JP2013148423A - Movement amount measurement device - Google Patents

Movement amount measurement device Download PDF

Info

Publication number
JP2013148423A
JP2013148423A JP2012008222A JP2012008222A JP2013148423A JP 2013148423 A JP2013148423 A JP 2013148423A JP 2012008222 A JP2012008222 A JP 2012008222A JP 2012008222 A JP2012008222 A JP 2012008222A JP 2013148423 A JP2013148423 A JP 2013148423A
Authority
JP
Japan
Prior art keywords
movement
amount
measurement
measuring apparatus
movement amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012008222A
Other languages
Japanese (ja)
Inventor
Kasuomi Hosoya
佳守臣 細谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuo Hatsujo KK
Chuo Spring Co Ltd
Original Assignee
Chuo Hatsujo KK
Chuo Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chuo Hatsujo KK, Chuo Spring Co Ltd filed Critical Chuo Hatsujo KK
Priority to JP2012008222A priority Critical patent/JP2013148423A/en
Publication of JP2013148423A publication Critical patent/JP2013148423A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately measure the amount of movement in which an object to be measured has moved in a predetermined measurement direction.SOLUTION: A sensor 10 specifies a characteristic part from an arm surface 101a of an extendable arm 100 by comparing with a peripheral area in terms of shades and development of colors; detects the amounts of displacement in which the specified characteristic part has moved in an X-axis direction and a Y-axis direction, respectively, in association with movement in a direction of movement of an arm body 101 of the extendable arm 100; calculates the amount of displacement in the direction of movement of the arm body 101 of the extendable arm 100 from the amount of displacement in the X-axis direction on the basis of an angle formed by the X-axis direction and the direction of movement of the arm body 101 of the extendable arm 100; calculates the amount of displacement in the direction of movement of the arm body 101 of the extendable arm 100 from the amount of displacement in the Y-axis direction on the basis of an angle formed by the Y-axis direction and the direction of movement of the arm body 101 of the extendable arm 100 (45°); and calculates the average value of the amounts to determine the amount of movement in the direction of movement of the arm body 101 of the extendable arm 100.

Description

本発明は、測定の対象となる物体が所定の測定方向に移動した移動量を精度良く測定する技術に関する。   The present invention relates to a technique for accurately measuring the amount of movement of an object to be measured in a predetermined measurement direction.

特許文献1には、レーザ光を照射した物体表面からの拡散光によって生じるスペックルパターンを利用して、物体の移動量を測定する点が記載されている。
また、特許文献2には、インピーダンス等分布状態とみなされる平行導体(38)の一端に高周波パルスを印加し、この平行導体(38)の途中にインピーダンス不整合発生器(2)を設置し、インピーダンス不整合発生器(2)によって反射波を発生させ、これが返ってくるまでの時間を測定し、この時間に電圧の伝搬速度を乗ずることで、平行導体端の印加位置からインピーダンス不整合発生器(2)までの距離を計測する点が記載されている。
Patent Document 1 describes that the amount of movement of an object is measured using a speckle pattern generated by diffused light from the surface of the object irradiated with laser light.
Further, in Patent Document 2, a high frequency pulse is applied to one end of a parallel conductor (38) regarded as an impedance equal distribution state, and an impedance mismatch generator (2) is installed in the middle of the parallel conductor (38). The impedance mismatch generator (2) generates a reflected wave, measures the time until it returns, and multiplies this time by the voltage propagation speed, so that the impedance mismatch generator is applied from the position where the parallel conductor is applied. The point which measures the distance to (2) is described.

また、特許文献3には、模様データ記憶手段8Aから高精度温度センサー6で測定されたスケール板3の温度に対応する模様データを呼び出し、移動体2の現位置における画像センサー4の撮像データと模様データを位置演算手段8Bで照合し、スケール板3上の絶対位置を演算・特定してその数値を記憶し、移動体2が移動して停止した位置において、再び画像センサー4の撮像データと模様データを位置演算手段8Bで照合し、スケール板3における絶対位置を演算・特定してその数値から記憶された原点の数値を引いた移動量を算出する点が記載されている。   Further, in Patent Document 3, pattern data corresponding to the temperature of the scale plate 3 measured by the high-precision temperature sensor 6 is called from the pattern data storage unit 8A, and the imaging data of the image sensor 4 at the current position of the moving body 2 The pattern data is collated by the position calculating means 8B, the absolute position on the scale plate 3 is calculated and specified, and the numerical value is stored. At the position where the moving body 2 has moved and stopped, the image data of the image sensor 4 is again detected. It is described that the pattern data is collated by the position calculation means 8B, the absolute position on the scale plate 3 is calculated and specified, and the movement amount is calculated by subtracting the stored numerical value of the origin.

特開平3−235007号公報JP-A-3-235007 特開2000−121308号公報JP 2000-121308 A 特開2006−29933号公報JP 2006-29933 A

しかし、特許文献1に開示される技術では、測定対象の材質や表面状態によってはスペックルパターンに歪みが生じることがあり、測定精度が低下するおそれがあった。
また、特許文献2に開示される技術では、平行導体(38)以外の移動物体の移動量を測定できないという問題があった。
However, in the technique disclosed in Patent Document 1, the speckle pattern may be distorted depending on the material to be measured and the surface state, and the measurement accuracy may be reduced.
Further, the technique disclosed in Patent Document 2 has a problem in that the amount of movement of a moving object other than the parallel conductor (38) cannot be measured.

また、特許文献3に開示される技術でも同様に、スケール板3以外の移動物体の移動量を測定できないという問題があった。
本発明は、このような課題に鑑みなされたものであり、その目的とするところは、測定対象および測定長さが限定されず、測定対象の材質および表面状態に拘わらず、測定の対象となる物体が所定の測定方向に移動した移動量を精度良く測定する技術を提供することにある。
Similarly, the technique disclosed in Patent Document 3 has a problem in that the amount of movement of a moving object other than the scale plate 3 cannot be measured.
The present invention has been made in view of such problems, and the object of the present invention is that the measurement object and the measurement length are not limited, and the measurement object regardless of the material and surface state of the measurement object. An object of the present invention is to provide a technique for accurately measuring the amount of movement of an object in a predetermined measurement direction.

上記課題を解決するためになされた請求項1に係る移動量測定装置は、物体が所定の測定方向に移動した移動量を測定する移動量測定装置であって、前記物体の表面から特徴のある部分を特定する特徴特定手段と、前記特徴特定手段によって特定された前記特徴部分が前記物体の移動に伴って所定の成分方向へ変位した変位量を検出する変位量検出手段と、前記変位量検出手段によって検出された前記成分方向への変位量を前記測定方向への変位量に換算し、その換算された前記測定方向への変位量を前記移動量とする移動量算出手段と、を備えることを特徴とする。   A movement amount measuring apparatus according to claim 1 made to solve the above-mentioned problem is a movement amount measuring apparatus for measuring a movement amount by which an object has moved in a predetermined measurement direction, and is characterized by the surface of the object. Feature specifying means for specifying a portion, displacement amount detecting means for detecting a displacement amount of the feature portion specified by the feature specifying means in a predetermined component direction as the object moves, and the displacement amount detection A movement amount calculating means for converting the displacement amount in the component direction detected by the means into a displacement amount in the measurement direction, and using the converted displacement amount in the measurement direction as the movement amount. It is characterized by.

このように構成された本発明の移動量測定装置によれば、物体表面の特徴部分の成分方向への変位量を測定方向への変位量に換算しており、そのために物体の表面から特徴のある部分を特定する手法を採用しているので、測定対象が限定されず、且つ測定長さが限定されない。また、上述のような物体の表面から特徴のある部分を特定する手法は、測定対象の材質および表面状態に影響されにくい。   According to the movement amount measuring apparatus of the present invention configured as described above, the displacement amount in the component direction of the characteristic portion of the object surface is converted into the displacement amount in the measurement direction. Since a technique for identifying a certain part is adopted, the measurement target is not limited and the measurement length is not limited. In addition, the method for identifying a characteristic portion from the surface of the object as described above is not easily influenced by the material and surface state of the measurement target.

したがって、本発明の移動量測定装置によれば、測定対象および測定長さが限定されず、測定対象の材質および表面状態に拘わらず、測定の対象となる物体が所定の測定方向に移動した移動量を精度良く測定することができる。   Therefore, according to the movement amount measuring apparatus of the present invention, the measurement object and the measurement length are not limited, and the object to be measured is moved in the predetermined measurement direction regardless of the material and surface state of the measurement object. The amount can be measured with high accuracy.

この場合、成分方向については、測定方向と同一方向に設定されていてもよいし(請求項2)、測定方向とは異なる方向に設定されていてもよい(請求項3)。
なお、後者の場合には、移動量算出手段が、変位量検出手段によって検出された成分方向への変位量を測定方向と成分方向とがなす仰角に基づき測定方向への変位量に換算し、その換算された測定方向への変位量を物体の測定方向への移動量とするとよい。
In this case, the component direction may be set in the same direction as the measurement direction (Claim 2), or may be set in a direction different from the measurement direction (Claim 3).
In the latter case, the movement amount calculation means converts the displacement amount in the component direction detected by the displacement amount detection means into a displacement amount in the measurement direction based on the elevation angle formed by the measurement direction and the component direction, The converted displacement amount in the measurement direction may be used as the movement amount of the object in the measurement direction.

さらに、成分方向が複数存在することが考えられる(請求項4)。このように構成すれば、例えば各成分方向への変位量に基づき算出された測定方向への変位量の平均値を物体の測定方向への移動量とすることにより、一方向に測定誤差や故障が生じても他方で補完することができ、物体の測定方向への移動量をより精度良く測定することができる。   Further, there may be a plurality of component directions (claim 4). With this configuration, for example, an average value of the displacement amount in the measurement direction calculated based on the displacement amount in each component direction is used as the movement amount in the measurement direction of the object, so that a measurement error or failure in one direction can be obtained. Can be compensated by the other, and the amount of movement of the object in the measurement direction can be measured with higher accuracy.

この場合、複数の成分方向のうちの二つが組を構成し、測定方向を挟んで等角度となるよう設定されていることが考えられる(請求項5)。このように構成すれば、各成分方向の変位量を同一値とすることができ、例えば各成分方向への変位量に基づき算出された測定方向への変位量の平均値を物体の測定方向への移動量とすることにより、物体の測定方向への移動量をより精度良く測定することができる。   In this case, it is conceivable that two of the plurality of component directions constitute a set and are set to be equiangular across the measurement direction (Claim 5). With this configuration, the displacement amount in each component direction can be set to the same value. For example, the average value of the displacement amount in the measurement direction calculated based on the displacement amount in each component direction is set in the measurement direction of the object. By using the amount of movement, the amount of movement of the object in the measurement direction can be measured with higher accuracy.

さらに、組を構成する二つの成分方向が測定方向を挟んで45度の等角度となるよう設定されているとなおよい(請求項6)。具体例として、X−Y方向が同時測定できるレーザーセンサーを45度傾けて設置すれば、簡単に実現することができる。このように構成すれば、それぞれの成分方向で算出された移動量により信頼性又は精度を向上させることが期待できる。   Furthermore, it is more preferable that the two component directions constituting the set are set to have an equal angle of 45 degrees across the measurement direction (Claim 6). As a specific example, if a laser sensor capable of simultaneously measuring in the X-Y direction is inclined at 45 degrees, it can be easily realized. With this configuration, it can be expected that reliability or accuracy is improved by the movement amount calculated in each component direction.

また、上述のような成分方向の組が複数存在するとよい(請求項7)。このように構成すれば、成分方向の組が一つ存在する場合に比べて、それぞれの組で算出された移動量により信頼性又は精度をより向上させることが期待できる。   Further, it is preferable that a plurality of sets of component directions as described above exist (claim 7). With this configuration, it is expected that the reliability or accuracy can be further improved by the amount of movement calculated for each set, compared to the case where there is one set in the component direction.

また、上述の複数組の成分方向のうちの二組が互いに対向するよう設定されていることが考えられる(請求項8)。このように構成すれば、一方の組に測定誤差が生じても他方の組で補完することができ、物体の測定方向への移動量をより精度良く測定することができる。   Further, it is conceivable that two sets of the plurality of sets of component directions are set to face each other (claim 8). With this configuration, even if a measurement error occurs in one set, the other set can be supplemented, and the amount of movement of the object in the measurement direction can be measured with higher accuracy.

また、上述の成分方向が測定方向と同一平面上に設定されていることが考えられる(請求項9)。このように構成すれば、ある方向の測定誤差を他の方向で補完する効果が高まる。   Further, it is conceivable that the above-described component direction is set on the same plane as the measurement direction (claim 9). If comprised in this way, the effect which complements the measurement error of a certain direction in another direction will increase.

移動量測定装置(2センシング)のブロック図(a)および説明図(b)Block diagram (a) and explanatory diagram (b) of movement amount measuring device (2 sensing) 移動量測定装置(2センシング)の測定の様子を示す平面図および正面図A plan view and a front view showing the state of measurement of the movement measuring device (2 sensing) 移動量測定装置(2センシング)の測定の様子を示す斜視図The perspective view which shows the mode of a measurement of a moving amount measuring apparatus (2 sensing) 移動量測定装置(1センシング)の測定の様子を示す平面図および正面図A plan view and a front view showing the state of measurement of the movement measuring device (1 sensing) 移動量測定装置(1センシング)の測定の様子を示す斜視図The perspective view which shows the mode of a measurement of a moving amount measuring apparatus (1 sensing) 移動量測定装置(4センシング)のブロック図Block diagram of movement measurement device (4 sensing) 移動量測定装置(4センシング)の測定の様子を示す平面図および正面図A plan view and a front view showing the state of measurement of the movement measuring device (4 sensing) 移動量測定装置(4センシング)の測定の様子を示す斜視図The perspective view which shows the mode of a measurement of a moving amount measuring apparatus (4 sensing)

以下に本発明の実施形態を図面とともに説明する。
図1に示す移動量測定装置1は、物体が所定の測定方向に移動した移動量を測定する装置である。なお、本実施形態では一例として、移動量測定装置1が、作業用車両に搭載される伸縮式アームが伸張した長さ寸法を測定する例を挙げる。
Embodiments of the present invention will be described below with reference to the drawings.
The movement amount measuring apparatus 1 shown in FIG. 1 is an apparatus that measures the movement amount that an object has moved in a predetermined measurement direction. In the present embodiment, as an example, an example in which the movement amount measuring device 1 measures a length dimension of an extendable arm mounted on a work vehicle is described.

[1.移動量測定装置1の構成の説明]
次に、移動量測定装置1の具体的な構成について説明する。
この移動量測定装置1は、センサー10と、演算部20と、記憶部30と、外部出力部40と、を備える。
[1. Description of Configuration of Movement Amount Measuring Apparatus 1]
Next, a specific configuration of the movement amount measuring apparatus 1 will be described.
The movement amount measuring apparatus 1 includes a sensor 10, a calculation unit 20, a storage unit 30, and an external output unit 40.

[1.1.センサー10の構成の説明]
センサー10は、図2,3に示すように、伸縮式アーム100のアーム本体101の表面(以下アーム表面)101aに対向して設置され、レーザ(一点鎖線にて図示)を伸縮式アーム100のアーム表面101aに向けて照射する発光部と、発光部から照射された後に伸縮式アーム100のアーム表面101aで反射されたレーザを受光する受光部と、受光部が受光したレーザに基づき各種処理を実行する処理部と、を有する。
[1.1. Description of sensor 10 configuration]
As shown in FIGS. 2 and 3, the sensor 10 is installed to face the surface (hereinafter referred to as an arm surface) 101 a of the arm body 101 of the telescopic arm 100, and a laser (shown by a one-dot chain line) is placed on the telescopic arm 100. Various processes are performed based on a light emitting unit that emits light toward the arm surface 101a, a light receiving unit that receives a laser beam that is irradiated from the light emitting unit and then reflected by the arm surface 101a of the telescopic arm 100, and a laser that is received by the light receiving unit. And a processing unit to be executed.

なお、発光部および受光部は、それぞれ伸縮式アーム100のアーム表面101aとアーム本体101の移動中も等間隔となるよう設置される。
また、処理部は、受光部が受光したレーザに基づき、伸縮式アーム100のアーム表面101aから、濃淡や色具合などによって周囲と比較して特徴のある部分(特徴部分)を特定する。そして、処理部は、特定された特徴部分が伸縮式アーム100のアーム本体101の移動方向(測定方向に該当)への移動に伴ってX軸方向およびY軸方向(共に成分方向に該当)へ変位した変位量をそれぞれ検出する(図1(b)参照)。なお、X軸およびY軸は、伸縮式アーム100のアーム本体101の移動方向を挟んでそれぞれが前記移動方向と45度となるよう同一平面上に設定される。また、センサー10の検出範囲から外れる度に他の特徴部分を抽出して変位量の検出を継続する。そして、検出した各特徴部分の変位量を加算することでトータルの変位量を検出する。
It should be noted that the light emitting unit and the light receiving unit are installed at equal intervals while the arm surface 101a of the telescopic arm 100 and the arm body 101 are moving.
Further, the processing unit specifies a characteristic part (characteristic part) compared to the surroundings based on the density or color condition from the arm surface 101a of the telescopic arm 100 based on the laser received by the light receiving unit. Then, the processing unit moves in the X-axis direction and the Y-axis direction (both correspond to the component direction) as the specified characteristic portion moves in the movement direction (corresponding to the measurement direction) of the arm body 101 of the telescopic arm 100. The displaced amount is detected (see FIG. 1B). Note that the X axis and the Y axis are set on the same plane so as to be 45 degrees with respect to the moving direction with the moving direction of the arm body 101 of the telescopic arm 100 interposed therebetween. Further, every time the sensor 10 is out of the detection range, another feature portion is extracted and the detection of the displacement amount is continued. Then, the total amount of displacement is detected by adding the detected amount of displacement of each feature portion.

さらに、処理部は、検出したX軸方向への変位量およびY軸方向への変位量を演算部20に送信する。
なお、センサー10は、特徴特定手段および変位量検出手段に該当する。
Further, the processing unit transmits the detected displacement amount in the X-axis direction and the detected displacement amount in the Y-axis direction to the calculation unit 20.
The sensor 10 corresponds to a feature specifying unit and a displacement amount detecting unit.

[1.2.演算部20の構成の説明]
演算部20は、センサー10から送られたX軸方向への変位量およびY軸方向への変位量から、伸縮式アーム100のアーム本体101の移動方向への移動量を算出する。具体的には、X軸方向と伸縮式アーム100のアーム本体101の移動方向とがなす角度(45度)に基づきX軸方向への変位量から伸縮式アーム100のアーム本体101の移動方向への変位量を算出するとともに、Y軸方向と伸縮式アーム100のアーム本体101の移動方向とがなす角度(45度)に基づきY軸方向への変位量から伸縮式アーム100のアーム本体101の移動方向への変位量を算出し、これらの平均値を算出して伸縮式アーム100のアーム本体101の移動方向への移動量とする。さらに、演算部20は、算出した伸縮式アーム100のアーム本体101の移動方向への移動量を記憶部30に記憶させたり外部出力部40に外部へ出力させたりする。
[1.2. Description of Configuration of Computing Unit 20]
The computing unit 20 calculates the movement amount of the telescopic arm 100 in the movement direction of the arm body 101 from the displacement amount in the X-axis direction and the displacement amount in the Y-axis direction sent from the sensor 10. Specifically, from the amount of displacement in the X-axis direction based on the angle (45 degrees) formed by the X-axis direction and the movement direction of the arm body 101 of the telescopic arm 100, the movement direction of the arm body 101 of the telescopic arm 100. The displacement amount of the arm body 101 of the telescopic arm 100 is calculated from the displacement amount in the Y axis direction based on the angle (45 degrees) formed by the Y axis direction and the moving direction of the arm body 101 of the telescopic arm 100. The amount of displacement in the movement direction is calculated, and the average value of these is calculated as the amount of movement of the arm body 101 of the telescopic arm 100 in the movement direction. Further, the arithmetic unit 20 stores the calculated movement amount of the telescopic arm 100 in the movement direction of the arm body 101 in the storage unit 30 or outputs the external output unit 40 to the outside.

なお、演算部20は、移動量算出手段に該当する。
[1.3.記憶部30の構成の説明]
記憶部30は、各種のデータやプログラム等の一時的な記憶領域として利用される。
The calculation unit 20 corresponds to a movement amount calculation unit.
[1.3. Description of Configuration of Storage Unit 30]
The storage unit 30 is used as a temporary storage area for various data and programs.

[1.4.外部出力部40の構成の説明]
外部出力部40は、各種のデータを外部に出力する機能を有する。
[2.実施形態の効果]
(1)このように本実施形態の移動量測定装置1によれば、物体表面(例えば伸縮式アーム100のアーム本体101の表面101a)の特徴部分の所定の成分方向への変位量を所定の測定方向への変位量に換算しており、そのために物体の表面から特徴のある部分を特定する手法を採用しているので、測定対象が限定されず、且つ測定長さが限定されない。また、上述のような物体の表面から特徴のある部分を特定する手法は、測定対象の材質および表面状態に影響されにくい。
[1.4. Description of configuration of external output unit 40]
The external output unit 40 has a function of outputting various data to the outside.
[2. Effects of the embodiment]
(1) As described above, according to the movement amount measuring apparatus 1 of the present embodiment, the amount of displacement in the predetermined component direction of the characteristic portion of the object surface (for example, the surface 101a of the arm body 101 of the telescopic arm 100) is set to the predetermined amount. Since it is converted into a displacement amount in the measurement direction and a technique for identifying a characteristic part from the surface of the object is used for this purpose, the measurement object is not limited and the measurement length is not limited. In addition, the method for identifying a characteristic portion from the surface of the object as described above is not easily influenced by the material and surface state of the measurement target.

したがって、本実施形態の移動量測定装置1によれば、測定対象および測定長さが限定されず、測定対象の材質および表面状態に拘わらず、測定の対象となる物体が所定の測定方向に移動した移動量を精度良く測定することができる。   Therefore, according to the movement amount measuring apparatus 1 of the present embodiment, the measurement target and the measurement length are not limited, and the object to be measured moves in a predetermined measurement direction regardless of the material and surface state of the measurement target. Can be measured with high accuracy.

(2)また、本実施形態の移動量測定装置1によれば、各成分方向に基づき算出された物体の測定方向への変位量の平均値を物体の測定方向への移動量とすることにより、一方向に測定誤差や故障が生じても他方で補完することができ、物体の測定方向への移動量をより精度良く測定することができる。   (2) Further, according to the movement amount measuring apparatus 1 of the present embodiment, the average value of the displacement amount in the measurement direction of the object calculated based on each component direction is used as the movement amount in the measurement direction of the object. Even if a measurement error or failure occurs in one direction, it can be supplemented by the other, and the amount of movement of the object in the measurement direction can be measured with higher accuracy.

(3)また、本実施形態の移動量測定装置1によれば、二つの成分方向(X軸方向およびY軸方向)が組を構成し、測定方向を挟んで等角度となるよう設定されているので、各成分方向の変位量を同一値とすることができ、例えば各成分方向への変位量に基づき算出された測定方向への変位量の平均値を物体の測定方向への移動量とすることにより、物体の測定方向への移動量をより精度良く測定することができる。   (3) Moreover, according to the movement amount measuring apparatus 1 of the present embodiment, the two component directions (X-axis direction and Y-axis direction) constitute a set, and are set to be equiangular across the measurement direction. Therefore, the displacement amount in each component direction can be set to the same value.For example, the average value of the displacement amount in the measurement direction calculated based on the displacement amount in each component direction is the movement amount of the object in the measurement direction. By doing so, the amount of movement of the object in the measurement direction can be measured with higher accuracy.

(4)さらに、本実施形態の移動量測定装置1によれば、組を構成する二つの成分方向が測定方向を挟んで45度の等角度となるよう設定されているので、それぞれの成分方向で算出された移動量により信頼性又は精度を向上させることが期待できる。   (4) Furthermore, according to the movement amount measuring apparatus 1 of the present embodiment, since the two component directions constituting the set are set to be at an equal angle of 45 degrees across the measurement direction, the respective component directions It can be expected that the reliability or accuracy is improved by the movement amount calculated in (1).

(5)また、本実施形態の移動量測定装置1によれば、二つの成分方向(X軸方向およびY軸方向)が測定方向と同一平面上に設定されているので、ある方向の測定誤差を他の方向で補完する効果が高まる。   (5) Moreover, according to the movement amount measuring apparatus 1 of the present embodiment, since the two component directions (X-axis direction and Y-axis direction) are set on the same plane as the measurement direction, a measurement error in a certain direction. The effect of complementing in other directions is enhanced.

[3.他の実施形態]
以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、以下のような様々な態様にて実施することが可能である。
[3. Other Embodiments]
As mentioned above, although one Embodiment of this invention was described, this invention is not limited to the said embodiment, It is possible to implement in the following various aspects.

(1)上記実施形態では、成分方向(X軸方向およびY軸方向)が測定方向(伸縮式アーム100のアーム本体101の移動方向)とは異なる方向に設定されているが、これには限られず、成分方向を測定方向と同一方向に設定してもよい。また、上記実施形態では、二つの成分方向(X軸方向およびY軸方向)が設定されているが、これには限られず、成分方向は一つ(X軸方向のみ)でもよいし、3つ以上でもよい。   (1) In the above embodiment, the component direction (X-axis direction and Y-axis direction) is set to a direction different from the measurement direction (movement direction of the arm body 101 of the telescopic arm 100), but this is not limitative. Instead, the component direction may be set in the same direction as the measurement direction. In the above embodiment, two component directions (X-axis direction and Y-axis direction) are set. However, the present invention is not limited to this, and the number of component directions may be one (only the X-axis direction) or three. That's all.

図4,5には、一つの成分方向が測定方向と同一方向に設定されている例を示している。
このように構成しても、物体表面の特徴部分の所定の成分方向への変位量を所定の測定方向への変位量に換算しており、そのために物体の表面から特徴のある部分を特定する手法を採用している点は同様なので、測定対象が限定されず、且つ測定長さが限定されない。また、上述のような物体の表面から特徴のある部分を特定する手法は、測定対象の材質および表面状態に影響されにくい。したがって、測定対象および測定長さが限定されず、測定対象の材質および表面状態に拘わらず、測定の対象となる物体が所定の測定方向に移動した移動量を精度良く測定することができる。
4 and 5 show examples in which one component direction is set in the same direction as the measurement direction.
Even in this configuration, the displacement amount in the predetermined component direction of the characteristic portion of the object surface is converted into the displacement amount in the predetermined measurement direction, and for this purpose, the characteristic portion is specified from the surface of the object. Since the method is the same, the measurement target is not limited and the measurement length is not limited. In addition, the method for identifying a characteristic portion from the surface of the object as described above is not easily influenced by the material and surface state of the measurement target. Therefore, the measurement target and the measurement length are not limited, and the amount of movement of the object to be measured in the predetermined measurement direction can be accurately measured regardless of the material and surface state of the measurement target.

(2)上記実施形態では、成分方向の組が一つ存在するが(X軸方向およびY軸方向)、これには限られず、成分方向の組が複数存在するようにしてもよい(例えばX軸方向、Y軸方向、X´軸方向およびY´軸方向)。   (2) In the above embodiment, there is one set of component directions (X-axis direction and Y-axis direction). However, the present invention is not limited to this, and a plurality of sets of component directions may exist (for example, X (Axial direction, Y-axis direction, X′-axis direction and Y′-axis direction).

この例について図6〜図8を参照しながら説明する。
移動量測定装置3は、二つのセンサー10A,10Bを備える点が移動量測定装置1とは異なる(図6参照)。
This example will be described with reference to FIGS.
The movement amount measuring device 3 is different from the movement amount measuring device 1 in that it includes two sensors 10A and 10B (see FIG. 6).

なお、センサー10A,10Bについては、それぞれセンサー10と同様の構成であるので、ここではその詳細な説明は省略する。また、移動量測定装置3が備える演算部20、記憶部30および外部出力部40についても、ここではその詳細な説明は省略する。   The sensors 10A and 10B have the same configuration as that of the sensor 10, and detailed description thereof is omitted here. The detailed description of the calculation unit 20, the storage unit 30, and the external output unit 40 included in the movement amount measuring device 3 is also omitted here.

さらに、図7,8に例示するように、センサー10AのX軸およびY軸は、伸縮式アーム100のアーム本体101の移動方向を挟んでそれぞれが前記移動方向と45度となるよう同一平面上に設定される。また、センサー10BのX´軸およびY´軸は、伸縮式アーム100のアーム本体101の移動方向を挟んでそれぞれが前記移動方向と45度となり、X軸およびY軸と対向するよう同一平面上に設定される。   Further, as illustrated in FIGS. 7 and 8, the X axis and the Y axis of the sensor 10 </ b> A are on the same plane so that the movement direction of the arm body 101 of the telescopic arm 100 is 45 degrees with respect to the movement direction. Set to In addition, the X ′ axis and the Y ′ axis of the sensor 10B are 45 degrees with respect to the moving direction of the arm body 101 of the telescopic arm 100, and are on the same plane so as to face the X axis and the Y axis. Set to

そして、演算部20は、センサー10Aから送られたX軸方向への変位量およびY軸方向への変位量とセンサー10Bから送られたX´軸方向への変位量およびY´軸方向への変位量とから、伸縮式アーム100のアーム本体101の移動方向への移動量を算出する。具体的には、X軸方向と伸縮式アーム100のアーム本体101の移動方向とがなす角度(45度)に基づきX軸方向への変位量から伸縮式アーム100のアーム本体101の移動方向への変位量を算出するとともに、Y軸方向と伸縮式アーム100のアーム本体101の移動方向とがなす角度(45度)に基づきY軸方向への変位量から伸縮式アーム100のアーム本体101の移動方向への変位量を算出し、X´軸方向と伸縮式アーム100のアーム本体101の移動方向とがなす角度(45度)に基づきX´軸方向への変位量から伸縮式アーム100のアーム本体101の移動方向への変位量を算出するとともに、Y´軸方向と伸縮式アーム100のアーム本体101の移動方向とがなす角度(45度)に基づきY´軸方向への変位量から伸縮式アーム100のアーム本体101の移動方向への変位量を算出し、これらの平均値を算出して伸縮式アーム100のアーム本体101の移動方向への移動量とする。   The computing unit 20 then sends the displacement amount in the X-axis direction and the displacement amount in the Y-axis direction sent from the sensor 10A, the displacement amount in the X′-axis direction sent from the sensor 10B, and the displacement in the Y′-axis direction. From the displacement amount, the movement amount of the telescopic arm 100 in the movement direction of the arm body 101 is calculated. Specifically, from the amount of displacement in the X-axis direction based on the angle (45 degrees) formed by the X-axis direction and the movement direction of the arm body 101 of the telescopic arm 100, the movement direction of the arm body 101 of the telescopic arm 100. The displacement amount of the arm body 101 of the telescopic arm 100 is calculated from the displacement amount in the Y axis direction based on the angle (45 degrees) formed by the Y axis direction and the moving direction of the arm body 101 of the telescopic arm 100. The amount of displacement in the movement direction is calculated, and based on the angle (45 degrees) between the X′-axis direction and the movement direction of the arm main body 101 of the telescopic arm 100, the amount of displacement of the telescopic arm 100 is calculated from the amount of displacement in the X′-axis direction. The amount of displacement in the moving direction of the arm body 101 is calculated, and the amount of displacement in the Y′-axis direction is calculated based on the angle (45 degrees) between the Y′-axis direction and the moving direction of the arm body 101 of the telescopic arm 100. Displacement amount in the moving direction of the arm body 101 of the telescoping arms 100 is calculated and the amount of movement in the moving direction of the arm body 101 of the telescoping arms 100 calculates the average value thereof.

このように構成すれば、成分方向の組が一つ存在する場合に比べて、それぞれの組で算出された移動量により信頼性又は精度をより向上させることが期待できる。
また、二組の成分方向が互いに対向するよう設定されているので、一方の組に測定誤差が生じても他方の組で補完することができ、物体の測定方向への移動量をより精度良く測定することができる。
With this configuration, it is expected that the reliability or accuracy can be further improved by the amount of movement calculated for each set, compared to the case where there is one set in the component direction.
In addition, since the two component directions are set to oppose each other, even if a measurement error occurs in one set, the other set can be supplemented, and the amount of movement of the object in the measurement direction can be improved with higher accuracy. Can be measured.

1,3…移動量測定装置、10,10A,10B…センサー、20…演算部、30…記憶部、40…外部出力部、100…伸縮式アーム、101…アーム本体、101a…アーム本体の表面 DESCRIPTION OF SYMBOLS 1,3 ... Movement amount measuring apparatus 10, 10, 10A, 10B ... Sensor, 20 ... Calculation part, 30 ... Memory | storage part, 40 ... External output part, 100 ... Telescopic arm, 101 ... Arm main body, 101a ... Surface of arm main body

Claims (9)

物体が所定の測定方向に移動した移動量を測定する移動量測定装置であって、
前記物体の表面から特徴のある部分を特定する特徴特定手段と、
前記特徴特定手段によって特定された前記特徴部分が前記物体の移動に伴って所定の成分方向へ変位した変位量を検出する変位量検出手段と、
前記変位量検出手段によって検出された前記成分方向への変位量を前記測定方向への変位量に換算し、その換算された前記測定方向への変位量を前記移動量とする移動量算出手段と、
を備えることを特徴とする移動量測定装置。
A moving amount measuring device for measuring a moving amount by which an object moves in a predetermined measuring direction,
Feature identifying means for identifying a characteristic part from the surface of the object;
A displacement amount detecting means for detecting a displacement amount in which the feature portion specified by the feature specifying means is displaced in a predetermined component direction as the object moves;
A movement amount calculation means for converting the displacement amount in the component direction detected by the displacement amount detection means into a displacement amount in the measurement direction, and using the converted displacement amount in the measurement direction as the movement amount; ,
A moving amount measuring apparatus comprising:
請求項1に記載の移動量測定装置において、
前記成分方向は前記測定方向と同一方向に設定されていることを特徴とする移動量測定装置。
In the movement amount measuring apparatus according to claim 1,
The movement amount measuring apparatus, wherein the component direction is set in the same direction as the measurement direction.
請求項1に記載の移動量測定装置において、
前記成分方向は前記測定方向とは異なる方向に設定されており、
前記移動量算出手段は、前記変位量検出手段によって検出された前記成分方向への変位量を前記測定方向と前記成分方向とがなす仰角に基づき前記測定方向への変位量に換算し、その換算された前記測定方向への変位量を前記移動量とすること
を特徴とする移動量測定装置。
In the movement amount measuring apparatus according to claim 1,
The component direction is set to a direction different from the measurement direction,
The movement amount calculation means converts the displacement amount in the component direction detected by the displacement amount detection means into a displacement amount in the measurement direction based on an elevation angle formed by the measurement direction and the component direction. The amount of movement in the measuring direction is used as the amount of movement.
請求項3に記載の移動量測定装置において、
前記成分方向は複数存在することを特徴とする移動量測定装置。
In the movement amount measuring apparatus according to claim 3,
A movement amount measuring apparatus, wherein there are a plurality of component directions.
請求項4に記載の移動量測定装置において、
前記複数の成分方向のうちの二つが組を構成し、前記測定方向を挟んで等角度となるよう設定されていることを特徴とする移動量測定装置。
In the movement amount measuring apparatus according to claim 4,
Two of the plurality of component directions constitute a set, and are set so as to be equiangular across the measurement direction.
請求項5に記載の移動量測定装置において、
前記組を構成する二つの成分方向は前記測定方向を挟んで45度の等角度となるよう設定されていることを特徴とする移動量測定装置。
In the movement amount measuring apparatus according to claim 5,
The movement amount measuring apparatus is characterized in that the two component directions constituting the set are set to have an equal angle of 45 degrees across the measurement direction.
請求項5または請求項6の何れか1項に記載の移動量測定装置において、
前記成分方向の組が複数存在することを特徴とする移動量測定装置。
In the movement amount measuring apparatus according to any one of claims 5 and 6,
A movement amount measuring apparatus, wherein there are a plurality of sets of the component directions.
請求項7に記載の移動量測定装置において、
前記複数組の成分方向のうちの二組は互いに対向するよう設定されていることを特徴とする移動量測定装置。
In the movement amount measuring apparatus according to claim 7,
Two sets of the component directions of the plurality of sets are set so as to face each other.
請求項3〜請求項8の何れか1項に記載の移動量測定装置において、
前記成分方向は前記測定方向と同一平面上に設定されていること
を特徴とする移動量測定装置。
In the movement amount measuring apparatus according to any one of claims 3 to 8,
The component direction is set on the same plane as the measurement direction.
JP2012008222A 2012-01-18 2012-01-18 Movement amount measurement device Pending JP2013148423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012008222A JP2013148423A (en) 2012-01-18 2012-01-18 Movement amount measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012008222A JP2013148423A (en) 2012-01-18 2012-01-18 Movement amount measurement device

Publications (1)

Publication Number Publication Date
JP2013148423A true JP2013148423A (en) 2013-08-01

Family

ID=49046049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012008222A Pending JP2013148423A (en) 2012-01-18 2012-01-18 Movement amount measurement device

Country Status (1)

Country Link
JP (1) JP2013148423A (en)

Similar Documents

Publication Publication Date Title
Sun et al. A vision measurement model of laser displacement sensor and its calibration method
EP2435783B1 (en) Hybrid sensor
JP2014515827A5 (en)
US11426876B2 (en) Information processing apparatus, information processing method, and program
TWI420081B (en) Distance measuring system and distance measuring method
JP2008051696A (en) Optical axis deviation type laser interferometer, its calibration method, correction method, and measuring method
JP2011095241A5 (en)
KR101473736B1 (en) Calibration apparatus for multi-sensor based on closed-loop and and method thereof
US10371511B2 (en) Device and method for geometrically measuring an object
JP6747151B2 (en) Inspection method and device for positioning machine using tracking laser interferometer
CN109855554A (en) Deflection measuring apparatus and method for engineering truck machinery arm
KR20150069927A (en) Device, method for calibration of camera and laser range finder
JP6331587B2 (en) Three-dimensional coordinate measuring apparatus and method, and calibration apparatus
KR101403377B1 (en) Method for calculating 6 dof motion of object by using 2d laser scanner
JP6550621B2 (en) Spatial position measuring method and apparatus using tracking type laser interferometer
JP2013171043A (en) Structure and method for positioning working tool to working article
JP2013148423A (en) Movement amount measurement device
JP2009174974A (en) 3-d sensor
US11162776B2 (en) Measuring device
JP6797439B2 (en) 3D white light scanner calibration method
JP2013152116A (en) Movement measuring apparatus
JP2018189459A (en) Measuring device, measurement method, system, and goods manufacturing method
JP2013148506A (en) Movement amount measurement device
JP2015224949A (en) Object measurement device and object measurement method
KR20150071324A (en) Apparatus and method for measuringing the distance