JP7140062B2 - Friction stir welding method - Google Patents

Friction stir welding method Download PDF

Info

Publication number
JP7140062B2
JP7140062B2 JP2019120712A JP2019120712A JP7140062B2 JP 7140062 B2 JP7140062 B2 JP 7140062B2 JP 2019120712 A JP2019120712 A JP 2019120712A JP 2019120712 A JP2019120712 A JP 2019120712A JP 7140062 B2 JP7140062 B2 JP 7140062B2
Authority
JP
Japan
Prior art keywords
metal member
pin
friction stir
peripheral surface
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019120712A
Other languages
Japanese (ja)
Other versions
JP2021006351A (en
Inventor
久司 堀
伸城 瀬尾
宏介 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2019120712A priority Critical patent/JP7140062B2/en
Priority to PCT/JP2019/050044 priority patent/WO2020261610A1/en
Priority to CN201980097739.XA priority patent/CN114007799A/en
Publication of JP2021006351A publication Critical patent/JP2021006351A/en
Application granted granted Critical
Publication of JP7140062B2 publication Critical patent/JP7140062B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Description

本発明は、摩擦攪拌接合方法に関する。 The present invention relates to a friction stir welding method.

例えば、特許文献1には、円柱状の第一金属部材と、円筒状の第二金属部材とを回転ツールを用いて摩擦攪拌接合する発明が開示されている。図14は、従来の摩擦攪拌接合方法を示す断面図である。 For example, Patent Literature 1 discloses an invention in which a cylindrical first metal member and a cylindrical second metal member are friction stir welded using a rotating tool. FIG. 14 is a cross-sectional view showing a conventional friction stir welding method.

図14に示すように、従来の摩擦攪拌接合方法では、第一金属部材101と、第二金属部材102とを突き合わせて形成された突合せ部J10を摩擦攪拌接合する。回転ツールGは、円柱状のショルダ部G1と、攪拌ピンG2とを備えている。第一金属部材1には、段差側面101aと、段差底面101bとが形成されている。突合せ部J10は、第一金属部材101の段差底面101bと、第二金属部材102の端面102aとを突き合わせて形成されている。 As shown in FIG. 14, in the conventional friction stir welding method, a butt portion J10 formed by butting the first metal member 101 and the second metal member 102 is friction stir welded. The rotary tool G has a cylindrical shoulder G1 and an agitating pin G2. The first metal member 1 is formed with a stepped side surface 101a and a stepped bottom surface 101b. The abutting portion J10 is formed by abutting the stepped bottom surface 101b of the first metal member 101 and the end surface 102a of the second metal member 102 against each other.

特開2009-269058号公報JP 2009-269058 A

ここで、第一金属部材101を例えば、4000系アルミニウム合金の鋳造材で形成し、第二金属部材102を1000系アルミニウム合金の展伸材で形成するというような場合がある。つまり、アルミニウム合金の材種の異なる部材同士を摩擦攪拌接合する場合がある。 Here, in some cases, the first metal member 101 is made of cast material of 4000 series aluminum alloy, and the second metal member 102 is made of wrought material of 1000 series aluminum alloy. In other words, friction stir welding may be performed between aluminum alloy members of different grades.

例えば、第一金属部材101を鋳造材で形成し、第二金属部材102を展伸材で形成する場合、攪拌ピンG2が第二金属部材102側から受ける材料抵抗に比べて、第一金属部材101側から受ける材料抵抗が大きくなる。そのため、回転ツールGの攪拌ピンG2によって異なる材種をバランスよく攪拌することが困難となり、接合後の塑性化領域に空洞欠陥が発生し接合強度が低下するという問題がある。 For example, when the first metal member 101 is made of a cast material and the second metal member 102 is made of a wrought material, compared to the material resistance that the stirring pin G2 receives from the second metal member 102 side, the first metal member The material resistance received from the 101 side increases. Therefore, it becomes difficult to stir different types of materials with the stirring pin G2 of the rotary tool G in a well-balanced manner, and there is a problem that void defects occur in the plasticized region after bonding, resulting in a decrease in bonding strength.

このような観点から、本発明は、材種の異なるアルミニウム合金を好適に接合することができる摩擦攪拌接合方法を提供することを課題とする。 From such a point of view, an object of the present invention is to provide a friction stir welding method capable of suitably joining different kinds of aluminum alloys.

前記課題を解決するために、本発明は、大径部の端部に小径部を備えた柱状の第一金属部材と、前記小径部と略同等の内径を有する筒状の第二金属部材とを端部同士で突き合わせて形成された被接合金属部材の突合せ部に対して、基端側ピンと先端側ピンとを備える回転ツールを用いて摩擦攪拌を行う摩擦攪拌接合方法であって、前記第一金属部材は第一アルミニウム合金で形成されており、前記第二金属部材は第二アルミニウム合金で形成されており、前記第一アルミニウム合金は前記第二アルミニウム合金よりも硬度が高い材種であり、前記基端側ピンのテーパー角度は、前記先端側ピンのテーパー角度よりも大きくなっており、前記基端側ピンの外周面には階段状のピン段差部が形成されており、前記第二金属部材の開口部に前記第一金属部材の前記小径部を挿入することにより、前記第二金属部材の内周面と前記第一金属部材の段差側面とを重ね合わせるとともに、前記第二金属部材の端面と前記第一金属部材の段差傾斜面とを突き合わせて突合せ部に断面V字状の隙間を形成する突合せ工程と、回転する前記回転ツールの前記先端側ピンを前記第二金属部材の外周面に挿入し、前記先端側ピンの外周面を前記第一金属部材の前記段差傾斜面にわずかに接触させつつ、前記基端側ピンの外周面を前記第二金属部材の外周面に接触させた状態で、前記隙間に前記第二アルミニウム合金を流入させながら、前記突合せ部よりも前記第二金属部材側に設定された設定移動ルートに沿って所定の深さで前記第二金属部材の外周面の廻りに一周させて前記突合せ部を摩擦攪拌する本接合工程と、を含むことを特徴とする。 In order to solve the above problems, the present invention provides a columnar first metal member having a small diameter portion at the end of the large diameter portion, and a cylindrical second metal member having an inner diameter substantially equal to that of the small diameter portion. A friction stir welding method in which friction stir is performed using a rotating tool having a proximal side pin and a distal side pin with respect to the butted portion of the metal member to be welded, which is formed by butting the ends of the first The metal member is made of a first aluminum alloy, the second metal member is made of a second aluminum alloy, and the first aluminum alloy is a material having higher hardness than the second aluminum alloy, A taper angle of the proximal pin is larger than a taper angle of the distal pin, and a stepped pin stepped portion is formed on an outer peripheral surface of the proximal pin, and the second metal By inserting the small-diameter portion of the first metal member into the opening of the member, the inner peripheral surface of the second metal member and the stepped side surface of the first metal member overlap each other, and the second metal member a butting step of butting the end face and the step inclined surface of the first metal member to form a gap having a V-shaped cross section in the butting portion; so that the outer peripheral surface of the distal side pin is slightly in contact with the step inclined surface of the first metal member, and the outer peripheral surface of the proximal side pin is brought into contact with the outer peripheral surface of the second metal member. In this state, the outer peripheral surface of the second metal member is moved to a predetermined depth along a set movement route set on the second metal member side of the abutment portion while allowing the second aluminum alloy to flow into the gap. and a final joining step of friction-stirring the butt portion by making one turn around the joint.

また、本発明は、大径部の端部に小径部を備えた円柱状の第一金属部材と、前記小径部と略同等の内径を有する円筒状の第二金属部材とを端面同士で突き合わせて形成された被接合金属部材の突合せ部に対して基端側ピンと先端側ピンとを備える回転ツールを用いて摩擦攪拌を行う摩擦攪拌接合方法であって、前記第一金属部材は第一アルミニウム合金で形成されており、前記第二金属部材は第二アルミニウム合金で形成されており、前記第一アルミニウム合金は前記第二アルミニウム合金よりも硬度が高い材種であり、前記基端側ピンのテーパー角度は、前記先端側ピンのテーパー角度よりも大きくなっており、前記基端側ピンの外周面には階段状のピン段差部が形成されており、前記第二金属部材の開口部に前記第一金属部材の前記小径部を挿入することにより、前記第二金属部材の内周面と前記第一金属部材の段差側面とを重ね合わせるとともに、前記第二金属部材の端面と前記第一金属部材の前記段差傾斜面とを突き合わせて突合せ部に断面V字状の隙間を形成する突合せ工程と、回転する前記回転ツールの前記先端側ピンを前記第二金属部材の外周面に挿入し、前記先端側ピンの外周面を前記第一金属部材の前記段差傾斜面にわずかに接触させつつ、前記基端側ピンの外周面を前記第二金属部材の外周面に接触させた状態で、前記隙間に前記第二アルミニウム合金を流入させながら、前記突合せ部よりも前記第二金属部材側に設定された設定移動ルートに沿って所定の深さで前記第二金属部材の外周面の廻りに一周させて前記突合せ部を摩擦攪拌する本接合工程と、を含むことを特徴とする。 Further, in the present invention, a cylindrical first metal member having a small diameter portion at the end of a large diameter portion and a cylindrical second metal member having an inner diameter substantially equal to that of the small diameter portion are butted against each other. A friction stir welding method in which friction stir is performed using a rotating tool having a proximal end pin and a distal end pin against the butted portion of the metal members to be welded formed by the first aluminum alloy wherein the second metal member is made of a second aluminum alloy, the first aluminum alloy is a grade with higher hardness than the second aluminum alloy, and the taper of the proximal pin The angle is larger than the taper angle of the distal pin, and a stepped pin stepped portion is formed on the outer peripheral surface of the proximal pin, and the opening of the second metal member is provided with the first taper. By inserting the small diameter portion of one metal member, the inner peripheral surface of the second metal member and the stepped side surface of the first metal member are overlapped, and the end surface of the second metal member and the first metal member a butting step of forming a V-shaped cross-sectional gap in the abutting portion by abutting the step inclined surface of the rotating tool, inserting the tip pin of the rotating tool into the outer peripheral surface of the second metal member, and inserting the tip While the outer peripheral surface of the side pin is slightly in contact with the step inclined surface of the first metal member, and the outer peripheral surface of the base end side pin is in contact with the outer peripheral surface of the second metal member, the gap is filled with While flowing the second aluminum alloy, it is made to go around the outer peripheral surface of the second metal member at a predetermined depth along a set movement route set on the second metal member side of the abutting portion. and a final joining step of friction-stirring the butted portion.

かかる接合方法によれば、第二金属部材と先端側ピンとの摩擦熱によって突合せ部の主として第二金属部材側の第二アルミニウム合金が攪拌されて塑性流動化され、突合せ部において第一金属部材と第二金属部材とを接合することができる。また、先端側ピンの外周面を第一金属部材の段差傾斜面にわずかに接触させるに留めるため、第一金属部材から第二金属部材への第一アルミニウム合金の混入を極力少なくすることができる。これにより、突合せ部においては主として第二金属部材側の第二アルミニウム合金が摩擦攪拌されるため、接合強度の低下を抑制することができる。また、基端側ピンの外周面を第二金属部材の外周面に接触させた状態で摩擦攪拌を行うため、バリの発生を抑制することができる。 According to this joining method, the second aluminum alloy mainly on the side of the second metal member in the butted portion is agitated and plastically fluidized by frictional heat between the second metal member and the pin on the distal end side, and the first metal member and the first metal member in the butted portion are agitated. The second metal member can be joined. In addition, since the outer peripheral surface of the pin on the distal end side is only slightly in contact with the step inclined surface of the first metal member, it is possible to minimize the mixing of the first aluminum alloy from the first metal member into the second metal member. . As a result, mainly the second aluminum alloy on the side of the second metal member is friction-stirred at the butted portion, so that a decrease in joint strength can be suppressed. In addition, since the friction stir is performed while the outer peripheral surface of the proximal pin is in contact with the outer peripheral surface of the second metal member, the occurrence of burrs can be suppressed.

また、前記突合せ部に形成される塑性化領域の始端と終端とがオーバーラップしており、前記塑性化領域の一部が重複していることが好ましい。 Moreover, it is preferable that the starting end and the terminal end of the plasticized region formed in the butted portion overlap, and that a part of the plasticized region overlaps.

かかる接合方法によれば、被接合金属部材の水密性及び気密性を高めることができる。 According to such a joining method, the watertightness and airtightness of the metal member to be joined can be enhanced.

また、前記第二金属部材の外径は、前記第一金属部材の大径部の外径よりも大きいことが好ましい。 Moreover, it is preferable that the outer diameter of the second metal member is larger than the outer diameter of the large diameter portion of the first metal member.

かかる接合方法によれば、接合部が金属不足になるのを防ぐことができる。 According to such a joining method, it is possible to prevent the joining portion from becoming short of metal.

また、前記第一金属部材が前記回転ツールの進行方向左側に位置する場合、前記回転ツールを右回転させ、前記第一金属部材が前記回転ツールの進行方向右側に位置する場合、前記回転ツールを左回転させることが好ましい。 Further, when the first metal member is positioned on the left side in the traveling direction of the rotating tool, the rotating tool is rotated to the right, and when the first metal member is positioned on the right side in the traveling direction of the rotating tool, the rotating tool is rotated. Left rotation is preferable.

かかる接合方法によれば、塑性化領域のうち突合せ部側の摩擦攪拌が促進され、より好適に接合することができる。 According to such a joining method, friction stir is promoted in the butt portion side of the plasticized region, and joining can be performed more preferably.

また、前記本接合工程において、前記設定移動ルート上に設定した開始位置から回転する前記先端側ピンを挿入し、進行方向に移動させつつ所定の深さとなるまで徐々に前記先端側ピンを押入することが好ましい。
また、前記本接合工程において、回転する前記先端側ピンを前記設定移動ルートよりもさらに前記第一金属部材から離間した側に設定した開始位置に挿入した後、前記回転ツールの回転中心軸を前記設定移動ルートと重複する位置まで移動させつつ前記所定の深さとなるまで前記先端側ピンを徐々に押入することが好ましい。
Further, in the main joining step, the rotating tip side pin is inserted from the start position set on the set movement route, and the tip side pin is gradually pushed in until it reaches a predetermined depth while moving in the advancing direction. is preferred.
Further, in the main joining step, after inserting the rotating tip side pin into a start position set further away from the first metal member than the set movement route, the rotation center axis of the rotating tool is set to the above It is preferable that the tip side pin is gradually pushed in until reaching the predetermined depth while being moved to a position that overlaps with the set movement route.

かかる接合方法によれば、回転ツールを挿入する際に、設定移動ルート上で摩擦熱が過大になるのを防ぐことができ、第一金属部材側から第二金属部材側への第一アルミニウム合金の混入を防ぐことができる。 According to this joining method, when inserting the rotating tool, it is possible to prevent the frictional heat from becoming excessive on the set movement route, and the first aluminum alloy from the first metal member side to the second metal member side contamination can be prevented.

また、前記本接合工程において、前記設定移動ルート上に終了位置を設定し、前記突合せ部に対する摩擦攪拌の後、前記回転ツールを前記終了位置に移動させつつ前記先端側ピンを徐々に引き抜いて前記終了位置で前記第二金属部材から前記回転ツールを離脱させることが好ましい。
また、前記本接合工程において、前記設定移動ルートよりもさらに前記第一金属部材から離間した側に終了位置を設定し、前記突合せ部に対する摩擦攪拌の後、前記回転ツールを前記終了位置に移動させつつ前記先端側ピンを徐々に引き抜いて前記終了位置で前記第二金属部材から前記回転ツールを離脱させることが好ましい。
Further, in the main welding step, an end position is set on the set movement route, and after the friction stir at the butted portion, the tip side pin is gradually pulled out while moving the rotating tool to the end position. Preferably, the rotary tool is disengaged from the second metal member at the end position.
Further, in the main welding step, an end position is set on a side further away from the first metal member than the set movement route, and after friction stir at the butted portion, the rotating tool is moved to the end position. It is preferable to remove the rotating tool from the second metal member at the end position by gradually withdrawing the pin on the distal end side.

かかる接合方法によれば、回転ツールを離脱させる際に、設定移動ルート上で摩擦熱が過大になるのを防ぐことができ、第一金属部材側から第二金属部材側への第一アルミニウム合金の混入を防ぐことができる。 According to this joining method, when the rotating tool is separated, it is possible to prevent the frictional heat from becoming excessive on the set movement route, and the first aluminum alloy from the first metal member side to the second metal member side can be prevented. contamination can be prevented.

また、前記本接合工程において、前記先端側ピンの先端が、前記第一金属部材の段差側面を突き抜けた状態で前記突合せ部の摩擦攪拌を行うことが好ましい。 Further, in the main joining step, it is preferable that friction stir is performed on the butted portion in a state in which the tip of the tip side pin penetrates the stepped side surface of the first metal member.

かかる接合方法によれば、第一金属部材と第二金属部材との接合強度をより高めることができる。 According to this joining method, the joining strength between the first metal member and the second metal member can be further increased.

本発明に係る摩擦攪拌接合方法によれば、材種の異なるアルミニウム合金を好適に接合することができる。 According to the friction stir welding method according to the present invention, aluminum alloys of different types can be suitably welded.

本発明の実施形態に係る回転ツールを示す側面図である。1 is a side view of a rotary tool according to an embodiment of the invention; FIG. 回転ツールの拡大断面図である。FIG. 4 is an enlarged cross-sectional view of the rotary tool; 回転ツールの第一変形例を示す断面図である。It is a cross-sectional view showing a first modification of the rotary tool. 回転ツールの第二変形例を示す断面図である。It is a sectional view showing the second modification of the rotation tool. 回転ツールの第三変形例を示す断面図である。It is a sectional view showing the third modification of a rotation tool. 本発明の第一実施形態に係る摩擦攪拌接合方法を示す斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a perspective view which shows the friction stir welding method which concerns on 1st embodiment of this invention. 第一実施形態に係る摩擦攪拌接合方法の第一金属部材及び第二金属部材を示す斜視図である。It is a perspective view which shows the 1st metal member and 2nd metal member of the friction stir welding method which concerns on 1st embodiment. 第一実施形態に係る摩擦攪拌接合方法の突合せ工程を示す断面図である。It is sectional drawing which shows the butt|matching process of the friction stir welding method which concerns on 1st embodiment. 第一実施形態に係る摩擦攪拌接合方法の突合せ工程を示す斜視図である。It is a perspective view which shows the butt|matching process of the friction stir welding method which concerns on 1st embodiment. 第一実施形態に係る摩擦攪拌接合方法の本接合工程を示す斜視図である。It is a perspective view which shows the main joining process of the friction stir welding method which concerns on 1st embodiment. 第一実施形態に係る摩擦攪拌接合方法の本接合工程を示す断面図である。FIG. 4 is a cross-sectional view showing the main joining step of the friction stir welding method according to the first embodiment; 本発明の第二実施形態に係る摩擦攪拌接合方法の本接合工程を示す斜視図である。FIG. 5 is a perspective view showing the main joining step of the friction stir welding method according to the second embodiment of the present invention; 本発明の第二実施形態に係る摩擦攪拌接合方法の本接合工程を示す斜視図である。FIG. 5 is a perspective view showing the main joining step of the friction stir welding method according to the second embodiment of the present invention; 従来の摩擦攪拌接合方法を示す断面図である。It is a cross-sectional view showing a conventional friction stir welding method.

本発明の実施形態について、適宜図面を参照しながら説明する。まずは、本実施形態に係る接合方法で用いる回転ツールについて説明する。回転ツールは、摩擦攪拌接合に用いられるツールである。図1に示すように、回転ツールFは、例えば工具鋼で形成されており、基軸部F1と、基端側ピンF2と、先端側ピンF3とで主に構成されている。基軸部F1は、円柱状を呈し、摩擦攪拌装置の主軸に接続される部位である。 Embodiments of the present invention will be described with reference to the drawings as appropriate. First, the rotary tool used in the joining method according to this embodiment will be described. A rotating tool is a tool used for friction stir welding. As shown in FIG. 1, the rotating tool F is made of, for example, tool steel, and is mainly composed of a base shaft portion F1, a proximal pin F2, and a distal pin F3. The base shaft portion F1 has a cylindrical shape and is a portion connected to the main shaft of the friction stirrer.

基端側ピンF2は、基軸部F1に連続し、先端に向けて先細りになっている。基端側ピンF2は、円錐台形状を呈する。基端側ピンF2のテーパー角度Aは適宜設定すればよいが、例えば、135~160°になっている。テーパー角度Aが135°未満であるか、又は、160°を超えると摩擦攪拌後の接合表面粗さが大きくなる。テーパー角度Aは、後記する先端側ピンF3のテーパー角度Bよりも大きくなっている。図2に示すように、基端側ピンF2の外周面には、階段状のピン段差部F21が高さ方向の全体に亘って形成されている。ピン段差部F21は、右回り又は左回りで螺旋状に形成されている。つまり、ピン段差部F21は、平面視して螺旋状であり、側面視すると階段状になっている。本第一実施形態では、回転ツールFを右回転させるため、ピン段差部F21は基端側から先端側に向けて左回りに設定している。 The base end pin F2 is continuous with the base shaft portion F1 and tapers toward the tip. The proximal pin F2 has a truncated cone shape. The taper angle A of the proximal pin F2 may be set appropriately, and is, for example, 135 to 160°. If the taper angle A is less than 135° or exceeds 160°, the joint surface roughness after friction stir increases. The taper angle A is larger than the taper angle B of the distal pin F3, which will be described later. As shown in FIG. 2, a stepped pin stepped portion F21 is formed over the entire height direction on the outer peripheral surface of the base end side pin F2. The pin stepped portion F21 is spirally formed clockwise or counterclockwise. That is, the pin stepped portion F21 has a spiral shape when viewed from above, and has a stepped shape when viewed from the side. In the first embodiment, the pin stepped portion F21 is set counterclockwise from the base end side to the tip end side in order to rotate the rotary tool F right.

なお、回転ツールFを左回転させる場合は、ピン段差部F21を基端側から先端側に向けて右回りに設定することが好ましい。これにより、ピン段差部F21によって塑性流動材が先端側に導かれるため、被接合金属部材の外部に溢れ出る金属を低減することができる。ピン段差部F21は、段差底面F21aと、段差側面F21bとで構成されている。隣り合うピン段差部F21の各頂点F21c,F21cの距離X1(水平方向距離)は、後記する段差角度C及び段差側面F21bの高さY1に応じて適宜設定される。 When rotating the rotating tool F to the left, it is preferable to set the pin stepped portion F21 clockwise from the proximal side to the distal side. As a result, the plastic flow material is guided to the tip end side by the pin stepped portion F21, so that the amount of metal overflowing to the outside of the metal members to be joined can be reduced. The pin step portion F21 is composed of a step bottom surface F21a and a step side surface F21b. The distance X1 (horizontal distance) between the vertices F21c, F21c of the adjacent pin stepped portions F21 is appropriately set according to the stepped angle C and the height Y1 of the stepped side surface F21b, which will be described later.

段差側面F21bの高さY1は適宜設定すればよいが、例えば、0.1~0.4mmで設定されている。高さY1が0.1mm未満であると接合表面粗さが大きくなる。一方、高さY1が0.4mmを超えると接合表面粗さが大きくなる傾向があるとともに、有効段差部数(被接合金属部材と接触しているピン段差部F21の数)も減少する。 The height Y1 of the stepped side surface F21b may be set as appropriate, and is set to 0.1 to 0.4 mm, for example. If the height Y1 is less than 0.1 mm, the joint surface roughness becomes large. On the other hand, when the height Y1 exceeds 0.4 mm, the joint surface roughness tends to increase, and the number of effective stepped portions (the number of pin stepped portions F21 in contact with the metal members to be joined) also decreases.

段差底面F21aと段差側面F21bとでなす段差角度Cは適宜設定すればよいが、例えば、85~120°で設定されている。段差底面F21aは、本実施形態では水平面と平行になっている。段差底面F21aは、ツールの回転軸から外周方向に向かって水平面に対して-5°~15°内の範囲で傾斜していてもよい(マイナスは水平面に対して下方、プラスは水平面に対して上方)。距離X1、段差側面F21bの高さY1、段差角度C及び水平面に対する段差底面F21aの角度は、摩擦攪拌を行う際に、塑性流動材がピン段差部F21の内部に滞留して付着することなく外部に抜けるとともに、段差底面F21aで塑性流動材を押えて接合表面粗さを小さくすることができるように適宜設定する。 The step angle C between the step bottom surface F21a and the step side surface F21b may be set appropriately, but is set to 85 to 120°, for example. The stepped bottom surface F21a is parallel to the horizontal plane in this embodiment. The stepped bottom surface F21a may be inclined in the range of −5° to 15° with respect to the horizontal plane toward the outer peripheral direction from the rotation axis of the tool (minus is downward with respect to the horizontal plane, plus is with respect to the horizontal plane above). The distance X1, the height Y1 of the stepped side surface F21b, the stepped angle C, and the angle of the stepped bottom surface F21a with respect to the horizontal plane are such that the plastic flow material does not stay inside the pin stepped portion F21 and adhere to the outside when performing friction stir. In addition, the step bottom F21a presses the plastic flow material to reduce the joint surface roughness.

図1に示すように、先端側ピンF3は、基端側ピンF2に連続して形成されている。先端側ピンF3は円錐台形状を呈する。先端側ピンF3の先端は回転軸に対して垂直な平坦面F4になっている。先端側ピンF3のテーパー角度Bは、基端側ピンF2のテーパー角度Aよりも小さくなっている。図2に示すように、先端側ピンF3の外周面には、螺旋溝F31が刻設されている。螺旋溝F31は、右回り、左回りのどちらでもよいが、本第一実施形態では回転ツールFを右回転させるため、基端側から先端側に向けて左回りに刻設されている。 As shown in FIG. 1, the distal pin F3 is formed continuously with the proximal pin F2. The distal pin F3 has a truncated cone shape. The distal end of the distal pin F3 forms a flat surface F4 perpendicular to the rotation axis. A taper angle B of the distal pin F3 is smaller than a taper angle A of the proximal pin F2. As shown in FIG. 2, a spiral groove F31 is engraved on the outer peripheral surface of the tip side pin F3. The spiral groove F31 may be either clockwise or counterclockwise, but in the first embodiment, it is engraved counterclockwise from the proximal side toward the distal side in order to rotate the rotary tool F clockwise.

なお、回転ツールFを左回転させる場合は、螺旋溝F31を基端側から先端側に向けて右回りに設定することが好ましい。これにより、螺旋溝F31によって塑性流動材が先端側に導かれるため、被接合金属部材の外部に溢れ出る金属を低減することができる。螺旋溝F31は、螺旋底面F31aと、螺旋側面F31bとで構成されている。隣り合う螺旋溝F31の頂点F31c,F31cの距離(水平方向距離)を長さX2とする。螺旋側面F31bの高さを高さY2とする。螺旋底面F31aと、螺旋側面F31bとで構成される螺旋角度Dは例えば、45~90°で形成されている。螺旋溝F31は、被接合金属部材と接触することにより摩擦熱を上昇させるとともに、塑性流動材を先端側に導く役割を備えている。また、回転ツールFは、先端にスピンドルユニット等の回転駆動手段を備えたロボットアームに取り付けてもよい。 In addition, when rotating the rotating tool F counterclockwise, it is preferable to set the spiral groove F31 clockwise from the base end side to the tip end side. As a result, the plastic flow material is guided to the tip side by the spiral groove F31, so that the amount of metal overflowing to the outside of the metal members to be joined can be reduced. The spiral groove F31 is composed of a spiral bottom surface F31a and a spiral side surface F31b. The distance (horizontal distance) between the apexes F31c, F31c of the adjacent spiral grooves F31 is defined as length X2. Let the height of the spiral side surface F31b be a height Y2. A spiral angle D formed by the spiral bottom surface F31a and the spiral side surface F31b is, for example, 45 to 90°. The spiral groove F31 has the role of increasing the frictional heat by coming into contact with the metal members to be joined and guiding the plastic flow material to the tip side. Further, the rotary tool F may be attached to a robot arm having a rotary drive means such as a spindle unit at its tip.

回転ツールFは、適宜設計変更が可能である。図3は、本発明の回転ツールの第一変形例を示す側面図である。図3に示すように、第一変形例に係る回転ツールFAでは、ピン段差部F21の段差底面F21aと段差側面F21bとのなす段差角度Cが85°になっている。段差底面F21aは、水平面と平行である。このように、段差底面F21aは水平面と平行であるとともに、段差角度Cは、摩擦攪拌中にピン段差部F21内に塑性流動材が滞留して付着することなく外部に抜ける範囲で鋭角としてもよい。 The design of the rotary tool F can be changed as appropriate. FIG. 3 is a side view showing a first modification of the rotary tool of the invention. As shown in FIG. 3, in the rotary tool FA according to the first modified example, the step angle C between the step bottom surface F21a and the step side surface F21b of the pin step portion F21 is 85°. The stepped bottom surface F21a is parallel to the horizontal plane. In this way, the stepped bottom surface F21a is parallel to the horizontal surface, and the stepped angle C may be an acute angle within a range in which the plastic flow material stays and adheres to the pin stepped portion F21 during friction stirring and escapes to the outside. .

図4は、本発明の回転ツールの第二変形例を示す側面図である。図4に示すように、第二変形例に係る回転ツールFBでは、ピン段差部F21の段差角度Cが115°になっている。段差底面F21aは水平面と平行になっている。このように、段差底面F21aは水平面と平行であるとともに、ピン段差部F21として機能する範囲で段差角度Cが鈍角となってもよい。 FIG. 4 is a side view showing a second modification of the rotary tool of the invention. As shown in FIG. 4, in the rotary tool FB according to the second modification, the step angle C of the pin step portion F21 is 115°. The stepped bottom surface F21a is parallel to the horizontal plane. In this manner, the stepped bottom surface F21a may be parallel to the horizontal plane, and the stepped angle C may be an obtuse angle within the range of functioning as the pin stepped portion F21.

図5は、本発明の回転ツールの第三変形例を示す側面図である。図5に示すように、第三変形例に係る回転ツールFCでは、段差底面F21aがツールの回転軸から外周方向に向かって水平面に対して10°上方に傾斜している。段差側面F21bは、鉛直面と平行になっている。このように、摩擦攪拌中に塑性流動材を押さえることができる範囲で、段差底面F21aがツールの回転軸から外周方向に向かって水平面よりも上方に傾斜するように形成されていてもよい。上記の回転ツールの第一~第三変形例によっても、下記の実施形態と同等の効果を奏することができる。 FIG. 5 is a side view showing a third modification of the rotary tool of the invention. As shown in FIG. 5, in the rotary tool FC according to the third modification, the stepped bottom surface F21a is inclined upward by 10° with respect to the horizontal plane from the rotation axis of the tool toward the outer peripheral direction. The stepped side surface F21b is parallel to the vertical plane. In this manner, the stepped bottom surface F21a may be formed so as to be inclined upward from the horizontal surface toward the outer peripheral direction from the rotating shaft of the tool within a range where the plastic flow material can be pressed during friction stirring. The first to third modifications of the rotating tool described above can also produce effects equivalent to those of the following embodiments.

[第一実施形態]
本発明の第一実施形態について、適宜図面を参照しながら説明する。本実施形態に係る摩擦攪拌接合方法では、図6に示すように、第一金属部材1と、第二金属部材2を摩擦攪拌接合するというものである。第一金属部材1と第二金属部材2とを合わせて被接合金属部材Hとも言う。本実施形態に係る摩擦攪拌接合方法では、準備工程と、突合せ工程と、本接合工程と、を行う。
[First embodiment]
A first embodiment of the present invention will be described with reference to the drawings as appropriate. In the friction stir welding method according to this embodiment, as shown in FIG. 6, the first metal member 1 and the second metal member 2 are friction stir welded. The first metal member 1 and the second metal member 2 are also collectively called a metal member H to be joined. In the friction stir welding method according to this embodiment, a preparatory step, a butting step, and a main welding step are performed.

準備工程は、第一金属部材1及び第二金属部材2を準備する工程である。図7に示すように、第一金属部材1は、大径部11と、小径部12を備えた中実の金属部材である。第一金属部材1は、摩擦攪拌可能な金属であれば特に制限されないが、本実施形態では第一アルミニウム合金を主に含んで形成されている。第一アルミニウム合金は、例えば、JISH5302 ADC12(Al-Si-Cu系)等のアルミニウム合金鋳造材を用いている。 The preparation step is a step of preparing the first metal member 1 and the second metal member 2 . As shown in FIG. 7 , the first metal member 1 is a solid metal member having a large diameter portion 11 and a small diameter portion 12 . The first metal member 1 is not particularly limited as long as it is a metal that can be friction-stirred, but in this embodiment it is formed mainly of a first aluminum alloy. As the first aluminum alloy, for example, an aluminum alloy cast material such as JISH5302 ADC12 (Al-Si-Cu system) is used.

大径部11は、円柱状を呈する。小径部12は、円柱状を呈し、大径部11の先端側に同心で形成されている。大径部11と小径部12とで段差部13が形成されている。段差部13は、段差傾斜面13aと、段差側面13bとで構成されている。図8に示すように、段差傾斜面13aは、径外方向に向かうにつれて第二金属部材2から離間する方向に傾斜している。段差傾斜面13aの傾斜角度βは、先端側ピンF3の傾斜角度α(図1参照)と同一になっている。段差側面13bは、小径部12の端面12aに対して垂直になっている。つまり、段差側面13bは、第一金属部材1の軸方向と平行になっている。 The large diameter portion 11 has a cylindrical shape. The small-diameter portion 12 has a columnar shape and is concentrically formed on the distal end side of the large-diameter portion 11 . A step portion 13 is formed by the large diameter portion 11 and the small diameter portion 12 . The step portion 13 is composed of a step inclined surface 13a and a step side surface 13b. As shown in FIG. 8, the step inclined surface 13a is inclined in a direction away from the second metal member 2 toward the outer diameter direction. The inclination angle β of the step inclined surface 13a is the same as the inclination angle α (see FIG. 1) of the distal pin F3. The stepped side surface 13 b is perpendicular to the end surface 12 a of the small diameter portion 12 . That is, the stepped side surface 13b is parallel to the axial direction of the first metal member 1. As shown in FIG.

第二金属部材2は、円筒状を呈する金属部材である。摩擦攪拌可能な金属であれば特に制限されないが、本実施形態では第二アルミニウム合金を主に含んで形成されている。第二アルミニウム合金は、第一アルミニウム合金よりも硬度の低い材料である。第二アルミニウム合金は、例えば、JIS A1050,A1100,A6063等のアルミニウム合金展伸材で形成されている。第二金属部材2の端面21aは、外周面21b及び内周面21cに対して垂直になっている。第一金属部材1の外径と第二金属部材2の外径は同一でもよいが、本実施形態では、第二金属部材2の外径を第一金属部材1の外径よりも大きく形成している。また、第二金属部材2の内周面21cの外径は、第一金属部材1の小径部12の外径と同一又は略同一になっている。 The second metal member 2 is a cylindrical metal member. Although it is not particularly limited as long as it is a metal that can be friction-stirred, in the present embodiment, it is formed mainly containing a second aluminum alloy. The second aluminum alloy is a material with a lower hardness than the first aluminum alloy. The second aluminum alloy is made of, for example, an aluminum alloy wrought material such as JIS A1050, A1100, A6063. The end surface 21a of the second metal member 2 is perpendicular to the outer peripheral surface 21b and the inner peripheral surface 21c. The outer diameter of the first metal member 1 and the outer diameter of the second metal member 2 may be the same. ing. In addition, the outer diameter of the inner peripheral surface 21c of the second metal member 2 is the same or substantially the same as the outer diameter of the small diameter portion 12 of the first metal member 1 .

突合せ工程は、図8に示すように、第一金属部材1の端部と、第二金属部材2の端部とを突き合わせる工程である。突合せ工程では、第一金属部材1の小径部12を、第二金属部材2の開口部に挿入する。これにより、第一金属部材1の段差傾斜面13aと、第二金属部材2の端面21aとが突き合わされて突合せ部J1が形成される。突合せ部J1には、周方向にわたって断面V字状の隙間が形成される。また、第一金属部材1の段差側面13bと、第二金属部材2の内周面21cとが重ね合わされて突合せ部J2が形成される。 The butting step is a step of butting the end of the first metal member 1 and the end of the second metal member 2, as shown in FIG. In the butting step, the small diameter portion 12 of the first metal member 1 is inserted into the opening of the second metal member 2 . As a result, the step inclined surface 13a of the first metal member 1 and the end surface 21a of the second metal member 2 are butted together to form a butt portion J1. A gap having a V-shaped cross section is formed in the butted portion J1 in the circumferential direction. Moreover, the stepped side surface 13b of the first metal member 1 and the inner peripheral surface 21c of the second metal member 2 are overlapped to form a butt portion J2.

図9に示すように、第二金属部材2の外周面21bには、設定移動ルートL1を設定する。設定移動ルートL1は、突合せ部J1よりも第二金属部材2側に設定されており、突合せ部J1と平行になっている。設定移動ルートL1は、後記する本接合工程において、突合せ部J1を接合するために必要な回転ツールFの移動ルートである。設定移動ルートL1については追って詳述する。 As shown in FIG. 9, a set movement route L1 is set on the outer peripheral surface 21b of the second metal member 2. As shown in FIG. The set movement route L1 is set closer to the second metal member 2 than the abutting portion J1, and is parallel to the abutting portion J1. The set movement route L1 is a movement route of the rotary tool F necessary for joining the butt portion J1 in the main joining process described later. The set travel route L1 will be described later in detail.

本接合工程は、図10及び図11に示すように、回転ツールFを用いて突合せ部J1を摩擦攪拌接合する工程である。本接合工程では、回転ツールFを固定して、被接合金属部材Hを周方向に回転させてもよいし、被接合金属部材Hを固定して被接合金属部材Hの周りに回転ツールFを移動させてもよい。 10 and 11, the main welding step is a step of friction stir welding the butted portion J1 using a rotating tool F. FIG. In the main welding process, the rotating tool F may be fixed and the metal member H to be welded may be rotated in the circumferential direction, or the metal member H to be welded may be fixed and the rotating tool F may be rotated around the metal member H to be welded. You can move it.

図10に示すように、本接合工程では、開始位置SP1から中間点S1までの押入区間と、設定移動ルートL1上の中間点S1から一周廻って中間点S2までの本区間と、中間点S2から終了位置EP1までの離脱区間の三つの区間を連続して摩擦攪拌接合する。中間点S1,S2は、設定移動ルートL1上に設定されている。開始位置SP1は、第二金属部材2の外周面21bにおいて、設定移動ルートL1よりも第一金属部材1から離間する側に設定されている。本実施形態では、開始位置SP1と中間点S1とを結ぶ線分と、設定移動ルートL1とのなす角度が鈍角となる位置に設定している。 As shown in FIG. 10, in the main joining step, there are a push-in section from the starting position SP1 to the intermediate point S1, a main section from the intermediate point S1 on the set movement route L1 to the intermediate point S2, and an intermediate point S2. to the end position EP1 are continuously friction stir welded. The intermediate points S1 and S2 are set on the set movement route L1. The start position SP1 is set on the outer peripheral surface 21b of the second metal member 2 on the side farther from the first metal member 1 than the set movement route L1. In this embodiment, the angle between the line segment connecting the start position SP1 and the intermediate point S1 and the set movement route L1 is set to be an obtuse angle.

本接合工程の押入区間では、図10及び図11に示すように、開始位置SP1から中間点S1までの摩擦攪拌を行う。押入区間では、外周面21bに対して回転中心軸Zを垂直にしつつ、右回転させた先端側ピンF3を開始位置SP1に挿入し、中間点S1まで移動させる。つまり、回転ツールFが相対移動する間、回転中心軸Zが第二金属部材2の外周面21bの法線と重なるように設定する。この際、図10に示すように、少なくとも中間点S1に到達するまでに予め設定された「所定の深さ」に達するように先端側ピンF3を徐々に押し入れていく。つまり、回転ツールFを一ヶ所に留まらせることなく、回転ツールFを設定移動ルートL1に移動させながら徐々に下降させていく。 In the pressing section of the main joining step, as shown in FIGS. 10 and 11, friction stir is performed from the start position SP1 to the intermediate point S1. In the push-in section, while the rotation center axis Z is perpendicular to the outer peripheral surface 21b, the tip side pin F3 rotated to the right is inserted into the start position SP1 and moved to the intermediate point S1. In other words, the center axis of rotation Z is set so as to overlap the normal line of the outer peripheral surface 21b of the second metal member 2 while the rotating tool F relatively moves. At this time, as shown in FIG. 10, the tip side pin F3 is gradually pushed in so as to reach a preset "predetermined depth" at least until reaching the intermediate point S1. In other words, the rotating tool F is gradually lowered while being moved along the set movement route L1 without remaining in one place.

また、中間点S1に達した際に、先端側ピンF3の外周面と第一金属部材1の段差傾斜面13aとがわずかに接触するように設定する。さらに、基端側ピンF2の外周面と第二金属部材2の外周面21bとが接触するように設定しつつ先端側ピンF3の平坦面F4が段差側面13bを突き抜けるように設定する。そして、そのまま本区間の摩擦攪拌接合に移行する。 Further, the outer peripheral surface of the tip end side pin F3 and the step inclined surface 13a of the first metal member 1 are set so as to be slightly in contact with each other when the intermediate point S1 is reached. Further, the flat surface F4 of the distal pin F3 is set to pass through the stepped side surface 13b while the outer peripheral surface of the proximal pin F2 and the outer peripheral surface 21b of the second metal member 2 are set to be in contact with each other. Then, the friction stir welding of this section is performed as it is.

先端側ピンF3の外周面と第一金属部材1の段差傾斜面13aとの接触代(オフセット量)Nは、例えば、0<N≦1.0mmの間で設定し、好ましくは0<N≦0.85mmの間で設定し、より好ましくは0<N≦0.65mmの間で設定する。 A contact margin (offset amount) N between the outer peripheral surface of the tip-side pin F3 and the step inclined surface 13a of the first metal member 1 is set, for example, within a range of 0<N≦1.0 mm, preferably 0<N≦1.0 mm. It is set between 0.85 mm, more preferably between 0<N≦0.65 mm.

設定移動ルートL1は、図11に示すように、先端側ピンF3の平坦面F4の中心が通過する軌跡を示している。つまり、設定移動ルートL1は、突合せ部J1の周方向において、第一金属部材1の段差傾斜面13aと先端側ピンF3の外周面とを平行にしつつ両者がわずかに接触するように設定されている。 The set movement route L1, as shown in FIG. 11, indicates a locus through which the center of the flat surface F4 of the distal pin F3 passes. In other words, the set movement route L1 is set so that the step inclined surface 13a of the first metal member 1 and the outer peripheral surface of the tip end side pin F3 are parallel to each other in the circumferential direction of the butted portion J1 and are slightly in contact with each other. there is

本区間においては、上方から見た場合(外周面21b側から見た場合)に、平坦面F4の中心が、設定移動ルートL1と重なるように回転ツールFを相対移動させる。本区間においては、第二金属部材2の第二アルミニウム合金を突合せ部J1の隙間に流入させながら摩擦攪拌接合を行う。先端側ピンF3の外周面と段差傾斜面13aとが接触しないように設定すると、突合せ部J1の接合強度が低くなる。一方、先端側ピンF3の外周面と段差傾斜面13aとの接触代Nが1.0mmを超えると第一金属部材1の第一アルミニウム合金が、第二金属部材2側に大量に混入して接合不良となるおそれがある。 In this section, the rotary tool F is relatively moved so that the center of the flat surface F4 overlaps the set movement route L1 when viewed from above (when viewed from the outer peripheral surface 21b side). In this section, friction stir welding is performed while allowing the second aluminum alloy of the second metal member 2 to flow into the gap of the butt portion J1. If the outer peripheral surface of the tip side pin F3 and the step inclined surface 13a are set so as not to come into contact with each other, the joining strength of the butted portion J1 is lowered. On the other hand, when the contact margin N between the outer peripheral surface of the tip side pin F3 and the step inclined surface 13a exceeds 1.0 mm, a large amount of the first aluminum alloy of the first metal member 1 is mixed into the second metal member 2 side. Poor bonding may occur.

本区間では、図6に示すように、回転ツールFを一周させて先端側ピンF3が中間点S2に到達したら、そのまま離脱区間に移行する。離脱区間では、中間点S2から終了位置EP1に向かうまでの間に先端側ピンF3を徐々に上方に移動させて、終了位置EP1で第二金属部材2から先端側ピンF3を離脱させる。つまり、回転ツールFを一ヶ所に留まらせることなく、回転ツールFを終了位置EP1に移動させながら第二金属部材2から離間する方向に徐々に引抜いていく。終了位置EP1は、終了位置EP1と中間点S2とが結ぶ線分と設定移動ルートL1とでなす角度が鈍角となる位置に設定する。回転ツールFの移動軌跡には塑性化領域Wが形成される。 In this section, as shown in FIG. 6, when the tip side pin F3 reaches the intermediate point S2 by rotating the rotating tool F once, the process proceeds to the detachment section. In the detachment section, the tip pin F3 is gradually moved upward from the intermediate point S2 to the end position EP1, and is detached from the second metal member 2 at the end position EP1. In other words, the rotating tool F is gradually pulled out in a direction away from the second metal member 2 while being moved to the end position EP1 without stopping the rotating tool F at one place. The end position EP1 is set at a position where the angle formed by the line segment connecting the end position EP1 and the intermediate point S2 and the set movement route L1 is an obtuse angle. A plasticized region W is formed in the movement trajectory of the rotating tool F. As shown in FIG.

以上説明した本実施形態における摩擦攪拌接合方法によれば、第二金属部材2と先端側ピンF3との摩擦熱によって突合せ部J1の主として第二金属部材2側の第二アルミニウム合金が攪拌されて塑性流動化され、突合せ部J1において第一金属部材1の段差傾斜面13aと、第二金属部材2の端面21aとを接合することができる。 According to the friction stir welding method of the present embodiment described above, the frictional heat between the second metal member 2 and the tip end pin F3 stirs mainly the second aluminum alloy on the second metal member 2 side of the butted portion J1. It is plastically fluidized, and the step inclined surface 13a of the first metal member 1 and the end surface 21a of the second metal member 2 can be joined at the abutting portion J1.

また、先端側ピンF3の先端側ピンF3の外周面を第一金属部材1の段差傾斜面13aにわずかに接触させるに留めるため、第一金属部材1から第二金属部材2への第一アルミニウム合金の混入を極力少なくすることができる。これにより、突合せ部J1においては主として第二金属部材2側の第二アルミニウム合金が摩擦攪拌されるため、接合強度の低下を抑制することができる。つまり、本接合工程では、先端側ピンF3の回転中心軸Zに対して一方側と他方側で、先端側ピンF3が受ける材料抵抗の不均衡を極力少なくすることができる。これにより、塑性流動材がバランス良く摩擦攪拌されるため、接合強度の低下を抑制することができる。 In addition, in order to keep the outer peripheral surface of the tip side pin F3 of the tip side pin F3 in slight contact with the step inclined surface 13a of the first metal member 1, the first aluminum from the first metal member 1 to the second metal member 2 is Mixing of the alloy can be reduced as much as possible. As a result, mainly the second aluminum alloy on the side of the second metal member 2 is friction-stirred at the butted portion J1, so that a decrease in joint strength can be suppressed. That is, in the main joining step, the imbalance in the material resistance received by the distal end pin F3 can be minimized between one side and the other side with respect to the rotation center axis Z of the distal end side pin F3. As a result, the plastic flow material is friction-stirred in a well-balanced manner, so that a decrease in bonding strength can be suppressed.

また、本接合工程において、先端側ピンF3の外周面と第一金属部材1の段差傾斜面13aとが平行となるように回転ツールFの位置を設定することで、先端側ピンF3と第一金属部材1とをバランスよく接触させることができる。また、第二金属部材2の外径を、第一金属部材1の外径よりも大きく設定することにより、接合部が金属不足になるのを防ぐことができる。また、先端側ピンF3の先端を、第一金属部材1の段差側面13bに達するように設定することで、突合せ部J2も確実に摩擦攪拌できるため、接合強度を高めることができる。 In addition, in the main joining process, by setting the position of the rotating tool F so that the outer peripheral surface of the tip side pin F3 and the step inclined surface 13a of the first metal member 1 are parallel to each other, the tip side pin F3 and the first Contact with the metal member 1 can be achieved in a well-balanced manner. Further, by setting the outer diameter of the second metal member 2 to be larger than the outer diameter of the first metal member 1, it is possible to prevent metal shortage at the joint. Further, by setting the tip of the tip side pin F3 so as to reach the stepped side surface 13b of the first metal member 1, the butted portion J2 can also be reliably friction-stirred, so that the bonding strength can be increased.

また、本実施形態では、本接合工程において、基端側ピンF2の外周面と第二金属部材2の外周面21bとを接触させ、塑性流動材を押さえながら摩擦攪拌を行うため、バリの発生を抑制することができる。また、基端側ピンF2の外周面で塑性流動材を押えることができるため、接合表面(第一金属部材1の外周面11b及び第二金属部材2の外周面21b)に形成される段差凹溝を小さくすることができるとともに、段差凹溝の脇に形成される膨出部を無くすか若しくは小さくすることができる。また、基端側ピンF2の階段状のピン段差部F21は浅く、かつ、出口が広いため、塑性流動材を段差底面F21aで押えつつ塑性流動材がピン段差部F21の外部に抜けやすくなっている。そのため、基端側ピンF2で塑性流動材を押えても基端側ピンF2の外周面に塑性流動材が付着し難い。よって、接合表面粗さを小さくすることができるとともに、接合品質を好適に安定させることができる。 In addition, in the present embodiment, in the main joining step, the outer peripheral surface of the base end pin F2 and the outer peripheral surface 21b of the second metal member 2 are brought into contact with each other, and friction stir is performed while the plastic flow material is pressed. can be suppressed. In addition, since the plastic flow material can be pressed by the outer peripheral surface of the proximal pin F2, the step recesses formed on the joining surfaces (the outer peripheral surface 11b of the first metal member 1 and the outer peripheral surface 21b of the second metal member 2) It is possible to reduce the size of the groove and eliminate or reduce the bulging portion formed on the side of the stepped groove. Further, since the stepped pin stepped portion F21 of the base end pin F2 is shallow and has a wide outlet, the plastic flowable material is easily pulled out of the pin stepped portion F21 while the stepped bottom face F21a holds down the plastic flowable material. there is Therefore, even if the base end pin F2 presses the plastic flow material, the plastic flow material is less likely to adhere to the outer peripheral surface of the base end pin F2. Therefore, the joint surface roughness can be reduced, and the joint quality can be preferably stabilized.

ここで、先端側ピンF3を設定移動ルートL1に挿入する際、所定の深さとなるまで鉛直方向に先端側ピンF3を押入すると、摩擦攪拌の開始位置における摩擦熱が過大となる。これにより、当該開始位置において、第一金属部材1側の金属が第二金属部材2側に混入しやすくなり、接合不良の一因となるという問題がある。 Here, when inserting the tip side pin F3 into the set movement route L1, if the tip side pin F3 is pushed in the vertical direction to a predetermined depth, the frictional heat at the start position of friction stir becomes excessive. As a result, the metal on the side of the first metal member 1 tends to mix with the side of the second metal member 2 at the starting position, which causes a problem of poor bonding.

これに対し、本実施形態の本接合工程の押入区間では、開始位置SP1から設定移動ルートL1と重複する位置まで回転ツールFを移動させつつ所定の深さとなるまで先端側ピンF3を徐々に押入することにより、設定移動ルートL1上で回転ツールFが停止して摩擦熱が局所的に過大になるのを防ぐことができる。
同様に、本接合工程の離脱区間では、設定移動ルートL1から終了位置EP1まで回転ツールFを移動させつつ所定の深さから先端側ピンF3を徐々に引き抜いて離脱させることにより、設定移動ルートL1上で回転ツールFが停止して摩擦熱が局所的に過大になるのを防ぐことができる。
On the other hand, in the pushing-in section of the main joining step of the present embodiment, while moving the rotary tool F from the starting position SP1 to a position overlapping the set movement route L1, the tip-side pin F3 is gradually pushed in until reaching a predetermined depth. By doing so, it is possible to prevent the rotary tool F from stopping on the set movement route L1 and causing the frictional heat to locally become excessively large.
Similarly, in the detachment section of the main joining process, while moving the rotary tool F from the set movement route L1 to the end position EP1, the distal end side pin F3 is gradually pulled out from a predetermined depth to be detached. It is possible to prevent the rotary tool F from stopping at the top and the frictional heat from becoming excessive locally.

これらにより、設定移動ルートL1上で摩擦熱が過大となり、第一金属部材1から第二金属部材2へ第一アルミニウム合金が過剰に混入して接合不良となるのを防ぐことができる。 As a result, it is possible to prevent the frictional heat from becoming excessive on the set movement route L1 and the excessive mixing of the first aluminum alloy from the first metal member 1 to the second metal member 2, resulting in poor bonding.

また、本接合工程において、開始位置SP1及び終了位置EP1の位置は適宜設定すればよいが、開始位置SP1と設定移動ルートL1とのなす角度、終了位置EP1と設定移動ルートL1とのなす角度が鈍角となるように設定することにより、中間点S1,S2で回転ツールFの移動速度が低下することなくスムーズに本区間又は離脱区間に移行することができる。これにより、設定移動ルートL1上で回転ツールFが停止又は移動速度が低下することにより、摩擦熱が過大となることを防ぐことができる。なお、上方から見て回転ツールFの軌跡が円弧を描くように開始位置SP1から設定移動ルートL1に回転ツールFを移動させてもよい。同様に、上方から見て回転ツールFの軌跡が円弧を描くように設定移動ルートL1から終了位置EP1に回転ツールFを移動させてもよい。 In addition, in the main joining step, the positions of the start position SP1 and the end position EP1 may be appropriately set, but the angle formed between the start position SP1 and the set movement route L1 and the angle formed between the end position EP1 and the set movement route L1 are By setting the obtuse angle, the movement speed of the rotating tool F does not decrease at the intermediate points S1 and S2, and the transition to the main section or the detachment section can be performed smoothly. As a result, it is possible to prevent frictional heat from becoming excessive due to the rotation tool F stopping or moving at a reduced speed on the set movement route L1. Note that the rotary tool F may be moved from the start position SP1 to the set movement route L1 so that the trajectory of the rotary tool F draws an arc when viewed from above. Similarly, the rotary tool F may be moved from the set movement route L1 to the end position EP1 so that the trajectory of the rotary tool F draws an arc when viewed from above.

また、本実施形態の本接合工程では、回転ツールFの回転方向及び進行方向は適宜設定すればよいが、回転ツールFの移動軌跡に形成される塑性化領域Wのうち、第一金属部材1(突合せ部J1側)がシアー側となり、第二金属部材2側がフロー側となるように回転ツールFの回転方向及び進行方向を設定した。第一金属部材1側がシアー側となるように設定することで、突合せ部J1の周囲における先端側ピンF3による攪拌作用が高まり、突合せ部J1における温度上昇が期待でき、突合せ部J1において第一金属部材1の段差傾斜面13aと、第二金属部材2の端面21aとをより確実に接合することができる。 In addition, in the main joining process of the present embodiment, the rotation direction and the traveling direction of the rotary tool F may be appropriately set. The direction of rotation and the direction of travel of the rotating tool F were set so that the (butted portion J1 side) was on the shear side and the second metal member 2 side was on the flow side. By setting the first metal member 1 side to be the shear side, the agitation action by the tip side pin F3 around the butt portion J1 is enhanced, and the temperature rise at the butt portion J1 can be expected, and the first metal member 1 is expected to increase in the butt portion J1. The step inclined surface 13a of the member 1 and the end surface 21a of the second metal member 2 can be joined more reliably.

なお、シアー側(Advancing side)とは、被接合部に対する回転ツールの外周の相対速度が、回転ツールの外周における接線速度の大きさに移動速度の大きさを加算した値となる側を意味する。一方、フロー側(Retreating side)とは、回転ツールの移動方向の反対方向に回転ツールが回動することで、被接合部に対する回転ツールの相対速度が低速になる側を言う。 The shear side (Advancing side) means the side where the relative velocity of the outer circumference of the rotating tool with respect to the part to be welded is the sum of the tangential velocity at the outer circumference of the rotating tool and the moving velocity. . On the other hand, the flow side (retreating side) refers to the side where the relative speed of the rotating tool with respect to the parts to be welded becomes low due to the rotation of the rotating tool in the direction opposite to the moving direction of the rotating tool.

また、第一金属部材1の第一アルミニウム合金は、第二金属部材2の第二アルミニウム合金よりも硬度の高い材料になっている。これにより、被接合金属部材Hの耐久性を高めることができる。また、第一金属部材1の第一アルミニウム合金をアルミニウム合金鋳造材とし、第二金属部材2の第二アルミニウム合金をアルミニウム合金展伸材とすることが好ましい。第一アルミニウム合金を例えば、JISH5302 ADC12等のAl-Si-Cu系アルミニウム合金鋳造材とすることにより、第一金属部材1の鋳造性、強度、被削性等を高めることができる。また、第二アルミニウム合金を例えば、JIS A1000系又はA6000系とすることにより、加工性、熱伝導性を高めることができる。 Moreover, the first aluminum alloy of the first metal member 1 is a material with higher hardness than the second aluminum alloy of the second metal member 2 . Thereby, the durability of the metal member H to be joined can be improved. Moreover, it is preferable that the first aluminum alloy of the first metal member 1 is a cast aluminum alloy material, and the second aluminum alloy of the second metal member 2 is a wrought aluminum alloy material. Castability, strength, machinability, etc. of the first metal member 1 can be enhanced by using, for example, an Al--Si--Cu-based aluminum alloy cast material such as JISH5302 ADC12 as the first aluminum alloy. Further, by using, for example, JIS A1000 series or A6000 series as the second aluminum alloy, workability and thermal conductivity can be enhanced.

また、本接合工程においては、突合せ部J1の全周を摩擦攪拌接合するため、被接合金属部材Hの気密性及び水密性を高めることができる。また、本接合工程の終端部分において、回転ツールFが中間点S1を完全に通過してから終了位置EP1に向かうようにする。つまり、本接合工程によって形成された塑性化領域Wの各端部同士をオーバーラップさせることにより、より気密性及び水密性を高めることができる。 In addition, in the main welding step, since the entire circumference of the butted portion J1 is friction stir welded, the airtightness and watertightness of the metal member H to be welded can be enhanced. Also, at the end portion of the main joining process, the rotating tool F is made to head toward the end position EP1 after completely passing the intermediate point S1. That is, by overlapping the ends of the plasticized regions W formed by the main bonding step, the airtightness and watertightness can be further improved.

なお、本接合工程では、回転ツールFの回転速度を一定としてもよいが、可変させてもよい。本接合工程の押入区間において、開始位置SP1における回転ツールFの回転速度をV1とし、本区間における回転ツールFの回転速度をV2とすると、V1>V2としてもよい。回転速度のV2は、設定移動ルートL1における予め設定された一定の回転速度である。つまり、開始位置SP1では、回転速度を高く設定しておき、押入区間内で徐々に回転速度を低減させながら本区間に移行してもよい。 In addition, in the main joining step, the rotating speed of the rotating tool F may be constant, but may be varied. In the pressing section of the main joining step, if the rotational speed of the rotating tool F at the start position SP1 is V1 and the rotational speed of the rotating tool F in this section is V2, V1>V2 may be satisfied. The rotation speed V2 is a preset constant rotation speed on the set movement route L1. In other words, at the start position SP1, the rotation speed may be set high, and the rotation speed may be gradually reduced in the push-in interval to shift to the main interval.

また、本接合工程の離脱区間において、本区間における回転ツールFの回転速度をV2、終了位置EP1において離脱させるときの回転ツールFの回転速度をV3とすると、V3>V2としてもよい。つまり、離脱区間に移行したら、終了位置EP1に向けて徐々に回転速度を上げながら第二金属部材2から回転ツールFを離脱させてもよい。回転ツールFを第二金属部材2に押し入れる際又は第二金属部材2から離脱させる際に、前記のように設定することで、押入区間又は離脱区間時における少ない押圧力を、回転速度で補うことができるため、摩擦攪拌を好適に行うことができる。 Further, in the detachment section of the main joining step, V3>V2 may be satisfied, where V2 is the rotational speed of the rotating tool F in this section and V3 is the rotational speed of the rotating tool F when detached at the end position EP1. That is, after shifting to the detachment section, the rotating tool F may be detached from the second metal member 2 while gradually increasing the rotation speed toward the end position EP1. When the rotating tool F is pushed into the second metal member 2 or separated from the second metal member 2, by setting as described above, the small pressing force in the pushing section or the separating section is compensated for by the rotation speed. Therefore, friction stirring can be performed favorably.

[第二実施形態]
次に、本発明の第二実施形態に係る摩擦攪拌接合方法について説明する。第二実施形態では、図12及び図13に示すように、本接合工程における開始位置SP1及び終了位置EP1の位置をいずれも設定移動ルートL1上に設定する点で第一実施形態と相違する。第二実施形態では、第一実施形態と相違する部分を中心に説明する。
[Second embodiment]
Next, a friction stir welding method according to a second embodiment of the present invention will be described. As shown in FIGS. 12 and 13, the second embodiment differs from the first embodiment in that both the start position SP1 and the end position EP1 in the main joining step are set on the set movement route L1. In the second embodiment, the description will focus on the parts that are different from the first embodiment.

第二実施形態に係る液冷ジャケットの製造では、準備工程と、突合せ工程と、本接合工程とを行う。準備工程及び突合せ工程は、第一実施形態と同一である。 In manufacturing the liquid cooling jacket according to the second embodiment, a preparation process, a butting process, and a final joining process are performed. The preparation process and matching process are the same as in the first embodiment.

本接合工程では、図12に示すように、開始位置SP1を設定移動ルートL1上に設定する。本接合工程では、開始位置SP1から中間点S1までの押入区間と、設定移動ルートL1上の中間点S1から一周廻って中間点S2までの本区間と、中間点S2から終了位置EP1(図13参照)までの離脱区間の三つの区間を連続して摩擦攪拌する。 In the main joining step, as shown in FIG. 12, the starting position SP1 is set on the set movement route L1. In the main joining step, there is a push-in section from the starting position SP1 to the intermediate point S1, a main section from the intermediate point S1 on the set movement route L1 to the intermediate point S2 after going around once, and an end position EP1 from the intermediate point S2 (see FIG. 13). See), the three sections of the detachment section are continuously friction-stirred.

押入区間では、図12に示すように、開始位置SP1から中間点S1までの摩擦攪拌を行う。押入区間では、回転中心軸Zを垂直となるようにしつつ、右回転させた先端側ピンF3を開始位置SP1に挿入し、中間点S1まで移動させる。この際、少なくとも中間点S1に到達するまでに予め設定された「所定の深さ」に達するように先端側ピンF3を徐々に押し入れていく。つまり、回転ツールFを一ヶ所に留まらせることなく、回転ツールFを設定移動ルートL1に移動させながら徐々に下降させていく。 In the push-in section, as shown in FIG. 12, friction stir is performed from the start position SP1 to the intermediate point S1. In the push-in section, the tip side pin F3 rotated to the right is inserted into the starting position SP1 and moved to the intermediate point S1 while the rotation center axis Z is vertical. At this time, the tip side pin F3 is gradually pushed in so as to reach a preset "predetermined depth" at least until reaching the intermediate point S1. In other words, the rotating tool F is gradually lowered while being moved along the set movement route L1 without remaining in one place.

また、押入区間においては、中間点S1に達した際に、先端側ピンF3の外周面と第一金属部材1の段差傾斜面13aとがわずかに接触するように設定する。さらに、基端側ピンF2の外周面と第二金属部材2の外周面21bとが接触するように設定するとともに、基端側ピンF2の平坦面F4が第一金属部材1の段差側面13bを突き抜けるように設定する。この回転ツールFの姿勢を維持した状態で、そのまま本区間の摩擦攪拌接合に移行する。先端側ピンF3の外周面と第一金属部材1の段差傾斜面13aとの接触代(オフセット量)N及び設定移動ルートL1の設定は第一実施形態と同一である。 Further, in the push-in section, the outer peripheral surface of the tip end side pin F3 and the step inclined surface 13a of the first metal member 1 are set so as to slightly contact each other when the middle point S1 is reached. Further, the outer peripheral surface of the proximal pin F2 and the outer peripheral surface 21b of the second metal member 2 are set so as to be in contact with each other, and the flat surface F4 of the proximal pin F2 touches the stepped side surface 13b of the first metal member 1. Set to penetrate. While maintaining this posture of the rotating tool F, the friction stir welding of this section is performed as it is. The contact margin (offset amount) N between the outer peripheral surface of the distal pin F3 and the step inclined surface 13a of the first metal member 1 and the setting of the set movement route L1 are the same as in the first embodiment.

本区間では、図13のように設定移動ルートL1に沿って回転ツールFを一周させる。回転ツールFを一周させて先端側ピンF3が中間点S2に到達したら、そのまま離脱区間に移行する。終了位置EP1は、設定移動ルートL1上に設定されている。離脱区間では、中間点S2から終了位置EP1に向かうまでの間に先端側ピンF3を徐々に引き抜いて、終了位置EP1で第二金属部材2から先端側ピンF3を離脱させる。つまり、回転ツールFを一ヶ所に留まらせることなく、回転ツールFを終了位置EP1に移動させながら徐々に引抜いていく。 In this section, as shown in FIG. 13, the rotating tool F is made to go around along the set movement route L1. When the rotating tool F is made to go around once and the tip side pin F3 reaches the intermediate point S2, the transition is made to the detachment section. The end position EP1 is set on the set movement route L1. In the separation section, the tip side pin F3 is gradually pulled out from the intermediate point S2 to the end position EP1, and the tip side pin F3 is separated from the second metal member 2 at the end position EP1. In other words, the rotating tool F is gradually pulled out while being moved to the end position EP1 without remaining in one place.

以上説明した第二実施形態に係る摩擦攪拌接合方法によっても第一実施形態と略同等の効果を奏することができる。第二実施形態のように本接合工程における開始位置SP1及び終了位置EP1は、設定移動ルートL1上に設定してもよい。 The friction stir welding method according to the second embodiment described above can also achieve substantially the same effects as those of the first embodiment. As in the second embodiment, the start position SP1 and the end position EP1 in the main joining step may be set on the set movement route L1.

以上、本発明の実施形態について説明したが、適宜設計変更が可能である。例えば、第一金属部材1及び第二金属部材2は、矩形、多角形、楕円形等他の断面形状の柱状部材でもよい。また、両方とも中実部材でもよいし、両方とも筒状部材でもよい。 Although the embodiments of the present invention have been described above, design changes are possible as appropriate. For example, the first metal member 1 and the second metal member 2 may be columnar members having other cross-sectional shapes such as rectangular, polygonal, and elliptical. Also, both may be solid members, or both may be tubular members.

1 第一金属部材
2 第二金属部材
F 回転ツール
F2 基端側ピン
F3 先端側ピン
F4 平坦面
J1 突合せ部
SP1 開始位置
EP1 終了位置
W 塑性化領域
REFERENCE SIGNS LIST 1 first metal member 2 second metal member F rotary tool F2 proximal pin F3 distal pin F4 flat surface J1 butted portion SP1 start position EP1 end position W plastic region

Claims (10)

大径部の端部に小径部を備えた柱状の第一金属部材と、前記小径部と略同等の内径を有する筒状の第二金属部材とを端部同士で突き合わせて形成された被接合金属部材の突合せ部に対して、基端側ピンと先端側ピンとを備える回転ツールを用いて摩擦攪拌を行う摩擦攪拌接合方法であって、
前記第一金属部材は第一アルミニウム合金で形成されており、前記第二金属部材は第二アルミニウム合金で形成されており、前記第一アルミニウム合金は前記第二アルミニウム合金よりも硬度が高い材種であり、
前記基端側ピンのテーパー角度は、前記先端側ピンのテーパー角度よりも大きくなっており、前記基端側ピンの外周面には階段状のピン段差部が形成されており、
前記第二金属部材の開口部に前記第一金属部材の前記小径部を挿入することにより、前記第二金属部材の内周面と前記第一金属部材の段差側面とを重ね合わせるとともに、前記第二金属部材の端面と前記第一金属部材の段差傾斜面とを突き合わせて突合せ部に断面V字状の隙間を形成する突合せ工程と、
回転する前記回転ツールの前記先端側ピンを前記第二金属部材の外周面に挿入し、前記先端側ピンの外周面を前記第一金属部材の前記段差傾斜面にわずかに接触させつつ、前記基端側ピンの外周面を前記第二金属部材の外周面に接触させた状態で、前記隙間に前記第二アルミニウム合金を流入させながら、前記突合せ部よりも前記第二金属部材側に設定された設定移動ルートに沿って所定の深さで前記第二金属部材の外周面の廻りに一周させて前記突合せ部を摩擦攪拌する本接合工程と、を含むことを特徴とする摩擦攪拌接合方法。
A first columnar metal member having a small diameter portion at the end of a large diameter portion and a second cylindrical metal member having an inner diameter substantially equal to that of the small diameter portion are butted together at their ends to be joined. A friction stir welding method in which friction stir is performed using a rotating tool having a proximal pin and a distal pin to a butted portion of a metal member,
The first metal member is made of a first aluminum alloy, the second metal member is made of a second aluminum alloy, and the first aluminum alloy has a higher hardness than the second aluminum alloy. and
A taper angle of the proximal pin is larger than a taper angle of the distal pin, and a stepped pin step portion is formed on an outer peripheral surface of the proximal pin,
By inserting the small-diameter portion of the first metal member into the opening of the second metal member, the inner peripheral surface of the second metal member and the stepped side surface of the first metal member are overlapped, and the abutting step of butting the end faces of the two metal members and the step inclined surface of the first metal member to form a gap having a V-shaped cross section at the butting portion;
The tip side pin of the rotating rotary tool is inserted into the outer peripheral surface of the second metal member, and the outer peripheral surface of the tip side pin is brought into slight contact with the step inclined surface of the first metal member. While the outer peripheral surface of the end-side pin is in contact with the outer peripheral surface of the second metal member, the second aluminum alloy is allowed to flow into the gap, and is set closer to the second metal member than the butt portion. A friction stir welding method, comprising: a main welding step of friction-stirring the butted portion by making a circle around the outer peripheral surface of the second metal member at a predetermined depth along a set moving route.
前記突合せ部に形成される塑性化領域の始端と終端とがオーバーラップしており、前記塑性化領域の一部が重複していることを特徴とする請求項1に記載の摩擦攪拌接合方法。 2. The friction stir welding method according to claim 1, wherein a starting end and an end of the plasticized region formed in the butted portion are overlapped, and a part of the plasticized region is overlapped. 前記第二金属部材の外径は、前記第一金属部材の大径部の外径よりも大きいことを特徴とする請求項1又は請求項2に記載の摩擦攪拌接合方法。 3. The friction stir welding method according to claim 1, wherein the outer diameter of the second metal member is larger than the outer diameter of the large diameter portion of the first metal member. 前記第一金属部材が前記回転ツールの進行方向左側に位置する場合、前記回転ツールを右回転させ、
前記第一金属部材が前記回転ツールの進行方向右側に位置する場合、前記回転ツールを左回転させることを特徴とする請求項1乃至請求項3のいずれか一項に記載の摩擦攪拌接合方法。
when the first metal member is located on the left side of the rotating tool in the direction of travel, rotating the rotating tool to the right;
The friction stir welding method according to any one of claims 1 to 3, wherein the rotating tool is rotated counterclockwise when the first metal member is positioned on the right side in the traveling direction of the rotating tool.
前記本接合工程において、前記設定移動ルート上に設定した開始位置から回転する前記先端側ピンを挿入し、進行方向に移動させつつ所定の深さとなるまで徐々に前記先端側ピンを押入することを特徴とする請求項1乃至請求項4のいずれか一項に記載の摩擦攪拌接合方法。 In the main joining step, inserting the rotating tip side pin from a start position set on the set movement route, and gradually pushing the tip side pin until it reaches a predetermined depth while moving in the advancing direction. The friction stir welding method according to any one of claims 1 to 4. 前記本接合工程において、回転する前記先端側ピンを前記設定移動ルートよりもさらに前記第一金属部材から離間した側に設定した開始位置に挿入した後、前記回転ツールの回転中心軸を前記設定移動ルートと重複する位置まで移動させつつ前記所定の深さとなるまで前記先端側ピンを徐々に押入することを特徴とする請求項1乃至請求項4のいずれか一項に記載の摩擦攪拌接合方法。 In the main joining step, after inserting the rotating tip-side pin into a start position set further away from the first metal member than the set movement route, the rotation center axis of the rotary tool is moved to the set movement. The friction stir welding method according to any one of claims 1 to 4, wherein the tip side pin is gradually pushed in until reaching the predetermined depth while being moved to a position overlapping the root. 前記本接合工程において、前記設定移動ルート上に終了位置を設定し、前記突合せ部に対する摩擦攪拌の後、前記回転ツールを前記終了位置に移動させつつ前記先端側ピンを徐々に引き抜いて前記終了位置で前記第二金属部材から前記回転ツールを離脱させることを特徴とする請求項1乃至請求項6のいずれか一項に記載の摩擦攪拌接合方法。 In the main welding step, an end position is set on the set movement route, and after the friction stir at the butted portion, the tip side pin is gradually pulled out while moving the rotary tool to the end position to reach the end position. The friction stir welding method according to any one of claims 1 to 6, wherein the rotating tool is separated from the second metal member at . 前記本接合工程において、前記設定移動ルートよりもさらに前記第一金属部材から離間した側に終了位置を設定し、前記突合せ部に対する摩擦攪拌の後、前記回転ツールを前記終了位置に移動させつつ前記先端側ピンを徐々に引き抜いて前記終了位置で前記第二金属部材から前記回転ツールを離脱させることを特徴とする請求項1乃至請求項6のいずれか一項に記載の摩擦攪拌接合方法。 In the main welding step, an end position is set on a side further away from the first metal member than the set movement route, and after friction stir for the butted portion, the rotating tool is moved to the end position while moving the The friction stir welding method according to any one of claims 1 to 6, wherein the tip side pin is gradually pulled out to separate the rotating tool from the second metal member at the end position. 前記本接合工程において、前記先端側ピンの先端が、前記第一金属部材の前記段差側面を突き抜けた状態で前記突合せ部の摩擦攪拌を行うことを特徴とする請求項1乃至請求項8のいずれか一項に記載の摩擦攪拌接合方法。 9. The main welding step according to any one of claims 1 to 8, characterized in that friction stir is performed on the butted portion in a state in which the tip of the tip side pin penetrates the stepped side surface of the first metal member. Friction stir welding method according to claim 1. 大径部の端部に小径部を備えた円柱状の第一金属部材と、前記小径部と略同等の内径を有する円筒状の第二金属部材とを端面同士で突き合わせて形成された被接合金属部材の突合せ部に対して基端側ピンと先端側ピンとを備える回転ツールを用いて摩擦攪拌を行う摩擦攪拌接合方法であって、
前記第一金属部材は第一アルミニウム合金で形成されており、前記第二金属部材は第二アルミニウム合金で形成されており、前記第一アルミニウム合金は前記第二アルミニウム合金よりも硬度が高い材種であり、
前記基端側ピンのテーパー角度は、前記先端側ピンのテーパー角度よりも大きくなっており、前記基端側ピンの外周面には階段状のピン段差部が形成されており、
前記第二金属部材の開口部に前記第一金属部材の前記小径部を挿入することにより、前記第二金属部材の内周面と前記第一金属部材の段差側面とを重ね合わせるとともに、前記第二金属部材の端面と前記第一金属部材の前記段差傾斜面とを突き合わせて突合せ部に断面V字状の隙間を形成する突合せ工程と、
回転する前記回転ツールの前記先端側ピンを前記第二金属部材の外周面に挿入し、前記先端側ピンの外周面を前記第一金属部材の前記段差傾斜面にわずかに接触させつつ、前記基端側ピンの外周面を前記第二金属部材の外周面に接触させた状態で、前記隙間に前記第二アルミニウム合金を流入させながら、前記突合せ部よりも前記第二金属部材側に設定された設定移動ルートに沿って所定の深さで前記第二金属部材の外周面の廻りに一周させて前記突合せ部を摩擦攪拌する本接合工程と、を含むことを特徴とする摩擦攪拌接合方法。
A first cylindrical metal member having a small diameter portion at the end of a large diameter portion and a second cylindrical metal member having an inner diameter substantially equal to that of the small diameter portion are butted against each other at their end surfaces to be joined. A friction stir welding method in which friction stir is performed using a rotating tool having a proximal end pin and a distal end pin with respect to a butted portion of a metal member,
The first metal member is made of a first aluminum alloy, the second metal member is made of a second aluminum alloy, and the first aluminum alloy has a higher hardness than the second aluminum alloy. and
A taper angle of the proximal pin is larger than a taper angle of the distal pin, and a stepped pin step portion is formed on an outer peripheral surface of the proximal pin,
By inserting the small-diameter portion of the first metal member into the opening of the second metal member, the inner peripheral surface of the second metal member and the stepped side surface of the first metal member are overlapped, and the a butting step of butting the end faces of the two metal members and the step inclined surface of the first metal member to form a gap having a V-shaped cross section at the butting portion;
The tip side pin of the rotating rotary tool is inserted into the outer peripheral surface of the second metal member, and the outer peripheral surface of the tip side pin is brought into slight contact with the step inclined surface of the first metal member. While the outer peripheral surface of the end-side pin is in contact with the outer peripheral surface of the second metal member, the second aluminum alloy is allowed to flow into the gap, and is set closer to the second metal member than the butt portion. A friction stir welding method, comprising: a main welding step of friction-stirring the butted portion by making a circle around the outer peripheral surface of the second metal member at a predetermined depth along a set moving route.
JP2019120712A 2019-06-28 2019-06-28 Friction stir welding method Active JP7140062B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019120712A JP7140062B2 (en) 2019-06-28 2019-06-28 Friction stir welding method
PCT/JP2019/050044 WO2020261610A1 (en) 2019-06-28 2019-12-20 Friction stir joining method
CN201980097739.XA CN114007799A (en) 2019-06-28 2019-12-20 Friction stir welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019120712A JP7140062B2 (en) 2019-06-28 2019-06-28 Friction stir welding method

Publications (2)

Publication Number Publication Date
JP2021006351A JP2021006351A (en) 2021-01-21
JP7140062B2 true JP7140062B2 (en) 2022-09-21

Family

ID=74061108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019120712A Active JP7140062B2 (en) 2019-06-28 2019-06-28 Friction stir welding method

Country Status (3)

Country Link
JP (1) JP7140062B2 (en)
CN (1) CN114007799A (en)
WO (1) WO2020261610A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015131322A (en) 2014-01-14 2015-07-23 日本軽金属株式会社 friction stir welding method
WO2019064848A1 (en) 2017-09-27 2019-04-04 日本軽金属株式会社 Method for producing liquid-cooled jacket
WO2019082435A1 (en) 2017-10-27 2019-05-02 日本軽金属株式会社 Method for manufacturing liquid-cooled jacket

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103008870A (en) * 2012-11-28 2013-04-03 上海交通大学 Method for friction stir welding for dissimilar materials (i.e., slender thin-wall circular pipes)
JP6028674B2 (en) * 2013-05-09 2016-11-16 日本軽金属株式会社 Member joining method
CN104107978A (en) * 2014-07-17 2014-10-22 上海交通大学 Method for improving strength and plasticity of dissimilar material stir friction welding joint
CN105108308A (en) * 2015-09-07 2015-12-02 西南石油大学 High performance dissimilar aluminum alloy welded joint containing nanocrystalline composite organization
JP2017070994A (en) * 2015-10-09 2017-04-13 株式会社Uacj Tool for friction stir welding and friction stir welding method
JP6766956B2 (en) * 2017-04-18 2020-10-14 日本軽金属株式会社 How to manufacture a liquid-cooled jacket

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015131322A (en) 2014-01-14 2015-07-23 日本軽金属株式会社 friction stir welding method
WO2019064848A1 (en) 2017-09-27 2019-04-04 日本軽金属株式会社 Method for producing liquid-cooled jacket
WO2019082435A1 (en) 2017-10-27 2019-05-02 日本軽金属株式会社 Method for manufacturing liquid-cooled jacket

Also Published As

Publication number Publication date
JP2021006351A (en) 2021-01-21
WO2020261610A1 (en) 2020-12-30
CN114007799A (en) 2022-02-01

Similar Documents

Publication Publication Date Title
CN111511499A (en) Method for manufacturing liquid cooling jacket
WO2020158081A1 (en) Joining method
CN113165104A (en) Method for manufacturing liquid-cooled jacket and friction stir welding method
JP7140062B2 (en) Friction stir welding method
JP7127618B2 (en) Heat exchanger manufacturing method
JP7140061B2 (en) Heat exchanger manufacturing method
JP7056348B2 (en) Friction stir welding method
CN114901417B (en) Method for manufacturing liquid-cooled jacket and friction stir welding method
JP2019195825A (en) Joining method
JP7024460B2 (en) Joining method
WO2021053839A1 (en) Friction-stir welding method
JP7226254B2 (en) Liquid cooling jacket manufacturing method
JP2021112749A (en) Friction stir welding method
JP7272153B2 (en) Joining method and manufacturing method of composite rolled material
WO2021144999A1 (en) Joining method
JP7226241B2 (en) Liquid cooling jacket manufacturing method
JP7226242B2 (en) Liquid cooling jacket manufacturing method
JP7211342B2 (en) Heat exchanger manufacturing method
JP2021115588A (en) Frictional agitation joining method
JP7327238B2 (en) Liquid cooling jacket manufacturing method
CN113286676B (en) Joining method and method for manufacturing composite rolled material
WO2020188858A1 (en) Method of manufacturing liquid-cooled jacket
JP2021079424A (en) Friction stir welding method
WO2020213191A1 (en) Joining method, and method for manufacturing composite rolled material
WO2021111646A1 (en) Method for manufacturing heat transfer plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220822

R150 Certificate of patent or registration of utility model

Ref document number: 7140062

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150