係図であり、図10は実施例6におけるpHと沈殿率の関係図であり、図11は実施例7におけるpHと沈殿率の関係図である。
図9より、パラジウム溶離液の場合、pH6未満にするとパラジウムを含む沈殿物の沈殿率が60%を超え、pH1に近づくとパラジウムを含む沈殿物の沈殿率は100%になることが分かった。
図10より、白金溶離液の場合、pHに関係なく80%以上の沈殿率があるが、pHが9を超えた当たりから白金を含む沈殿物の沈殿率は100%程になることが分かった。
また、図11より、ロジウム溶離液の場合、低pH域では沈殿率が20%、pH5でも沈殿率が50%程しかないが、pHが10を超えるとロジウムを含む沈殿物の沈殿率が100%になることが分かった。
以上のことから、パラジウム溶離液はpH1未満、白金溶離液及びロジウム溶離液はpH10以上にすることで、白金族金属を効率よく回収できることが分かった。
9 is a relationship diagram between pH and precipitation rate in Example 5, FIG. 10 is a relationship diagram between pH and precipitation rate in Example 6, and FIG. 11 is a relationship diagram between pH and precipitation rate in Example 7. .
From FIG. 9, it was found that in the case of the palladium eluent, the precipitation rate of the precipitate containing palladium exceeds 60% when the pH is less than 6, and the precipitation rate of the precipitate containing palladium becomes 100% when the pH approaches 1.
From FIG. 10, it was found that in the case of platinum eluent, there is a precipitation rate of 80% or more regardless of the pH, but the precipitation rate of the precipitate containing platinum is about 100% from when the pH exceeds 9. .
Further, from FIG. 11, in the case of rhodium eluent, the precipitation rate is 20% in the low pH region, and the precipitation rate is only about 50% even at pH 5, but when the pH exceeds 10, the precipitation rate of the precipitate containing rhodium is 100. It turned out to be%.
From the above, it was found that the platinum group metal can be efficiently recovered by setting the palladium eluent to a pH of less than 1 and the platinum eluent and the rhodium eluent to a pH of 10 or more.

以上のように本実施例によれば、他の金属が共存する廃触媒浸出液中において高い選択率を持ち、カラム法では1カ月半かかっていた吸着時間を48時間と格段に改善し、低濃度溶液から白金族金属分離回収が出来ることが明らかになった。   As described above, according to the present example, it has a high selectivity in the waste catalyst leachate in which other metals coexist, and the adsorption time which took one and a half months in the column method is dramatically improved to 48 hours. It became clear that platinum group metals could be separated and recovered from the solution.

本発明は上記従来の課題を解決するもので、自動車廃触媒等から得られる白金族混合物から個々の白金族元素、特にパラジウム,白金,ロジウム、を分離回収する白金族の分離回収法に関し、添加剤なしには、短時間で回収が困難であったロジウムを、添加剤等の調整なしに、選択的かつ、短時間で回収することができ、廃触媒等を直接塩酸溶液で浸出するので、環境負荷が小さく、パラジウム,白金,ロジウム等の低濃度金属の回収効率に優れ、更に各分離回収プロセスにおいてイオン交換法を用いているので、操作が容易で、効率的に、白金族元素を分離回収するができ、作業性に優れ安全で簡素であるため、低原価で生産性に優れる白金族の分離回収法を提供することができる。   The present invention solves the above-mentioned conventional problems, and relates to a platinum group separation and recovery method for separating and recovering individual platinum group elements, particularly palladium, platinum and rhodium, from a platinum group mixture obtained from an automobile waste catalyst or the like. Without the agent, rhodium, which was difficult to recover in a short time, can be recovered selectively and in a short time without adjustment of additives, etc. Low environmental impact, excellent recovery efficiency for low-concentration metals such as palladium, platinum, and rhodium. Furthermore, the ion exchange method is used in each separation and recovery process, making operation easy and efficient. Since it can be recovered, and is excellent in workability, safe and simple, it is possible to provide a platinum group separation and recovery method that is low in cost and excellent in productivity.

Claims (6)

(a)パラジウム、ロジウム、白金を含む自動車廃触媒等からなる白金族混合物を、塩酸溶液に浸出させて浸出液を作製する浸出工程と、(b)前記浸出液と、パラジウム吸着剤と、を第1吸着分離器内で接触させて前記パラジウムを分離回収する第1分離回収工程と、(c)白金吸着剤が充填された第2吸着分離器内に、前記第1分離回収工程で得られる第1分離回収後浸出液を前記ロジウムが吸着され難い速い空間速度で通液し、前記白金を分離回収する第2分離回収工程と、(d)前記第2分離回収工程後の第2分離回収後浸出液とロジウム吸着剤とを、撹拌式吸着槽内で接触させて前記ロジウムをバッチ式に分離回収する第3分離回収工程と、を有し、(e)前記パラジウム吸着剤が、多孔質樹脂と、前記多孔質樹脂に担持された抽出剤と、を備え、(f)前記白金吸着剤及び前記ロジウム吸着剤が、弱塩基性イオン交換樹脂であることを特徴とする白金族の分離回収法。   (A) a leaching step of leaching a platinum group mixture composed of an automobile waste catalyst containing palladium, rhodium, platinum, etc. into a hydrochloric acid solution to prepare a leaching solution; and (b) a first leaching solution and a palladium adsorbent. A first separation / recovery step for separating and recovering the palladium by contacting in an adsorption separator; and (c) a first adsorption / recovery step packed in a second adsorption separator filled with a platinum adsorbent. A second separation and recovery step for separating and recovering the platinum by passing the leachate after separation and recovery at a high space velocity at which rhodium is not easily adsorbed; and (d) a second post-separation and recovery leachate after the second separation and recovery step; A rhodium adsorbent in a stirred adsorption tank, and a third separation and recovery step for separating and recovering the rhodium in a batch manner, and (e) the palladium adsorbent is a porous resin, Extraction supported on porous resin And an agent, (f) the platinum adsorbent and the rhodium adsorbent, separation and recovery method of platinum group which is a weakly basic ion exchange resin. 前記抽出剤が一般式R1−S−R2(式中、R1及びR2は炭素原子数5〜10のアルキル基又はアリル基,アリール基であり、R1及びR2が同時に水素となることはない)で表される化合物であることを特徴とする請求項1に記載の白金族の分離回収法。 The extractant is represented by the general formula R 1 —S—R 2 (wherein R 1 and R 2 are an alkyl group, an allyl group or an aryl group having 5 to 10 carbon atoms, and R 1 and R 2 are simultaneously hydrogen and The method for separating and recovering a platinum group according to claim 1, wherein the compound is represented by: 前記多孔質樹脂がエステル系合成吸着剤であることを特徴とする請求項1又は2に記載の白金族の分離回収方法。   The method for separating and recovering a platinum group according to claim 1 or 2, wherein the porous resin is an ester-based synthetic adsorbent. 前記パラジウム吸着剤に親水性処理を施さないことを特徴とする請求項1乃至3の内いずれか1に記載の白金族の分離回収方法。   The method for separating and recovering a platinum group according to any one of claims 1 to 3, wherein the palladium adsorbent is not subjected to a hydrophilic treatment. 前記第2分離回収工程がカラム法であり、前記第1分離回収後浸出液の前記空間速度が2〜10h-1であることを特徴とする請求項1乃至4の内いずれか1に記載の白金族の分離回収法。 5. The platinum according to claim 1, wherein the second separation and recovery step is a column method, and the space velocity of the leachate after the first separation and recovery is 2 to 10 h −1. Tribe separation and recovery. 前記第3分離回収工程の前記ロジウム吸着剤量と前記第2分離回収後浸出液量の固液比が1.5〜5g/Lであることを特徴とする請求項1乃至5の内いずれか1に記載の白金族の分離回収法。   6. The solid-liquid ratio between the rhodium adsorbent amount in the third separation and recovery step and the amount of leachate after the second separation and recovery is 1.5 to 5 g / L. The platinum group separation and recovery method described in 1.
JP2012201195A 2012-09-13 2012-09-13 Platinum group separation and recovery method Active JP6025468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012201195A JP6025468B2 (en) 2012-09-13 2012-09-13 Platinum group separation and recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012201195A JP6025468B2 (en) 2012-09-13 2012-09-13 Platinum group separation and recovery method

Publications (2)

Publication Number Publication Date
JP2014055331A true JP2014055331A (en) 2014-03-27
JP6025468B2 JP6025468B2 (en) 2016-11-16

Family

ID=50612903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012201195A Active JP6025468B2 (en) 2012-09-13 2012-09-13 Platinum group separation and recovery method

Country Status (1)

Country Link
JP (1) JP6025468B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016109468A (en) * 2014-12-03 2016-06-20 国立研究開発法人日本原子力研究開発機構 Separation and recovery method of platinum group materials and its separation and recovery apparatus
WO2019188708A1 (en) * 2018-03-27 2019-10-03 日本ゼオン株式会社 Method for recovering platinum group element
CN114230080A (en) * 2021-12-24 2022-03-25 云南科力环保股份公司 Zero-discharge treatment method for platinum noble metal wastewater
JP7142753B1 (en) * 2021-07-30 2022-09-27 松田産業株式会社 Method for recovering rhodium from rhodium-containing plating solutions
CN114230080B (en) * 2021-12-24 2024-05-24 云南科力环保股份公司 Zero-emission treatment method for platinum noble metal wastewater

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03277731A (en) * 1990-03-27 1991-12-09 Tanaka Kikinzoku Kogyo Kk Method for refining rhodium
JPH07300630A (en) * 1994-04-27 1995-11-14 Shoei Chem Ind Co Method for separating and recovering silver and method for separating and recovering silver and palladium
JPH09203792A (en) * 1996-01-24 1997-08-05 Sangyo Souzou Kenkyusho Method for separating and recycling platinum group element
WO2011132740A1 (en) * 2010-04-21 2011-10-27 Uehara Haruo System and method for recycling rare metals

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03277731A (en) * 1990-03-27 1991-12-09 Tanaka Kikinzoku Kogyo Kk Method for refining rhodium
JPH07300630A (en) * 1994-04-27 1995-11-14 Shoei Chem Ind Co Method for separating and recovering silver and method for separating and recovering silver and palladium
JPH09203792A (en) * 1996-01-24 1997-08-05 Sangyo Souzou Kenkyusho Method for separating and recycling platinum group element
WO2011132740A1 (en) * 2010-04-21 2011-10-27 Uehara Haruo System and method for recycling rare metals

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016109468A (en) * 2014-12-03 2016-06-20 国立研究開発法人日本原子力研究開発機構 Separation and recovery method of platinum group materials and its separation and recovery apparatus
WO2019188708A1 (en) * 2018-03-27 2019-10-03 日本ゼオン株式会社 Method for recovering platinum group element
JPWO2019188708A1 (en) * 2018-03-27 2021-04-30 日本ゼオン株式会社 Platinum group element recovery method
JP7142753B1 (en) * 2021-07-30 2022-09-27 松田産業株式会社 Method for recovering rhodium from rhodium-containing plating solutions
WO2023008588A1 (en) * 2021-07-30 2023-02-02 松田産業株式会社 Method for recovering rhodium from rhodium-containing plating solution
CN114230080A (en) * 2021-12-24 2022-03-25 云南科力环保股份公司 Zero-discharge treatment method for platinum noble metal wastewater
CN114230080B (en) * 2021-12-24 2024-05-24 云南科力环保股份公司 Zero-emission treatment method for platinum noble metal wastewater

Also Published As

Publication number Publication date
JP6025468B2 (en) 2016-11-16

Similar Documents

Publication Publication Date Title
Marinho et al. Recovery of platinum, tin and indium from spent catalysts in chloride medium using strong basic anion exchange resins
JP5283783B2 (en) Rare metal recovery method and apparatus
RU2386709C1 (en) Separation and exrtaction method of precious metals
CN110484746B (en) Noble metal leaching agent and method for recovering noble metal from waste catalyst
Xu et al. Precise separation and efficient enrichment of palladium from wastewater by amino-functionalized silica adsorbent
CN110607456B (en) Method for recovering noble metal in waste carbon-supported noble metal catalyst by using ionic liquid
Kononova et al. Ion exchange recovery of platinum from chloride solutions
Snyders et al. The application of activated carbon for the adsorption and elution of platinum group metals from dilute cyanide leach solutions
JP6025468B2 (en) Platinum group separation and recovery method
JP5284378B2 (en) Method and system for recovering rhenium from spent acid
Hubicki et al. Palladium (II) removal from chloride and chloride–nitrate solutions by chelating ion-exchangers containing N-donor atoms
CN103157446A (en) Adsorbent for separating palladium from alkali metals and alkaline-earth metals and its preparation method and use
Ludek et al. Adsorption of Ce (IV) anionic nitrato complexes onto anion exchangers and its application for Ce (IV) separation from rare earths (III)
WO2012121496A2 (en) Method for recovering platinum group metals from industrial waste containing platinum group metals
CN104745814B (en) The method that adsorption recovery is carried out to metal ion in solution with the modified silica-gel containing substituent propanethiol
JP2011231378A (en) Method for separating and collecting platinum group element
Kondo et al. Adsorption and separation of palladium and platinum with microcapsules containing tri-n-octylamine hydrochloride
US6764662B2 (en) Recover and recycle rhodium from spent partial oxidation catalysts
CN112899492B (en) Method for adsorbing and separating palladium by using supermolecule adsorbent
Ge et al. Recovery of platinum from spent automotive catalyst based on hydrometallurgy
KR20150024019A (en) Method of recovery of high purity platinum from a leaching solution of spent catalyst
Lee et al. Ion exchange characteristics of rhodium and ruthenium from a simulated radioactive liquid waste
Lillkung et al. Hydrometallurgical recovery of platinum group metals
JP5992796B2 (en) Method for separating and recovering precious metals
JP4726496B2 (en) Method for separating and recovering precious metals

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161011

R150 Certificate of patent or registration of utility model

Ref document number: 6025468

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250