JP7136739B2 - Turbine measurement method and measurement system - Google Patents

Turbine measurement method and measurement system Download PDF

Info

Publication number
JP7136739B2
JP7136739B2 JP2019076520A JP2019076520A JP7136739B2 JP 7136739 B2 JP7136739 B2 JP 7136739B2 JP 2019076520 A JP2019076520 A JP 2019076520A JP 2019076520 A JP2019076520 A JP 2019076520A JP 7136739 B2 JP7136739 B2 JP 7136739B2
Authority
JP
Japan
Prior art keywords
measurement
casing
probe
measuring
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019076520A
Other languages
Japanese (ja)
Other versions
JP2020173222A (en
JP2020173222A5 (en
Inventor
光司 石橋
俊介 水見
健志 八代醍
潔 黄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2019076520A priority Critical patent/JP7136739B2/en
Priority to KR1020200037333A priority patent/KR102328348B1/en
Priority to US16/833,140 priority patent/US11215437B2/en
Priority to CN202010238623.8A priority patent/CN111811446B/en
Priority to EP20166549.4A priority patent/EP3722566B1/en
Publication of JP2020173222A publication Critical patent/JP2020173222A/en
Priority to US17/521,183 priority patent/US11719524B2/en
Publication of JP2020173222A5 publication Critical patent/JP2020173222A5/ja
Application granted granted Critical
Publication of JP7136739B2 publication Critical patent/JP7136739B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/004Measuring arrangements characterised by the use of mechanical techniques for measuring coordinates of points
    • G01B5/008Measuring arrangements characterised by the use of mechanical techniques for measuring coordinates of points using coordinate measuring machines
    • G01B5/012Contact-making feeler heads therefor
    • G01B5/016Constructional details of contacts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/20Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring contours or curvatures, e.g. determining profile
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/003Arrangements for testing or measuring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • F01D25/243Flange connections; Bolting arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • F01D25/26Double casings; Measures against temperature strain in casings
    • F01D25/265Vertically split casings; Clamping arrangements therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/004Measuring arrangements characterised by the use of mechanical techniques for measuring coordinates of points
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/20Measuring arrangements characterised by the use of mechanical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/20Measuring arrangements characterised by the use of mechanical techniques for measuring contours or curvatures
    • G01B5/205Measuring arrangements characterised by the use of mechanical techniques for measuring contours or curvatures of turbine blades or propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/80Repairing, retrofitting or upgrading methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/30Retaining components in desired mutual position
    • F05D2260/31Retaining bolts or nuts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/80Diagnostics

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、タービンの計測方法および計測システムに関する。 The present invention relates to a turbine measurement method and measurement system.

一般的に、タービンの車室(内部及び外部車室)は、半割れ形状の上半車室及び下半車室に分割されており、上半車室及び下半車室のフランジ部をボルトで締結して構成されている。車室内には、静止体を構成するダイアフラム等や静止体に対して回転する回転体を構成するタービンロータなどが収容されている。 In general, the turbine casing (inner and outer casings) is divided into an upper half casing and a lower half casing. Concluded with A diaphragm or the like that constitutes a stationary body, a turbine rotor that constitutes a rotating body that rotates with respect to the stationary body, and the like are accommodated in the vehicle interior.

タービンの定期検査や性能改善工事においては、上半車室と下半車室とを分離して作業を行い、作業の終了後には組立作業を行うが、例えば、シールフィン等を交換してタービンロータとシールフィンとの間隙を狭くすることで間隙を通過する蒸気(作動流体)の量を抑制する性能改善工事における組立作業では、タービンロータとシールフィンとの接触が生じないように隙間の管理を厳密に行う必要がある。 During periodical inspections and performance improvement work of turbines, the upper half casing and the lower half casing are separated for work. By narrowing the gap between the rotor and the seal fins, the amount of steam (working fluid) that passes through the gap is reduced. During assembly work during performance improvement work, the gap is managed to prevent contact between the turbine rotor and the seal fins. must be done strictly.

一方で、高温高圧下で長時間運転したタービンの車室等には塑性変形が発生するため、組立作業における車室および内蔵部品の調整量を正確に予測する必要がある。調整量の予測には変形した車室のフランジ部の水平面を締め付けた際の移動量が必要であり、この移動量を求めるには車室のフランジ面の変形量を正確に計測する必要がある。 On the other hand, plastic deformation occurs in the casing of a turbine that has been operated for a long time under high temperature and pressure conditions, so it is necessary to accurately predict the amount of adjustment for the casing and built-in parts during assembly work. Predicting the amount of adjustment requires the amount of movement when tightening the horizontal surface of the flange of the deformed cabin. .

このようなタービンの計測に係る技術として、例えば、特許文献1には、主に、平面、円筒、曲面からなる計測対象の寸法を測定する際に、非接触式三次元測定機により全体形状を測定し、全体形状の三次元形状データを生成する第1のステップと、計測対象を平面、円筒、曲面部に分割し、レーザ追尾式非接触測定機とレーザ追尾式接触測定機で測定する第2のステップと、上記第2のステップでレーザ追尾式非接触測定機から得られたデータに基づき曲面部の三次元形状データを生成する第3のステップと、上記第2のステップでレーザ追尾式接触測定機から得られたデータに基づき平面、および、円筒を算出する第4のステップと、手計測により得られた主要部寸法の入力を受け付ける第5のステップと、上記、第1、第3、第4、および、第5のステップで得られたデータを合成する第6のステップと、該第6のステップで得られたデータに基づき設計データを作成する第7のステップを備えた3次元寸法測定方法が開示されている。 As a technology related to the measurement of such a turbine, for example, Patent Document 1 discloses that when measuring the dimensions of an object to be measured, which mainly consists of a plane, a cylinder, and a curved surface, the overall shape is measured by a non-contact three-dimensional measuring machine. The first step is to measure and generate three-dimensional shape data of the overall shape, and the second step is to divide the measurement object into flat, cylindrical, and curved surfaces and measure them with a laser tracking non-contact measuring machine and a laser tracking contact measuring machine. 2 step, a third step of generating three-dimensional shape data of the curved surface portion based on the data obtained from the laser tracking non-contact measuring machine in the second step, and a laser tracking method in the second step a fourth step of calculating the plane and the cylinder based on the data obtained from the contact measuring machine; a sixth step of combining the data obtained in the , fourth and fifth steps; and a seventh step of creating design data based on the data obtained in the sixth step. A dimensional measurement method is disclosed.

特開2013-32922号公報JP 2013-32922 A

上記従来技術においては、レーザ追尾式非接触三次元測定機やレーザ追尾式接触測定機を用いて計測対象であるタービンの車室などの計測を行っている。しかしながら、例えば、レーザスキャンなどの技術を用いる非接触測定を行う場合には、上半車室と下半車室のボルトによる締結部には車室ボルトなどの障害物があるため、障害物の陰や光沢面による反射、照明や日光などの外部要因の影響を受けることがあり、計測精度が低下してしまうおそれがある。また、接触測定を行う場合には、計測結果に基づいて把握される測定対象物の形状の精度を確保するために、より多くの測定点で計測する必要があるが、計測点の増加は計測時間の増加を招いてしまい、計測時間の延長による工事費増加や工程遅延に伴う稼働遅れが発電ロスの莫大な増加につながってしまう。一方で、計測点の不用意な削減は精度の低下を招いてしまうため、計測点の設定には、計測精度と計測時間の両方を考慮する必要がある。 In the prior art described above, a laser tracking non-contact three-dimensional measuring machine or a laser tracking contact measuring machine is used to measure a turbine casing or the like, which is a measurement target. However, when performing non-contact measurement using techniques such as laser scanning, for example, there are obstacles such as cabin bolts at the bolted joint between the upper half casing and the lower half casing. External factors such as reflections from shadows and glossy surfaces, lighting, and sunlight may affect measurement accuracy. In addition, when performing contact measurement, it is necessary to measure at more measurement points in order to ensure the accuracy of the shape of the object to be measured, which is grasped based on the measurement results. This will lead to an increase in time, and the increase in construction costs due to the extension of the measurement time and the delay in operation due to the delay in the process will lead to a huge increase in power generation loss. On the other hand, careless reduction of the number of measurement points leads to deterioration of accuracy, so it is necessary to consider both measurement accuracy and measurement time when setting measurement points.

本発明は上記に鑑みてなされたものであり、計測時間の延長を抑制しつつ、計測対象物の形状の特徴を逃さない適切な計測精度を確保することができるタービンの計測方法および計測システムを提供することを目的とする。 SUMMARY OF THE INVENTION The present invention has been made in view of the above, and provides a turbine measurement method and a measurement system that can ensure appropriate measurement accuracy that does not miss the shape characteristics of the object to be measured while suppressing the extension of the measurement time. intended to provide

本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、上半車室と下半車室のそれぞれのフランジ部をボルトで締結して構成された車室と、前記車室の内部に収容された静止体と、前記車室の内部に収容され、前記静止体に対し回転する回転体とを備えるタービンの計測方法において、前記フランジ部の長手方向における全長と、前記フランジ部を締結するボルトの本数と、前記フランジ部の長手方向における前記ボルトの間隔とに基づいて予め定めた計測間隔M以下の間隔で、前記上半車室と前記下半車室とに分解した状態の前記車室のフランジ部の互いの接触面の凹凸を長手方向に沿って計測するものとする。 The present application includes a plurality of means for solving the above problems. To give an example, a casing configured by fastening bolts to the flange portions of the upper half casing and the lower half casing; A method for measuring a turbine comprising a stationary body housed inside a casing and a rotating body housed inside the casing and rotating with respect to the stationary body, wherein the total length in the longitudinal direction of the flange portion; It is divided into the upper half casing and the lower half casing at an interval equal to or less than a predetermined measurement interval M based on the number of bolts that fasten the flange portion and the interval between the bolts in the longitudinal direction of the flange portion. The unevenness of the mutual contact surfaces of the flange portions of the casing in the state of being in contact with each other shall be measured along the longitudinal direction.

本発明によれば、計測時間の延長を抑制しつつ、計測対象物の形状の特徴を逃さない適切な計測精度を確保することができる。 ADVANTAGE OF THE INVENTION According to this invention, the appropriate measurement precision which does not miss the characteristic of the shape of a measurement object can be ensured, suppressing the extension of measurement time.

タービンの一例として示す蒸気タービンの外部車室を下半外部車室と上半外部車室とに分解した様子を示す斜視図である。FIG. 2 is a perspective view showing how the outer casing of the steam turbine shown as an example of the turbine is disassembled into a lower half outer casing and an upper half outer casing. 蒸気タービンの内部車室を下半内部車室と上半内部車室とに分解した様子を示す図である。FIG. 2 is a diagram showing how the inner casing of the steam turbine is disassembled into a lower half inner casing and an upper half inner casing; 計測システムの全体構成を概略的に示す図である。It is a figure showing roughly the whole measurement system composition. 計測処理の処理手順を示すフローチャートである。4 is a flowchart showing a processing procedure of measurement processing; 内部車室のフランジ部を模式的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing a flange portion of an internal compartment; 内部車室のフランジ部を抜き出して示す平面図である。It is a top view which extracts and shows the flange part of an internal compartment. 下半内部車室のフランジ面の計測方法について説明する図である。It is a figure explaining the measuring method of the flange surface of a lower-half inner compartment. 下半内部車室の一部を抜き出して詳細に示す図である。It is a figure which extracts and shows in detail a part of lower-half inner compartment. 従来技術を用いた場合のフランジ面の計測結果の一例を比較例として示す図である。FIG. 10 is a diagram showing an example of a measurement result of a flange surface in the case of using a conventional technique as a comparative example; 本実施の形態におけるフランジ面の計測結果の一例を示す図である。It is a figure which shows an example of the measurement result of the flange surface in this Embodiment. 車室内部における蒸気の流れの一例を示す図である。It is a figure which shows an example of the flow of steam in a vehicle interior. フランジ面の計測結果の一例を示す図である。It is a figure which shows an example of the measurement result of a flange surface. フランジ面の計測結果の一例を示す図である。It is a figure which shows an example of the measurement result of a flange surface. フランジ面の幅方向の変位が無い状態の下半内部車室の長手方向に垂直な面での断面を模式的に示す図である。FIG. 5 is a diagram schematically showing a cross-section of the lower inner compartment in a plane perpendicular to the longitudinal direction when there is no displacement of the flange surface in the width direction; フランジ面が幅方向の内側に傾斜した状態の下半内部車室の長手方向に垂直な面での断面を模式的に示す図である。FIG. 5 is a diagram schematically showing a cross-section of the lower half inner compartment along a plane perpendicular to the longitudinal direction in a state in which the flange surface is inclined inward in the width direction; フランジ面が幅方向の外側に傾斜した状態の下半内部車室の長手方向に垂直な面での断面を模式的に示す図である。FIG. 5 is a diagram schematically showing a cross-section of the lower inner compartment in a state in which the flange surface is inclined outward in the width direction, taken along a plane perpendicular to the longitudinal direction;

以下、本発明の実施の形態について図面を参照しつつ説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings.

<第1の実施の形態>
本発明の第1の実施の形態を図1~図9を参照しつつ説明する。
<First Embodiment>
A first embodiment of the present invention will be described with reference to FIGS. 1 to 9. FIG.

図1は、タービンの一例として示す蒸気タービンの外部車室を下半外部車室と上半外部車室とに分解した様子を示す斜視図である。また、図2は、蒸気タービンの内部車室を下半内部車室と上半内部車室とに分解した様子を示す図である。 FIG. 1 is a perspective view showing a state in which an outer casing of a steam turbine shown as an example of a turbine is disassembled into a lower half outer casing and an upper half outer casing. Moreover, FIG. 2 is a diagram showing a state in which the inner casing of the steam turbine is disassembled into a lower half inner casing and an upper half inner casing.

蒸気タービンは、図示を省略するが、ロータ等で構成される回転体と、ダイアフラム、ブレードリング、パッキンリング、ダミーリング等からなる翼環等で構成される静止体とを、下半車室(下半外部車室1、下半内部車室11)と上半車室(上半外部車室2、上半内部車室12)のそれぞれのフランジ部20,21,30,31をボルトで締結して形成される外部車室100及び内部車室200の内部に収容して構成されている。なお、静止体の一部には外部車室100や内部車室200の外部に設置されるものもある。 Although not shown, the steam turbine includes a rotating body composed of a rotor, etc., and a stationary body composed of a blade ring, etc. composed of a diaphragm, a blade ring, a packing ring, a dummy ring, etc., in a lower half casing ( The flanges 20, 21, 30, 31 of the lower half outer compartment 1, lower half inner compartment 11) and the upper half compartment (upper half outer compartment 2, upper half inner compartment 12) are fastened with bolts. It is configured to be accommodated inside an external compartment 100 and an internal compartment 200 formed by the same. Some of the stationary bodies are installed outside the exterior compartment 100 and the interior compartment 200 .

外部車室100は、下半外部車室1のフランジ部20の上側のフランジ面3と上半外部車室2のフランジ部21の下側のフランジ面4とが対向するように当接させて合わせた状態で互いの位置を調整し、下半外部車室1と上半外部車室2のフランジ部20,21にそれぞれ設けられたボルト穴5,9を介して締付ボルトで締め付けることで形成されている。 The outer compartment 100 is brought into contact with the upper flange surface 3 of the flange part 20 of the lower half outer compartment 1 and the lower flange surface 4 of the flange part 21 of the upper half outer compartment 2 so as to face each other. By adjusting the mutual positions in the combined state and tightening with tightening bolts through the bolt holes 5 and 9 provided in the flange portions 20 and 21 of the lower half outer compartment 1 and the upper half outer compartment 2, respectively. formed.

同様に、内部車室200は、下半内部車室11のフランジ部30の上側のフランジ面13と上半内部車室12のフランジ部31の下側のフランジ面14とが対向するように当接させて合わせた状態で互いの位置を調整し、下半内部車室11と上半内部車室12のフランジ部30,31にそれぞれ設けられたボルト穴15,19を介して締付ボルトで締め付けることで形成されている。 Similarly, the inner compartment 200 is arranged such that the upper flange surface 13 of the flange portion 30 of the lower half inner compartment 11 and the lower flange surface 14 of the flange portion 31 of the upper half inner compartment 12 face each other. The positions of each other are adjusted while they are brought into contact with each other, and tightening bolts are used through the bolt holes 15 and 19 provided in the flange portions 30 and 31 of the lower half inner compartment 11 and the upper half inner compartment 12, respectively. formed by tightening.

このようなタービン(蒸気タービン)の組立作業を正確かつスムーズに実施するためには、正しい位置に調整された回転体を基準として、外部車室100及び内部車室200における静止体の位置を計測して調整する作業(アライメント作業)を実施する必要がある。ただし、一定期間運転した蒸気タービンは、外部車室100及び内部車室200は、クリープなどの影響でフランジ面3,4,13,14に変形が生じている場合がある。 In order to accurately and smoothly assemble such a turbine (steam turbine), the positions of the stationary bodies in the outer casing 100 and the inner casing 200 must be measured with reference to the rotating body adjusted to the correct position. It is necessary to perform an adjustment work (alignment work). However, in the steam turbine that has been operated for a certain period of time, the flange surfaces 3, 4, 13, and 14 of the outer casing 100 and the inner casing 200 may be deformed due to creep or the like.

図5は、内部車室のフランジ部を模式的に示す断面図である。また、図6は、内部車室のフランジ部を抜き出して示す平面図である。 FIG. 5 is a cross-sectional view schematically showing the flange portion of the internal compartment. Moreover, FIG. 6 is a top view which extracts and shows the flange part of an internal compartment.

図5及び図6に例示するように、一定期間運転した蒸気タービンにおいては、下半内部車室11や上半内部車室12のフランジ部30,31を締結ボルトで締め付ける際に対向して接するフランジ面13,14に、クリープなどの影響で製造時の平面形状(設計形状)に対して凸状の部分(凸部32)や凹状の部分(凹部33)などのような変形が生じる場合がある。外部車室100の下半外部車室1や上半外部車室2についても同様のことが言える。 As illustrated in FIGS. 5 and 6, in a steam turbine that has been operated for a certain period of time, when the flanges 30 and 31 of the lower inner casing 11 and the upper inner casing 12 are tightened with fastening bolts, they are in contact with each other. The flange surfaces 13 and 14 may be deformed into a convex portion (convex portion 32) or a concave portion (concave portion 33) with respect to the planar shape (design shape) at the time of manufacture due to the influence of creep or the like. be. The same can be said for the lower half exterior compartment 1 and the upper half exterior compartment 2 of the exterior compartment 100 .

このような外部車室100や内部車室200のアライメント作業では、互いに接するフランジ面3,4,13,14の面形状をそれぞれ計測し、計測結果に基づいてフランジ面3,4,13,14の変形による車室の変位量を予測し、静止体等の位置の適切な調整量を算出する必要がある。 In such an alignment work for the outer compartment 100 and the inner compartment 200, the surface shapes of the flange surfaces 3, 4, 13, and 14 in contact with each other are measured, and the flange surfaces 3, 4, 13, and 14 are aligned based on the measurement results. It is necessary to predict the amount of displacement of the cabin due to the deformation of the body and calculate the appropriate amount of adjustment for the position of the stationary body.

ここで、本実施の形態に係る計測方法の基本原理について説明する。 Here, the basic principle of the measurement method according to this embodiment will be described.

図7は、下半内部車室のフランジ面の計測方法について説明する図である。 FIG. 7 is a diagram illustrating a method of measuring the flange surface of the lower inner compartment.

なお、本実施の形態においては、外部車室100及び内部車室200におけるフランジ面3,4,13,14のうち、下半内部車室11のフランジ面13について代表して説明するが、他のフランジ面3,4,14についても同様の計測方法を適用することが可能である。 In the present embodiment, among the flange surfaces 3, 4, 13, and 14 in the outer compartment 100 and the inner compartment 200, the flange surface 13 of the lower inner compartment 11 will be described as a representative. A similar measurement method can be applied to the flange surfaces 3, 4, and 14 of .

図7に示すように、本実施の形態においては、フランジ部30の長手方向における全長Lと、フランジ部30を締結するボルトの本数(ボルト穴15の数)Nと、フランジ部30の長手方向におけるボルトの間隔(最大ピッチPma、最小ピッチPmi)とに基づいて、下記の(式1)に示す計測間隔Mを予め求め、この計測間隔M以下の間隔でフランジ面13を長手方向に沿って、例えば、下半内部車室11における内側と外側について計測する。
M=(L/N)×(Pmi/Pma) ・・・(式1)
As shown in FIG. 7, in the present embodiment, the total length L in the longitudinal direction of the flange portion 30, the number of bolts (the number of bolt holes 15) N for fastening the flange portion 30, and the longitudinal direction of the flange portion 30 Based on the bolt intervals (maximum pitch Pma, minimum pitch Pmi), the measurement interval M shown in the following (Equation 1) is obtained in advance, and the flange surface 13 is measured along the longitudinal direction at intervals equal to or less than this measurement interval M , for example, the inner and outer sides of the lower half internal compartment 11 are measured.
M=(L/N)×(Pmi/Pma) (Formula 1)

上記の(式1)は、計測時間に影響する計測点数の抑制と計測精度に影響する計測点数の増加とに鑑みて、実験的・経験的に求められたものであり、(式1)に基づいてフランジ面13の計測を行うことにより、計測時間の延長を抑制しつつ、計測対象物の形状の特徴を逃さない適切な計測精度を確保することができる。 The above (formula 1) was obtained experimentally and empirically in view of the suppression of the number of measurement points that affects the measurement time and the increase in the number of measurement points that affects the measurement accuracy. By measuring the flange surface 13 based on the above, it is possible to suppress the extension of the measurement time and ensure an appropriate measurement accuracy that does not miss the feature of the shape of the object to be measured.

図3は、本実施の形態に係る計測システムの全体構成を概略的に示す図である。 FIG. 3 is a diagram schematically showing the overall configuration of the measurement system according to this embodiment.

図3において、計測システム300は、フランジ面3,4,13,14の計測に用いるものであり、プローブ本体301a及びプローブ本体301aに基端を固定して先端を計測対象物(車室1,2,11,12の各フランジ面3,4,13,14)に接触させる棒状のプローブ部材301bを有するポイントプローブ301と、車室1,2,11,12を含んで予め定められた座標系におけるポイントプローブ301の位置及び向きを検出するプローブ位置検出装置302と、プローブ位置検出装置302からの検出結果に基づいてプローブ部材301bの先端の座標系における位置を演算する制御装置303とを備えている。 In FIG. 3, the measuring system 300 is used for measuring the flange surfaces 3, 4, 13, 14, and has a probe main body 301a and a proximal end fixed to the probe main body 301a, and a distal end of the probe main body 301a. 2, 11, 12 each flange surface 3, 4, 13, 14) and a point probe 301 having a rod-shaped probe member 301b to contact, and a predetermined coordinate system including the compartments 1, 2, 11, 12 and a control device 303 for calculating the position of the tip of the probe member 301b in the coordinate system based on the detection result from the probe position detection device 302. there is

計測システム300は、例えば、レーザ光312によってポイントプローブ301の位置及び方向を検出することでプローブ部材301bの先端の位置を計測する方式を採用しており、レーザトラッカーであるプローブ位置検出装置302によってプローブ本体301aに設けられた複数の基準点の位置を正確に検出することで、予め定められた形状のプローブ部材301bの先端の座標系における位置を特定することができる。つまり、プローブ部材301bの先端を測定対象物に接触させた状態で先端の位置(座標)を取得することにより、測定対象物の表面位置(座標)を取得することができる。また、プローブ部材301bを長さや形状が異なるものに交換し、位置計算に用いるプローブ部材301bの形状情報を更新することで、より複雑な形状の対象物の計測を行うことができる。 The measurement system 300 employs, for example, a method of measuring the position of the tip of the probe member 301b by detecting the position and direction of the point probe 301 with a laser beam 312. The probe position detection device 302, which is a laser tracker, measures By accurately detecting the positions of the plurality of reference points provided on the probe main body 301a, the position of the tip of the probe member 301b having a predetermined shape in the coordinate system can be specified. That is, the surface position (coordinates) of the object to be measured can be obtained by acquiring the position (coordinates) of the tip while the tip of the probe member 301b is in contact with the object to be measured. Further, by replacing the probe member 301b with one having a different length and shape and updating the shape information of the probe member 301b used for position calculation, it is possible to measure an object having a more complicated shape.

制御装置303は、上記の(式1)で算出した計測間隔M以下の間隔でフランジ面13上の計測点(プローブ部材301bの先端を接触させる位置)を長手方向に沿って設定するとともに、プローブ本体301aの位置(すなわち、プローブ部材301bの先端の位置)を常時計測し、計測点とプローブ部材301bの先端との距離が予め定めた範囲内となった場合に、ポイントプローブ301の操作者(オペレータ)にプローブ部材301bの先端が計測点に近いことを報知装置(例えば、スピーカ304や図示しない有線、無線接続されたタブレットやスマートウォッチなどを用いても良い)を介して報知する。オペレータは、報知装置による報知に従ってプローブ部材301bの先端を測定対象物の表面(ここでは、測定点と同義となる)に接触させた状態で、例えば、計測ボタンの押下のような情報取得の契機となる操作を行って、測定対象物の表面形状(表面の位置座標)の計測を行う。 The control device 303 sets the measurement points (positions where the tip of the probe member 301b contacts) on the flange surface 13 at intervals equal to or less than the measurement interval M calculated by the above (Equation 1) along the longitudinal direction, and the probe The position of the main body 301a (that is, the position of the tip of the probe member 301b) is constantly measured, and when the distance between the measurement point and the tip of the probe member 301b is within a predetermined range, the operator of the point probe 301 ( The operator) is notified that the tip of the probe member 301b is close to the measurement point via a notification device (for example, a speaker 304 or a wired or wirelessly connected tablet or smartwatch, not shown) may be used. The operator keeps the tip of the probe member 301b in contact with the surface of the object to be measured (here, it is synonymous with the measurement point) according to the notification by the notification device, and presses the measurement button, for example, to obtain information. Then, the surface shape (coordinates of the surface) of the object to be measured is measured.

図4は、計測処理の処理手順を示すフローチャートである。 FIG. 4 is a flowchart showing the procedure of measurement processing.

図4に示すように、制御装置303は、まず、上記の(式1)に基づいて、計測間隔Mを算出し(ステップS100)、計測間隔Mに基づいてフランジ面13上に長手方向に沿って計測点を設定する(ステップS110)。 As shown in FIG. 4, the control device 303 first calculates the measurement interval M based on the above (Equation 1) (step S100), and based on the measurement interval M, on the flange surface 13 along the longitudinal direction. to set a measurement point (step S110).

続いて、プローブ位置検出装置302からポイントプローブ301の位置および向きの情報を取得して、プローブ部材301bの先端の位置座標を演算して取得し(ステップS120)、プローブ部材301bの先端が計測点から予め定めた距離の範囲内、すなわち、計測点として許容することができる範囲内にあるかどうかを判定する(ステップS130)。 Subsequently, information on the position and orientation of the point probe 301 is acquired from the probe position detection device 302, and the position coordinates of the tip of the probe member 301b are calculated and acquired (step S120), and the tip of the probe member 301b is the measurement point. is within a range of a predetermined distance, that is, within a range that can be permitted as a measurement point (step S130).

ステップS130での判定結果がYESの場合には、報知装置を介してオペレータに計測可能である旨を報知し(ステップS140)、オペレータによる計測処理、すなわち、プローブ部材301bの先端を計測対象物に接触した状態での位置座標の取得処理が行われると(ステップS150)、続いて、全ての計測点で計測処理を行ったかどうかを判定し(ステップS160)、判定結果がYESの場合には処理を終了する。 If the determination result in step S130 is YES, the operator is notified that the measurement is possible via the notification device (step S140), and the measurement processing by the operator, that is, the tip of the probe member 301b is placed on the object to be measured. When the position coordinate acquisition process in the contact state is performed (step S150), it is then determined whether or not the measurement process has been performed at all measurement points (step S160). exit.

また、ステップS130での判定結果がNOの場合、又は、ステップS160での判定結果がNOの場合には、ステップS120の処理に戻る。 If the determination result in step S130 is NO, or if the determination result in step S160 is NO, the process returns to step S120.

以上のように構成した本実施の形態における効果を説明する。 Effects of the present embodiment configured as described above will be described.

図8は、下半内部車室の一部を抜き出して詳細に示す図である。 FIG. 8 is a detailed view of a part of the lower inner compartment.

例えば、従来技術のように、レーザ追尾式非接触三次元測定機やレーザ追尾式接触測定機を用いて計測対象であるタービンの車室などの計測を行う場合、図8に示すようにフランジ部には締結ボルトなどの障害物があるために正確な計測が困難である。また、レーザスキャンなどの技術を用いる非接触測定を行う場合にも、障害物の陰や光沢面による反射、照明や日光などの外部要因の影響を受けることがあり、計測精度が低下してしまうおそれがある。一方、接触測定機や非接触測定機を用い、障害物などの条件を鑑みて時間をかけて詳細な計測を行うことも考えられるが、計測時間の延長は工事費や発電ロスの莫大な増加につながるため、計測精度向上の方法としては適当ではない。 For example, as in the prior art, when measuring a turbine casing, which is an object to be measured, using a laser tracking non-contact three-dimensional measuring machine or a laser tracking contact measuring machine, the flange portion Accurate measurement is difficult due to obstacles such as fastening bolts. In addition, even when performing non-contact measurements using techniques such as laser scanning, the measurement accuracy can be affected by external factors such as shadows of obstacles, reflections from glossy surfaces, illumination, and sunlight, which reduces measurement accuracy. There is a risk. On the other hand, it is conceivable to use contact or non-contact measurement equipment and take time to perform detailed measurements in consideration of conditions such as obstacles, but the extension of measurement time will increase construction costs and power generation loss enormously. Therefore, it is not suitable as a method for improving measurement accuracy.

これに対して本実施の形態においては、上半車室(上半外部車室2、上半内部車室12)と下半車室(下半外部車室1、下半内部車室11)のそれぞれのフランジ部20,21,30,31をボルトで締結して構成された車室(外部車室100、内部車室200)と、車室の内部に収容された静止体と、前記車室の内部に収容され、静止体に対し回転する回転体とを備えるタービンにおいて、フランジ部20,21,30,31の長手方向における全長Lと、フランジ部20,21,30,31を締結するボルトの本数Nと、フランジ部20,21,30,31の長手方向におけるボルトの間隔(最小ピッチPmi、最大ピッチPma)とに基づいて上記の(式1)で予め定めた計測間隔M以下の間隔で、上半車室と前記下半車室とに分解した状態の車室のフランジ部20,21,30,31の互いの接触面(フランジ面3,4,13,14)の凹凸を長手方向に沿って計測するように構成したので、計測時間の延長を抑制しつつ、計測対象物の形状の特徴を逃さない適切な計測精度を確保することができる。
On the other hand, in the present embodiment, the upper half casing (upper half exterior casing 2, upper half interior casing 12) and the lower half casing (lower half exterior casing 1, lower half interior casing 11) A vehicle compartment (external vehicle compartment 100, internal vehicle compartment 200) configured by fastening respective flange portions 20, 21, 30, 31 of the vehicle compartment with bolts, a stationary body housed inside the vehicle compartment, and the vehicle In a turbine that is housed inside a chamber and has a rotating body that rotates with respect to a stationary body, the flanges 20, 21, 30, 31 are fastened to the total length L in the longitudinal direction of the flanges 20, 21, 30, 31 Based on the number N of bolts and the bolt intervals (minimum pitch Pmi, maximum pitch Pma) in the longitudinal direction of the flange portions 20, 21, 30, 31, the measurement interval M or less predetermined by the above (Equation 1) At intervals , the unevenness of the mutual contact surfaces (flange surfaces 3, 4, 13, 14) of the flange portions 20, 21, 30, 31 of the separated upper half casing and the lower half casing is Since it is configured to measure along the longitudinal direction, it is possible to ensure appropriate measurement accuracy that does not miss the feature of the shape of the object to be measured while suppressing the extension of the measurement time.

図9及び図10は、フランジ面の計測結果の一例を示す図であり、図9は従来技術を用いた場合の計測結果の一例を比較例として示す図、図10は本実施の形態における計測結果の一例を示す図である。 9 and 10 are diagrams showing an example of the measurement results of the flange surface, FIG. 9 is a diagram showing an example of the measurement results when using the conventional technique as a comparative example, and FIG. It is a figure which shows an example of a result.

図9に示すように、計測点の間隔を広く取る場合には、計測点の数は少なくなるものの、実形状の垂直方向(Y方向)の変位量のピークなど、実形状と計測結果が乖離している部分があり、計測対象物の形状の特徴を正確に捉えられているとは言えない。 As shown in Fig. 9, when the interval between the measurement points is wide, the number of measurement points decreases, but the actual shape and the measurement result diverge, such as the peak of the displacement amount in the vertical direction (Y direction) of the actual shape. It cannot be said that the feature of the shape of the object to be measured is accurately captured.

これに対して、図10に示すように、上記の(式1)に基づいて求めた計測間隔Mで計測した場合には、計測点の増加を抑制しつつ、計測対象物の形状の特徴を正確に捉えることができており、計測時間の延長を抑制しつつ、適切な計測精度を確保することができていることがわかる。 On the other hand, as shown in FIG. 10, when the measurement is performed at the measurement interval M obtained based on the above (Equation 1), the feature of the shape of the object to be measured can be obtained while suppressing the increase in the number of measurement points. It can be seen that it is possible to capture it accurately, and it is possible to ensure appropriate measurement accuracy while suppressing the extension of the measurement time.

<第1の実施の形態の変形例>
第1の実施の形態の変形例について図11及び図12を参照しつつ説明する。
<Modification of First Embodiment>
A modification of the first embodiment will be described with reference to FIGS. 11 and 12. FIG.

本変形例は、外部車室100及び内部車室200において、変位が大きいであろうと予測される位置で計測間隔Mがより狭くなるように重み付けを行うものである。 In this modification, weighting is performed so that the measurement interval M becomes narrower at positions where displacement is expected to be large in the outer compartment 100 and the inner compartment 200 .

図11は、車室内部における蒸気の流れの一例を示す図である。また、図12は、フランジ面の計測結果の一例を示す図である。 FIG. 11 is a diagram showing an example of the steam flow inside the passenger compartment. Moreover, FIG. 12 is a figure which shows an example of the measurement result of a flange surface.

図11に示すように、内部車室200においては、高温の蒸気にさらされて高温になるような範囲Aにおいては、図12の範囲Bや範囲Cに示すように、より温度の低い他の部分に比べてフランジ面の変位がより大きくなる傾向にある。また、外部車室100及び内部車室200において、配管による拘束や伸びによる反力の影響がある部位では、フランジ面の変位がより大きくなる傾向にある。そこで、下記の(式2)に示すように、フランジ面の変位が大きくなる傾向の部位において計測間隔Mが小さくなるような重み変数Zを導入する。
M=(L/N)×(Pmi/Pma)×Z・・・(式2)
As shown in FIG. 11, in the internal compartment 200, in a range A where the temperature rises due to exposure to high-temperature steam, as shown in ranges B and C in FIG. The displacement tends to be greater on the flange face than on the part. In addition, in the outer compartment 100 and the inner compartment 200, the displacement of the flange surface tends to be larger at the portion affected by the reaction force due to restraint or elongation by the piping. Therefore, as shown in the following (Equation 2), a weighting variable Z is introduced so that the measurement interval M becomes smaller at a portion where the displacement of the flange surface tends to increase.
M=(L/N)×(Pmi/Pma)×Z (Formula 2)

重み変数Zは、例えば、部位温度に基づいて変化するように定められたり、或いは、その他の要因に基づいて変化するように定められたりするものである。 The weighting variable Z, for example, may be set to change based on the part temperature, or may be set to change based on other factors.

その他の構成は第1の実施の形態と同様である。 Other configurations are the same as those of the first embodiment.

以上のように構成した本変形例においても第1の実施の形態と同様の効果を得ることができる。 The same effects as those of the first embodiment can be obtained in this modified example configured as described above.

また、フランジ面の変位量に影響する温度やその他の要因に対応して計測間隔Mを算出するように構成したので、計測精度を向上することができる。 Moreover, since the measurement interval M is calculated according to the temperature and other factors that affect the displacement amount of the flange surface, the measurement accuracy can be improved.

<第2の実施の形態>
本発明の第2の実施の形態を図13~図16を参照しつつ説明する。
<Second Embodiment>
A second embodiment of the present invention will be described with reference to FIGS. 13 to 16. FIG.

本実施の形態は、フランジ面の長手方向の計測に加えて、幅方向の計測を行うものである。 In this embodiment, in addition to measurement in the longitudinal direction of the flange surface, measurement in the width direction is performed.

図13は、フランジ面の計測結果の一例を示す図である。また、図14~図16は、下半内部車室の長手方向に垂直な面での断面を模式的に示す図である。 FIG. 13 is a diagram showing an example of measurement results of the flange surface. 14 to 16 are diagrams schematically showing cross-sections of the lower half internal compartment on a plane perpendicular to the longitudinal direction.

図13に示すように、本実施の形態では、長手方向における位置Dや位置Eのようにフランジ面の変位が大きい位置において、フランジ面の幅方向に計測を行うものである。フランジ面の変位量が大きい場合には、フランジ面の幅方向についても変位の変化が顕著であることが考えられる。フランジ部は、幅方向についても変位する可能性があり、また、その変位量は長手方向の位置によって異なることが予想される。一方、フランジ面を長手方向に沿って計測した場合の変位量の大きい位置において幅方向の変位量が大きい可能性が高い。そこで、本実施の形態においては、長手方向における位置Dや位置Eのようにフランジ面の変位が大きい位置において、幅方向に沿ってフランジ面の計測を行う。これにより、図14に示すような幅方向の変位が無い場合と比較して、図15に示すような内側に傾斜した形状に変形、或いは、図16に示すような外側に傾斜した形状に変形していることを把握することができるとともに、その変形量(変位量)を把握することができる。 As shown in FIG. 13, in this embodiment, the measurement is performed in the width direction of the flange surface at positions such as positions D and E in the longitudinal direction where the displacement of the flange surface is large. When the amount of displacement of the flange surface is large, it is conceivable that the change in displacement is remarkable also in the width direction of the flange surface. The flange portion may also be displaced in the width direction, and the amount of displacement is expected to vary depending on the position in the longitudinal direction. On the other hand, there is a high possibility that the amount of displacement in the width direction is large at a position where the amount of displacement is large when the flange surface is measured along the longitudinal direction. Therefore, in the present embodiment, the flange surface is measured along the width direction at positions such as positions D and E in the longitudinal direction where the displacement of the flange surface is large. As a result, compared to the case where there is no widthwise displacement as shown in FIG. 14, the shape is deformed into an inwardly inclined shape as shown in FIG. 15 or an outwardly inclined shape as shown in FIG. While being able to grasp|ascertain what is carrying out, the deformation amount (displacement amount) can be grasped|ascertained.

その他の構成は第1の実施の形態と同様である。 Other configurations are the same as those of the first embodiment.

以上のように構成した本実施の形態においても第1の実施の形態と同様の効果を得ることができる。 The same effects as those of the first embodiment can be obtained in the present embodiment configured as described above.

また、フランジ面を幅方向に見た場合に幅方向に沿って変位量が異なることが考えられる位置において、フランジ面を幅方向に沿って計測するように構成したので、計測時間の延長を抑制しつつ、計測精度をより向上することができる。 In addition, when the flange surface is viewed in the width direction, it is possible to measure the flange surface along the width direction at positions where the amount of displacement may differ along the width direction. In addition, the measurement accuracy can be further improved.

<付記>
なお、本発明は上記の実施の形態に限定されるものではなく、その要旨を逸脱しない範囲内の様々な変形例や組み合わせが含まれる。また、本発明は、上記の実施の形態で説明した全ての構成を備えるものに限定されず、その構成の一部を削除したものも含まれる。また、上記の各構成、機能等は、それらの一部又は全部を、例えば集積回路で設計する等により実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。
<Appendix>
It should be noted that the present invention is not limited to the above-described embodiments, and includes various modifications and combinations within the scope of the invention. Moreover, the present invention is not limited to those having all the configurations described in the above embodiments, and includes those having some of the configurations omitted. Further, each of the above configurations, functions, etc. may be realized by designing a part or all of them, for example, with an integrated circuit. Moreover, each of the above configurations, functions, etc. may be realized by software by a processor interpreting and executing a program for realizing each function.

1…下半外部車室、2…上半外部車室、3,4…フランジ面、5,9…ボルト穴、11…下半内部車室、12…上半内部車室、13,14…フランジ面、15,19…ボルト穴、20,21,30,31…フランジ部、32…凸部、33…凹部、100…外部車室、200…内部車室、300…計測システム、301…ポイントプローブ、301a…プローブ本体、301b…プローブ部材、302…プローブ位置検出装置、303…制御装置、304…スピーカ、312…レーザ光 1 Lower half outer compartment 2 Upper half outer compartment 3, 4 Flange surface 5, 9 Bolt hole 11 Lower inner compartment 12 Upper inner compartment 13, 14 Flange surface 15, 19 Bolt hole 20, 21, 30, 31 Flange portion 32 Convex portion 33 Concave portion 100 External compartment 200 Internal compartment 300 Measurement system 301 Point Probe 301a Probe main body 301b Probe member 302 Probe position detection device 303 Control device 304 Speaker 312 Laser light

Claims (5)

上半車室と下半車室のそれぞれのフランジ部をボルトで締結して構成された車室と、前記車室の内部に収容された静止体と、前記車室の内部に収容され、前記静止体に対し回転する回転体とを備えるタービンの計測方法において、
前記フランジ部の長手方向における全長と、前記フランジ部を締結するボルトの本数と、前記フランジ部の長手方向における前記ボルトの間隔とに基づいて予め定めた計測間隔M以下の間隔で、前記上半車室と前記下半車室とに分解した状態の前記車室のフランジ部の互いの接触面の凹凸を長手方向に沿って計測することを特徴とするタービンの計測方法。
a vehicle chamber constructed by fastening flange portions of the upper half vehicle chamber and the lower half vehicle chamber with bolts; a stationary body housed inside the vehicle chamber; In a method for measuring a turbine comprising a rotating body rotating with respect to a stationary body,
At intervals equal to or less than a predetermined measurement interval M based on the total length in the longitudinal direction of the flange portion, the number of bolts that fasten the flange portion, and the interval between the bolts in the longitudinal direction of the flange portion, the upper half A method for measuring a turbine, comprising: measuring along the longitudinal direction unevenness of contact surfaces of flange portions of the casing separated into the casing and the lower half casing.
請求項1記載のタービンの計測方法において、
前記計測間隔Mは、前記フランジ部の長手方向の全長をL、前記ボルトの本数をN、前記フランジ部の長手方向における前記ボルトの間隔の最小値および最大値をそれぞれPmiおよびPmaとした場合に、下記(式1)により現されることを特徴とするタービンの計測方法。
M=L/N×(Pmi/Pma)・・・(式1)
The method for measuring a turbine according to claim 1,
The measurement interval M is obtained when L is the total length in the longitudinal direction of the flange portion, N is the number of bolts, and Pmi and Pma are the minimum and maximum values of the interval between the bolts in the longitudinal direction of the flange portion. (2) A method for measuring a turbine characterized by being represented by the following (Equation 1).
M=L/N×(Pmi/Pma) (Formula 1)
請求項1記載のタービンの計測方法において、
プローブ本体と、前記プローブ本体に基端を固定して先端を計測対象物に接触させる棒状のプローブ部材とを有し、前記車室を含んで予め定められた座標系における前記プローブ部材の先端の位置を計測可能なポイントプローブよって、前記接触面の凹凸を計測することを特徴とするタービンの計測方法。
The method for measuring a turbine according to claim 1,
It has a probe body and a rod-shaped probe member whose base end is fixed to the probe body and whose tip is brought into contact with the object to be measured, and the tip of the probe member in a predetermined coordinate system including the casing A method for measuring a turbine, characterized by measuring unevenness of the contact surface with a point probe capable of measuring a position.
請求項1記載のタービンの計測方法において、
前記計測間隔は、さらに、前記タービンの稼働中における前記車室の温度分布に基づいて定められることを特徴とするタービンの計測方法。
The method for measuring a turbine according to claim 1,
A method for measuring a turbine, wherein the measurement interval is further determined based on a temperature distribution in the casing during operation of the turbine.
上半車室と下半車室のそれぞれのフランジ部をボルトで締結して構成された車室と、前記車室の内部に収容された静止体と、前記車室の内部に収容され、前記静止体に対し回転する回転体とを備えるタービンの前記車室のフランジ部の互いの接触面の凹凸を前記上半車室と前記下半車室とに分解した状態で計測する計測システムにおいて、
プローブ本体と、前記プローブ本体に基端を固定して先端を計測対象物に接触させる棒状のプローブ部材とを有するポイントプローブと、
前記車室を含んで予め定められた座標系における前記ポイントプローブの位置及び向きを検出するプローブ位置検出装置と、
前記プローブ位置検出装置からの検出結果に基づいて前記プローブ部材の先端の前記座標系における位置を演算する制御装置とを備え、
前記制御装置は、前記フランジ部の長手方向における全長と、前記フランジ部を締結するボルトの本数と、前記フランジ部の長手方向における前記ボルトの間隔とに基づいて予め定めた間隔以下で、前記上半車室と前記下半車室とに分解した状態の前記車室のフランジ部の互いの接触面に長手方向に沿って設定された複数の計測点と、前記プローブ部材の先端との距離が予め定めた範囲内となった場合に、前記ポイントプローブの操作者に前記プローブ部材の先端が計測点に近いことを報知装置を介して報知することを特徴とする計測システム。
a vehicle chamber constructed by fastening flange portions of the upper half vehicle chamber and the lower half vehicle chamber with bolts; a stationary body housed inside the vehicle chamber; In a measurement system for measuring the unevenness of the mutual contact surfaces of the flange portions of the casing of a turbine including a rotating body that rotates with respect to a stationary body, in a state in which the upper half casing and the lower half casing are separated,
A point probe having a probe body and a rod-shaped probe member whose proximal end is fixed to the probe body and whose tip is brought into contact with an object to be measured;
a probe position detection device that detects the position and orientation of the point probe in a predetermined coordinate system that includes the vehicle compartment;
a control device that calculates the position of the tip of the probe member in the coordinate system based on the detection result from the probe position detection device;
The control device controls the operation of the upper part by a distance equal to or less than a predetermined distance based on the total length in the longitudinal direction of the flange part, the number of bolts that fasten the flange part, and the distance between the bolts in the longitudinal direction of the flange part. The distance between the tip of the probe member and a plurality of measurement points set along the longitudinal direction on the mutual contact surfaces of the flange portions of the casing in which the half casing and the lower half casing are separated. A measurement system, wherein, when the point probe falls within a predetermined range, a notification device notifies an operator of the point probe that the tip of the probe member is close to the measurement point.
JP2019076520A 2019-04-12 2019-04-12 Turbine measurement method and measurement system Active JP7136739B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2019076520A JP7136739B2 (en) 2019-04-12 2019-04-12 Turbine measurement method and measurement system
US16/833,140 US11215437B2 (en) 2019-04-12 2020-03-27 Method and system for measuring turbine shape
KR1020200037333A KR102328348B1 (en) 2019-04-12 2020-03-27 Measuring method for turbine and measuring system
EP20166549.4A EP3722566B1 (en) 2019-04-12 2020-03-30 Method and system for measuring turbine shape
CN202010238623.8A CN111811446B (en) 2019-04-12 2020-03-30 Turbine measurement method and measurement system
US17/521,183 US11719524B2 (en) 2019-04-12 2021-11-08 Method and system for measuring turbine shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019076520A JP7136739B2 (en) 2019-04-12 2019-04-12 Turbine measurement method and measurement system

Publications (3)

Publication Number Publication Date
JP2020173222A JP2020173222A (en) 2020-10-22
JP2020173222A5 JP2020173222A5 (en) 2021-12-02
JP7136739B2 true JP7136739B2 (en) 2022-09-13

Family

ID=70058123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019076520A Active JP7136739B2 (en) 2019-04-12 2019-04-12 Turbine measurement method and measurement system

Country Status (5)

Country Link
US (2) US11215437B2 (en)
EP (1) EP3722566B1 (en)
JP (1) JP7136739B2 (en)
KR (1) KR102328348B1 (en)
CN (1) CN111811446B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7136739B2 (en) * 2019-04-12 2022-09-13 三菱重工業株式会社 Turbine measurement method and measurement system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013032922A (en) 2011-08-01 2013-02-14 Hitachi Ltd Three-dimensional measurement method
JP2017125740A (en) 2016-01-13 2017-07-20 株式会社東京精密 Three-dimensional measuring machine, measuring method, and measuring program

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3757423A (en) * 1970-10-19 1973-09-11 Bendix Corp Measuring apparatus
GB2180117B (en) * 1985-09-05 1989-09-06 Ferranti Plc Three-dimensional position measuring apparatus
US5031314A (en) * 1989-07-28 1991-07-16 Westinghouse Electric Corp. Method of measuring joint gaps and restoring same
JPH05133741A (en) * 1991-11-13 1993-05-28 Kanai Hiroyuki Automatic measuring device for disc flatness
EP0849653B1 (en) * 1996-12-21 2004-04-28 Carl Zeiss Control method for a coordinate measuring device and coordinate measuring device
JP2007032504A (en) 2005-07-29 2007-02-08 Toshiba Corp Position adjusting method for internal structural component of steam turbine and measuring device to be used for the same
US7493809B1 (en) 2007-10-04 2009-02-24 General Electric Company Method and system for measuring deformation in turbine blades
DE202010006061U1 (en) 2010-04-23 2010-07-22 Helmut Fischer GmbH Institut für Elektronik und Messtechnik Measuring probe for the non-destructive measurement of the thickness of thin layers
JP5524411B2 (en) * 2011-03-31 2014-06-18 三菱重工業株式会社 Casing position adjustment device for steam turbine
US8701298B2 (en) * 2011-06-01 2014-04-22 Tesa Sa Coordinate measuring machine
JP2013185456A (en) * 2012-03-06 2013-09-19 Toshiba Corp Method of measuring steam turbine, measuring device, and method of manufacturing steam turbine
EP2698596A1 (en) * 2012-08-16 2014-02-19 Hexagon Technology Center GmbH Method and system for determining spatial coordinates with a mobile coordinate measuring machine
US10089415B2 (en) * 2013-12-19 2018-10-02 Faro Technologies, Inc. Three-dimensional coordinate scanner and method of operation
JP6428667B2 (en) * 2016-02-12 2018-11-28 トヨタ自動車株式会社 Reference plane position measurement method
JP6778089B2 (en) * 2016-11-22 2020-10-28 三菱パワー株式会社 Turbine assembly method
JP6740167B2 (en) * 2017-04-20 2020-08-12 三菱日立パワーシステムズ株式会社 Turbine assembly method, turbine assembly support system and control program
JP2019049233A (en) 2017-09-11 2019-03-28 三菱日立パワーシステムズ株式会社 Assembling method of turbine, turbine assembling system and control program
JP6864596B2 (en) * 2017-10-06 2021-04-28 三菱パワー株式会社 Turbine assembly support program, turbine assembly support system and turbine assembly method
JP7136739B2 (en) * 2019-04-12 2022-09-13 三菱重工業株式会社 Turbine measurement method and measurement system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013032922A (en) 2011-08-01 2013-02-14 Hitachi Ltd Three-dimensional measurement method
JP2017125740A (en) 2016-01-13 2017-07-20 株式会社東京精密 Three-dimensional measuring machine, measuring method, and measuring program

Also Published As

Publication number Publication date
US20220057186A1 (en) 2022-02-24
CN111811446B (en) 2022-05-31
EP3722566B1 (en) 2023-10-25
EP3722566A1 (en) 2020-10-14
JP2020173222A (en) 2020-10-22
KR20200120510A (en) 2020-10-21
US11719524B2 (en) 2023-08-08
US20200326172A1 (en) 2020-10-15
CN111811446A (en) 2020-10-23
KR102328348B1 (en) 2021-11-18
US11215437B2 (en) 2022-01-04

Similar Documents

Publication Publication Date Title
US8031346B2 (en) Coating evaluation process
US6691019B2 (en) Method and system for controlling distortion of turbine case due to thermal variations
EP3168585B1 (en) Methods for monitoring components
JP6740167B2 (en) Turbine assembly method, turbine assembly support system and control program
EP3372783B1 (en) Methods for monitoring components using micro and macro three-dimensional analysis
JP7136739B2 (en) Turbine measurement method and measurement system
US10872176B2 (en) Methods of making and monitoring a component with an integral strain indicator
EP3351896A1 (en) Method of making a component with an integral strain indicator
JP7150436B2 (en) How to form a passive strain indicator on an existing component
US9618334B2 (en) Systems and methods for monitoring turbine component strain
EP3361212B1 (en) Passive strain indicator
US9733062B2 (en) Systems and methods for monitoring component strain
JP2021162397A (en) Sign detection device and sign detection method
US11428612B2 (en) Estimation device and estimation method
RU126472U1 (en) AUTOMATED INSTALLATION FOR MEASURING DIRECTORAL ERRORS UNDERTAKEN BY RADIO-TRANSPARENT FLOWERS ANTENNAS Homing missiles
KR20150032026A (en) Apparatus for measuring thermal growth and method for the same
US10895449B2 (en) Shape measuring device
WO2022168191A1 (en) Defect inspection device
CN117168361A (en) Non-contact turbine blade air film hole aperture measurement method and system
JP2005249608A (en) Method and apparatus for measuring intrinsic distortion of surface modified member
Rodríguez et al. Automatic re-calibration by laser metrology and computer algorithms
JP2013057564A5 (en)
JP2013148423A (en) Movement amount measurement device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211019

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211019

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20220118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220901

R150 Certificate of patent or registration of utility model

Ref document number: 7136739

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150