JP2013032922A - Three-dimensional measurement method - Google Patents
Three-dimensional measurement method Download PDFInfo
- Publication number
- JP2013032922A JP2013032922A JP2011167976A JP2011167976A JP2013032922A JP 2013032922 A JP2013032922 A JP 2013032922A JP 2011167976 A JP2011167976 A JP 2011167976A JP 2011167976 A JP2011167976 A JP 2011167976A JP 2013032922 A JP2013032922 A JP 2013032922A
- Authority
- JP
- Japan
- Prior art keywords
- measuring machine
- data
- laser tracking
- measurement
- contact
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Length Measuring Devices With Unspecified Measuring Means (AREA)
Abstract
Description
本発明は、タービンロータ、タービンケーシングの3次元形状を計測し、その計測情報に基づいて設計データを作成したり、据え付け状態を確認したりする際に使用される、3次元寸法測定方法に関する。 The present invention relates to a three-dimensional dimension measuring method used when measuring a three-dimensional shape of a turbine rotor and a turbine casing, creating design data based on the measurement information, and confirming an installation state.
タービンロータやタービンケーシングは経年劣化するため、定期的に取り換え工事が行われる。このような工事を行うに際しては、タービンロータやタービンケーシングの設計図面が必要であるが、既設置のタービンロータやタービンケーシングが他社製の場合、図面がないことから、タービンロータやタービンケーシングを交換するためには、現品にて既設置品の形状測定データを取得し、設計図を起こす必要があった(リバースエンジニアリング、レトロフィット)。 Since the turbine rotor and the turbine casing deteriorate over time, replacement work is regularly performed. When performing such construction, design drawings of the turbine rotor and turbine casing are required. However, if the existing turbine rotor or turbine casing is made by another company, there is no drawing, so the turbine rotor and turbine casing must be replaced. In order to do this, it was necessary to obtain the shape measurement data of the existing product in the actual product and generate a design drawing (reverse engineering, retrofit).
これらの課題に対し、特開2010−160135号公報(特許文献1)において鯉沼らは、タービン発電機におけるステータコイル接続組立の3次元形状を測定するに際して、レーザ非接触式3次元形状測定装置により予め設定された測定範囲におけるステータコイル接続組立の測定部位の3次元形状を測定する第1のステップと、エンコーダが内蔵された関節により複数本のアームを連結してなる多関節接触式3次元形状測定装置により予め設定された測定範囲におけるステータコイル接続組立の測定部位の3次元形状を測定する第2のステップと、前記第1の測定ステップで測定された3次元形状データと前記第2の測定ステップで測定された3次元形状データ及び手計測による局所的な部位の形状測定データを総合的に合成して最終的にステータコイル接続組立の設計図を起こすための方法について述べている。 In response to these problems, Kakinuma et al. In JP 2010-160135 A (Patent Document 1) uses a laser non-contact type three-dimensional shape measuring apparatus when measuring a three-dimensional shape of a stator coil connection assembly in a turbine generator. A first step of measuring a three-dimensional shape of a measurement part of a stator coil connection assembly in a preset measurement range, and a multi-joint contact type three-dimensional shape formed by connecting a plurality of arms by a joint having an encoder built therein A second step of measuring a three-dimensional shape of a measurement part of the stator coil connection assembly in a measurement range set in advance by a measuring device; the three-dimensional shape data measured in the first measurement step; and the second measurement Comprehensive synthesis of 3D shape data measured in steps and local site shape measurement data by hand measurement It describes a method for causing a blueprint for the stator coil connection assembly to.
しかしながら、特許文献1で述べられている技術では、表面形状を容易に高精度に測定するために、多関節接触式3次元形状測定装置を用いているため、一度に測定できる範囲が狭く、多関節接触式3次元形状測定装置の位置を何回も変更する必要があった。 However, in the technique described in Patent Document 1, an articulated contact type three-dimensional shape measuring apparatus is used in order to easily measure the surface shape with high accuracy. It was necessary to change the position of the joint contact type three-dimensional shape measuring apparatus many times.
そこで、本発明の目的は、一回の設置で広範囲を高い精度で算出可能な方法を提供することにある。 Accordingly, an object of the present invention is to provide a method capable of calculating a wide range with high accuracy by a single installation.
上記目的を達成するために、本発明は、主に、平面、円筒、曲面からなる計測対象の寸法を測定する際に、非接触式三次元測定機により全体形状を測定し、全体形状の三次元形状データを生成する第1のステップと、計測対象を平面、円筒、曲面部に分割し、レーザ追尾式非接触測定機とレーザ追尾式接触測定機で測定する第2のステップと、上記第2のステップでレーザ追尾式非接触測定機から得られたデータに基づき曲面部の三次元形状データを生成する第3のステップと、上記第2のステップでレーザ追尾式接触測定機から得られたデータに基づき平面、および、円筒を算出する第4のステップと、手計測により得られた主要部寸法の入力を受け付ける第5のステップと、上記、第1、第3、第4、および、第5のステップで得られたデータを合成する第6のステップと、該第6のステップで得られたデータに基づき設計データを作成する第7のステップと、上記第7のステップで得られた設計データに基づき計測対象同等品を新規に製作するステップを備えたことを特徴とする。 In order to achieve the above object, the present invention mainly measures the overall shape with a non-contact type three-dimensional measuring machine when measuring the dimensions of a measurement object consisting of a plane, a cylinder, and a curved surface. A first step of generating original shape data; a second step of dividing a measurement object into a plane, a cylinder, and a curved surface, and measuring with a laser tracking non-contact measuring machine and a laser tracking contact measuring machine; The third step of generating the three-dimensional shape data of the curved surface portion based on the data obtained from the laser tracking non-contact measuring machine in step 2, and the laser tracking contact measuring machine obtained in the second step. A fourth step for calculating a plane and a cylinder based on the data; a fifth step for receiving input of main part dimensions obtained by manual measurement; and the first, third, fourth, and Obtained in 5 steps A sixth step for synthesizing the data, a seventh step for creating design data based on the data obtained in the sixth step, and an object to be measured based on the design data obtained in the seventh step It is characterized by comprising a step of newly producing a product.
本発明によれば、少ない作業量で、短時間に、高い精度で寸法を求めることが可能となる。 According to the present invention, it is possible to obtain dimensions with high accuracy in a short time with a small amount of work.
本発明は、測定対象の寸法を測定する際に、非接触3D測定器で全体形状を測定し、また、高い計測精度が求められる部分は、主に平面と円筒形状であることに着目し、測定対象を平面と円筒の集合体に分解し、分解した平面と円筒をレーザ追尾式接触測定機でN点計測し、取得されたN点の座標データから当てはめにより平面や円筒を求めることで、高い計測精度が求められる主要部分に寸法をもとめ、平面と円筒では表現できない曲面部のうち、高い精度が求められる部位については、レーザ追尾式非接触測定機を用いて計測することで、一回のセッティングで広い範囲を、短時間に計測することを特徴とする。 The present invention measures the overall shape with a non-contact 3D measuring instrument when measuring the dimensions of the measurement object, and pays attention to the fact that the parts that require high measurement accuracy are mainly flat and cylindrical, By disassembling the measurement object into an assembly of a plane and a cylinder, measuring the decomposed plane and cylinder with N points using a laser tracking contact measuring machine, and obtaining the plane and cylinder by fitting from the obtained coordinate data of N points, Measure the dimensions of the main parts that require high measurement accuracy, and measure the parts that require high accuracy among the curved parts that cannot be represented by planes and cylinders by using a laser tracking non-contact measuring machine. It is characterized by measuring a wide range in a short time with this setting.
以下、本発明の実施形態を図1から図33を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to FIGS.
図1に本発明で用いる計測システムの全体構成について示す。先ず、非接触式三次元測定機6により計測対象全体にわたり、計測対象表面に対応した座標情報を得る。非接触式三次元測定機は、図9に示すように、二つのエンコーダ付き回転モータ27a、27bと、レーザ測距システム28から構成され、図10に示すように、上記エンコーダで二つの角度φ、θを計測するとともに、上記レーザ測距システムにより計測対象までの距離を測定することで、計測点の座標情報11を得る。そして、該得られた座標情報に基づき、計測対象全体形状の三次元形状データ15を生成する。 FIG. 1 shows the overall configuration of a measurement system used in the present invention. First, coordinate information corresponding to the measurement target surface is obtained over the entire measurement target by the non-contact type three-dimensional measuring machine 6. As shown in FIG. 9, the non-contact type coordinate measuring machine is composed of two rotary motors 27a and 27b with encoders and a laser ranging system 28. As shown in FIG. , Θ is measured, and the distance information to the measurement target is measured by the laser ranging system, thereby obtaining coordinate information 11 of the measurement point. Then, based on the obtained coordinate information, three-dimensional shape data 15 of the entire shape to be measured is generated.
次に、計測対象を平面、円筒、曲面部に分割し(ステップ2)、該分割された部位ごとにレーザ追尾式非接触測定機3とレーザ追尾式接触測定機4で測定する。具体的な計測対象としては、図3、図4に示すようなタービンケーシングやタービンロータが挙げられる。タービンケーシングやタービンロータは、簡略化すると、図5、図6に示されるような、平面と円筒の集合体として表すことができる。このとき、レーザ追尾式非接触測定機とレーザ追尾式接触測定機は、図11、図12に示すように、各々、レーザトラッカシステム5aとカメラシステム5bで監視されている。上記レーザ追尾式非接触測定機とレーザ追尾式接触測定機は、各々、レトロリフレクタ32が取り付けられており、上記レーザトラッカシステム5aにて、該レトロリフレクタまでの距離を測定することで、レーザトラッカシステムの座標系における該レトロリフレクタの座標を計測する。また、上記レーザ追尾式非接触測定機とレーザ追尾式接触測定機は、各々、複数のLEDが取り付けられており、上記カメラシステムにて、該LEDを撮像する。該LEDの位置関係は予め定められているため、取得された画像を解析することで、上記レーザ追尾式非接触測定機とレーザ追尾式接触測定機の姿勢を算出する。以上の情報に基づき、レーザ追尾式非接触測定機とレーザ追尾式接触測定機で得られたデータは、レーザトラッカシステムの座標系に変換される。 Next, the measurement object is divided into a plane, a cylinder, and a curved surface (step 2), and measurement is performed by the laser tracking non-contact measuring device 3 and the laser tracking contact measuring device 4 for each of the divided portions. Specific measurement objects include turbine casings and turbine rotors as shown in FIGS. When simplified, the turbine casing and the turbine rotor can be represented as an assembly of a plane and a cylinder as shown in FIGS. At this time, the laser tracking non-contact measuring machine and the laser tracking contact measuring machine are monitored by a laser tracker system 5a and a camera system 5b, respectively, as shown in FIGS. The laser tracking type non-contact measuring machine and the laser tracking type contact measuring machine each have a retro reflector 32 attached thereto, and the laser tracker system 5a measures the distance to the retro reflector so that a laser tracker can be obtained. The coordinates of the retro reflector in the system coordinate system are measured. Each of the laser tracking non-contact measuring machine and the laser tracking contact measuring machine is provided with a plurality of LEDs, and the LEDs are imaged by the camera system. Since the positional relationship between the LEDs is determined in advance, the attitudes of the laser tracking non-contact measuring device and the laser tracking contact measuring device are calculated by analyzing the acquired image. Based on the above information, data obtained by the laser tracking non-contact measuring machine and the laser tracking contact measuring machine is converted into the coordinate system of the laser tracker system.
次に、レーザ追尾式非接触測定機で得られたデータから曲面の三次元形状データ14を生成する。曲面の具体例としては、図7に示すような、タービンケーシングのホールダウンボルト部などが挙げられる。レーザ追尾式非接触測定機では、図8に示すように曲面部表面の多くの座標データを取得する。測定原理は、例えば、図13に示すレーザ光切断方式などがある、すなわち、レーザ3aから発振されたレーザ光りは、コリメータレンズ3cで一旦拡大され、シリンドリカルレンズ3dで扇状に広げられる。該扇状の光りは、計測対象に当たり散乱光が発生する。該発生した散乱光は、結像レンズ3eで集光され、エリアセンサ3b上に結像される。このとき、計測対象の位置(サイズ、すなわち座標)がレーザ輝線36、37、38と変化すると、画像上の結像位置も計測面36a、36b、36cといった具合に変化する。この画像上での結像位置(レーザ輝線の位置)を画像処理で算出し(例えば、輝度分布の重心を求め)、三角測量の原理で計測対象までの距離が求まる。 Next, the three-dimensional shape data 14 of the curved surface is generated from the data obtained by the laser tracking non-contact measuring machine. Specific examples of the curved surface include a hole down bolt portion of a turbine casing as shown in FIG. In the laser tracking type non-contact measuring machine, as shown in FIG. 8, a lot of coordinate data on the curved surface is acquired. The principle of measurement is, for example, the laser beam cutting method shown in FIG. The fan-shaped light hits a measurement target and generates scattered light. The generated scattered light is collected by the imaging lens 3e and imaged on the area sensor 3b. At this time, when the position (size, that is, coordinates) of the measurement object changes to the laser emission lines 36, 37, and 38, the imaging position on the image also changes to the measurement surfaces 36a, 36b, and 36c. The image formation position (the position of the laser emission line) on this image is calculated by image processing (for example, the center of gravity of the luminance distribution is obtained), and the distance to the measurement object is obtained by the principle of triangulation.
一方、レーザ追尾式接触測定機では、図17、図18に示すように、上記分割された各々の平面、および、円筒をN点計測する。そして、N点計測されたデータから、平面、および、円筒形状を求める。さらに、計測対象の主要部16では、ノギスやパイテープ、コンベックスなどを用いて計測される。一般に、図15、図16に示すように、平面と円筒は3点の座標データがあると一意に求まる。しかしながら、計測データには必ず誤差が含まれるため、3点の計測データから平面や円筒は正しく求まらない。そこで、最低でも5点から8点の計測データを取得することが望ましい。4点以上の計測データから平面や円筒を求める方法としては、最小二乗法や擬似逆行列を使えばよい。ここで、タービンケーシングやタービンロータの場合、一般的に、平面や円筒は各々平行になっている。ところが、最小二乗法や擬似逆行列で求まる平面や円筒は、計測誤差のため、平面の法線と円筒の軸は、一致しない。すなわち、図19に示すように、計測データの誤差により、円筒面が投影される平面が、計算のたびに変わる。逆に、投影する平面を予め定めておけば、円筒の中心軸は一致する。そこで、例えば、タービンケーシングを計測する場合には、図20に示すように、機械加工面を基準面46とし、先ず、図21に示すように、該基準面をN点計測する。そして、図22に示すように、該基準面を含む平面46bを求める。次に、計測したい円筒面47をN点計測し、得られた計測データを該平面46bに投影し、投影されたデータに円を当てはめることで円筒を算出する。 On the other hand, in the laser tracking type contact measuring machine, as shown in FIGS. 17 and 18, N points are measured for each of the divided planes and cylinders. Then, a plane and a cylindrical shape are obtained from the data measured at N points. Further, the main part 16 to be measured is measured using calipers, pie tapes, convexes, and the like. In general, as shown in FIGS. 15 and 16, a plane and a cylinder are uniquely obtained when there are three points of coordinate data. However, since the measurement data always includes an error, a plane and a cylinder cannot be obtained correctly from the three measurement data. Therefore, it is desirable to acquire at least 5 to 8 measurement data. As a method for obtaining a plane or a cylinder from four or more points of measurement data, a least square method or a pseudo inverse matrix may be used. Here, in the case of a turbine casing and a turbine rotor, generally, the plane and the cylinder are parallel to each other. However, the plane normal and the cylinder axis obtained by the least square method or the pseudo inverse matrix do not coincide with each other because of the measurement error. That is, as shown in FIG. 19, the plane on which the cylindrical surface is projected changes every time due to an error in measurement data. On the contrary, if the plane to project is determined in advance, the central axes of the cylinders coincide. Therefore, for example, when measuring a turbine casing, the machined surface is used as a reference surface 46 as shown in FIG. 20, and first, the reference surface is measured at N points as shown in FIG. Then, as shown in FIG. 22, a plane 46b including the reference plane is obtained. Next, N points of the cylindrical surface 47 to be measured are measured, the obtained measurement data is projected onto the plane 46b, and a cylinder is calculated by fitting a circle to the projected data.
このようにして求められた形状データは、共通の座標系で合成され(ステップ17)、該得られた合成形状データに基づき設計データ(CADデータ)を生成し(ステップ18)、該生成された設計データに基づき、計測対象相当品が新規に製作される(ステップ19)。 The shape data thus obtained is synthesized in a common coordinate system (step 17), and design data (CAD data) is generated based on the obtained synthesized shape data (step 18). Based on the design data, a measurement target equivalent product is newly produced (step 19).
図2に本発明で用いる計測システムの別の構成について示す。先ず、非接触式三次元測定機6により計測対象全体にわたり、計測対象表面に対応した座標情報11を得る。そして、該得られた座標情報に基づき、計測対象全体形状の三次元形状データ15を生成する。 FIG. 2 shows another configuration of the measurement system used in the present invention. First, coordinate information 11 corresponding to the measurement target surface is obtained over the entire measurement target by the non-contact type three-dimensional measuring machine 6. Then, based on the obtained coordinate information, three-dimensional shape data 15 of the entire shape to be measured is generated.
次に、計測対象を平面、円筒、曲面部に分割し(ステップ2)、該分割された部位ごとにレーザ追尾式非接触測定機3とレーザ追尾式接触測定機4で測定する。このとき、レーザ追尾式非接触測定機とレーザ追尾式接触測定機は、各々、レーザトラッカシステム5aとカメラシステム5bで監視されている。上記レーザ追尾式非接触測定機とレーザ追尾式接触測定機は、各々、レトロリフレクタが取り付けられており、上記レーザトラッカシステムにて、該レトロリフレクタまでの距離を測定することで、レーザトラッカシステムの座標系における該レトロリフレクタの座標を計測する。また、上記レーザ追尾式非接触測定機とレーザ追尾式接触測定機は、各々、複数のLEDが取り付けられており、上記カメラシステムにて、該LEDを撮像する。該LEDの位置関係は予め定められているため、取得された画像を解析することで、上記レーザ追尾式非接触測定機とレーザ追尾式接触測定機の姿勢を算出する。以上の情報に基づき、レーザ追尾式非接触測定機とレーザ追尾式接触測定機でえられたデータは、レーザトラッカシステムの座標系に変換される。次に、レーザ追尾式非接触測定機で得られたデータから曲面の三次元形状データ14を生成する。一方、レーザ追尾式接触測定機では、上記分割された各々の平面、および、円筒をN点計測する。そして、N点計測されたデータから、平面、および、円筒形状を求める。さらに、計測対象の主要部16では、ノギスやパイテープ、コンベックスなどを用いて計測される。このようにして求められた形状データは、共通の座標系で合成される(ステップ17)。 Next, the measurement object is divided into a plane, a cylinder, and a curved surface (step 2), and measurement is performed by the laser tracking non-contact measuring device 3 and the laser tracking contact measuring device 4 for each of the divided portions. At this time, the laser tracking non-contact measuring machine and the laser tracking contact measuring machine are monitored by the laser tracker system 5a and the camera system 5b, respectively. Each of the laser tracking non-contact measuring machine and the laser tracking contact measuring machine has a retro reflector attached thereto, and the laser tracker system measures the distance to the retro reflector, thereby The coordinates of the retro reflector in the coordinate system are measured. Each of the laser tracking non-contact measuring machine and the laser tracking contact measuring machine is provided with a plurality of LEDs, and the LEDs are imaged by the camera system. Since the positional relationship between the LEDs is determined in advance, the attitudes of the laser tracking non-contact measuring device and the laser tracking contact measuring device are calculated by analyzing the acquired image. Based on the above information, the data obtained by the laser tracking non-contact measuring machine and the laser tracking contact measuring machine is converted into the coordinate system of the laser tracker system. Next, the three-dimensional shape data 14 of the curved surface is generated from the data obtained by the laser tracking non-contact measuring machine. On the other hand, in the laser tracking type contact measuring machine, N points are measured for each of the divided planes and cylinders. Then, a plane and a cylindrical shape are obtained from the data measured at N points. Further, the main part 16 to be measured is measured using calipers, pie tapes, convexes, and the like. The shape data obtained in this way is synthesized in a common coordinate system (step 17).
次に、該得られた形状データと、別の計測対象を同様の手順で計測した得られた形状データとを比較し(ステップ20)、据付前の干渉チェック(ステップ21)を三次元データ上で行う。具体的には、タービンケーシングと該タービンケーシング内部に配置されるタービンロータの形状データを比較し、接触の有無を確認する。接触部位が認められた場合は、当該部位を追加工し(ステップ22)、接触部位が認められない場合には、そのまま据付作業(ステップ23)を行う。 Next, the obtained shape data is compared with the shape data obtained by measuring another measurement object in the same procedure (step 20), and the interference check before installation (step 21) is performed on the three-dimensional data. To do. Specifically, the shape data of the turbine casing and the turbine rotor disposed inside the turbine casing is compared to check for contact. If the contact part is recognized, the part is additionally processed (step 22). If the contact part is not recognized, the installation work (step 23) is performed as it is.
ここで、図23に示すホールダウンボルトの穴位置間隔を求めようとした場合、レーザ追尾式非接触測定機では光がホールダウンボルト穴の内部まで届かず、レーザ追尾式接触測定機ではプローブが届かない場合がある。このような場合には、図23に示すように、ホールダウンボルト穴に真球48を置き、該真球48を図24に示すようにレーザ追尾式非接触測定機で測定し、もしくは、図33に示すようにレーザ追尾式接触測定機でN点計測して、真球48の中心を算出し、真球48の中心間距離を求めればよい。 Here, when trying to obtain the hole position interval of the hole down bolt shown in FIG. 23, the light does not reach the inside of the hole down bolt hole in the laser tracking type non-contact measuring machine, and the probe is not used in the laser tracking type contact measuring machine. May not reach. In such a case, as shown in FIG. 23, a true sphere 48 is placed in the hole down bolt hole, and the true sphere 48 is measured with a laser tracking non-contact measuring machine as shown in FIG. As shown at 33, N points are measured with a laser tracking contact measuring machine, the center of the true sphere 48 is calculated, and the distance between the centers of the true spheres 48 is obtained.
同様に、図25に示すように、タービンケーシングの円筒面にあけられたボルト穴位置を求めたい場合も、レーザ追尾式非接触測定機では光がボルト穴の内部まで届かず、レーザ追尾式接触測定機ではプローブが届かない場合がある。さらに、仮に、レーザ追尾式非接触測定機で光がボルト穴の内部まで届いたり、レーザ追尾式接触測定機でプローブがボルト穴の内部まで届いたりした場合でも、タップ溝の影響でボルト穴位置が正しく算出されない場合もある。このような場合には、図26に示すように、中心軸の精度が正しく求められているボルト52を差込み、該ボルトの中心軸を算出すればよい。具体的には、図27に示すように、ボルト52の上部の円筒52aの外径をレーザ追尾式接触測定機でN点計測したり、図28のように、ボルト52の上部の円筒52bの外径をレーザ追尾式接触測定機でN点計測したりすればよい。図28に示す方法の場合、レーザ追尾式接触測定機のプローブ先端球を保持(停止)しやすいため、計測が安定する。また、図29のように、ボルト52の上部円筒に円錐溝を設け、レーザ追尾式接触測定機のプローブ先端球を該円錐溝に落とし込むことで、直接ボルトの中心位置を算出してもよい。 Similarly, as shown in FIG. 25, when it is desired to determine the position of a bolt hole drilled in the cylindrical surface of the turbine casing, the laser tracking non-contact measuring machine does not allow light to reach the inside of the bolt hole. The probe may not reach the measuring machine. Furthermore, even if the light reaches the inside of the bolt hole with a laser tracking non-contact measuring machine or the probe reaches the inside of the bolt hole with a laser tracking contact measuring machine, the position of the bolt hole is affected by the tap groove. May not be calculated correctly. In such a case, as shown in FIG. 26, a bolt 52 whose center axis accuracy is correctly calculated may be inserted, and the center axis of the bolt may be calculated. Specifically, as shown in FIG. 27, the outer diameter of the cylinder 52a at the top of the bolt 52 is measured at N points with a laser tracking contact measuring machine, or as shown in FIG. The outer diameter may be measured at N points with a laser tracking contact measuring machine. In the case of the method shown in FIG. 28, since the probe tip sphere of the laser tracking contact measuring machine can be easily held (stopped), the measurement is stabilized. In addition, as shown in FIG. 29, a conical groove may be provided in the upper cylinder of the bolt 52, and the center position of the bolt may be directly calculated by dropping the probe tip sphere of the laser tracking contact measuring machine into the conical groove.
ここで、タービンケーシングやタービンロータのような大きな計測対象を計測する場合、必ずしも、一回の計測で所望の形状を全て取得できる訳ではない。そのような場合には、非接触式三次元測定機6や、レーザトラッカシステム5の位置を変える必要がある。一旦、非接触式三次元測定機6や、レーザトラッカシステム5の位置を変更してしまうと、計測データの合成(共通の座標系に計測データを置き換える)ができなくなってしまう。そこで、図14に示すように、予め計測対象全体にわたり、計測対象3個以上のターゲット(40a、40b、40c)を配置しておき(全ての計測が終了するまで動かしてはいけない)、非接触式三次元測定機6や、レーザトラッカシステム5の位置を変えるたびに、該ターゲットを測定して座標を求めて置き、求まった3点以上の座標データに基づき、計測データを座標変換すれば、非接触式三次元測定機6や、レーザトラッカシステム5の位置を変えた場合でも、全てのデータを共通の座標系で表すことが可能となる。 Here, when measuring a large measurement object such as a turbine casing or a turbine rotor, it is not always possible to acquire all the desired shapes by a single measurement. In such a case, it is necessary to change the positions of the non-contact type coordinate measuring machine 6 and the laser tracker system 5. Once the positions of the non-contact type coordinate measuring machine 6 and the laser tracker system 5 are changed, measurement data cannot be combined (measurement data is replaced with a common coordinate system). Therefore, as shown in FIG. 14, three or more targets (40a, 40b, 40c) to be measured are arranged in advance over the entire measurement target (do not move until all measurements are completed), and contactless Whenever the position of the coordinate measuring machine 6 or the laser tracker system 5 is changed, the target is measured and coordinates are obtained, and the measurement data is coordinate-converted based on the obtained coordinate data of three or more points. Even when the positions of the non-contact type coordinate measuring machine 6 and the laser tracker system 5 are changed, it is possible to represent all data in a common coordinate system.
ここで、タービンケーシングやタービンロータのような大きな計測対象を計測する場合、計測時間が数時間以上にわたる場合がある。さらに、レーザ追尾式非接触測定機3やレーザ追尾式接触測定機4は、計測作業者が持ち歩くため、ぶつけたりする場合がある。最悪の場合、LEDの位置関係が変わったりする。そのような場合、最終的に合成されたデータにずれが生じる。そこで、図30に示す対向面間距離が予め高精度で測定された平板55や、図31に示すリングゲージ(円筒)56などを定期的に計測し、得られた対向面間距離や、リングゲージ径に変化が無いか調べればよい。但し、対向面間距離やリングゲージ径(いずれも、相対位置関係)に変化がなかったとしても、絶対座標が変化している場合がある。すなわち、非接触式三次元測定機6や、レーザトラッカシステム5の位置が変わっている場合がある。このような場合、上記リングゲージ(円筒)56を3個以上固定しておき、定期的に該リングゲージ(円筒)56を測定し、その中心座標を求めておけば、仮に、非接触式三次元測定機6や、レーザトラッカシステム5の絶対位置や、レーザ追尾式非接触測定機3やレーザ追尾式接触測定機4の測定精度が変化した場合にも、回転、平行移動、拡大、縮小を含む座標変換により、計測データを補正することが可能となる。図32に示すように、3個のリングゲージ(円筒)56を平板55上に固定した簡易校正治具57を用意し、予め、該リングゲージ(円筒)56の中心座標と対向面間距離を予め高精度で求めておいて、該簡易校正治具57を固定しておけば、用意に座標補正用データを取得することができる。 Here, when measuring a large measurement target such as a turbine casing or a turbine rotor, the measurement time may take several hours or more. Furthermore, the laser tracking non-contact measuring device 3 and the laser tracking contact measuring device 4 may be bumped because they are carried by the measurement operator. In the worst case, the positional relationship of the LEDs changes. In such a case, a deviation occurs in the finally synthesized data. Therefore, the flat plate 55 in which the distance between the opposed surfaces shown in FIG. 30 is measured with high accuracy in advance, the ring gauge (cylinder) 56 shown in FIG. What is necessary is to check whether there is any change in the gauge diameter. However, even if there is no change in the distance between the opposing surfaces and the ring gauge diameter (both are relative positional relationships), the absolute coordinates may change. That is, the positions of the non-contact type coordinate measuring machine 6 and the laser tracker system 5 may be changed. In such a case, if three or more ring gauges (cylinders) 56 are fixed, the ring gauges (cylinders) 56 are periodically measured, and the center coordinates thereof are obtained, the non-contact type tertiary Even when the absolute position of the original measuring machine 6 or the laser tracker system 5 or the measurement accuracy of the laser tracking non-contact measuring machine 3 or the laser tracking contact measuring machine 4 changes, rotation, translation, enlargement and reduction are possible. Measurement data can be corrected by the coordinate conversion including. As shown in FIG. 32, a simple calibration jig 57 in which three ring gauges (cylinders) 56 are fixed on a flat plate 55 is prepared, and the center coordinates of the ring gauges (cylinders) 56 and the distance between the opposing surfaces are set in advance. If the simple calibration jig 57 is fixed in advance with high accuracy, the coordinate correction data can be acquired in advance.
タービンロータやタービンケーシングの寸法計測方法および装置に関する。 The present invention relates to a method and an apparatus for measuring dimensions of a turbine rotor and a turbine casing.
1 計測対象
2 計測対象を平面部、円筒部、曲面部に分割
3 レーザ追尾式非接触測定機
3a レーザ
3b エリアセンサ
3c コリメートレンズ
3d シリンドリカルレンズ
3e 結像レンズ
4 レーザ追尾式接触測定機
5、5a レーザトラッカシステム
5b カメラシステム
6 非接触式三次元測定機
7 手計測
8 レーザ追尾式非接触測定機、または、レーザ追尾式接触測定機までの距離
9 レーザ追尾式非接触測定機、または、レーザ追尾式接触測定機の姿勢
10 レーザ追尾式非接触測定機、または、レーザ追尾式接触測定機で測定した計測点の座標
11 計測点の座標情報
12 平面の算出
13 円筒形状の算出
14 曲面の三次元形状データ
15 計測対象全体形状の三次元形状データ
17 計測データの合成
18 設計データ(CADデータ)の作成
24 タービンケーシング
25 タービンロータ
26 面と円筒の集合体で表現したタービンケーシング
27 面と円筒の集合体で表現したタービンロータ
27a、27b、29a、29b、30a、30b エンコーダ付き回転モータ
28、31 レーザ測距システム
32 レトロリフレクタ
33a、33b、33c、33d LED
36、37、38 計測面
36a、37a、38a エリアセンサで得られた各計測面に対応するレーザ輝線
41 3点で定義される平面
41′ N点の計測データから求めた平面
42 円筒
43 投影面に投影された計測データにフィッティングされた円
43′ N点の計測データから求めた円
46 タービンケーシングの基準面
46a N点の計測データから求めたタービンケーシングの基準面
46b N点の計測データから求めたタービンケーシングの基準面を含む平面
47 計測したいタービンケーシングの円筒溝
47a 算出したい円筒
47b N点の計測データを、N点の計測データから求めたタービンケーシングの基準面に投影した結果から求めた円
48 真球
49 真球の中心間隔から求めたホールダウンボルトの中心間距離
49a、49b 真球の中心座標
50 レーザ追尾式非接触測定機による真球の形状計測結果
51 タービンケーシングの円筒面にあけられたボルト穴
52 軸中心がタービンケーシングの円筒面にあけられたボルト穴中心と一致するボルト
55 簡易校正治具(平板)
56 簡易校正治具(円筒)
57 平板と円筒が一体化された簡易校正治具
DESCRIPTION OF SYMBOLS 1 Measurement object 2 Measurement object is divided | segmented into a plane part, a cylindrical part, and a curved surface part 3 Laser tracking type non-contact measuring machine 3a Laser 3b Area sensor 3c Collimating lens 3d Cylindrical lens 3e Imaging lens 4 Laser tracking type contact measuring machine 5, 5a Laser tracker system 5b Camera system 6 Non-contact type coordinate measuring machine 7 Manual measurement 8 Distance to laser tracking type non-contact measuring machine or laser tracking type contact measuring machine 9 Laser tracking type non-contact measuring machine or laser tracking Position of the contact type measuring machine 10 Measurement point coordinates measured with a laser tracking type non-contact measuring machine or laser tracking type contact measuring machine 11 Measurement point coordinate information 12 Calculation of a plane 13 Calculation of a cylindrical shape 14 Calculation of a curved surface 3D Shape data 15 Three-dimensional shape data 17 of the entire shape to be measured 17 Measurement data synthesis 18 Creation of design data (CAD data) 2 Turbine casing 25 Turbine rotor 26 Turbine casing 27 expressed by an assembly of surfaces and cylinders Turbine rotors 27a, 27b, 29a, 29b, 30a, 30b expressed by an assembly of surfaces and cylinders Rotary motors with encoders 28, 31 Laser ranging System 32 Retro reflector 33a, 33b, 33c, 33d LED
36, 37, 38 Measurement planes 36a, 37a, 38a A plane 41 'defined by 3 laser emission lines 41 corresponding to each measurement plane obtained by the area sensor 42' plane 42 Cylinder 43 Projection plane Circle 43 'fitted to measurement data projected onto circle 46' Circle 46 obtained from N point measurement data Turbine casing reference plane 46a Turbine casing reference plane 46b Obtained from N point measurement data Obtained from N point measurement data The plane 47 including the reference plane of the turbine casing The cylindrical groove 47a of the turbine casing to be measured The cylinder 47b to be calculated The circle obtained from the result of projecting the measurement data of the N point on the reference plane of the turbine casing obtained from the measurement data of the N point 48 True sphere 49 Distance between center 49a and 49b of hole down bolt calculated from center distance of true sphere Center coordinate 50 of the ball shape measurement result 51 with a laser tracking non-contact measuring machine 51 Bolt hole drilled in the cylindrical surface of the turbine casing 52 Bolt whose axis center matches the bolt hole center drilled in the cylindrical surface of the turbine casing 55 Simple calibration jig (flat plate)
56 Simple calibration jig (cylindrical)
57 Simple calibration jig with flat plate and cylinder integrated
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011167976A JP5610443B2 (en) | 2011-08-01 | 2011-08-01 | 3D dimension measurement method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011167976A JP5610443B2 (en) | 2011-08-01 | 2011-08-01 | 3D dimension measurement method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013032922A true JP2013032922A (en) | 2013-02-14 |
JP5610443B2 JP5610443B2 (en) | 2014-10-22 |
Family
ID=47788924
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011167976A Active JP5610443B2 (en) | 2011-08-01 | 2011-08-01 | 3D dimension measurement method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5610443B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016092749A1 (en) * | 2014-12-09 | 2016-06-16 | Canon Kabushiki Kaisha | Information processing apparatus, information processing method, and program |
JP2019120167A (en) * | 2017-12-28 | 2019-07-22 | 株式会社東芝 | Method for evaluation seal gap of rotary equipment |
EP3722566A1 (en) | 2019-04-12 | 2020-10-14 | Mitsubishi Hitachi Power Systems, Ltd. | Method and system for measuring turbine shape |
WO2022059157A1 (en) * | 2020-09-18 | 2022-03-24 | 株式会社AB.do | Three-dimensional data scale setting method and three-dimensional data scale setting program |
KR20240038753A (en) | 2022-04-12 | 2024-03-25 | 미츠비시 쥬고교 가부시키가이샤 | A computer-readable recording medium that records model creation device, model creation system, model creation method, and program |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6373608U (en) * | 1986-10-31 | 1988-05-17 | ||
JPH0777420A (en) * | 1993-09-09 | 1995-03-20 | Nikon Corp | Shape parameter measuring method and device for limited multi-dimensional shape |
JP2003530561A (en) * | 2000-04-06 | 2003-10-14 | ビ−エイイ− システムズ パブリック リミテッド カンパニ− | Measuring device and method |
JP2008547026A (en) * | 2005-06-23 | 2008-12-25 | ファロ テクノロジーズ インコーポレーテッド | Articulated coordinate measuring machine rearrangement apparatus and method |
JP2010160135A (en) * | 2008-12-09 | 2010-07-22 | Toshiba Corp | Method for measuring three-dimensional shape of connection assembly of stator coil in turbine generator, and fixture for three-dimensional shape measuring device |
JP2010169633A (en) * | 2009-01-26 | 2010-08-05 | Nikon Corp | Shape measurement device |
-
2011
- 2011-08-01 JP JP2011167976A patent/JP5610443B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6373608U (en) * | 1986-10-31 | 1988-05-17 | ||
JPH0777420A (en) * | 1993-09-09 | 1995-03-20 | Nikon Corp | Shape parameter measuring method and device for limited multi-dimensional shape |
JP2003530561A (en) * | 2000-04-06 | 2003-10-14 | ビ−エイイ− システムズ パブリック リミテッド カンパニ− | Measuring device and method |
JP2008547026A (en) * | 2005-06-23 | 2008-12-25 | ファロ テクノロジーズ インコーポレーテッド | Articulated coordinate measuring machine rearrangement apparatus and method |
JP2010160135A (en) * | 2008-12-09 | 2010-07-22 | Toshiba Corp | Method for measuring three-dimensional shape of connection assembly of stator coil in turbine generator, and fixture for three-dimensional shape measuring device |
JP2010169633A (en) * | 2009-01-26 | 2010-08-05 | Nikon Corp | Shape measurement device |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016092749A1 (en) * | 2014-12-09 | 2016-06-16 | Canon Kabushiki Kaisha | Information processing apparatus, information processing method, and program |
JP2016109630A (en) * | 2014-12-09 | 2016-06-20 | キヤノン株式会社 | Information processing apparatus, information processing method, and program |
US10335963B2 (en) | 2014-12-09 | 2019-07-02 | Canon Kabushiki Kaisha | Information processing apparatus, information processing method, and program |
JP2019120167A (en) * | 2017-12-28 | 2019-07-22 | 株式会社東芝 | Method for evaluation seal gap of rotary equipment |
JP2020173222A (en) * | 2019-04-12 | 2020-10-22 | 三菱日立パワーシステムズ株式会社 | Turbine measurement method and measurement system |
KR20200120510A (en) | 2019-04-12 | 2020-10-21 | 미츠비시 파워 가부시키가이샤 | Measuring method for turbine and measuring system |
EP3722566A1 (en) | 2019-04-12 | 2020-10-14 | Mitsubishi Hitachi Power Systems, Ltd. | Method and system for measuring turbine shape |
US11215437B2 (en) | 2019-04-12 | 2022-01-04 | Mitsubishi Power, Ltd. | Method and system for measuring turbine shape |
JP7136739B2 (en) | 2019-04-12 | 2022-09-13 | 三菱重工業株式会社 | Turbine measurement method and measurement system |
US11719524B2 (en) | 2019-04-12 | 2023-08-08 | Mitsubishi Heavy Industries, Ltd. | Method and system for measuring turbine shape |
WO2022059157A1 (en) * | 2020-09-18 | 2022-03-24 | 株式会社AB.do | Three-dimensional data scale setting method and three-dimensional data scale setting program |
KR20240038753A (en) | 2022-04-12 | 2024-03-25 | 미츠비시 쥬고교 가부시키가이샤 | A computer-readable recording medium that records model creation device, model creation system, model creation method, and program |
DE112023000187T5 (en) | 2022-04-12 | 2024-05-16 | Mitsubishi Heavy Industries, Ltd. | MODEL GENERATING DEVICE, MODEL GENERATING SYSTEM, MODEL GENERATING METHOD AND PROGRAM |
Also Published As
Publication number | Publication date |
---|---|
JP5610443B2 (en) | 2014-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Schmitt et al. | Advances in large-scale metrology–review and future trends | |
EP1288754B1 (en) | System and method for producing an assembly by directly implementing three-dimensional computer-aided design component definitions | |
US9423282B2 (en) | Metrology device and a method for compensating for bearing runout error | |
CN101680743B (en) | Determining positions | |
JP5610443B2 (en) | 3D dimension measurement method | |
Jiang et al. | On-machine measurement of location errors on five-axis machine tools by machining tests and a laser displacement sensor | |
CN106524912B (en) | Light target cursor position scaling method based on the mobile light pen of three coordinate measuring machine | |
Zhong et al. | Volumetric accuracy evaluation for five-axis machine tools by modeling spherical deviation based on double ball-bar kinematic test | |
Chen et al. | A ballbar test for measurement and identification the comprehensive error of tilt table | |
WO2016049402A1 (en) | Augmented reality camera for use with 3d metrology equipment in forming 3d images from 2d camera images | |
Chen et al. | Prediction and identification of rotary axes error of non-orthogonal five-axis machine tool | |
JP7042620B2 (en) | How to determine subdivisional errors | |
Anandan et al. | An LDV-based methodology for measuring axial and radial error motions when using miniature ultra-high-speed (UHS) micromachining spindles | |
CN103528514B (en) | The many visual fields of machine vision work in coordination with mechanism and equipped with this mechanism measurement with detection device | |
CN100491895C (en) | Three-coordinate calibrating and inspection instrument | |
WO2019080888A1 (en) | Installation deviation calibration method for interferometer in multi-axis laser displacement measurement system | |
CN109514351A (en) | A kind of scaling method of five-axis machine tool | |
Liu et al. | Binocular-vision-based error detection system and identification method for PIGEs of rotary axis in five-axis machine tool | |
Li et al. | Monocular-vision-based contouring error detection and compensation for CNC machine tools | |
Bösemann | Industrial photogrammetry-accepted metrology tool or exotic niche | |
Kwaśny et al. | Survey of machine tool error measuring methods | |
CN109323665A (en) | A kind of precision three-dimensional survey method of line-structured light driving holographic interference | |
Liu et al. | A three-dimensional triangular vision-based contouring error detection system and method for machine tools | |
CN109520417A (en) | Lathe geometric error and turntable corner position error calibrating installation and method | |
CN101825454A (en) | Method for compensating temperature errors based on bidirectional measurement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130226 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130906 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131001 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131129 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20140124 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20140224 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20140225 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20140227 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140729 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20140825 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20140827 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140826 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5610443 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |