JP7134094B2 - 送信方法、送信装置、およびプログラム - Google Patents

送信方法、送信装置、およびプログラム Download PDF

Info

Publication number
JP7134094B2
JP7134094B2 JP2018556601A JP2018556601A JP7134094B2 JP 7134094 B2 JP7134094 B2 JP 7134094B2 JP 2018556601 A JP2018556601 A JP 2018556601A JP 2018556601 A JP2018556601 A JP 2018556601A JP 7134094 B2 JP7134094 B2 JP 7134094B2
Authority
JP
Japan
Prior art keywords
image
receiver
signal
luminance
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018556601A
Other languages
English (en)
Other versions
JPWO2018110373A1 (ja
Inventor
秀紀 青山
光昭 大嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Corp of America
Original Assignee
Panasonic Intellectual Property Corp of America
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Corp of America filed Critical Panasonic Intellectual Property Corp of America
Priority claimed from PCT/JP2017/043726 external-priority patent/WO2018110373A1/ja
Publication of JPWO2018110373A1 publication Critical patent/JPWO2018110373A1/ja
Application granted granted Critical
Publication of JP7134094B2 publication Critical patent/JP7134094B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Description

本発明は、可視光信号の送信方法、送信装置およびプログラムなどに関する。
近年のホームネットワークでは、Ethernet(登録商標)や無線LAN(Local Area Network)でのIP(Internet Protocol)接続によるAV家電の連携に加え、環境問題に対応した電力使用量の管理や、宅外からの電源ON/OFFといった機能を持つホームエネルギーマネジメントシステム(HEMS)によって、多様な家電機器がネットワークに接続される家電連携機能の導入が進んでいる。しかしながら、通信機能を有するには、演算力が十分ではない家電や、コスト面で通信機能の搭載が難しい家電などもある。
このような問題を解決するため、特許文献1では、光を用いて自由空間に情報を伝達する光空間伝送装置において、照明光の単色光源を複数用いた通信を行うことで、限られた送信装置のなかで、効率的に機器間の通信を実現する技術が記載されている。
特開2002-290335号公報
しかしながら、前記従来の方式では、適用される機器が照明のような3色光源を持つ場合に限定される。
本発明は、このような課題を解決し、3色光源を持つ照明以外の機器を含む多様な機器間の通信を可能とする送信方法などを提供する。
本発明の一形態に係る送信方法は、発光体の輝度変化によって可視光信号を送信する送信方法であって、信号を変調することによって、輝度変化のパターンを決定する決定ステップと、前記発光体に含まれる光源によって表現される赤色の輝度を、決定された前記パターンにしたがって変化させることによって前記可視光信号を送信する送信ステップとを含み、前記可視光信号は、第1ペイロードと、プリアンブルと、第2ペイロードとを含み、前記第1ペイロードでは、第1の輝度値、および、前記第1の輝度値よりも小さい第2の輝度値が、時間軸上に沿って現れ、前記第1の輝度値および前記第2の輝度値のうちの少なくとも一方が継続する時間長は第1の所定の値以下であり、前記プリアンブルでは、前記第1および第2の輝度値のそれぞれが、時間軸上に沿って交互に現れ、前記第2ペイロードでは、前記第1および第2の輝度値が時間軸上に沿って交互に現れ、前記第1および第2の輝度値のそれぞれが継続する時間長は前記第1の所定の値よりも大きく、かつ、前記信号および所定の方式にしたがって決定されている。
なお、これらの包括的または具体的な態様は、システム、方法、集積回路、コンピュータプログラムまたはコンピュータ読み取り可能なCD-ROMなどの記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。また、一実施形態に関わる方法を実行するコンピュータプログラムがサーバの記録媒体に保存されており、端末の要求に応じて、サーバから端末に配信する態様で実現されてもよい。
本発明によれば、3色光源を持つ照明以外の機器を含む態様な機器間の通信を可能とする送信方法を実現できる。
図1は、実施の形態1における発光部の輝度の観測方法の一例を示す図である。 図2は、実施の形態1における発光部の輝度の観測方法の一例を示す図である。 図3は、実施の形態1における発光部の輝度の観測方法の一例を示す図である。 図4は、実施の形態1における発光部の輝度の観測方法の一例を示す図である。 図5Aは、実施の形態1における発光部の輝度の観測方法の一例を示す図である。 図5Bは、実施の形態1における発光部の輝度の観測方法の一例を示す図である。 図5Cは、実施の形態1における発光部の輝度の観測方法の一例を示す図である。 図5Dは、実施の形態1における発光部の輝度の観測方法の一例を示す図である。 図5Eは、実施の形態1における発光部の輝度の観測方法の一例を示す図である。 図5Fは、実施の形態1における発光部の輝度の観測方法の一例を示す図である。 図5Gは、実施の形態1における発光部の輝度の観測方法の一例を示す図である。 図5Hは、実施の形態1における発光部の輝度の観測方法の一例を示す図である。 図6Aは、実施の形態1における情報通信方法のフローチャートである。 図6Bは、実施の形態1における情報通信装置のブロック図である。 図7は、実施の形態2における受信機の撮影動作の一例を示す図である。 図8は、実施の形態2における受信機の撮影動作の他の例を示す図である。 図9は、実施の形態2における受信機の撮影動作の他の例を示す図である。 図10は、実施の形態2における受信機の表示動作の一例を示す図である。 図11は、実施の形態2における受信機の表示動作の一例を示す図である。 図12は、実施の形態2における受信機の動作の一例を示す図である。 図13は、実施の形態2における受信機の動作の他の例を示す図である。 図14は、実施の形態2における受信機の動作の他の例を示す図である。 図15は、実施の形態2における受信機の動作の他の例を示す図である。 図16は、実施の形態2における受信機の動作の他の例を示す図である。 図17は、実施の形態2における受信機の動作の他の例を示す図である。 図18は、実施の形態2における受信機と送信機とサーバとの動作の一例を示す図である。 図19は、実施の形態2における受信機の動作の他の例を示す図である。 図20は、実施の形態2における受信機の動作の他の例を示す図である。 図21は、実施の形態2における受信機の動作の他の例を示す図である。 図22は、実施の形態2における送信機の動作の一例を示す図である。 図23は、実施の形態2における送信機の動作の他の例を示す図である。 図24は、実施の形態2における受信機の応用例を示す図である。 図25は、実施の形態2における受信機の動作の他の例を示す図である。 図26は、実施の形態3における受信機、送信機およびサーバの処理動作の一例を示す図である。 図27は、実施の形態3における送信機および受信機の動作の一例を示す図である。 図28は、実施の形態3における送信機、受信機およびサーバの動作の一例を示す図である。 図29は、実施の形態3における送信機および受信機の動作の一例を示す図である。 図30は、実施の形態4における送信機および受信機の動作の一例を示す図である。 図31は、実施の形態4における送信機および受信機の動作の一例を示す図である。 図32は、実施の形態4における送信機および受信機の動作の一例を示す図である。 図33は、実施の形態4における送信機および受信機の動作の一例を示す図である。 図34は、実施の形態4における送信機および受信機の動作の一例を示す図である。 図35は、実施の形態4における送信機および受信機の動作の一例を示す図である。 図36は、実施の形態4における送信機および受信機の動作の一例を示す図である。 図37は、実施の形態5における人間への可視光通信の通知を説明するための図である。 図38は、実施の形態5における道案内への応用例を説明するための図である。 図39は、実施の形態5における利用ログ蓄積と解析への応用例を説明するための図である。 図40は、実施の形態5における画面共有への応用例を説明するための図である。 図41は、実施の形態5における情報通信方法の応用例を示す図である。 図42は、実施の形態6における送信機と受信機の適用例を示す図である。 図43は、実施の形態6における送信機および受信機の適用例を示す図である。 図44は、実施の形態7における受信機の一例を示す図である。 図45は、実施の形態7における受信システムの一例を示す図である。 図46は、実施の形態7における信号送受信システムの一例を示す図である。 図47は、実施の形態7における干渉を排除した受信方法を示すフローチャートである。 図48は、実施の形態7における送信機の方位の推定方法を示すフローチャートである。 図49は、実施の形態7における受信の開始方法を示すフローチャートである。 図50は、実施の形態7における他媒体の情報を併用したIDの生成方法を示すフローチャートである。 図51は、実施の形態7における周波数分離による受信方式の選択方法を示すフローチャートである。 図52は、実施の形態7における露光時間が長い場合の信号受信方法を示すフローチャートである。 図53は、実施の形態7における送信機の調光(明るさを調整すること)方法の一例を示す図である。 図54は、実施の形態7における送信機の調光機能を構成する方法の一例を示す図である。 図55は、EXズームを説明するための図である。 図56は、実施の形態9における信号受信方法の一例を示す図である。 図57は、実施の形態9における信号受信方法の一例を示す図である。 図58は、実施の形態9における信号受信方法の一例を示す図である。 図59は、実施の形態9における受信機の画面表示方法の一例を示す図である。 図60は、実施の形態9における信号受信方法の一例を示す図である。 図61は、実施の形態9における信号受信方法の一例を示す図である。 図62は、実施の形態9における信号受信方法の一例を示すフローチャートである。 図63は、実施の形態9における信号受信方法の一例を示す図である。 図64は、実施の形態9における受信プログラムの処理を示すフローチャートである。 図65は、実施の形態9における受信装置のブロック図である。 図66は、可視光信号を受信したときの受信機の表示の一例を示す図である。 図67は、可視光信号を受信したときの受信機の表示の一例を示す図である。 図68は、取得データ画像の表示の一例を示す図である。 図69は、取得データを保存する、または、破棄する場合の操作の一例を示す図である。 図70は、取得データを閲覧する際の表示例を示す図である。 図71は、実施の形態9における送信機の一例を示す図である。 図72は、実施の形態9における受信方法の一例を示す図である。 図73は、実施の形態10における受信方法の一例を示すフローチャートである。 図74は、実施の形態10における受信方法の一例を示すフローチャートである。 図75は、実施の形態10における受信方法の一例を示すフローチャートである。 図76は、実施の形態10における受信機が、変調周波数の周期(変調周期)より長い露光時間を用いた受信方法を説明するための図である。 図77は、実施の形態10における受信機が、変調周波数の周期(変調周期)より長い露光時間を用いた受信方法を説明するための図である。 図78は、実施の形態10における送信データのサイズに対する効率的な分割数を示す図である。 図79Aは、実施の形態10における設定方法の一例を示す図である。 図79Bは、実施の形態10における設定方法の他の例を示す図である。 図80は、実施の形態10における情報処理プログラムの処理を示すフローチャートである。 図81は、実施の形態10における送受信システムの応用例を説明するための図である。 図82は、実施の形態10における送受信システムの処理動作を示すフローチャートである。 図83は、実施の形態10における送受信システムの応用例を説明するための図である。 図84は、実施の形態10における送受信システムの処理動作を示すフローチャートである。 図85は、実施の形態10における送受信システムの応用例を説明するための図である。 図86は、実施の形態10における送受信システムの処理動作を示すフローチャートである。 図87は、実施の形態10における送信機の応用例を説明するための図である。 図88は、実施の形態11における送受信システムの応用例を説明するための図である。 図89は、実施の形態11における送受信システムの応用例を説明するための図である。 図90は、実施の形態11における送受信システムの応用例を説明するための図である。 図91は、実施の形態11における送受信システムの応用例を説明するための図である。 図92は、実施の形態11における送受信システムの応用例を説明するための図である。 図93は、実施の形態11における送受信システムの応用例を説明するための図である。 図94は、実施の形態11における送受信システムの応用例を説明するための図である。 図95は、実施の形態11における送受信システムの応用例を説明するための図である。 図96は、実施の形態11における送受信システムの応用例を説明するための図である。 図97は、実施の形態11における送受信システムの応用例を説明するための図である。 図98は、実施の形態11における送受信システムの応用例を説明するための図である。 図99は、実施の形態11における送受信システムの応用例を説明するための図である。 図100は、実施の形態11における送受信システムの応用例を説明するための図である。 図101は、実施の形態11における送受信システムの応用例を説明するための図である。 図102は、実施の形態12における受信機の動作を説明するための図である。 図103Aは、実施の形態12における受信機の他の動作を説明するための図である。 図103Bは、実施の形態12における出力部1215によって表示されるインジケータの例を示す図である。 図103Cは、実施の形態12におけるARの表示例を示す図である。 図104Aは、実施の形態12における送信機の一例を説明するための図である。 図104Bは、実施の形態12における送信機の他の例を説明するための図である。 図105Aは、実施の形態12における複数の送信機による同期送信の一例を説明するための図である。 図105Bは、実施の形態12における複数の送信機による同期送信の他の例を説明するための図である。 図106は、実施の形態12における複数の送信機による同期送信の他の例を説明するための図である。 図107は、実施の形態12における送信機の信号処理を説明するための図である。 図108は、実施の形態12における受信方法の一例を示すフローチャートである。 図109は、実施の形態12における受信方法の一例を説明するための説明図である。 図110は、実施の形態12における受信方法の他の例を示すフローチャートである。 図111は、実施の形態13における送信信号の一例を示す図である。 図112は、実施の形態13における送信信号の他の例を示す図である。 図113は、実施の形態13における送信信号の他の例を示す図である。 図114Aは、実施の形態14における送信機を説明するための図である。 図114Bは、実施の形態14におけるRGBのそれぞれの輝度変化を示す図である。 図115は、実施の形態14における緑色蛍光成分および赤色蛍光成分の残光特性を示す図である。 図116は、実施の形態14における、バーコードの読み取りエラーの発生を抑制するために新たに発生する課題を説明するための図である。 図117は、実施の形態14における受信機で行われるダウンサンプリングを説明するための図である。 図118は、実施の形態14における受信機の処理動作を示すフローチャートである。 図119は、実施の形態15における受信装置(撮像装置)の処理動作を示す図である。 図120は、実施の形態15における受信装置(撮像装置)の処理動作を示す図である。 図121は、実施の形態15における受信装置(撮像装置)の処理動作を示す図である。 図122は、実施の形態15における受信装置(撮像装置)の処理動作を示す図である。 図123は、実施の形態16におけるアプリケーションの一例を示す図である。 図124は、実施の形態16におけるアプリケーションの一例を示す図である。 図125は、実施の形態16における送信信号の例と音声同期方法の例とを示す図である。 図126は、実施の形態16における送信信号の例を示す図である。 図127は、実施の形態16における受信機の処理フローの一例を示す図である。 図128は、実施の形態16における受信機のユーザインタフェースの一例を示す図である。 図129は、実施の形態16における受信機の処理フローの一例を示す図である。 図130は、実施の形態16における受信機の処理フローの他の例を示す図である。 図131Aは、実施の形態16における同期再生の具体的な方法を説明するための図である。 図131Bは、実施の形態16における同期再生を行う再生装置(受信機)の構成を示すブロック図である。 図131Cは、実施の形態16における同期再生を行う再生装置(受信機)の処理動作を示すフローチャートである。 図132は、実施の形態16における同期再生の事前準備を説明するための図である。 図133は、実施の形態16における受信機の応用例を示す図である。 図134Aは、実施の形態16における、ホルダーに保持された受信機の正面図である。 図134Bは、実施の形態16における、ホルダーに保持された受信機の背面図である。 図135は、実施の形態16における、ホルダーに保持された受信機のユースケースを説明するための図である。 図136は、実施の形態16における、ホルダーに保持された受信機の処理動作を示すフローチャートである。 図137は、実施の形態16における受信機によって表示される画像の一例を示す図である。 図138は、実施の形態16におけるホルダーの他の例を示す図である。 図139Aは、実施の形態17における可視光信号の一例を示す図である。 図139Bは、実施の形態17における可視光信号の一例を示す図である。 図139Cは、実施の形態17における可視光信号の一例を示す図である。 図139Dは、実施の形態17における可視光信号の一例を示す図である。 図140は、実施の形態17における可視光信号の構成を示す図である。 図141は、実施の形態17における受信機の撮像によって得られる輝線画像の一例を示す図である。 図142は、実施の形態17における受信機の撮像によって得られる輝線画像の他の例を示す図である。 図143は、実施の形態17における受信機の撮像によって得られる輝線画像の他の例を示す図である。 図144は、実施の形態17における受信機の、HDR合成を行うカメラシステムへの適応を説明するための図である。 図145は、実施の形態17における可視光通信システムの処理動作を説明するための図である。 図146Aは、実施の形態17における可視光を用いた車車間通信の一例を示す図である。 図146Bは、実施の形態17における可視光を用いた車車間通信の他の例を示す図である。 図147は、実施の形態17における複数のLEDの位置決定方法の一例を示す図である。 図148は、実施の形態17における、車両を撮像することによって得られる輝線画像の一例を示す図である。 図149は、実施の形態17における受信機と送信機の適用例を示す図である。なお、図149は自動車を後ろから見た図である。 図150は、実施の形態17における受信機と送信機の処理動作の一例を示すフローチャートである。 図151は、実施の形態17における受信機と送信機の適用例を示す図である。 図152は、実施の形態17における受信機7007aと送信機7007bの処理動作の一例を示すフローチャートである。 図153は、実施の形態17における、電車の車内に適用される可視光通信システムの構成を示す図である。 図154は、実施の形態17における、遊園地などの施設に適用される可視光通信システムの構成を示す図である。 図155は、実施の形態17における、遊具とスマートフォンとからなる可視光通信システムの一例を示す図である。 図156は、実施の形態18における送信信号の一例を示す図である。 図157は、実施の形態18における送信信号の一例を示す図である。 図158は、実施の形態19における送信信号の一例を示す図である。 図159は、実施の形態19における送信信号の一例を示す図である。 図160は、実施の形態19における送信信号の一例を示す図である。 図161は、実施の形態19における送信信号の一例を示す図である。 図162は、実施の形態19における送信信号の一例を示す図である。 図163は、実施の形態19における送信信号の一例を示す図である。 図164は、実施の形態19における送受信システムの一例を示す図である。 図165は、実施の形態19における送受信システムの処理の一例を示すフローチャートである。 図166は、実施の形態19におけるサーバの動作を示すフローチャートである。 図167は、実施の形態19における受信機の動作の一例を示すフローチャートである。 図168は、実施の形態19における簡易モードでの進捗状況の計算方法を示すフローチャートである。 図169は、実施の形態19における最尤推定モードでの進捗状況の計算方法を示すフローチャートである。 図170は、実施の形態19における進捗状況が減少しない表示方法を示すフローチャートである。 図171は、実施の形態19における複数のパケット長がある場合の進捗状況の表示方法を示すフローチャートである。 図172は、実施の形態19における受信機の動作状態の一例を示す図である。 図173は、実施の形態19における送信信号の一例を示す図である。 図174は、実施の形態19における送信信号の一例を示す図である。 図175は、実施の形態19における送信信号の一例を示す図である。 図176は、実施の形態19における送信機の一例を示すブロック図である。 図177は、実施の形態19におけるLEDディスプレイを本発明の光ID変調信号で駆動する場合のタイミングチャートを示す図である。 図178は、実施の形態19におけるLEDディスプレイを本発明の光ID変調信号で駆動する場合のタイミングチャートを示す図である。 図179は、実施の形態19におけるLEDディスプレイを本発明の光ID変調信号で駆動する場合のタイミングチャートを示す図である。 図180Aは、本発明の一態様に係る送信方法を示すフローチャートである。 図180Bは、本発明の一態様に係る送信装置の機能構成を示すブロック図である。 図181は、実施の形態19における送信信号の一例を示す図である。 図182は、実施の形態19における送信信号の一例を示す図である。 図183は、実施の形態19における送信信号の一例を示す図である。 図184は、実施の形態19における送信信号の一例を示す図である。 図185は、実施の形態19における送信信号の一例を示す図である。 図186は、実施の形態19における送信信号の一例を示す図である。 図187は、実施の形態20における可視光信号の構成の一例を示す図である。 図188は、実施の形態20における可視光信号の詳細な構成の一例を示す図である。 図189Aは、実施の形態20における可視光信号の他の一例を示す図である。 図189Bは、実施の形態20における可視光信号の他の一例を示す図である。 図189Cは、実施の形態20における可視光信号の信号長を示す図である。 図190は、実施の形態20における可視光信号と、規格IECの可視光信号との輝度値の比較結果を示す図である。 図191は、実施の形態20における可視光信号と、規格IECの可視光信号との、画角に対する受信パケット数および信頼度の比較結果を示す図である。 図192は、実施の形態20における可視光信号と、規格IECの可視光信号との、ノイズに対する受信パケット数および信頼度の比較結果を示す図である。 図193は、実施の形態20における可視光信号と、規格IECの可視光信号との、受信側クロック誤差に対する受信パケット数および信頼度の比較結果を示す図である。 図194は、実施の形態20における送信対象の信号の構成を示す図である。 図195Aは、実施の形態20における可視光信号の受信方法を示す図である。 図195Bは、実施の形態20における可視光信号の並び替えを示す図である。 図196は、実施の形態20における可視光信号の他の例を示す図である。 図197は、実施の形態20における可視光信号の詳細な構成の他の例を示す図である。 図198は、実施の形態20における可視光信号の詳細な構成の他の例を示す図である。 図199は、実施の形態20における可視光信号の詳細な構成の他の例を示す図である。 図200は、実施の形態20における可視光信号の詳細な構成の他の例を示す図である。 図201は、実施の形態20における可視光信号の詳細な構成の他の例を示す図である。 図202は、実施の形態20における可視光信号の詳細な構成の他の例を示す図である。 図203は、図197のx1~x4の値を決定する方法を説明するための図である。 図204は、図197のx1~x4の値を決定する方法を説明するための図である。 図205は、図197のx1~x4の値を決定する方法を説明するための図である。 図206は、図197のx1~x4の値を決定する方法を説明するための図である。 図207は、図197のx1~x4の値を決定する方法を説明するための図である。 図208は、図197のx1~x4の値を決定する方法を説明するための図である。 図209は、図197のx1~x4の値を決定する方法を説明するための図である。 図210は、図197のx1~x4の値を決定する方法を説明するための図である。 図211は、図197のx1~x4の値を決定する方法を説明するための図である。 図212は、実施の形態20の変形例1に係る可視光信号の詳細な構成の一例を示す図である。 図213は、実施の形態20の変形例1に係る可視光信号の他の例を示す図である。 図214は、実施の形態20の変形例1に係る可視光信号のさらに他の例を示す図である。 図215は、実施の形態20の変形例1に係るパケット変調の一例を示す図である。 図216は、実施の形態20の変形例1に係る、元データを1分割する処理を示す図である。 図217は、実施の形態20の変形例1に係る、元データを2分割する処理を示す図である。 図218は、実施の形態20の変形例1に係る、元データを3分割にする処理を示す図である。 図219は、実施の形態20の変形例1に係る、元データを3分割にする処理の他の例を示す図である。 図220は、実施の形態20の変形例1に係る、元データを3分割にする処理の他の例を示す図である。 図221は、実施の形態20の変形例1に係る、元データを4分割にする処理を示す図である。 図222は、実施の形態20の変形例1に係る、元データを5分割にする処理を示す図である。 図223は、実施の形態20の変形例1に係る、元データを6、7または8分割にする処理を示す図である。 図224は、実施の形態20の変形例1に係る、元データを6、7または8分割にする処理の他の例を示す図である。 図225は、実施の形態20の変形例1に係る、元データを9分割にする処理を示す図である。 図226は、実施の形態20の変形例1に係る、元データを10~16の何れか数に分割する処理を示す図である。 図227は、実施の形態20の変形例1に係る、元データの分割数と、データサイズと、誤り訂正符号との関係の一例を示す図である。 図228は、実施の形態20の変形例1に係る、元データの分割数と、データサイズと、誤り訂正符号との関係の他の例を示す図である。 図229は、実施の形態20の変形例1に係る、元データの分割数と、データサイズと、誤り訂正符号との関係のさらに他の例を示す図である。 図230Aは、実施の形態20における可視光信号の生成方法を示すフローチャートである。 図230Bは、実施の形態20における信号生成装置の構成を示すブロック図である。 図231は、実施の形態21における高周波可視光信号を受信する方法を示す図である。 図232Aは、実施の形態21における高周波可視光信号を受信する他の方法を示す図である。 図232Bは、実施の形態21における高周波可視光信号を受信する他の方法を示す図である。 図233は、実施の形態21における高周波信号を出力する方法を示す図である。 図234は、実施の形態22における自律飛行装置を説明するための図である。 図235は、実施の形態23における受信機がAR画像を表示する例を示す図である。 図236は、実施の形態23における表示システムの一例を示す図である。 図237は、実施の形態23における表示システムの他の例を示す図である。 図238は、実施の形態23における表示システムの他の例を示す図である。 図239は、実施の形態23における受信機の処理動作の一例を示すフローチャートである。 図240は、実施の形態23における受信機がAR画像を表示する他の例を示す図である。 図241は、実施の形態23における受信機がAR画像を表示する他の例を示す図である。 図242は、実施の形態23における受信機がAR画像を表示する他の例を示す図である。 図243は、実施の形態23における受信機がAR画像を表示する他の例を示す図である。 図244は、実施の形態23における受信機がAR画像を表示する他の例を示す図である。 図245は、実施の形態23における受信機がAR画像を表示する他の例を示す図である。 図246は、実施の形態23における受信機の処理動作の他の例を示すフローチャートである。 図247は、実施の形態23における受信機がAR画像を表示する他の例を示す図である。 図248は、実施の形態23における受信機の撮像によって取得される撮像表示画像Ppreおよび復号用画像Pdecを示す図である。 図249は、実施の形態23における受信機に表示される撮像表示画像Ppreの一例を示す図である。 図250は、実施の形態23における受信機の処理動作の他の例を示すフローチャートである。 図251は、実施の形態23における受信機がAR画像を表示する他の例を示す図である。 図252は、実施の形態23における受信機がAR画像を表示する他の例を示す図である。 図253は、実施の形態23における受信機がAR画像を表示する他の例を示す図である。 図254は、実施の形態23における受信機がAR画像を表示する他の例を示す図である。 図255は、実施の形態23における認識情報の一例を示す図である。 図256は、実施の形態23における受信機の処理動作の他の例を示すフローチャートである。 図257は、実施の形態23における受信機が輝線パターン領域を識別する一例を示す図である。 図258は、実施の形態23における受信機の他の例を示す図である。 図259は、実施の形態23における受信機の処理動作の他の例を示すフローチャートである。 図260は、実施の形態23における複数の送信機を含む送信システムの一例を示す図である。 図261は、実施の形態23における複数の送信機および受信機を含む送信システムの一例を示す図である。 図262Aは、実施の形態23における受信機の処理動作の一例を示すフローチャートである。 図262Bは、実施の形態23における受信機の処理動作の一例を示すフローチャートである。 図263Aは、実施の形態23における表示方法を示すフローチャートである。 図263Bは、実施の形態23における表示装置の構成を示すブロック図である。 図264は、実施の形態23の変形例1における受信機がAR画像を表示する例を示す図である。 図265は、実施の形態23の変形例1における受信機200がAR画像を表示する他の例を示す図である。 図266は、実施の形態23の変形例1における受信機200がAR画像を表示する他の例を示す図である。 図267は、実施の形態23の変形例1における受信機200がAR画像を表示する他の例を示す図である。 図268は、実施の形態23の変形例1における受信機200の他の例を示す図である。 図269は、実施の形態23の変形例1における受信機200がAR画像を表示する他の例を示す図である。 図270は、実施の形態23の変形例1における受信機200がAR画像を表示する他の例を示す図である。 図271は、実施の形態23の変形例1における受信機200の処理動作の一例を示すフローチャートである。 図272は、実施の形態23またはその変形例1における受信機において想定されるAR画像を表示するときの課題の一例を示す図である。 図273は、実施の形態23の変形例2における受信機がAR画像を表示する例を示す図である。 図274は、実施の形態23の変形例2における受信機の処理動作の一例を示すフローチャートである。 図275は、実施の形態23の変形例2における受信機がAR画像を表示する他の例を示す図である。 図276は、実施の形態23の変形例2における受信機の処理動作の他の例を示すフローチャートである。 図277は、実施の形態23の変形例2における受信機がAR画像を表示する他の例を示す図である。 図278は、実施の形態23の変形例2における受信機がAR画像を表示する他の例を示す図である。 図279は、実施の形態23の変形例2における受信機がAR画像を表示する他の例を示す図である。 図280は、実施の形態23の変形例2における受信機がAR画像を表示する他の例を示す図である。 図281Aは、本発明の一態様に係る表示方法を示すフローチャートである。 図281Bは、本発明の一態様に係る表示装置の構成を示すブロック図である。 図282は、実施の形態23の変形例3におけるAR画像の拡大および移動の一例を示す図である。 図283は、実施の形態23の変形例3におけるAR画像の拡大の一例を示す図である。 図284は、実施の形態23の変形例3における受信機によるAR画像の拡大および移動に関する処理動作の一例を示すフローチャートである。 図285は、実施の形態23の変形例3におけるAR画像の重畳の一例を示す図である。 図286は、実施の形態23の変形例3におけるAR画像の重畳の一例を示す図である。 図287は、実施の形態23の変形例3におけるAR画像の重畳の一例を示す図である。 図288は、実施の形態23の変形例3におけるAR画像の重畳の一例を示す図である。 図289Aは、実施の形態23の変形例3における受信機による撮像によって得られる撮像表示画像の一例を示す図である。 図289Bは、実施の形態23の変形例3における受信機のディスプレイに表示されるメニュー画面の一例を示す図である。 図290は、実施の形態23の変形例3における受信機とサーバとの処理動作の一例を示すフローチャートである。 図291は、実施の形態23の変形例3における受信機によって再生される音声の音量を説明するための図である。 図292は、実施の形態23の変形例3における受信機から送信機までの距離と音量との関係を示す図である。 図293は、実施の形態23の変形例3における受信機によるAR画像の重畳の一例を示す図である。 図294は、実施の形態23の変形例3における受信機によるAR画像の重畳の一例を示す図である。 図295は、実施の形態23の変形例3における受信機によるラインスキャン時間の求め方の一例を説明するための図である。 図296は、実施の形態23の変形例3における受信機によるラインスキャン時間の求め方の一例を説明するための図である。 図297は、実施の形態23の変形例3における受信機によるラインスキャン時間の求め方の一例を示すフローチャートである。 図298は、実施の形態23の変形例3における受信機によるAR画像の重畳の一例を示す図である。 図299は、実施の形態23の変形例3における受信機によるAR画像の重畳の一例を示す図である。 図300は、実施の形態23の変形例3における受信機によるAR画像の重畳の一例を示す図である。 図301は、実施の形態23の変形例3における受信機の姿勢に応じて取得される復号用画像の一例を示す図である。 図302は、実施の形態23の変形例3における受信機の姿勢に応じて取得される復号用画像の他の例を示す図である。 図303は、実施の形態23の変形例3における受信機の処理動作の一例を示すフローチャートである。 図304は、実施の形態23の変形例3における受信機によるカメラレンズの切り替え処理の一例を示す図である。 図305は、実施の形態23の変形例3における受信機によるカメラの切り替え処理の一例を示す図である。 図306は、実施の形態23の変形例3における受信機とサーバとの処理動作の一例を示すフローチャートである。 図307は、実施の形態23の変形例3における受信機によるAR画像の重畳の一例を示す図である。 図308は、実施の形態23の変形例3における受信機、電子レンジ、中継サーバおよび電子決済用サーバを含むシステムの処理動作を示すシーケンス図である。 図309は、実施の形態23の変形例3における、POS端末、サーバ、受信機200および電子レンジを含むシステムの処理動作を示すシーケンス図である。 図310は、実施の形態23の変形例3における屋内での利用の一例を示す図である。 図311は、実施の形態23の変形例3における拡張現実オブジェクトの表示の一例を示す図である。 図312は、実施の形態23の変形例4における表示システムの構成を示す図である。 図313は、実施の形態23の変形例4における表示システムの処理動作を示すフローチャートである。 図314は、本発明の一態様に係る認識方法を示すフローチャートである。 図315は、実施の形態24に係る可視光信号の動作モードの一例を示す図である。 図316は、実施の形態24に係るパケットPWMのモード1におけるPPDUフォーマットの一例を示す図である。 図317は、実施の形態24に係るパケットPWMのモード2におけるPPDUフォーマットの一例を示す図である。 図318は、実施の形態24に係るパケットPWMのモード3におけるPPDUフォーマットの一例を示す図である。 図319は、実施の形態24に係るパケットPWMのモード1~3のそれぞれのSHRにおけるパルス幅のパターンの一例を示す図である。 図320は、実施の形態24に係るパケットPPMのモード1におけるPPDUフォーマットの一例を示す図である。 図321は、実施の形態24に係るパケットPPMのモード2におけるPPDUフォーマットの一例を示す図である。 図322は、実施の形態24に係るパケットPPMのモード3におけるPPDUフォーマットの一例を示す図である。 図323は、実施の形態24に係るパケットPPMのモード1~3のそれぞれのSHRにおけるインターバルのパターンの一例を示す図である。 図324は、実施の形態24に係る、PHYペイロードに含まれる12ビットのデータの一例を示す図である。 図325は、実施の形態24に係る、PHYフレームを1パケットに収める処理を示す図である。 図326は、実施の形態24に係る、PHYフレームを2パケットに分割する処理を示す図である。 図327は、実施の形態24に係る、PHYフレームを3パケットに分割する処理を示す図である。 図328は、実施の形態24に係る、PHYフレームを4パケットに分割する処理を示す図である。 図329は、実施の形態24に係る、PHYフレームを5パケットに分割する処理を示す図である。 図330は、実施の形態24に係る、PHYフレームをN(N=6、7または8)パケットに分割する処理を示す図である。 図331は、実施の形態24に係る、PHYフレームを9パケットに分割する処理を示す図である。 図332は、実施の形態24に係る、PHYフレームをN(N=10~16)パケットに分割する処理を示す図である。 図333Aは、実施の形態24に係る可視光信号の生成方法を示すフローチャートである。 図333Bは、実施の形態24に係る信号生成装置の構成を示すブロック図である。 図334は、実施の形態25におけるMPMのMACフレームのフォーマットを示す図である。 図335は、実施の形態25におけるMPMのMACフレームを生成する符号化装置の処理動作を示すフローチャートである。 図336は、実施の形態25におけるMPMのMACフレームを復号する復号装置の処理動作を示すフローチャートである。 図337は、実施の形態25におけるMACのPIBの属性を示す図である。 図338は、実施の形態25におけるMPMの調光方法を説明するための図である。 図339は、実施の形態25におけるPHYのPIBの属性を示す図である。 図340は、実施の形態25におけるMPMを説明するための図である。 図341は、実施の形態25におけるPLCPヘッダサブフィールドを示す図である。 図342は、実施の形態25におけるPLCPセンタサブフィールドを示す図である。 図343は、実施の形態25におけるPLCPフッタサブフィールドを示す図である。 図344は、実施の形態25におけるMPMにおけるPHYのPWMモードの波形を示す図である。 図345は、実施の形態25におけるMPMにおけるPHYのPPMモードの波形を示す図である。 図346は、実施の形態25の復号方法の一例を示すフローチャートである。 図347は、実施の形態25の符号化方法の一例を示すフローチャートである。 図348は、実施の形態26における受信機がAR画像を表示する例を示す図である。 図349は、実施の形態26における、AR画像が重畳された撮像表示画像の例を示す図である。 図350は、実施の形態26における受信機がAR画像を表示する他の例を示す図である。 図351は、実施の形態26における受信機の動作を示すフローチャートである。 図352は、実施の形態26における送信機の動作を説明するための図である。 図353は、実施の形態26における送信機の他の動作を説明するための図である。 図354は、実施の形態26における送信機の他の動作を説明するための図である。 図355は、実施の形態26における光IDの受信し易さを説明するための比較例を示す図である。 図356Aは、実施の形態26における送信機の動作を示すフローチャートである。 図356Bは、実施の形態26における送信機の構成を示すブロック図である。 図357は、実施の形態26における受信機がAR画像を表示する他の例を示す図である。 図358は、実施の形態27における送信機の動作を説明するための図である。 図359Aは、実施の形態27における送信方法を示すフローチャートである。 図359Bは、実施の形態27における送信機の構成を示すブロック図である。 図360は、実施の形態27における可視光信号の詳細な構成の一例を示す図である。 図361は、実施の形態27における可視光信号の詳細な構成の他の例を示す図である。 図362は、実施の形態27における可視光信号の詳細な構成の他の例を示す図である。 図363は、実施の形態27における可視光信号の詳細な構成の他の例を示す図である。 図364は、実施の形態27における、変数y~yの総和と、全時間長および有効時間長との関係を示す図である。 図365Aは、実施の形態27における送信方法を示すフローチャートである。 図365Bは、実施の形態27における送信機の構成を示すブロック図である。
本発明の一態様に係る送信方法は、発光体の輝度変化によって可視光信号を送信する送信方法であって、信号を変調することによって、輝度変化のパターンを決定する決定ステップと、前記発光体に含まれる光源によって表現される赤色の輝度を、決定された前記パターンにしたがって変化させることによって前記可視光信号を送信する送信ステップとを含み、前記可視光信号は、データと、プリアンブルと、ペイロードとを含み、前記データでは、第1の輝度値、および、前記第1の輝度値よりも小さい第2の輝度値が、時間軸上に沿って現れ、前記第1の輝度値および前記第2の輝度値のうちの少なくとも一方が継続する時間長は第1の所定の値以下であり、前記プリアンブルでは、前記第1および第2の輝度値のそれぞれが、時間軸上に沿って交互に現れ、前記ペイロードでは、前記第1および第2の輝度値が時間軸上に沿って交互に現れ、前記第1および第2の輝度値のそれぞれが継続する時間長は前記第1の所定の値よりも大きく、かつ、前記信号および所定の方式にしたがって決定されている。
これにより、図363に示すように、可視光信号は、変調される信号に応じて決定される波形のペイロード(すなわち、Lデータ部またはRデータ部)を1つ含み、2つのペイロードを含んでいない。したがって、可視光信号、すなわち可視光信号のパケットを、短くすることができる。つまり、短時間で可視光信号を送信することができ、多様な機器間の通信を短時間で行うことができる。その結果、例えば、発光体に含まれる光源によって表現される赤色の光の発光期間が短くても、その発光期間に可視光信号のパケットを送信することができる。
また、前記ペイロードでは、第1の時間長の前記第1の輝度値、第2の時間長の前記第2の輝度値、第3の時間長の前記第1の輝度値、第4の時間長の前記第2の輝度値の順で、それぞれの輝度値が現れ、前記送信ステップでは、前記第1の時間長と前記第3の時間長の和が、第2の所定の値よりも小さい場合、前記第1の時間長と前記第3の時間長の和が、前記第2の所定の値よりも大きい場合よりも、前記光源に流れる電流値を大きくし、前記第2の所定の値は、前記第1の所定の値よりも大きくてもよい。
これにより、図362および図363に示すように、第1の時間長と第3の時間長の和が小さい場合には、光源の電流値は大きくされ、第1の時間長と第3の時間長の和が大きい場合には、光源の電流値は小さくされる。したがって、データ、プリアンブルおよびペイロードからなるパケットの平均輝度を、信号に関わらずに一定に保つことができる。
また、前記ペイロードでは、第1の時間長Dの前記第1の輝度値、第2の時間長Dの前記第2の輝度値、第3の時間長Dの前記第1の輝度値、第4の時間長Dの前記第2の輝度値の順で、それぞれの輝度値が現れ、前記信号から得られる4つのパラメータy(k=0,1,2,3)の総和が第3の所定の値以下である場合、前記第1~4の時間長D~Dのそれぞれは、D=W+W×y(WおよびWはそれぞれ、0以上の整数)に従って決定されていてもよい。
これにより、図363の(b)に示すように、第1~4の時間長D~DのそれぞれをW以上にしながら、信号に応じて短い波形のペイロードを生成することができる。
また、前記4つのパラメータy(k=0,1,2,3)の総和が前記第3の所定の値以下である場合、前記送信ステップでは、前記データ、前記プリアンブルおよび前記ペイロードを、前記データ、前記プリアンブル、前記ペイロードの順に送信してもよい。
これにより、図363の(b)に示すように、データ(すなわち無効データ)を含む可視光信号のパケットがLデータ部を含んでいないことを、そのデータによって、そのパケットを受信する受信装置に知らせることができる。
また、前記4つのパラメータy(k=0,1,2,3)の総和が前記第3の所定の値よりも大きい場合、前記第1~4の時間長D~Dのそれぞれは、D=W+W×(A-y)、D=W+W×(B-y)、D=W+W×(A-y)、およびD=W+W×(B-y)(AおよびBはそれぞれ、0以上の整数)に従って決定されていてもよい。
これにより、図363の(a)に示すように、第1~4の時間長D~D(すなわち、第1~4の時間長D’~D’)のそれぞれをW以上にしながら、上述の総和が大きくても、信号に応じて短い波形のペイロードを生成することができる。
また、前記4つのパラメータy(k=0,1,2,3)の総和が前記第3の所定の値よりも大きい場合、前記送信ステップでは、前記データ、前記プリアンブルおよび前記ペイロードを、前記ペイロード、前記プリアンブル、前記データの順に送信してもよい。
これにより、図363の(a)に示すように、データ(すなわち無効データ)を含む可視光信号のパケットがRデータ部を含んでいないことを、そのデータによって、そのパケットを受信する受信装置に知らせることができる。
また、前記発光体は、赤色の光源、青色の光源、および緑色の光源を含む複数の光源を有し、前記送信ステップでは、前記複数の光源のうち、前記赤色の光源のみを用いて前記可視光信号を送信してもよい。
これにより、発光体は、赤色の光源、青色の光源、および緑色の光源を用いて映像を表示することができるとともに、受信装置に受信し易い波長の可視光信号を送信することができる。
なお、これらの包括的または具体的な態様は、装置、システム、方法、集積回路、コンピュータプログラムまたはコンピュータ読み取り可能なCD-ROMなどの記録媒体で実現されてもよく、装置、システム、方法、集積回路、コンピュータプログラムまたは記録媒体の任意な組み合わせで実現されてもよい。
以下、実施の形態について、図面を参照しながら具体的に説明する。
なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
(実施の形態1)
以下、実施の形態1について説明する。
(発光部の輝度の観測)
1枚の画像を撮像するとき、全ての撮像素子を同一のタイミングで露光させるのではなく、撮像素子ごとに異なる時刻に露光を開始・終了する撮像方法を提案する。図1は、1列に並んだ撮像素子は同時に露光させ、列が近い順に露光開始時刻をずらして撮像する場合の例である。ここでは、同時に露光する撮像素子の露光ラインと呼び、その撮像素子に対応する画像上の画素のラインを輝線と呼ぶ。
この撮像方法を用いて、点滅している光源を撮像素子の全面に写して撮像した場合、図2のように、撮像画像上に露光ラインに沿った輝線(画素値の明暗の線)が生じる。この輝線のパターンを認識することで、撮像フレームレートを上回る速度の光源輝度変化を推定することができる。これにより、信号を光源輝度の変化として送信することで、撮像フレームレート以上の速度での通信を行うことができる。光源が2種類の輝度値をとることで信号を表現する場合、低い方の輝度値をロー(LO),高い方の輝度値をハイ(HI)と呼ぶ。ローは光源が光っていない状態でも良いし、ハイよりも弱く光っていても良い。
この方法によって、撮像フレームレートを超える速度で情報の伝送を行う。
一枚の撮像画像中に、露光時間が重ならない露光ラインが20ラインあり、撮像のフレームレートが30fpsのときは、1.67ミリ秒周期の輝度変化を認識できる。露光時間が重ならない露光ラインが1000ラインある場合は、3万分の1秒(約33マイクロ秒)周期の輝度変化を認識できる。なお、露光時間は例えば10ミリ秒よりも短く設定される。
図2は、一つの露光ラインの露光が完了してから次の露光ラインの露光が開始される場合を示している。
この場合、1秒あたりのフレーム数(フレームレート)がf、1画像を構成する露光ライン数がlのとき、各露光ラインが一定以上の光を受光しているかどうかで情報を伝送すると、最大でflビット毎秒の速度で情報を伝送することができる。
なお、ラインごとではなく、画素ごとに時間差で露光を行う場合は、さらに高速で通信が可能である。
このとき、露光ラインあたりの画素数がm画素であり、各画素が一定以上の光を受光しているかどうかで情報を伝送する場合には、伝送速度は最大でflmビット毎秒となる。
図3のように、発光部の発光による各露光ラインの露光状態を複数のレベルで認識可能であれば、発光部の発光時間を各露光ラインの露光時間より短い単位の時間で制御することで、より多くの情報を伝送することができる。
露光状態をElv段階で認識可能である場合には、最大でflElvビット毎秒の速度で情報を伝送することができる。
また、各露光ラインの露光のタイミングと少しずつずらしたタイミングで発光部を発光させることで、発信の基本周期を認識することができる。
図4は、一つの露光ラインの露光が完了する前に次の露光ラインの露光が開始される場合を示している。即ち、隣接する露光ラインの露光時間が、部分的に時間的な重なりを持つ構成となっている。このような構成により、(1)一つの露光ラインの露光時間の終了を待って次の露光ラインの露光を開始する場合に比べ、所定の時間内におけるサンプル数を多くすることができる。所定時間内におけるサンプル数が多くなることにより、被写体である光送信機が発生する光信号をより適切に検出することが可能となる。即ち、光信号を検出する際のエラー率を低減することが可能となる。更に、(2)一つの露光ラインの露光時間の終了を待って次の露光ラインの露光を開始する場合に比べ、各露光ラインの露光時間を長くすることができるため、被写体が暗い場合であっても、より明るい画像を取得することが可能となる。即ち、S/N比を向上させることが可能となる。なお、全ての露光ラインにおいて、隣接する露光ラインの露光時間が、部分的に時間的な重なりを持つ構成となる必要はなく、一部の露光ラインについて部分的に時間的な重なりを持たない構成とすることも可能である。一部の露光ラインについて部分的に時間的な重なりを持たないように構成するにより、撮像画面上における露光時間の重なりによる中間色の発生を抑制でき、より適切に輝線を検出することが可能となる。
この場合は、各露光ラインの明るさから露光時間を算出し、発光部の発光の状態を認識する。
なお、各露光ラインの明るさを、輝度が閾値以上であるかどうかの2値で判別する場合には、発光していない状態を認識するために、発光部は発光していない状態を各ラインの露光時間以上の時間継続しなければならない。
図5Aは、各露光ラインの露光開始時刻が等しい場合に、露光時間の違いによる影響を示している。7500aは前の露光ラインの露光終了時刻と次の露光ラインの露光開始時刻とが等しい場合であり、7500bはそれより露光時間を長くとった場合である。7500bのように、隣接する露光ラインの露光時間が、部分的に時間的な重なりを持つ構成とすることにより、露光時間を長くとることが可能となる。即ち、撮像素子に入射する光が増大し、明るい画像を得ることができる。また、同一の明るさの画像を撮像するための撮像感度を低く抑えられることで、ノイズの少ない画像が得られるため、通信エラーが抑制される。
図5Bは、露光時間が等しい場合に、各露光ラインの露光開始時刻の違いによる影響を示している。7501aは前の露光ラインの露光終了時刻と次の露光ラインの露光開始時刻とが等しい場合であり、7501bは前の露光ラインの露光終了より早く次の露光ラインの露光を開始する場合である。7501bのように、隣接する露光ラインの露光時間が、部分的に時間的な重なりを持つ構成とすることにより、時間あたりに露光できるラインを増やすことが可能となる。これにより、より解像度が高くなり、多くの情報量が得られる。サンプル間隔(=露光開始時刻の差)が密になることで、より正確に光源輝度の変化を推定することができ、エラー率が低減でき、更に、より短い時間における光源輝度の変化を認識することができる。露光時間に重なりを持たせることで、隣接する露光ラインの露光量の差を利用して、露光時間よりも短い光源の点滅を認識することができる。
また、上述のサンプル数が少ない場合、つまり、サンプル間隔(図5Bに示す時間差t)が長いと、光源輝度の変化を正確に検出することができない可能性が高くなる。この場合には、露光時間を短くすることによって、その可能性を抑えることができる。つまり、光源輝度の変化を正確に検出することができる。また、露光時間は、露光時間>(サンプル間隔-パルス幅)を満たすことが望ましい。パルス幅は、光源の輝度がHighになっている期間である光のパルス幅である。これにより、Highの輝度を適切に検出することができる。
図5A、図5Bで説明したように、隣接する露光ラインの露光時間が、部分的に時間的な重なりをもつように、各露光ラインを順次露光する構成において、露光時間を通常撮影モードよりも短く設定することにより発生する輝線パターンを信号伝送に用いることにより通信速度を飛躍的に向上させることが可能になる。ここで、可視光通信時における露光時間を1/480秒以下に設定することにより適切な輝線パターンを発生させることが可能となる。ここで、露光時間は、フレーム周波数=fとすると、露光時間<1/8×fと設定する必要がある。撮影の際に発生するブランキングは、最大で1フレームの半分の大きさになる。即ち、ブランキング時間は、撮影時間の半分以下であるため、実際の撮影時間は、最も短い時間で1/2fとなる。更に、1/2fの時間内において、4値の情報を受ける必要があるため、少なくとも露光時間は、1/(2f×4)よりも短くする必要が生じる。通常フレームレートは、60フレーム/秒以下であることから、1/480秒以下の露光時間に設定することにより、適切な輝線パターンを画像データに発生させ、高速の信号伝送を行うことが可能となる。
図5Cは、各露光ラインの露光時間が重なっていない場合、露光時間が短い場合の利点を示している。露光時間が長い場合は、光源は7502aのように2値の輝度変化をしていたとしても、撮像画像では7502eのように中間色の部分ができ、光源の輝度変化を認識することが難しくなる傾向がある。しかし、7502dのように、一つの露光ラインの露光終了後、次の露光ラインの露光開始まで所定の露光しない空き時間(所定の待ち時間)tD2を設ける構成とすることにより、光源の輝度変化を認識しやすくすることが可能となる。即ち、7502fのような、より適切な輝線パターンを検出することが可能となる。7502dのように、所定の露光しない空き時間を設ける構成は、露光時間tを各露光ラインの露光開始時刻の時間差tよりも小さくすることにより実現することが可能となる。通常撮影モードが、隣接する露光ラインの露光時間が、部分的に時間的な重なりを持つ構成である場合において、露光時間を通常撮影モード時よりも、所定の露光しない空き時間が生じるまで短く設定することにより、実現することができる。また、通常撮影モードが、前の露光ラインの露光終了時刻と次の露光ラインの露光開始時刻とが等しい場合であっても、所定の露光しない時間が生じるまで露光時間を短く設定することにより、実現することができる。また、7502gのように、各露光ラインの露光開始時刻の間隔tを大きくすることによっても、一つの露光ラインの露光終了後、次の露光ラインの露光開始まで所定の露光しない空き時間(所定の待ち時間)tD2を設ける構成をとることができる。この構成では、露光時間を長くすることができるため、明るい画像を撮像することができ、ノイズが少なくなることからエラー耐性が高い。一方で、この構成では、一定時間内に露光できる露光ラインが少なくなるため、7502hのように、サンプル数が少なくなるという欠点があるため、状況によって使い分けることが望ましい。例えば、撮像対象が明るい場合には前者の構成を用い、暗い場合には後者の構成を用いることで、光源輝度変化の推定誤差を低減することができる。
なお、全ての露光ラインにおいて、隣接する露光ラインの露光時間が、部分的に時間的な重なりを持つ構成となる必要はなく、一部の露光ラインについて部分的に時間的な重なりを持たない構成とすることも可能である。また、全ての露光ラインにおいて、一つの露光ラインの露光終了後、次の露光ラインの露光開始まで所定の露光しない空き時間(所定の待ち時間)を設ける構成となる必要はなく、一部の露光ラインについて部分的に時間的な重なりを持つ構成とすることも可能である。このような構成とすることにより、それぞれの構成における利点を生かすことが可能となる。また、通常のフレームレート(30fps、60fps)にて撮影を行う通常撮影モードと、可視光通信を行う1/480秒以下の露光時間にて撮影を行う可視光通信モードとにおいて、同一の読み出し方法または回路にて信号の読み出しを行ってもよい。同一の読み出し方法または回路にて信号を読み出すことにより、通常撮影モードと、可視光通信モードとに対して、それぞれ別の回路を用いる必要がなくなり、回路規模を小さくすることが可能となる。
図5Dは、光源輝度の最小変化時間tと、露光時間tと、各露光ラインの露光開始時刻の時間差tと、撮像画像との関係を示している。t+t<tとした場合は、必ず一つ以上の露光ラインが露光の開始から終了まで光源が変化しない状態で撮像するため、7503dのように輝度がはっきりとした画像が得られ、光源の輝度変化を認識しやすい。2t>tとした場合は、光源の輝度変化とは異なるパターンの輝線が得られる場合があり、撮像画像から光源の輝度変化を認識することが難しくなる。
図5Eは、光源輝度の遷移時間tと、各露光ラインの露光開始時刻の時間差tとの関係を示している。tに比べてtが大きいほど、中間色になる露光ラインが少なくなり、光源輝度の推定が容易になる。t>tのとき中間色の露光ラインは連続で2ライン以下になり、望ましい。tは、光源がLEDの場合は1マイクロ秒以下、光源が有機ELの場合は5マイクロ秒程度となるため、tを5マイクロ秒以上とすることで、光源輝度の推定を容易にすることができる。
図5Fは、光源輝度の高周波ノイズtHTと、露光時間tとの関係を示している。tHTに比べてtが大きいほど、撮像画像は高周波ノイズの影響が少なくなり、光源輝度の推定が容易になる。tがtHTの整数倍のときは高周波ノイズの影響がなくなり、光源輝度の推定が最も容易になる。光源輝度の推定には、t>tHTであることが望ましい。高周波ノイズの主な原因はスイッチング電源回路に由来し、多くの電灯用のスイッチング電源ではtHTは20マイクロ秒以下であるため、tを20マイクロ秒以上とすることで、光源輝度の推定を容易に行うことができる。
図5Gは、tHTが20マイクロ秒の場合の、露光時間tと高周波ノイズの大きさとの関係を表すグラフである。tHTは光源によってばらつきがあることを考慮すると、グラフより、tは、ノイズ量が極大をとるときの値と等しくなる値である、15マイクロ秒以上、または、35マイクロ秒以上、または、54マイクロ秒以上、または、74マイクロ秒以上として定めると効率が良いことが確認できる。高周波ノイズ低減の観点からはtは大きいほうが望ましいが、前述のとおり、tが小さいほど中間色部分が発生しづらくなるという点で光源輝度の推定が容易になるという性質もある。そのため、光源輝度の変化の周期が15~35マイクロ秒のときはtは15マイクロ秒以上、光源輝度の変化の周期が35~54マイクロ秒のときはtは35マイクロ秒以上、光源輝度の変化の周期が54~74マイクロ秒のときはtは54マイクロ秒以上、光源輝度の変化の周期が74マイクロ秒以上のときはtは74マイクロ秒以上として設定すると良い。
図5Hは、露光時間tと認識成功率との関係を示す。露光時間tは光源の輝度が一定である時間に対して相対的な意味を持つため、光源輝度が変化する周期tを露光時間tで割った値(相対露光時間)を横軸としている。グラフより、認識成功率をほぼ100%としたい場合は、相対露光時間を1.2以下にすれば良いことがわかる。例えば、送信信号を1kHzとする場合は露光時間を約0.83ミリ秒以下とすれば良い。同様に、認識成功率を95%以上としたい場合は相対露光時間を1.25以下に、認識成功率を80%以上としたい場合は相対露光時間を1.4以下にすれば良いということがわかる。また、相対露光時間が1.5付近で認識成功率が急激に下がり、1.6でほぼ0%となるため、相対露光時間が1.5を超えないように設定すべきであることがわかる。また、認識率が7507cで0になった後、7507dや、7507e、7507fで、再度上昇していることがわかる。そのため、露光時間を長くして明るい画像を撮像したい場合などは、相対露光時間が1.9から2.2、2.4から2.6、2.8から3.0となる露光時間を利用すれば良い。例えば、中間モードとして、これらの露光時間を使うと良い。
図6Aは、本実施の形態における情報通信方法のフローチャートである。
本実施の形態における情報通信方法は、被写体から情報を取得する情報通信方法であって、ステップSK91~SK93を含む。
つまり、この情報通信方法は、イメージセンサによる前記被写体の撮影によって得られる画像に、前記イメージセンサに含まれる複数の露光ラインに対応する複数の輝線が前記被写体の輝度変化に応じて生じるように、前記イメージセンサの第1の露光時間を設定する第1の露光時間設定ステップSK91と、前記イメージセンサが、輝度変化する前記被写体を、設定された前記第1の露光時間で撮影することによって、前記複数の輝線を含む輝線画像を取得する第1の画像取得ステップSK92と、取得された前記輝線画像に含まれる前記複数の輝線のパターンによって特定されるデータを復調することにより情報を取得する情報取得ステップSK93とを含み、前記第1の画像取得ステップSK92では、前記複数の露光ラインのそれぞれは、順次異なる時刻で露光を開始し、かつ、当該露光ラインに隣接する隣接露光ラインの露光が終了してから所定の空き時間経過後に、露光を開始する。
図6Bは、本実施の形態における情報通信装置のブロック図である。
本実施の形態における情報通信装置K90は、被写体から情報を取得する情報通信装置であって、構成要素K91~K93を備える。
つまり、この情報通信装置K90は、イメージセンサによる前記被写体の撮影によって得られる画像に、前記イメージセンサに含まれる複数の露光ラインに対応する複数の輝線が前記被写体の輝度変化に応じて生じるように、前記イメージセンサの露光時間を設定する露光時間設定部K91と、輝度変化する前記被写体を、設定された前記露光時間で撮影することによって、前記複数の輝線を含む輝線画像を取得する前記イメージセンサを有する画像取得部K92と、取得された前記輝線画像に含まれる前記複数の輝線のパターンによって特定されるデータを復調することにより情報を取得する情報取得部K93とを備え、前記複数の露光ラインのそれぞれは、順次異なる時刻で露光を開始し、かつ、当該露光ラインに隣接する隣接露光ラインの露光が終了してから所定の空き時間経過後に、露光を開始する。
このような図6Aおよび図6Bによって示される情報通信方法および情報通信装置K90では、例えば図5Cなどに示すように、複数の露光ラインのそれぞれは、その露光ラインに隣接する隣接露光ラインの露光が終了してから所定の空き時間経過後に、露光を開始するため、被写体の輝度変化を認識しやすくすることができる。その結果、被写体から情報を適切に取得することができる。
なお、上記実施の形態において、各構成要素は、専用のハードウェアで構成されるか、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPUまたはプロセッサなどのプログラム実行部が、ハードディスクまたは半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。例えばプログラムは、図6Aのフローチャートによって示される情報通信方法をコンピュータに実行させる。
(実施の形態2)
本実施の形態では、上記実施の形態1における情報通信装置K90であるスマートフォンなどの受信機と、LEDや有機ELなどの光源の点滅パターンとして情報を送信する送信機とを用いた各適用例について説明する。
なお、以下の説明では、通常撮影モード、または通常撮影モードによる撮影を通常撮影といい、可視光通信モード、または可視光通信モードによる撮影を可視光撮影(可視光通信)という。また、通常撮影および可視光撮影の代わりに、中間モードによる撮影を用いてもよく、後述の合成画像の代わりに中間画像を用いてもよい。
図7は、本実施の形態における受信機の撮影動作の一例を示す図である。
受信機8000は、撮影モードを通常撮影、可視光通信、通常撮影、・・・のように切り替える。そして、受信機8000は、通常撮影画像と可視光通信画像とを合成することによって、輝線模様と被写体およびその周囲とが鮮明に映し出された合成画像を生成し、その合成画像をディスプレイに表示する。この合成画像は、通常撮影画像における信号が送信されている箇所に、可視光通信画像の輝線模様を重畳することによって生成された画像である。また、この合成画像によって映し出される輝線模様、被写体およびその周囲はそれぞれ鮮明であって、ユーザによって十分に認識される鮮明度を有する。このような合成画像が表示されることによって、ユーザは、どこから、またはどの位置から信号が送信されているかをより明確に知ることができる。
図8は、本実施の形態における受信機の撮影動作の他の例を示す図である。
受信機8000は、カメラCa1およびカメラCa2を備える。このような受信機8000では、カメラCa1は通常撮影を行い、カメラCa2は可視光撮影を行う。これにより、カメラCa1は、上述のような通常撮影画像を取得し、カメラCa2は、上述のような可視光通信画像を取得する。そして、受信機8000は、通常撮影画像および可視光通信画像を合成することによって、上述の合成画像を生成してディスプレイに表示する。
図9は、本実施の形態における受信機の撮影動作の他の例を示す図である。
2つのカメラを有する上記受信機8000では、カメラCa1は、撮影モードを通常撮影、可視光通信、通常撮影、・・・のように切り替える。一方、カメラCa2は、通常撮影を継続して行う。そして、カメラCa1とカメラCa2とで同時に通常撮影が行われているときには、受信機8000は、それらのカメラによって取得された通常撮影画像から、ステレオ視(三角測量の原理)を利用して、受信機8000から被写体までの距離(以下、被写体距離という)を推定する。このように推定された被写体距離を用いることによって、受信機8000は、可視光通信画像の輝線模様を通常撮影画像の適切な位置に重畳することができる。つまり、適切な合成画像を生成することができる。
図10は、本実施の形態における受信機の表示動作の一例を示す図である。
受信機8000は、上述のように、撮影モードを可視光通信、通常撮影、可視光通信、・・・のように切り替える。ここで、受信機8000は、最初に可視光通信を行うときに、アプリケーションプログラムを起動する。そして、受信機8000は、可視光通信によって受信した信号に基づいて、自らの位置を推定する。次に、受信機8000は、通常撮影を行うときには、その通常撮影によって取得された通常撮影画像に、AR(Augmented Reality)情報を表示する。このAR情報は、上述のように推定された位置などに基づいて取得されるものである。また、受信機8000は、9軸センサによる検出結果、および通常撮影画像の動き検出などに基づいて、受信機8000の移動および方向の変化を推定し、その推定された移動および方向の変化に合わせてAR情報の表示位置を移動させる。これにより、AR情報を通常撮影画像の被写体像に追随させることができる。
また、受信機8000は、通常撮影から可視光通信に撮影モードを切り替えると、その可視光通信時には、直前の通常撮影時に取得された最新の通常撮影画像にAR情報を重畳する。そして、受信機8000は、AR情報が重畳された通常撮影画像を表示する。また、受信機8000は、通常撮影時と同様に、9軸センサによる検出結果に基づいて、受信機8000の移動および方向の変化を推定し、その推定された移動および方向の変化に合わせてAR情報および通常撮影画像を移動させる。これにより、可視光通信時にも、通常撮影時と同様に、受信機8000の移動などに合わせてAR情報を通常撮影画像の被写体像に追随させることができる。また、受信機8000の移動などに合わせて、その通常画像を拡大および縮小することができる。
図11は、本実施の形態における受信機の表示動作の一例を示す図である。
例えば、受信機8000は、図11の(a)に示すように、輝線模様が映し出された上記合成画像を表示してもよい。また、受信機8000は、図11の(b)に示すように、輝線模様の代わりに、信号が送信されていることを通知するための所定の色を有する画像である信号明示オブジェクトを通常撮影画像に重畳することによって合成画像を生成し、その合成画像を表示してもよい。
また、受信機8000は、図11の(c)に示すように、信号が送信されている箇所が点線の枠と識別子(例えば、ID:101、ID:102など)とによって示されている通常撮影画像を合成画像として表示してもよい。また、受信機8000は、図11の(d)に示すように、輝線模様の代わりに、特定の種類の信号が送信されていることを通知するための所定の色を有する画像である信号識別オブジェクトを通常撮影画像に重畳することによって合成画像を生成し、その合成画像を表示してもよい。この場合、その信号識別オブジェクトの色は、送信機から出力されている信号の種類によって異なる。例えば、送信機から出力されている信号が位置情報である場合には、赤色の信号識別オブジェクトが重畳され、送信機から出力されている信号がクーポンである場合には、緑色の信号識別オブジェクトが重畳される。
図12は、本実施の形態における受信機の動作の一例を示す図である。
例えば、受信機8000は、可視光通信によって信号を受信した場合には、通常撮影画像を表示するとともに、送信機を発見したことをユーザに通知するための音を出力してもよい。この場合、受信機8000は、発見した送信機の個数、受信した信号の種類、または、その信号によって特定される情報の種類などによって、出力される音の種類、出力回数、または出力時間を異ならせてもよい。
図13は、本実施の形態における受信機の動作の他の例を示す図である。
例えば、合成画像に映し出された輝線模様にユーザがタッチすると、受信機8000は、そのタッチされた輝線模様に対応する被写体から送信された信号に基づいて、情報通知画像を生成し、その情報通知画像を表示する。この情報通知画像は、例えば、店舗のクーポンや場所などを示す。なお、輝線模様は、図11に示す信号明示オブジェクト、信号識別オブジェクト、または点線枠などであってもよい。以下に記載されている輝線模様についても同様である。
図14は、本実施の形態における受信機の動作の他の例を示す図である。
例えば、合成画像に映し出された輝線模様にユーザがタッチすると、受信機8000は、そのタッチされた輝線模様に対応する被写体から送信された信号に基づいて、情報通知画像を生成し、その情報通知画像を表示する。この情報通知画像は、例えば、受信機8000の現在地を地図などによって示す。
図15は、本実施の形態における受信機の動作の他の例を示す図である。
例えば、合成画像が表示されている受信機8000に対してユーザがスワイプを行うと、受信機8000は、図11の(c)に示す通常撮影画像と同様の、点線枠および識別子を有する通常撮影画像を表示するとともに、スワイプの操作に追随するように情報の一覧を表示する。この一覧には、各識別子によって示される箇所(送信機)から送信される信号によって特定される情報が示されている。また、スワイプは、例えば、受信機8000におけるディスプレイの右側の外から中に指を動かす操作であってもよい。なお、スワイプは、ディスプレイの上側から、下側から、または左側から中に指を動かす操作であってもよい。
また、その一覧に含まれる情報がユーザによってタップされると、受信機8000は、その情報をより詳細に示す情報通知画像(例えばクーポンを示す画像)を表示してもよい。
図16は、本実施の形態における受信機の動作の他の例を示す図である。
例えば、合成画像が表示されている受信機8000に対してユーザがスワイプを行うと、受信機8000は、スワイプの操作に追随するように情報通知画像を合成画像に重畳して表示する。この情報通知画像は、被写体距離を矢印とともにユーザに分かり易く示すものである。また、スワイプは、例えば、受信機8000におけるディスプレイの下側の外から中に指を動かす操作であってもよい。なお、スワイプは、ディスプレイの左側から、上側から、または右側から中に指を動かす操作であってもよい。
図17は、本実施の形態における受信機の動作の他の例を示す図である。
例えば、受信機8000は、複数の店舗を示すサイネージである送信機を被写体として撮影し、その撮影によって取得された通常撮影画像を表示する。ここで、通常撮影画像に映し出された被写体に含まれる、1つの店舗のサイネージの画像をユーザがタップすると、受信機8000は、その店舗のサイネージから送信される信号に基づいて情報通知画像を生成し、その情報通知画像8001を表示する。この情報通知画像8001は、例えば店舗の空席状況などを示す画像である。
図18は、本実施の形態における受信機と送信機とサーバとの動作の一例を示す図である。
まず、テレビとして構成されている送信機8012は、輝度変化によって信号を受信機8011に送信する。この信号は、例えば、視聴されている番組に関連するコンテンツの購入をユーザに促すための情報を含む。受信機8011は、可視光通信によってその信号を受信すると、その信号に基づいて、コンテンツの購入をユーザに促す情報通知画像を表示する。ユーザがそのコンテンツを購入するための操作を行うと、受信機8011は、受信機8011に差し込まれているSIM(Subscriber Identity Module)カードに含まれる情報、ユーザID、端末ID、クレジットカード情報、課金のための情報、パスワード、および送信機IDのうちの少なくとも1つをサーバ8013に送信する。サーバ8013は、ユーザごとに、ユーザIDと支払い情報とを紐付けて管理している。そして、サーバ8013は、受信機8011から送信される情報に基づいて、ユーザIDを特定し、そのユーザIDに紐付けられた支払い情報を確認する。この確認によって、サーバ8013は、ユーザに対してコンテンツの購入を許可するか否かを判断する。そして、サーバ8013は、許可すると判断すると、許可情報を受信機8011に送信する。受信機8011は、許可情報を受信すると、その許可情報を送信機8012に送信する。許可情報を受信した送信機8012は、そのコンテンツを例えばネットワークを介して取得して再生する。
また、送信機8012は、輝度変化することによって送信機8012のIDを含む情報を受信機8011に対して送信してもよい。この場合、受信機8011は、その情報をサーバ8013に送信する。サーバ8013は、その情報を取得すると、その送信機8012によって例えばテレビ番組が視聴されていると判断することができ、テレビ番組の視聴率調査を行うことができる。
また、受信機8011は、ユーザによって操作された内容(投票など)を上述の情報に含めてサーバ8013に送信することによって、サーバ8013は、その内容をテレビ番組に反映することができる。つまり、視聴者参加型の番組を実現することができる。さらに、受信機8011は、ユーザによる書き込みを受け付けた場合には、その書き込みの内容を上述の情報に含めてサーバ8013に送信することによって、サーバ8013は、その書き込みをテレビ番組やネットワーク上の掲示板などに反映することができる。
さらに、送信機8012が上述のような情報を送信することによって、サーバ8013は、有料放送またはオンデマンドプログラムによるテレビ番組の視聴に対して課金を行うことができる。また、サーバ8013は、受信機8011に対して広告を表示させたり、送信機8012に表示されるテレビ番組の詳細情報を表示させたり、その詳細情報を示すサイトのURLを表示させたりすることができる。さらに、サーバ8013は、受信機8011によって広告が表示された回数、または、その広告によって購入された商品の金額などを取得することによって、その回数または金額に応じた課金を広告主に対して行うことができる。このような金額による課金は、広告を見たユーザがその商品をすぐに購入しなくても行うことができる。また、サーバ8013は、送信機8012から受信機8011を介して送信機8012のメーカを示す情報を取得したときには、その情報によって示されるメーカに対してサービス(例えば、上述の商品の販売に対する報酬の支払い)を行うことができる。
図19は、本実施の形態における受信機の動作の他の例を示す図である。
受信機8030は、例えば、カメラを備えたヘッドマウントディスプレイとして構成されている。この受信機8030は、開始ボタンが押下されたときに、可視光通信モードによる撮影、つまり可視光通信を開始する。そして、可視光通信によって信号が受信された場合には、受信機8030は、その受信された信号に応じた情報をユーザに通知する。この通知は、例えば、受信機8030に備えられたスピーカから音声が出力されることによって行われたり、画像の表示によって行われる。また、可視光通信は、開始ボタンが押下されたとき以外にも、開始を指示する音声の入力が受信機8030に受け付けられたとき、または開始を指示する信号が無線通信で受信機8030に受信されたときに、開始されてもよい。また、受信機8030に備えられた9軸センサによって得られた値の変化幅が所定の範囲を超えたとき、または、通常撮影画像に輝線模様が少しでも現れたときに、可視光通信を開始してもよい。
図20は、本実施の形態における受信機の動作の他の例を示す図である。
受信機8030は、上述と同様に、合成画像8034を表示する。ここで、ユーザは、合成画像8034中の輝線模様を囲うように指先を動かす操作を行う。受信機8030は、この操作を受け付けると、その操作の対象とされた輝線模様を特定し、その輝線模様に対応する箇所から送信されている信号に基づく情報通知画像8032を表示する。
図21は、本実施の形態における受信機の動作の他の例を示す図である。
受信機8030は、上述と同様に、合成画像8034を表示する。ここで、ユーザは、合成画像8034中の輝線模様に指先を予め定められた時間以上あてる操作を行う。受信機8030は、この操作を受け付けると、その操作の対象とされた輝線模様を特定し、その輝線模様に対応する箇所から送信されている信号に基づく情報通知画像8032を表示する。
図22は、本実施の形態における送信機の動作の一例を示す図である。
送信機は、例えば予め定められた周期で、信号1と信号2とを交互に送信する。信号1の送信と、信号2の送信とは、それぞれ可視光の点滅などの輝度変化によって行われる。また、信号1を送信するための輝度変化のパターンと、信号2を送信するための輝度変化のパターンとは互いに異なる。
図23は、本実施の形態における送信機の動作の他の例を示す図である。
送信機は、上述のように、ブロック1、ブロック2およびブロック3を含む構成単位の信号列を繰り返し送信する際には、信号列ごとに、その信号列に含まれるブロックの配置を変更してもよい。例えば、最初の信号列には、ブロック1、ブロック2、ブロック3の順に各ブロックが配置され、次の信号列には、ブロック3、ブロック1、ブロック2の順に各ブロックが配置される。これにより、周期的なブランキング期間を要する受信機によって同じブロックだけが取得されることを避けることができる。
図24は、本実施の形態における受信機の応用例を示す図である。
例えばスマートフォンとして構成される受信機7510aは、バックカメラ(アウトカメラ)7510cで光源7510bを撮像し、光源7510bから送信された信号を受信し、受信した信号から光源7510bの位置と向きを取得する。受信機7510aは、光源7510bの撮像画像中における写り方や、受信機7510aに備えた9軸センサのセンサ値から、受信機7510a自身の位置と向きを推定する。受信機7510aは、フロントカメラ(フェイスカメラ、インカメラ)7510fで、ユーザ7510eを撮像し、画像処理によって、7510eの頭部の位置と向き、及び、視線方向(眼球の位置と向き)を推定する。受信機7510aは、推定結果をサーバに送信する。受信機7510aは、ユーザ7510eの視線方向に応じて挙動(ディスプレイの表示内容や再生音)を変更する。バックカメラ7510cによる撮像と、フロントカメラ7510fによる撮像は、同時に行なっても良いし、交互に行なっても良い。
図25は、本実施の形態における受信機の動作の他の例を示す図である。
受信機は、上述のような合成画像または中間画像などによって、輝線模様を表示する。このとき、受信機は、この輝線模様に対応する送信機からの信号を受信することができなくてもよい。ここで、ユーザが輝線模様に対する操作(例えばタップ)を行うことによってその輝線模様が選択されると、受信機は、光学ズームを行うことによって、その輝線模様の箇所が拡大された合成画像または中間画像を表示する。このような光学ズームが行われることによって、受信機は、その輝線模様に対応する送信機からの信号を適切に受信することができる。つまり、撮像によって得られる画像が小さすぎて、信号を取得することができなくても、光学ズームを行うことによって、その信号を適切に受信することができる。また、信号を取得可能な大きさの画像が表示されている場合であっても、光学ズームを行うことによって、速い受信を行うことができる。
(本実施の形態のまとめ)
本実施の形態における情報通信方法は、被写体から情報を取得する情報通信方法であって、イメージセンサによる前記被写体の撮影によって得られる画像に、前記イメージセンサに含まれる露光ラインに対応する輝線が前記被写体の輝度変化に応じて生じるように、前記イメージセンサの露光時間を設定する第1の露光時間設定ステップと、前記イメージセンサが、輝度変化する前記被写体を、設定された前記露光時間で撮影することによって、前記輝線を含む画像である輝線画像を取得する輝線画像取得ステップと、前記輝線画像に基づいて、前記輝線が現われた部位の空間的な位置が識別し得る態様で、前記被写体と当該被写体の周囲とが映し出された表示用画像を表示する画像表示ステップと、取得された前記輝線画像に含まれる前記輝線のパターンによって特定されるデータを復調することにより送信情報を取得する情報取得ステップとを含む。
例えば、図7、図8および図11に示すような合成画像または中間画像が表示用画像として表示される。また、被写体と当該被写体の周囲とが映し出された表示用画像において、輝線が現われた部位の空間的な位置は、輝線模様、信号明示オブジェクト、信号識別オブジェクト、または点線枠などによって識別される。したがって、ユーザは、このような表示画像を見ることによって、輝度変化によって信号を送信している被写体を容易に見つけることができる。
また、前記情報通信方法は、さらに、前記露光時間よりも長い露光時間を設定する第2の露光時間設定ステップと、前記イメージセンサが、前記被写体と当該被写体の周囲とを前記長い露光時間で撮影することによって、通常撮影画像を取得する通常画像取得ステップと、前記通常撮影画像において前記輝線が現われた部位を、前記輝線画像に基づいて特定し、前記部位を指し示す画像である信号オブジェクトを前記通常撮影画像に重畳することによって、合成画像を生成する合成ステップとを含み、前記画像表示ステップでは、前記合成画像を前記表示用画像として表示してもよい。
例えば、信号オブジェクトは、輝線模様、信号明示オブジェクト、信号識別オブジェクト、または点線枠などであって、図7、図8および図11に示すように、合成画像が表示用画像として表示される。これにより、ユーザは、輝度変化によって信号を送信している被写体をさらに容易に見つけることができる。
また、前記第1の露光時間設定ステップでは、露光時間を1/3000秒に設定し、前記輝線画像取得ステップでは、前記被写体の周囲が映し出された前記輝線画像を取得し、前記画像表示ステップでは、前記輝線画像を前記表示用画像として表示してもよい。
例えば、輝線画像は中間画像として取得されて表示される。したがって、通常撮影画像と可視光通信画像とを取得して合成するなどの処理を行う必要がなく、処理の簡略化を図ることができる。
また、前記イメージセンサは、第1のイメージセンサと第2のイメージセンサを含み、前記通常画像取得ステップでは、前記第1のイメージセンサが撮影することによって、前記通常撮影画像を取得し、前記輝線画像取得ステップでは、前記第2のイメージセンサが前記第1のイメージセンサの撮影と同時に撮影することによって、前記輝線画像を取得してもよい。
例えば、図8に示すように、通常撮影画像と輝線画像である可視光通信画像とがそれぞれのカメラで取得される。したがって、1つのカメラで通常撮影画像と可視光通信画像とを取得する場合と比べて、それらの画像を早く取得することができ、処理を高速化することができる。
また、前記情報通信方法は、さらに、前記表示用画像における前記輝線が現われた部位がユーザによる操作によって指定された場合には、指定された部位の前記輝線のパターンから取得された前記送信情報に基づく提示情報を提示する情報提示ステップを含んでもよい。例えば、前記ユーザによる操作は、タップ、スワイプ、前記部位に指先を所定の時間以上継続して当てる操作、前記部位に視線を向けた状態を所定の時間以上継続する操作、前記部位に関連付けて示される矢印に前記ユーザの身体の一部を動かす操作、輝度変化するペン先を前記部位に当てる操作、または、タッチセンサに触れることによって、前記表示用画像に表示されているポインタを前記部位に当てる操作である。
例えば、図13~図17、図20および図21に示すように、提示情報が情報通知画像として表示される。これにより、ユーザに所望の情報を提示することができる。
また、前記イメージセンサはヘッドマウントディスプレイに備えられ、前記画像表示ステップでは、前記ヘッドマウントディスプレイに搭載されたプロジェクタが前記表示用画像を表示してもよい。
これにより、例えば、図19~図21に示すように、簡単に情報をユーザに提示することができる。
また、被写体から情報を取得する情報通信方法であって、イメージセンサによる前記被写体の撮影によって得られる画像に、前記イメージセンサに含まれる露光ラインに対応する輝線が前記被写体の輝度変化に応じて生じるように、前記イメージセンサの露光時間を設定する第1の露光時間設定ステップと、前記イメージセンサが、輝度変化する前記被写体を、設定された前記露光時間で撮影することによって、前記輝線を含む画像である輝線画像を取得する輝線画像取得ステップと、取得された前記輝線画像に含まれる前記輝線のパターンによって特定されるデータを復調することにより情報を取得する情報取得ステップとを含み、前記輝線画像取得ステップでは、前記イメージセンサが移動されている期間に、複数の前記被写体を撮影することによって、前記輝線が現われた部位を複数含む前記輝線画像を取得し、前記情報取得ステップでは、前記部位ごとに、当該部位の前記輝線のパターンによって特定されるデータを復調することによって、複数の前記被写体のそれぞれの位置を取得し、前記情報通信方法は、さらに、取得された複数の前記被写体のそれぞれの位置、および前記イメージセンサの移動状態に基づいて、前記イメージセンサの位置を推定する位置推定ステップを含んでもよい。
これにより、複数の照明などの被写体による輝度変化によって、イメージセンサを含む受信機の位置を正確に推定することができる。
また、被写体から情報を取得する情報通信方法であって、イメージセンサによる前記被写体の撮影によって得られる画像に、前記イメージセンサに含まれる露光ラインに対応する輝線が前記被写体の輝度変化に応じて生じるように、前記イメージセンサの露光時間を設定する第1の露光時間設定ステップと、前記イメージセンサが、輝度変化する前記被写体を、設定された前記露光時間で撮影することによって、前記輝線を含む画像である輝線画像を取得する輝線画像取得ステップと、取得された前記輝線画像に含まれる前記輝線のパターンによって特定されるデータを復調することにより情報を取得する情報取得ステップと、取得された前記情報を提示する情報提示ステップとを含み、前記情報提示ステップでは、前記イメージセンサのユーザに対して、予め定められたジェスチャを促す画像を前記情報として提示してもよい。
これにより、ユーザが、促されたとおりのジェスチャを行うか否かによって、そのユーザに対する認証などを行うことができ、利便性を高めることができる。
また、被写体から情報を取得する情報通信方法であって、イメージセンサによる前記被写体の撮影によって得られる画像に、前記イメージセンサに含まれる露光ラインに対応する輝線が前記被写体の輝度変化に応じて生じるように、前記イメージセンサの露光時間を設定する露光時間設定ステップと、前記イメージセンサが、輝度変化する前記被写体を、設定された前記露光時間で撮影することによって、前記輝線を含む輝線画像を取得する画像取得ステップと、取得された前記輝線画像に含まれる前記輝線のパターンによって特定されるデータを復調することにより情報を取得する情報取得ステップとを含み、前記画像取得ステップでは、反射面に映る複数の前記被写体を撮影することによって前記輝線画像を取得し、前記情報取得ステップでは、前記輝線画像に含まれる輝線の強度に応じて、前記輝線を、複数の前記被写体のそれぞれに対応する輝線に分離し、前記被写体ごとに、当該被写体に対応する輝線のパターンによって特定されるデータを復調することにより情報を取得してもよい。
これにより、複数の照明などの被写体がそれぞれ輝度変化する場合でも、被写体のそれぞれから適切な情報を取得することができる。
また、被写体から情報を取得する情報通信方法であって、イメージセンサによる前記被写体の撮影によって得られる画像に、前記イメージセンサに含まれる露光ラインに対応する輝線が前記被写体の輝度変化に応じて生じるように、前記イメージセンサの露光時間を設定する露光時間設定ステップと、前記イメージセンサが、輝度変化する前記被写体を、設定された前記露光時間で撮影することによって、前記輝線を含む輝線画像を取得する画像取得ステップと、取得された前記輝線画像に含まれる前記輝線のパターンによって特定されるデータを復調することにより情報を取得する情報取得ステップとを含み、前記画像取得ステップでは、反射面に映る前記被写体を撮影することによって前記輝線画像を取得し、前記情報通信方法は、さらに、前記輝線画像内における輝度分布に基づいて、前記被写体の位置を推定する位置推定ステップを含んでもよい。
これにより、輝度分布に基づいて適切な被写体の位置を推定することができる。
また、輝度変化によって信号を送信する情報通信方法であって、送信対象の第1の信号を変調することによって、輝度変化の第1のパターンを決定する第1の決定ステップと、送信対象の第2の信号を変調することによって、輝度変化の第2のパターンを決定する第2の決定ステップと、発光体が、決定された前記第1のパターンにしたがった輝度変化と、決定された前記第2のパターンにしたがった輝度変化とを、交互に行うことによって、前記第1および第2の信号を送信する送信ステップとを含んでもよい。
これにより、例えば、図22に示すように、第1の信号と第2の信号とをそれぞれ遅滞なく送信することができる。
また、前記送信ステップでは、輝度変化を、前記第1のパターンにしたがった輝度変化と、前記第2のパターンにしたがった輝度変化とで切り替えるときには、緩衝時間を空けて切り替えてもよい。
これにより、第1の信号と第2の信号との混信を抑えることができる。
また、輝度変化によって信号を送信する情報通信方法であって、送信対象の信号を変調することによって、輝度変化のパターンを決定する決定ステップと、発光体が、決定された前記パターンにしたがって輝度変化することによって前記送信対象の信号を送信する送信ステップとを含み、前記信号は、複数の大ブロックからなり、前記複数の大ブロックのそれぞれは、第1のデータと、前記第1のデータに対するプリアンブルと、前記第1のデータに対するチェック信号とを含み、前記第1のデータは、複数の小ブロックからなり、前記小ブロックは、第2のデータと、前記第2のデータに対するプリアンブルと、前記第2のデータに対するチェック信号とを含んでもよい。
これにより、ブランキング期間を要する受信機でも、ブランキング期間を必要としない受信機でも、適切にデータを取得することができる。
また、輝度変化によって信号を送信する情報通信方法であって、複数の送信機がそれぞれ、送信対象の信号を変調することによって、輝度変化のパターンを決定する決定ステップと、送信機ごとに、当該送信機に備えられた発光体が、決定された前記パターンにしたがって輝度変化することによって前記送信対象の信号を送信する送信ステップとを含み、前記送信ステップでは、互いに周波数またはプロトコルが異なる信号を送信してもよい。
これにより、複数の送信機からの信号の混信を抑えることができる。
また、輝度変化によって信号を送信する情報通信方法であって、複数の送信機がそれぞれ、送信対象の信号を変調することによって、輝度変化のパターンを決定する決定ステップと、送信機ごとに、当該送信機に備えられた発光体が、決定された前記パターンにしたがって輝度変化することによって前記送信対象の信号を送信する送信ステップとを含み、前記送信ステップでは、前記複数の送信機のうちの1つの送信機は、他方の送信機から送信される信号を受信し、受信された信号と混信しない態様で、他の信号を送信してもよい。
これにより、複数の送信機からの信号の混信を抑えることができる。
(実施の形態3)
本実施の形態では、上記実施の形態1または2におけるスマートフォンなどの受信機と、LEDや有機ELなどの点滅パターンとして情報を送信する送信機とを用いた各適用例について説明する。
図26は、実施の形態3における受信機、送信機およびサーバの処理動作の一例を示す図である。
例えばスマートフォンとして構成される受信機8142は、自らの位置を示す位置情報を取得し、その位置情報をサーバ8141に送信する。なお、受信機8142は、例えばGPSなどを利用したり、他の信号を受信したときにその位置情報を取得する。サーバ8141は、その位置情報によって示される位置に対応付けられたIDリストを受信機8142に送信する。IDリストには、「abcd」などのIDごとに、そのIDと、そのIDに対応付けられた情報とが含まれている。
受信機8142は、例えば照明機器として構成される送信機8143から信号を受信する。このとき、受信機8142は、IDの一部(例えば「 b 」)しか上述の信号として受信できない場合がある。この場合、受信機8142は、そのIDの一部を含むIDをIDリストから検索する。一意のIDが見つからない場合には、受信機8142は、さらに、送信機8143から、そのIDの他の部分を含む信号を受信する。これにより、受信機8142は、そのIDのうちのより多くの部分(例えば「 bc 」)を取得する。そして、受信機8142は、そのIDの一部(例えば「 bc 」)を含むIDをIDリストから再び検索する。このような検索を行うことによって、受信機8142は、IDの一部しか取得することができなくても、IDの全てを特定することができる。なお、受信機8142は、送信機8143から信号を受信するときには、IDの一部だけでなく、CRC(Cyclic Redundancy Check)などのチェック部分なども受信する。
図27は、実施の形態3における送信機および受信機の動作の一例を示す図である。
例えばテレビとして構成される送信機8165は、画像と、その画像に対応付けられたID(ID 1000)とを制御部8166から取得する。そして、送信機8165は、その画像を表示するとともに、輝度変化することによって、そのID(ID 1000)を受信機8167に送信する。受信機8167は、撮像することによって、そのID(ID 1000)を受信するとともに、そのID(ID 1000)に対応付けられた情報を表示する。ここで、制御部8166は、送信機8165に出力される画像を他の画像に変更する。このとき、制御部8166は、送信機8165に出力されるIDも変更する。つまり、制御部8166は、その他の画像とともに、他の画像に対応付けられた他のID(ID 1001)を送信機8165に出力する。これにより、送信機8165は、その他の画像を表示するとともに、輝度変化することによって、他のID(ID 1001)を受信機8167に送信する。受信機8167は、撮像することによって、その他のID(ID 1001)を受信するとともに、その他のID(ID 1001)に対応付けられた情報を表示する。
図28は、実施の形態3における送信機、受信機およびサーバの動作の一例を示す図である。
例えばスマートフォントして構成される送信機8185は、ディスプレイ8185aのうちのバーコード部分8185bを除く部分を輝度変化させることによって、すなわち、可視光通信によって、例えば「クーポン 100円引き」を示す情報を送信する。また、送信機8185は、バーコード部分8185bを輝度変化させずに、そのバーコード部分8185bにバーコードを表示させる。このバーコードは、上述の可視光通信によって送信される情報と同じ情報を示す。さらに、送信機8185は、ディスプレイ8185aのうちのバーコード部分8185bを除く部分に、可視光通信によって送信される情報を示す文字または絵、例えば文字「クーポン 100円引き」を表示する。このような文字または絵が表示されることによって、送信機8185のユーザは、どのような情報が送信されているかを容易に把握することができる。
受信機8186は、撮像することによって、可視光通信によって送信された情報と、バーコードによって示される情報とを取得し、これらの情報をサーバ8187に送信する。サーバ8187は、これらの情報が一致または関連するか否かを判定し、一致または関連すると判定したときには、それらの情報にしたがった処理を実行する。または、サーバ8187は、その判定結果を受信機8186に送信し、受信機8186にそれらの情報にしたがった処理を実行させる。
なお、送信機8185は、バーコードによって示される情報のうちの一部を可視光通信によって送信してもよい。また、バーコードには、サーバ8187のURLが示されていてもよい。また、送信機8185は、受信機としてIDを取得して、そのIDをサーバ8187に送信することによって、そのIDに対応付けられている情報を取得してもよい。このIDに対応付けられている情報は、上述の可視光通信によって送信される情報、または、バーコードによって示される情報と同一である。また、サーバ8187は、受信機8186を介して送信機8185から送信される情報(可視光通信の情報またはバーコードの情報)に対応付けられたIDを、送信機8185に送信してもよい。
図29は、実施の形態3における送信機および受信機の動作の一例を示す図である。
例えば、受信機8183は、複数の人物8197および街灯8195を含む被写体を撮像する。街灯8195は、輝度変化によって情報を送信する送信機8195aを備えている。この撮像によって、受信機8183は、送信機8195aの像が上述の輝線模様として表れた画像を取得する。さらに、受信機8183は、その輝線模様によって示されるIDに関連付けられているARオブジェクト8196aを例えばサーバなどから取得する。そして、受信機8183は、通常撮影によって得られる通常撮影画像8196にそのARオブジェクト8196aを重畳し、そのARオブジェクト8196aが重畳された通常撮影画像8196を表示する。
(本実施の形態のまとめ)
本実施の形態における情報通信方法は、輝度変化によって信号を送信する情報通信方法であって、送信対象の信号を変調することによって、輝度変化のパターンを決定する決定ステップと、発光体が、決定された前記パターンにしたがって輝度変化することによって前記送信対象の信号を送信する送信ステップとを含み、前記輝度変化のパターンは、予め定められた時間幅における任意の各位置に、互いに異なる2つの輝度値のうちの一方が出現するパターンであって、前記決定ステップでは、送信対象の互いに異なる信号のそれぞれに対して、前記時間幅における輝度の立ち上がり位置または立ち下がり位置である輝度変化位置が互いに異なり、且つ、前記時間幅における前記発光体の輝度の積分値が、予め設定された明るさに応じた同一の値となるように、前記輝度変化のパターンを決定する。
例えば、送信対象の互いに異なる信号「00」、「01」、「10」および「11」のそれぞれに対して、輝度の立ち上がり位置(輝度変化位置)が互いに異なり、且つ、予め定められた時間幅(単位時間幅)における発光体の輝度の積分値が、予め定められた明るさ(例えば99%または1%など)に応じた同一の値となるように、輝度変化のパターンが決定される。これにより、送信対象の信号のそれぞれに対して、発光体の明るさを一定に保つことができ、ちらつきを抑えることができるとともに、その発光体を撮像する受信機は、輝度変化位置に基づいて、その輝度変化のパターンを適切に復調することができる。また、輝度変化のパターンは、単位時間幅における任意の各位置に、互いに異なる2つの輝度値(輝度H(High)または輝度L(Low))のうちの一方が出現するパターンであるため、発光体の明るさを連続的に変化させることができる。
また、前記情報通信方法は、さらに、複数の画像のそれぞれを順に切り替えて表示する画像表示ステップを含み、前記決定ステップでは、前記画像表示ステップで画像が表示されるごとに、表示されている画像に対応する識別情報を前記送信対象の信号として変調することによって、前記識別情報に対する輝度変化のパターンを決定し、前記送信ステップでは、前記画像表示ステップで画像が表示されるごとに、表示されている画像に対応する識別情報に対して決定された輝度変化のパターンにしたがって前記発光体が輝度変化することによって前記識別情報を送信してもよい。
これにより、例えば図27に示すように、画像が表示されるごとに、表示されている画像に対応する識別情報が送信されるため、ユーザは、表示される画像に基づいて、受信機に受信させる識別情報を容易に選択することができる。
また、前記送信ステップでは、前記画像表示ステップで画像が表示されるごとに、さらに、過去に表示された画像に対応する識別情報に対して決定された輝度変化のパターンにしたがって前記発光体が輝度変化することによって前記識別情報を送信してもよい。
これにより、表示される画像が切り替わったために、切り替わり前に送信された識別信号を受信機が受信できなかった場合でも、現在表示されている画像に対応する識別情報とともに、過去に表示された画像に対応する識別情報も送信されるため、切り替わり前に送信された識別情報を、改めて受信機で適切に受信することができる。
また、前記決定ステップでは、前記画像表示ステップで画像が表示されるごとに、表示されている画像に対応する識別情報と、前記画像が表示されている時刻とを前記送信対象の信号として変調することによって、前記識別情報および前記時刻に対する輝度変化のパターンを決定し、前記送信ステップでは、前記画像表示ステップで画像が表示されるごとに、表示されている画像に対応する識別情報および時刻に対して決定された輝度変化のパターンにしたがって前記発光体が輝度変化することによって前記識別情報および前記時刻を送信し、さらに、過去に表示された画像に対応する識別情報および時刻に対して決定された輝度変化のパターンにしたがって前記発光体が輝度変化することによって前記識別情報および前記時刻を送信してもよい。
これにより、画像が表示されるごとに、複数のID時刻情報(識別情報および時刻からなる情報)が送信されるため、受信機は、受信された複数のID時刻情報の中から、過去に送信されて受信できなかった識別信号を、そのID時刻情報のそれぞれに含まれる時刻に基づいて容易に選択することができる。
また、前記発光体は、それぞれ発光する複数の領域を有し、前記複数の領域のうち互いに隣接する領域の光が相互に干渉し、前記複数の領域のうちの1つだけが、決定された前記輝度変化のパターンにしたがって輝度変化する場合、前記送信ステップでは、前記複数の領域のうちの端に配置された領域だけが、決定された前記輝度変化のパターンにしたがって輝度変化してもよい。
これにより、端に配置された領域(発光部)だけが輝度変化するため、端以外に配置された領域だけが輝度変化する場合と比べて、他の領域からの光によるその輝度変化への影響を抑えることができる。その結果、受信機は、撮影によって、その輝度変化のパターンを適切に捉えることができる。
また、前記複数の領域のうちの2つだけが、決定された前記輝度変化のパターンにしたがって輝度変化する場合、前記送信ステップでは、前記複数の領域のうちの端に配置された領域と、前記端に配置された領域に隣接する領域とが、決定された前記輝度変化のパターンにしたがって輝度変化してもよい。
これにより、端に配置された領域(発光部)と、その端に配置された領域に隣接する領域(発光部)とが輝度変化するため、互いに離れた領域が輝度変化する場合と比べて、空間的に連続して輝度変化する範囲の面積を広く保つことができる。その結果、受信機は、撮影によって、その輝度変化のパターンを適切に捉えることができる。
本実施の形態における情報通信方法は、被写体から情報を取得する情報通信方法であって、前記被写体の撮影に用いられるイメージセンサの位置を示す位置情報を送信する位置情報送信ステップと、前記位置情報によって示される位置に対応付けられた、複数の識別情報を含むIDリストを受信するリスト受信ステップと、前記イメージセンサによる前記被写体の撮影によって得られる画像に、前記イメージセンサに含まれる露光ラインに対応する輝線が前記被写体の輝度変化に応じて生じるように、前記イメージセンサの露光時間を設定する露光時間設定ステップと、前記イメージセンサが、輝度変化する前記被写体を、設定された前記露光時間で撮影することによって、前記輝線を含む輝線画像を取得する画像取得ステップと、取得された前記輝線画像に含まれる前記輝線のパターンによって特定されるデータを復調することにより情報を取得する情報取得ステップと、取得された前記情報を含む識別情報を前記IDリストから検索する検索ステップとを含む。
これにより、例えば図26に示すように、予めIDリストが受信されているため、取得された情報「 bc 」が識別情報の一部だけであっても、IDリストに基づいて適切な識別情報「abcd」を特定することができる。
また、前記検索ステップにおいて、取得された前記情報を含む識別情報が一意に特定されない場合には、前記画像取得ステップおよび前記情報取得ステップを繰り返し行うことによって、新たな情報を取得し、前記情報通信方法は、さらに、取得された前記情報と、前記新たな情報とを含む識別情報を前記IDリストから検索する再検索ステップを含んでもよい。
これにより、例えば図26に示すように、取得された情報「 b 」が識別情報の一部だけであって、その情報だけでは識別情報が一意に特定されない場合であっても、新たな情報「 c 」が取得されるため、その新たな情報とIDリストに基づいて適切な識別情報「abcd」を特定することができる。
本実施の形態における情報通信方法は、被写体から情報を取得する情報通信方法であって、イメージセンサによる前記被写体の撮影によって得られる画像に、前記イメージセンサに含まれる露光ラインに対応する輝線が前記被写体の輝度変化に応じて生じるように、前記イメージセンサの露光時間を設定する露光時間設定ステップと、前記イメージセンサが、輝度変化する前記被写体を、設定された前記露光時間で撮影することによって、前記輝線を含む輝線画像を取得する画像取得ステップと、取得された前記輝線画像に含まれる前記輝線のパターンによって特定されるデータを復調することにより識別情報を取得する情報取得ステップと、取得された前記識別情報と、前記イメージセンサの位置を示す位置情報とを送信する送信ステップと、前記位置情報によって示される位置に対応付けられた、複数の識別情報を含むIDリストに、取得された前記識別情報がない場合には、エラーを通知するためのエラー通知情報を受信するエラー受信ステップとを含む。
これにより、取得された識別情報がIDリストにない場合には、エラー通知情報を受信するため、そのエラー通知情報を受信した受信機のユーザは、その取得された識別情報に関連付けられた情報を得ることができないことを容易に把握することができる。
(実施の形態4)
本実施の形態では、上記実施の形態1~4におけるスマートフォンなどの受信機と、LEDや有機ELなどの点滅パターンとして情報を送信する送信機とを用いた適用例について説明する。
図30は、実施の形態4における送信機および受信機の動作の一例を示す図である。
送信機は、ID記憶部8361、乱数生成部8362、加算部8363、暗号部8364、および送信部8365を備えている。ID記憶部8361は、送信機のIDを記憶している。乱数生成部8362は、一定時間ごとに異なる乱数を生成する。加算部8363は、ID記憶部8361に記憶されているIDに対して、乱数生成部8362によって生成された最新の乱数を組み合わせ、その結果を編集IDとして出力する。暗号部8364は、その編集IDに対して暗号化を行うことによって暗号化編集IDを生成する。送信部8365は輝度変化することによって、その暗号化編集IDを受信機に送信する。
受信機は、受信部8366、復号部8367およびID取得部8368を備えている。受信部8366は、送信機を撮像(可視光撮影)することによって、暗号化編集IDを送信機から受信する。復号部8367は、その受信された暗号化編集IDを復号することによって編集IDを復元する。ID取得部8368は、復元された編集IDからIDを抽出することによってそのIDを取得する。
例えば、ID記憶部8361はID「100」を記憶しており、乱数生成部8362は最新の乱数「817」を生成する(例1)。この場合、加算部8363は、ID「100」に対して乱数「817」を組み合わせることによって、編集ID「100817」を生成して出力する。暗号部8364は、その編集ID「100817」に対して暗号化を行うことによって、暗号化編集ID「abced」を生成する。受信機の復号部8367は、その暗号化編集ID「abced」を復号することによって、編集ID「100817」を復元する。そして、ID取得部8368は、復元された編集ID「100817」からID「100」を抽出する。言い換えれば、ID取得部8368は、編集IDの下3桁を削除することによって、ID「100」を取得する。
次に、乱数生成部8362は新たな乱数「619」を生成する(例2)。この場合、加算部8363は、ID「100」に対して乱数「619」を組み合わせることによって、編集ID「100619」を生成して出力する。暗号部8364は、その編集ID「100619」に対して暗号化を行うことによって、暗号化編集ID「difia」を生成する。送信機の復号部8367は、その暗号化編集ID「difia」を復号することによって、編集ID「100619」を復元する。そして、ID取得部8368は、復元された編集ID「100619」からID「100」を抽出する。言い換えれば、ID取得部8368は、編集IDの下3桁を削除することによって、ID「100」を取得する。
このように、送信機はIDを単純に暗号化することなく、一定時間ごとに変更される乱数が組み合わされたものを暗号化するため、送信部8365から送信される信号から簡単にIDが解読されることを防ぐことができる。つまり、単純に暗号化されたIDが送信機から受信機に何度か送信される場合には、そのIDが暗号化されていても、そのIDが同じであれば、送信機から受信機に送信される信号も同じであるため、そのIDが解読される可能性がある。しかし、図30に示す例では、一定時間ごとに変更される乱数がIDに組み合わされて、その乱数が組み合わされたIDが暗号化される。したがって、同じIDが受信機に何度か送信される場合でも、それらのIDの送信のタイミングが異なれば、送信機から受信機へ送信される信号を異ならせることができる。その結果、IDが容易に解読されるのを防ぐことができる。
なお、図30に示す受信機は、暗号化編集IDを取得すると、その暗号化編集IDをサーバに送信し、そのサーバからIDを取得してもよい。
(駅での案内)
図31は、電車のホームにおける本発明の利用形態の一例を示したものである。ユーザが、携帯端末を電子掲示板や照明にかざし、可視光通信により、電子掲示板に表示されている情報、または、電子掲示板の設置されている駅の電車情報・駅の構内情報などを取得する。ここでは、電子掲示板に表示されている情報自体が、可視光通信により、携帯端末に送信されてもよいし、電子掲示板に対応するID情報が携帯端末に送信され、携帯端末が取得したID情報をサーバに問い合わせることにより、電子掲示板に表示されている情報を取得してもよい。サーバは、携帯端末からID情報が送信されてきた場合に、ID情報に基づき、電子掲示板に表示されている内容を携帯端末に送信する。携帯端末のメモリに保存されている電車のチケット情報と、電子掲示板に表示されている情報とを対比し、ユーザのチケットに対応するチケット情報が電子掲示板に表示されている場合に、携帯端末のディスプレイに、ユーザの乗車予定の電車が到着するホームへの行き先を示す矢印を表示する。降車時に出口や乗り換え経路に近い車両までの経路を表示するとしてもよい。座席指定がされている場合は、その座席までの経路を表示するとしてもよい。矢印を表示する際には、地図や、電車案内情報における電車の路線の色と同じ色を用いて矢印を表示することにより、より分かりやすく表示することができる。また、矢印の表示とともに、ユーザの予約情報(ホーム番号、車両番号、発車時刻、座席番号)を表示することもできる。ユーザの予約情報を併せて表示することにより、誤認識を防ぐことが可能となる。チケット情報がサーバに保存されている場合には、携帯端末からサーバに問い合わせてチケット情報を取得し対比するか、または、サーバ側でチケット情報と電子掲示板に表示されている情報とを対比することにより、チケット情報に関連する情報を取得することができる。ユーザが乗換検索を行った履歴から目的の路線を推定し、経路を表示してもよい。また、電子掲示板に表示されている内容だけでなく、電子掲示板が設置されている駅の電車情報・構内情報を取得し、対比を行ってもよい。ディスプレイ上の電子掲示板の表示に対してユーザに関連する情報を強調表示してもよいし、書き換えて表示してもよい。ユーザの乗車予定が不明である場合には、各路線の乗り場への案内の矢印を表示してもよい。駅の構内情報を取得した場合には、売店・お手洗いへなどの案内する矢印をディスプレイに表示してもよい。ユーザの行動特性を予めサーバで管理しておき、ユーザが駅構内で売店・お手洗いに立ち寄ることが多い場合に、売店・お手洗いなどへ案内する矢印をディスプレイに表示する構成にしてもよい。売店・お手洗いに立ち寄る行動特性を有するユーザに対してのみ、売店・お手洗いなどへ案内する矢印を表示し、その他のユーザに対しては表示を行わないため処理量を減らすことが可能となる。売店・お手洗いなどへ案内する矢印の色を、ホームへの行き先を案内する矢印と異なる色としてもよい。両方の矢印を同時に表示する際には、異なる色とすることにより、誤認識を防ぐことが可能となる。尚、図31では電車の例を示したが、飛行機やバスなどでも同様の構成で表示を行うことが可能である。
(クーポンのポップアップ)
図32は、ユーザが店舗に近づくと、可視光通信により取得したクーポン情報が表示される、または、ポップアップが携帯端末のディスプレイに表示される一例を示したものである。ユーザは、携帯端末を用いて、可視光通信により、電子掲示板などから店舗のクーポン情報を取得する。次に、店舗から所定の範囲内にユーザが入ると、店舗のクーポン情報、または、ポップアップが表示される。ユーザが、店舗から所定の範囲内に入ったか否かは、携帯端末のGPS情報と、クーポン情報に含まれる店舗情報とを用いて判断される。クーポン情報に限らず、チケット情報でもよい。クーポンやチケットが利用できる店舗などが近づくと自動的にアラートしてくれるため、ユーザはクーポンやチケットを適切に利用することが可能となる。
(操作用アプリケーションの起動)
図33は、ユーザが携帯端末を用いて、可視光通信により、家電より情報を取得する一例を示したものである。可視光通信により、家電からID情報、または、当該家電に関する情報を取得した場合に、当該家電を操作するためのアプリケーションが自動的に立ち上がる。図33では、テレビを用いた例を示している。このような構成により、携帯端末を家電にかざすだけで、家電を操作するためのアプリケーションを起動することが可能となる。
(データベース)
図34は、送信機が送信するIDを管理するサーバの保持するデータベースの構成の一例を示したものである。
データベースは、IDをキーとした問い合わせに対して渡すデータを保持するID-データテーブルと、IDをキーとした問い合わせの記録を保存するアクセスログテーブルを持つ。ID-データテーブルは、送信機が送信するID、IDをキーとした問い合わせに対して渡すデータ、データを渡す条件、IDをキーとしたアクセスがあった回数、条件をクリアしてデータが渡された回数を持つ。データを渡す条件には、日時や、アクセス回数や、アクセス成功回数や、問い合わせ元の端末の情報(端末の機種、問い合わせを行ったアプリケーション、端末の現在位置など)や、問い合わせ元のユーザ情報(年齢、性別、職業、国籍、使用言語、信教など)がある。アクセス成功回数を条件とすることで、「アクセス1回あたり1円、ただし100円を上限としてそれ以降はデータを返さない」といったサービスの方法が可能となる。ログテーブルは、IDをキーとしたアクセスがあったとき、そのIDや、要求したユーザのIDや、時刻や、その他の付帯情報や、条件をクリアしてデータを渡したかどうかや、渡したデータの内容を記録する。
(ゾーン毎に異なる通信プロトコル)
図35は、実施の形態4における送信機と受信機の動作の一例を示す図である。
受信機8420aは、基地局8420hからゾーン情報を受け取り、自身がどのゾーンに位置しているかを認識し、受信プロトコルを選択する。基地局8420hは、例えば携帯電話の通信基地局やWi-FiアクセスポイントやIMES送信機やスピーカーや無線送信機(Bluetooth(登録商標)、ZigBee、特定小電力無線局等)として構成される。なお、受信機8420aは、GPS等から得た位置情報をもとにゾーンを特定してもよい。例として、ゾーンAでは9.6kHzの信号周波数で通信し、ゾーンBでは、天井照明は15kHz、サイネージは4.8kHzの信号周波数で通信すると定めるとする。受信機8420aは、位置8420jでは、基地局8420hの情報から現在地がゾーンAであることを認識し、9.6kHzの信号周波数で受信を行い、送信機8420b・8420cの送信した信号を受信する。受信機8420aは、位置8420lでは、基地局8420iの情報から現在地がゾーンBであることを認識し、さらに、インカメラが上方に向けられていることから天井照明からの信号を受信しようとしていることを推定し、15kHzの信号周波数で受信を行い、送信機8420e・8420fの送信した信号を受信する。受信機8420aは、位置8420mでは、基地局8420iの上方から現在地がゾーンBであることを認識し、さらに、アウトカメラを突き出す動きからサイネージの送信する信号を受信しようとしていることを推定し、4.8kHzの信号周波数で受信を行い、送信機8420gの送信する信号を受信する。受信機8420aは、位置8420kでは、基地局8420hと基地局8420iの両方の信号が受信され、現在地がゾーンAとゾーンBのどちらであるか判断できないため、9.6kHzと15kHzの両方で受信処理を行う。なお、ゾーンによってプロトコルが異なる部分は周波数だけではなく、送信信号の変調方式や信号フォーマットやIDを問い合わせるサーバが異なるとしても良い。なお、基地局8420h・8420iは、ゾーン内のプロトコルを受信機に送信してもよいし、ゾーンを示すIDのみを送信し、受信機がゾーンIDをキーにサーバからプロトコル情報を獲得するとしてもよい。
送信機8420b~8420fは、基地局8420h・8420iの送信するゾーンIDやプロトコル情報を受信し、信号送信プロトコルを決定する。基地局8420hと基地局8420iの両方の送信する信号を受信可能な送信機8420dは、より信号強度強い基地局のゾーンのプロトコルを利用する、または、両方のプロトコルを交互に用いる。
(ゾーンの認識とゾーン毎のサービス)
図36は、実施の形態4における受信機と送信機の動作の一例を示す図である。
受信機8421aは、受信した信号から、自身の位置の属するゾーンを認識する。受信機8421aは、ゾーン毎に定められたサービス(クーポンの配布、ポイントの付与、道案内等)を提供する。一例として、受信機8421aは、送信機8421bの左側から送信する信号を受信し、ゾーンAに居ることを認識する。ここで、送信機8421bは、送信方向によって異なる信号を送信するとしてもよい。また、送信機8421bは、2217aのような発光パターンの信号を用いることで、受信機までの距離に応じて異なる信号が受信されるように信号を送信してもよい。また、受信機8421aは、送信機8421bの撮像される方向と大きさから、送信機8421bとの位置関係を認識し、自身の位置するゾーンを認識してもよい。
同じゾーンに位置することを示す信号の一部を共通としてもよい。例えば、送信機8421bと送信機8421cから送信される、ゾーンAを表すIDは前半を共通とする。これにより、受信機8421aは、信号の前半を受信するだけで自身の位置するゾーンを認識可能となる。
(本実施の形態のまとめ)
本実施の形態における情報通信方法は、輝度変化によって信号を送信する情報通信方法であって、複数の送信対象の信号のそれぞれを変調することによって、複数の輝度変化のパターンを決定する決定ステップと、複数の発光体のそれぞれが、決定された複数の輝度変化のパターンのうちの何れか1つのパターンにしたがって輝度変化することによって、前記何れか1つのパターンに対応する送信対象の信号を送信する送信ステップとを含み、前記送信ステップでは、前記複数の発光体のうちの2つ以上の発光体のそれぞれは、当該発光体に対して予め定められた時間単位ごとに、互いに輝度の異なる2種類の光のうちの何れか一方の光が出力されるように、且つ、前記2つ以上の発光体のそれぞれに対して予め定められた前記時間単位が互いに異なるように、互いに異なる周波数で輝度変化する。
これにより、2つ以上の発光体(例えば、照明機器として構成された送信機)のそれぞれが互いに異なる周波数で輝度変化するため、それらの発光体から送信対象の信号(例えば、発光体のID)を受信する受信機は、それらの送信対象の信号を容易に区別して取得することができる。
また、前記送信ステップでは、前記複数の発光体のそれぞれは、少なくとも4種類の周波数のうちの何れか1つの周波数で輝度変化し、前記複数の発光体のうちの2つ以上の発光体は、同一の周波数で輝度変化してもよい。例えば、前記送信ステップでは、前記複数の送信対象の信号を受信するためのイメージセンサの受光面に、前記複数の発光体が投影される場合に、前記受光面上で互いに隣接する全ての発光体間で輝度変化の周波数が異なるように、前記複数の発光体のそれぞれは輝度変化する。
これにより、輝度変化に用いられる周波数が少なくとも4種類あれば、同一の周波数で輝度変化する発光体が2つ以上ある場合であっても、つまり、周波数の種類の数が複数の発光体の数よりも少ない場合であっても、四色問題または四色定理に基づいて、イメージセンサの受光面上で互いに隣接する全ての発光体間で輝度変化の周波数を確実に異なるせることができる。その結果、受信機は、複数の発光体から送信される送信対象の信号のそれぞれを容易に区別して取得することができる。
また、前記送信ステップでは、前記複数の発光体のそれぞれは、送信対象の信号のハッシュ値によって特定される周波数で輝度変化することによって、前記送信対象の信号を送信してもよい。
これにより、複数の発光体のそれぞれは、送信対象の信号(例えば、発光体のID)のハッシュ値によって特定される周波数で輝度変化するため、受信機は、送信対象の信号を受信したときには、実際の輝度変化から特定される周波数と、ハッシュ値によって特定される周波数とが一致するか否かを判定することができる。つまり、受信機は、受信された信号(例えば、発光体のID)にエラーがあったか否かを判定することができる。
また、前記情報通信方法は、さらに、信号記憶部に記憶されている送信対象の信号から、予め定められた関数にしたがって、当該送信対象の信号に対応する周波数を第1の周波数として算出する周波数算出ステップと、周波数記憶部に記憶されている第2の周波数と、算出された前記1の周波数とが一致するか否かを判定する周波数判定ステップと、前記第1の周波数と前記第2の周波数とが一致しないと判定された場合には、エラーを報知する周波数エラー報知ステップとを含み、前記第1の周波数と前記第2の周波数とが一致すると判定された場合には、前記決定ステップでは、前記信号記憶部に記憶されている前記送信対象の信号を変調することによって輝度変化のパターンを決定し、前記送信ステップでは、前記複数の発光体のうちの何れか1つの発光体が、決定された前記パターンにしたがって、前記第1の周波数で輝度変化することによって、前記信号記憶部に記憶されている前記送信対象の信号を送信してもよい。
これにより、周波数記憶部に記憶されている周波数と、信号記憶部(ID記憶部)に記憶されている送信対象の信号から算出された周波数とが一致するか否かが判定され、一致しないと判定された場合にはエラーが報知されるため、発光体による信号送信機能の異常検出を容易に行うことができる。
また、前記情報通信方法は、さらに、信号記憶部に記憶されている送信対象の信号から、予め定められた関数にしたがって第1のチェック値を算出するチェック値算出ステップと、チェック値記憶部に記憶されている第2のチェック値と、算出された前記1のチェック値とが一致するか否かを判定するチェック値判定ステップと、前記第1のチェック値と前記第2のチェック値とが一致しないと判定された場合には、エラーを報知するチェック値エラー報知ステップとを含み、前記第1のチェック値と前記第2のチェック値とが一致すると判定された場合には、前記決定ステップでは、前記信号記憶部に記憶されている前記送信対象の信号を変調することによって輝度変化のパターンを決定し、前記送信ステップでは、前記複数の発光体のうちの何れか1つの発光体が、決定された前記パターンにしたがって輝度変化することによって、前記信号記憶部に記憶されている前記送信対象の信号を送信してもよい。
これにより、チェック値記憶部に記憶されているチェック値と、信号記憶部(ID記憶部)に記憶されている送信対象の信号から算出されたチェック値とが一致するか否かが判定され、一致しないと判定された場合にはエラーが報知されるため、発光体による信号送信機能の異常検出を容易に行うことができる。
また、本実施の形態における情報通信方法は、被写体から情報を取得する情報通信方法であって、イメージセンサによる前記被写体の撮影によって得られる画像に、前記イメージセンサに含まれる複数の露光ラインに対応する複数の輝線が前記被写体の輝度変化に応じて生じるように、前記イメージセンサの露光時間を設定する露光時間設定ステップと、前記イメージセンサが、輝度変化する前記被写体を、設定された前記露光時間で撮影することによって、前記複数の輝線を含む輝線画像を取得する画像取得ステップと、取得された前記輝線画像に含まれる前記複数の輝線のパターンによって特定されるデータを復調することにより情報を取得する情報取得ステップと、取得された前記輝線画像に含まれる前記複数の輝線のパターンに基づいて、前記被写体の輝度変化の周波数を特定する周波数特定ステップとを含む。例えば、前記周波数特定ステップでは、前記複数の輝線のパターンに含まれる、それぞれヘッダを示すために予め定められた複数のパターンである複数のヘッダパターンを特定し、前記複数のヘッダパターン間の画素数に応じた周波数を、前記被写体の輝度変化の周波数として特定する。
これにより、被写体の輝度変化の周波数が特定されるため、輝度変化の周波数が異なる複数の被写体が撮影される場合には、それらの被写体からの情報を容易に区別して取得することができる。
また、前記画像取得ステップでは、それぞれ輝度変化する複数の被写体を撮影することによって、それぞれ複数の輝線によって表される複数のパターンを含む前記輝線画像を取得し、前記情報取得ステップでは、取得された前記輝線画像に含まれる前記複数のパターンのそれぞれの一部が重なっている場合には、前記複数のパターンのそれぞれから前記一部を除く部分によって特定されるデータを復調することにより、前記複数のパターンのそれぞれから情報を取得してもよい。
これにより、複数のパターン(複数の輝線パターン)が重なっている部分からはデータの復調が行われないため、誤った情報を取得してしまうことを防ぐことができる。
また、前記画像取得ステップでは、前記複数の被写体を互いに異なるタイミングで複数回撮影することによって、複数の輝線画像を取得し、前記周波数特定ステップでは、輝線画像ごとに、当該輝線画像に含まれる前記複数のパターンのそれぞれに対する周波数を特定し、前記情報取得ステップでは、前複数の輝線画像から、同一の周波数が特定された複数のパターンを検索し、検索された前記複数のパターンを結合し、結合された前記複数のパターンによって特定さるデータを復調することにより情報を取得してもよい。
これにより、複数の輝線画像から、同一の周波数が特定された複数のパターン(複数の輝線パターン)が検索され、検索された複数のパターンが結合され、結合された複数のパターンから情報が取得されるため、複数の被写体が移動している場合であっても、それらの複数の被写体からの情報を容易に区別して取得することができる。
また、前記情報通信方法は、さらに、識別情報のそれぞれに対して周波数が登録されているサーバに対して、前記情報取得ステップで取得された情報に含まれる前記被写体の識別情報と、前記周波数特定ステップで特定された周波数を示す特定周波数情報とを送信する送信ステップと、前記識別情報と、前記特定周波数情報によって示される周波数とに関連付けられた関連情報を前記サーバから取得する関連情報取得ステップとを含んでもよい。
これにより、被写体(送信機)の輝度変化に基づいて取得された識別情報(ID)と、その輝度変化の周波数とに関連付けられた関連情報が取得される。したがって、被写体の輝度変化の周波数を変更し、サーバに登録されている周波数を変更後の周波数に更新することによって、周波数の変更前に識別情報を取得した受信機がサーバから関連情報を取得することを防ぐことができる。つまり、被写体の輝度変化の周波数の変更に合わせて、サーバに登録されている周波数も変更することによって、被写体の識別情報を過去に取得した受信機が無期限にサーバから関連情報を取得し得る状態になってしまうことを防ぐことができる。
また、前記情報通信方法は、さらに、前記情報取得ステップで取得された前記情報から一部を抽出することによって、前記被写体の識別情報を取得する識別情報取得ステップと、前記情報取得ステップで取得された前記情報のうち、前記一部以外の残りの部分によって示される数を、前記被写体に対して設定されている輝度変化の設定周波数として特定する設定周波数特定ステップとを含んでもよい。
これにより、複数の輝線のパターンから得られる情報に、被写体の識別情報と、被写体に設定されている輝度変化の設定周波数とを互いに依存することなく含めることができるため、識別情報と設定周波数との自由度を高めることができる。
(実施の形態5)
本実施の形態では、上記各実施の形態におけるスマートフォンなどの受信機と、LEDや有機ELの点滅パターンとして情報を送信する送信機とを用いた各適用例について説明する。
(人間への可視光通信の周知)
図37は、実施の形態5における送信機の動作の一例を示す図である。
送信機8921aの発光部は、図37の(a)に示すように、人間が視認可能な点滅と可視光通信とを繰り返す。人間に視認可能な点滅を行うことで、可視光通信が可能であることを人間に知らせることができる。ユーザは送信機8921aが点滅していることで可視光通信が可能であることに気づき、受信機8921bを送信機8921aに向けて可視光通信を行い、送信機8921aのユーザ登録を行う。
つまり、本実施の形態における送信機は、発光体が輝度変化によって信号を送信するステップと、発光体が人の目で視認されるように点滅するステップとを交互に繰り返し行う。
送信機は、図37の(b)のように、可視光通信部と点滅部(通信状況表示部)とを別に設けてもよい。
送信機は、図37の(c)のように、動作することで、可視光通信を行いながら、人間には発光部が点滅しているように見せることができる。つまり、送信機は、例えば明るさ75%の高輝度可視光通信と、明るさ1%の低輝度可視光通信とを交互に繰り返し行う。例えば、送信機に異常等が発生して普段とは異なる信号を送信しているときに図37の(c)に示す動作をすることで、可視光通信をやめることなくユーザに注意を促すことができる。
(道案内への応用例)
図38は、実施の形態5における送受信システムの応用例の一例を示す図である。
受信機8955aは、例えば案内板として構成される送信機8955bの送信IDを受信し、案内板に表示された地図のデータをサーバから取得して表示する。このとき、サーバは受信機8955aのユーザに適した広告を送信し、受信機8955aはこの広告情報も表示するとしてもよい。受信機8955aは、現在地から、ユーザが指定した場所までの経路を表示する。
(利用ログ蓄積と解析への応用例)
図39は、実施の形態5における送受信システムの応用例の一例を示す図である。
受信機8957aは、例えば看板として構成される送信機8957bの送信するIDを受信し、サーバからクーポン情報を取得して表示する。受信機8957aは、その後のユーザの行動、例えば、クーポンを保存したり、クーポンに表示された店舗に移動したり、その店舗で買い物を行ったり、クーポンを保存せずに立ち去ったりといった行動をサーバ8957cに保存する。これにより、看板8957bから情報を取得したユーザのその後の行動を解析することができ、看板8957bの広告価値を見積もることができる。
(画面共有への応用例)
図40は、実施の形態5における送受信システムの応用例の一例を示す図である。
例えばプロジェクタやディスプレイとして構成される送信機8960bは、自身へ無線接続するための情報(SSID、無線接続用パスワード、IPアドレス、送信機を操作するためのパスワード)を送信する。または、これらの情報にアクセスするためのキーとなるIDを送信する。例えばスマートフォンやタブレットやノートパソコンやカメラとして構成される受信機8960aは、送信機8960bから送信された信号を受信して前記情報を取得し、送信機8960bとの無線接続を確立する。この無線接続は、ルータを介して接続してもよいし、Wi-FiダイレクトやBluetooth(登録商標)やWireless Home Digital Interface等によって直接接続してもよい。受信機8960aは、送信機8960bによって表示される画面を送信する。これにより、手軽に受信機の画像を送信機に表示することができる。
なお、送信機8960bは、受信機8960aと接続されたときに、画面表示のためには、送信機が送信している情報の他にパスワードが必要であることを受信機8960aに伝え、正しいパスワードが送られない場合は送信された画面を表示しないとしてもよい。このとき、受信機8960aは、8960dのような、パスワード入力画面を表示し、ユーザにパスワードを入力させる。
以上、一つまたは複数の態様に係る情報通信方法について、実施の形態に基づいて説明したが、本発明は、この実施の形態に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、一つまたは複数の態様の範囲内に含まれてもよい。
また、図41に示すように、本発明の一態様に係る情報通信方法を応用してもよい。
図41は、実施の形態5における送受信システムの応用例の一例を示す図である。
可視光通信の受信機として構成されるカメラは、通常撮像モードで撮像を行う(Step1)。この撮像によって、カメラは、例えばEXIF(Exchangeable image file format)等のフォーマットによって構成される画像ファイルを取得する。次に、カメラは、可視光通信撮像モードで撮像を行う(Step2)。カメラは、この撮像によって得られる画像中の輝線のパターンに基づいて、被写体である送信機から可視光通信によって送信された信号(可視光通信情報)を取得する(Step3)。さらに、カメラは、その信号(受信情報)をキーとして扱ってサーバにアクセスすることにより、サーバからそのキーに対応する情報を取得する(Step4)。そしてカメラは、被写体から可視光通信によって送信された信号(可視光受信データ)、サーバから取得された情報、画像ファイルによって示される画像中の、被写体である送信機が映し出された位置を示すデータと、可視光通信によって送信された信号を受信した時刻(動画中における時刻)を示すデータなどをそれぞれ、上述の画像ファイル中のメタデータとして保存する。なお、カメラは、撮像によって得られる画像(画像ファイル)に複数の送信機が被写体として映し出されている場合には、送信機ごとに、その送信機に対応する幾つかのメタデータを、その画像ファイルに保存する。
可視光通信の送信機として構成されるディスプレイまたはプロジェクタは、上述の画像ファイルによって示される画像を表示するときには、その画像ファイルに含まれるメタデータに応じた信号を可視光通信によって送信する。例えば、ディスプレイまたはプロジェクタは、メタデータそのものを可視光通信によって送信してもよく、画像に映し出された送信機に関連付けられた信号をキーとして送信してもよい。
可視光通信の受信機として構成される携帯端末(スマートフォン)は、ディスプレイまたはプロジェクタの画像を撮像することによって、ディスプレイまたはプロジェクタから可視光通信によって送信される信号を受信する。携帯端末は、その受信した信号が上述のキーであれば、そのキーを用いて、ディスプレイ、プロジェクタまたはサーバから、そのキーに関連付けられた送信機のメタデータを取得する。また、携帯端末は、その受信した信号が、実在する送信機から可視光通信によって送信された信号(可視光受信データまたは可視光通信情報)であれば、ディスプレイ、プロジェクタまたはサーバから、その可視光受光データまたは可視光通信情報に対応する情報を取得する。
(本実施の形態等のまとめ)
本実施の形態における情報通信方法は、被写体から情報を取得する情報通信方法であって、イメージセンサによる前記被写体である第1の被写体の撮影によって得られる画像に、前記イメージセンサに含まれる各露光ラインに対応する複数の輝線が前記第1の被写体の輝度変化に応じて生じるように、前記イメージセンサの第1の露光時間を設定する第1の露光時間設定ステップと、前記イメージセンサが、輝度変化する前記第1の被写体を、設定された前記第1の露光時間で撮影することによって、前記複数の輝線を含む画像である第1の輝線画像を取得する第1の輝線画像取得ステップと、取得された前記第1の輝線画像に含まれる前記複数の輝線のパターンによって特定されるデータを復調することにより第1の送信情報を取得する第1の情報取得ステップと、前記第1の送信情報が取得された後に、制御信号を送信することによって、扉の開閉駆動機器に対して前記扉を開かせる扉制御ステップとを含む。
これにより、イメージセンサを備えた受信機を扉の鍵のように用いることができ、特別な電子錠を不要にすることができる。その結果、演算力が少ないような機器を含む多様な機器間で通信を行うことができる。
また、前記情報通信方法は、さらに、前記イメージセンサが、輝度変化する第2の被写体を、設定された前記第1の露光時間で撮影することによって、複数の輝線を含む画像である第2の輝線画像を取得する第2の輝線画像取得ステップと、取得された前記第2の輝線画像に含まれる前記複数の輝線のパターンによって特定されるデータを復調することにより第2の送信情報を取得する第2の情報取得ステップと、取得された前記第1および第2の送信情報に基づいて、前記イメージセンサを備えた受信装置が前記扉に近づいているか否かを判定する接近判定ステップとを含み、前記扉制御ステップでは、前記受信装置が前記扉に近づいていると判定されたときに、前記制御信号を送信してもよい。
これにより、受信装置(受信機)が扉に近づいたときにのみ、つまり、適切なタイミングにのみ、その扉を開かせることができる。
また、前記情報通信方法は、さらに、前記第1の露光時間よりも長い第2の露光時間を設定する第2の露光時間設定ステップと、前記イメージセンサが、第3の被写体を、設定された前記第2の露光時間で撮影することによって、前記第3の被写体が映し出された通常画像を取得する通常画像取得ステップとを含み、前記通常画像取得ステップでは、前記イメージセンサのオプティカルブラックを含む領域にある複数の露光ラインのそれぞれに対して、当該露光ラインの隣の露光ラインに対する電荷の読み出しが行われた時点から所定の時間経過後に、電荷の読み出しを行い、前記第1の輝線画像取得ステップでは、前記オプティカルブラックを電荷の読み出しに用いることなく、前記イメージセンサにおける前記オプティカルブラック以外の領域にある複数の露光ラインのそれぞれに対して、当該露光ラインの隣の露光ラインに対する電荷の読み出しが行われた時点から、前記所定の時間よりも長い時間経過後に、電荷の読み出しを行ってもよい。
これにより、第1の輝線画像が取得されるときには、オプティカルブラックに対する電荷の読み出し(露光)は行われないため、イメージセンサにおけるオプティカルブラック以外の領域である有効画素領域に対する電荷の読み出し(露光)にかかる時間を長くすることができる。その結果、その有効画素領域において信号を受信する時間を長くすることができ、多くの信号を取得することができる。
また、前記情報通信方法は、さらに、前記第1の輝線画像に含まれる前記複数の輝線のパターンにおける、当該複数の輝線のそれぞれに垂直な方向の長さが、予め定められた長さ未満であるか否かを判定する長さ判定ステップと、前記パターンの長さが前記予め定められた長さ未満であると判定された場合には、前記イメージセンサのフレームレートを、前記第1の輝線画像を取得したときの第1のフレームレートよりも遅い第2のフレームレートに変更するフレームレート変更ステップと、前記イメージセンサが、輝度変化する前記第1の被写体を、前記第2のフレームレートで、且つ、設定された前記第1の露光時間で撮影することによって、複数の輝線を含む画像である第3の輝線画像を取得する第3の輝線画像取得ステップと、取得された前記第3の輝線画像に含まれる前記複数の輝線のパターンによって特定されるデータを復調することにより前記第1の送信情報を取得する第3の情報取得ステップとを含んでもよい。
これにより、第1の輝線画像に含まれる輝線のパターン(輝線領域)によって示される信号長が、送信された信号の例えば1ブロック分に満たない場合には、フレームレートが落とされて、改めて輝線画像が第3の輝線画像として取得される。その結果、第3の輝線画像に含まれる輝線のパターンの長さを長くすることができ、送信された信号を1ブロック分取得することができる。
また、前記情報通信方法は、さらに、前記イメージセンサによって得られる画像の縦幅と横幅の比率を設定する比率設定ステップを含み、前記第1の輝線画像取得ステップは、設定された前記比率によって、前記画像における前記各露光ラインと垂直な方向の端がクリッピングされるか否かを判定するクリッピング判定ステップと、前記端がクリッピングされると判定されたときには、前記比率設定ステップで設定された前記比率を、前記端がクリッピングされない比率である非クリッピング比率に変更する比率変更ステップと、前記イメージセンサが、輝度変化する前記第1の被写体を撮影することによって、前記非クリッピング比率の前記第1の輝線画像を取得する取得ステップとを含んでもよい。
これにより、例えばイメージセンサの有効画素領域の横幅と縦幅の比率が4:3であって、画像の横幅と縦幅の比率が16:9に設定され、水平方向に沿う輝線が表れる場合、つまり、露光ラインが水平方向に沿っている場合には、上述の画像の上端および下端がクリッピングされると判定される。つまり、第1の輝線画像の端が欠落してしまうと判定される。この場合には、その画像の比率が、クリッピングされない比率である例えば4:3に変更される。その結果、第1の輝線画像の端の欠落を防ぐことができ、第1の輝線画像から多くの情報を取得することができる。
また、前記情報通信方法は、さらに、前記第1の輝線画像に含まれる前記複数の輝線のそれぞれに平行な方向に、前記第1の輝線画像を圧縮することによって、圧縮画像を生成する圧縮ステップと、前記圧縮画像を送信する圧縮画像送信ステップとを含んでもよい。
これにより、複数の輝線によって示される情報を欠落させることなく適切に第1の輝線画像を圧縮することができる。
また、前記情報通信方法は、さらに、前記イメージセンサを備える受信装置が、予め定められた態様で動かされたか否かを判定するジェスチャ判定ステップと、前記予め定められた態様で動かされたと判定したときには、前記イメージセンサを起動する起動ステップとを含んでもよい。
これにより、必要なときにのみイメージセンサを簡単に起動させることができ、消費電力効率の向上を図ることができる。
(実施の形態6)
本実施の形態では、上記各実施の形態におけるスマートフォンなどの受信機と、LEDや有機ELの点滅パターンとして情報を送信する送信機とを用いた各適用例について説明する。
図42は、実施の形態6における送信機と受信機の適用例を示す図である。
ロボット8970は、例えば自走式の掃除機としての機能と、上記各実施の形態における受信機としての機能とを有する。照明機器8971a,8971bは、それぞれ上記各実施の形態における送信機としての機能を有する。
例えば、ロボット8970は、室内を移動しながら、掃除を行うとともに、その室内を照らす照明機器8971aを撮影する。この照明機器8971aは、輝度変化することによって照明機器8971aのIDを送信している。その結果、ロボット8970は、上記各実施の形態と同様に、照明機器8971aからそのIDを受信し、そのIDに基づいて自らの位置(自己位置)を推定する。つまり、ロボット8970は、9軸センサによる検出結果と、撮影によって得られる画像に映る照明機器8971aの相対位置と、IDによって特定される照明機器8971aの絶対位置とに基づいて、移動しながら自己位置を推定している。
さらに、ロボット8970は、移動することによって照明機器8971aから離れると、照明機器8971aに対して消灯を命令する信号(消灯命令)を送信する。例えば、ロボット8970は、予め定められた距離だけ照明機器8971aから離れると、消灯命令を送信する。または、ロボット8970は、撮影によって得られる画像にその照明機器8971aが映らなくなったときに、あるいは、その画像に他の照明機器が映ると、消灯命令を照明機器8971aに送信する。照明機器8971aは、消灯命令をロボット8970から受信すると、その消灯命令に応じて消灯する。
次に、ロボット8970は、移動して掃除を行っている途中で、推定された自己位置に基づいて、照明機器8971bに近づいたことを検知する。つまり、ロボット8970は、照明機器8971bの位置を示す情報を保持しており、自己位置とその照明機器8971bの位置との間の距離が予め定められた距離以下になったときに、照明機器8971bに近づいたことを検知する。そして、ロボット8970は、その照明機器8971bに対して点灯を命令する信号(点灯命令)を送信する。照明機器8971bは、点灯命令を受けると、その点灯命令に応じて点灯する。
これにより、ロボット8970は、移動しながら自らの周りだけを明るくして、掃除を容易に行うことができる。
図43は、実施の形態6における送信機および受信機の適用例を示す図である。
照明機器8974は、上記各実施の形態における送信機としての機能を有する。この照明機器8974は、輝度変化しながら例えば鉄道の駅にある路線掲示板8975を照らす。ユーザによってその路線掲示板8975に向けられた受信機8973は、その路線掲示板8975を撮影する。これにより、受信機8973は、その路線掲示板8975のIDを取得し、そのIDに関連付けられている情報であって、その路線掲示板8975に記載されている各路線についての詳細な情報を取得する。そして、受信機8973は、その詳細な情報を示す案内画像8973aを表示する。例えば、案内画像8973aは、路線掲示板8975に記載されている路線までの距離と、その路線に向かう方向と、その路線において次に電車が到着する時刻とを示す。
ここで、受信機8973は、その案内画像8973aがユーザによってタッチされると、補足案内画像8973bを表示する。この補足案内画像8973bは、例えば、鉄道の時刻表、案内画像8973aによって示される路線とは異なる別の路線に関する情報、および、その駅に関する詳細な情報、のうちの何れかをユーザによる選択操作に応じて表示するための画像である。
(実施の形態7)
本実施の形態では、上記各実施の形態におけるスマートフォンなどの受信機と、LEDや有機ELの点滅パターンとして情報を送信する送信機とを用いた各適用例について説明する。
(複数の受光部による複数の方向からの信号の受信)
図44は、実施の形態7における受信機の一例を示す図である。
例えば腕時計として構成される受信機9020aは、複数の受光部を備える。例えば、受信機9020aは、図44に示すように、腕時計の長針および短針を支持する回転軸の上端部に配置された受光部9020bと、腕時計の周縁部における、12時を示す文字付近に配置された受光部9020cとを備える。受光部9020bは、上述の回転軸の方向に沿って受光部9020bに向かう光を受け、受光部9020cは、その回転軸と12時を示す文字とを結ぶ方向に沿って受光部9020cに向かう光を受ける。これにより、ユーザが時刻を確認するときのように胸の前に受信機9020aを構えた時に、受光部9020bは、上方向からの光を受光できる。その結果、受信機9020aは天井照明からの信号を受信できる。さらに、ユーザが時刻を確認するときのように胸の前に受信機9020aを構えた時に、受光部9020cは、正面方向からの光を受光できる。その結果、受信機9020aは、正面にあるサイネージ等からの信号を受信することが出来る。
これらの受光部9020bおよび9020cは指向性を持たせることで、近い位置に複数の送信機がある場合でも混信することなく信号を受信することができる。
(腕時計型ディスプレイによる道案内)
図45は、実施の形態7における受信システムの一例を示す図である。
例えば腕時計として構成される受信機9023bは、Bluetooth(登録商標)等の無線通信を介してスマートフォン9022aと接続される。受信機9023bは、文字盤が液晶等のディスプレイで構成されており、時刻以外の情報を表示することができる。受信機9023bが受信した信号からスマートフォン9022aは現在地を認識し、目的地までの経路や距離を受信機9023bの表示面に表示する。
図46は、実施の形態7における信号送受信システムの一例を示す図である。
信号送受信システムは、多機能携帯電話であるスマートフォン(スマホ)と、照明機器であるLED発光機と、冷蔵庫などの家電機器と、サーバとを備えている。LED発光機は、BTLE(Bluetooth(登録商標) Low Energy)を用いた通信を行うとともに、LED(Light Emitting Diode)を用いた可視光通信を行う。例えば、LED発光機は、BTLEによって、冷蔵庫を制御したり、エアコンと通信する。また、LED発光機は、可視光通信によって、電子レンジ、空気清浄機またはテレビ(TV)などの電源を制御する。
テレビは、例えば太陽光発電素子を備え、この太陽光発電素子を光センサとして利用する。つまり、LED発光機が輝度変化することによって信号を送信すると、テレビは、太陽光発電素子によって発電される電力の変化によって、そのLED発光機の輝度変化を検出する。そして、テレビは、その検出された輝度変化によって示される信号を復調することによって、LED発光機から送信された信号を取得する。テレビは、その信号が電源ONを示す命令である場合には、自らの主電源をONに切り替え、その信号が電源OFFを示す命令である場合には、自らの主電源をOFFに切り替える。
また、サーバは、ルータおよび特定小電力無線局(特小)を介してエアコンと通信することができる。さらに、エアコンはBTLEを介してLED発光機と通信することができるため、サーバはLED発光機と通信することができる。したがって、サーバは、LED発光機を介してTVの電源をONとOFFとに切り替えることができる。また、スマートフォンは、サーバと例えばWi-Fi(Wireless Fidelity)などを介して通信することによって、サーバを介してTVの電源を制御することができる。
図46に示すように、本実施の形態における情報通信方法は、携帯端末(スマートフォン)が、可視光通信と異なる無線通信(BTLEまたはWi-Fiなど)によって、制御信号(送信データ列またはユーザコマンド)を照明機器(発光機)に送信する無線通信ステップと、照明機器が、その制御信号に応じて輝度変化することによって可視光通信を行う可視光通信ステップと、制御対象機器(電子レンジなど)が、その照明機器の輝度変化を検出し、検出された輝度変化によって特定される信号を復調することにより制御信号を取得し、その制御信号に応じた処理を実行する実行ステップとを含む。これにより、携帯端末は、可視光通信のための輝度変化を行うことができなくても、無線通信によって、照明機器を携帯端末の代わりに輝度変化させることができ、制御対象機器を適切に制御することができる。なお、携帯端末はスマートフォンではなく腕時計であってもよい。
(干渉を排除した受信)
図47は、実施の形態7における干渉を排除した受信方法を示すフローチャートである。
まず、ステップ9001aでstartして、ステップ9001bで受光した光の強さに周期的な変化があるかどうかを確認して、YESの場合はステップ9001cへ進む。NOの場合はステップ9001dへ進み、受光部のレンズを広角にして広範囲の光を受光して、ステップ9001bへ戻る。ステップ9001cで信号を受信できるかどうかを確認して、YESの場合はステップ9001eへ進み、信号を受信して、ステップ9001gで終了する。NOの場合はステップ9001fへ進み、受光部のレンズを望遠にして狭い範囲の光を受光して、ステップ9001cへ戻る。
この方法により、複数の送信機からの信号の干渉を排除しつつ、広い方向にある送信機からの信号を受信することができる。
(送信機の方位の推定)
図48は、実施の形態7における送信機の方位の推定方法を示すフローチャートである。
まず、ステップ9002aでstartして、ステップ9002bで受光部のレンズを最大望遠にして、ステップ9002cで受光した光の強さに周期的な変化があるかどうかを確認して、YESの場合はステップ9002dへ進む。NOの場合はステップ9002eへ進み、受光部のレンズを広角にして広範囲の光を受光して、ステップ9002cへ戻る。ステップ9002dで信号を受信して、ステップ9002fで受光部のレンズを最大望遠とし、受光範囲の境界に沿うように受光方向を変化させ、受光強度が最大になる方向を検出し、送信機がその方向にあると推定して、ステップ9002dで終了する。
この方法により、送信機が存在する方向を推定することができる。なお、最初に最大広角にして、次第に望遠にしてもよい。
(受信の開始)
図49は、実施の形態7における受信の開始方法を示すフローチャートである。
まず、ステップ9003aでstartして、ステップ9003bでWi-FiやBluetooth(登録商標)やIMES等の基地局からの信号を受信したかどうかを確認して、YESの場合は、ステップ9003cへ進む。NOの場合はステップ9003bへ戻る。ステップ9003cで前記基地局が、受信開始のトリガとして受信機やサーバに登録されているかどうかを確認して、YESの場合はステップ9003dへ進み、信号の受信を開始して、ステップ9003eで終了する。NOの場合はステップ9003bへ戻る。
この方法により、ユーザが受信開始の操作をしなくても受信を開始することができる。また、常に受信を行うよりも消費電力を抑えることが出来る。
(他媒体の情報を併用したIDの生成)
図50は、実施の形態7における他媒体の情報を併用したIDの生成方法を示すフローチャートである。
まず、ステップ9004aでstartして、ステップ9004bで接続されているキャリア通信網やWi-FiやBluetooth(登録商標)等のID、または、上記IDから得た位置情報やGPS等から得た位置情報を上位ビットID索引サーバに送信する。ステップ9004cで上位ビットID索引サーバから可視光IDの上位ビットを受信して、ステップ9004dで送信機からの信号を可視光IDの下位ビットとして受信する。ステップ9004eで可視光IDの上位ビットと下位ビットを合わせてID解決サーバへ送信して、ステップ9004fで終了する。
この方法により、受信機の付近の場所で共通的に用いられる上位ビットを得ることができ、送信機が送信するデータ量を少なくすることができる。また、受信機が受信する速度を上げることができる。
なお、送信機は上位ビットと下位ビットの両方を送信しているとしてもよい。この場合は、この方法を用いている受信機は下位ビットを受信した時点でIDを合成することができ、この方法を用いていない受信機は送信機からID全体を受信することでIDを得る。
(周波数分離による受信方式の選択)
図51は、実施の形態7における周波数分離による受信方式の選択方法を示すフローチャートである。
まず、ステップ9005aでstartして、ステップ9005bで受光した光信号を周波数フィルタ回路にかける、または、離散フーリエ級数展開を行い周波数分解を行う。ステップ9005cで低周波数成分が存在するかどうかを確認して、YESの場合はステップ9005dへ進み、周波数変調等の低周波数領域で表現された信号をデコードして、ステップ9005eへ進む。NOの場合はステップ9005eへ進む。ステップ9005eで前記基地局が、受信開始のトリガとして受信機やサーバに登録されているかどうかを確認して、YESの場合はステップ9005fへ進み、パルス位置変調等の高周波数領域で表現された信号をデコードして、ステップ9005gへ進む。NOの場合はステップ9005gへ進む。ステップ9005gで信号の受信を開始して、ステップ9005hで終了する。
この方法により、複数の変調方式で変調された信号を受信することができる。
(露光時間が長い場合の信号受信)
図52は、実施の形態7における露光時間が長い場合の信号受信方法を示すフローチャートである。
まず、ステップ9030aでstartして、ステップ9030bで感度が設定できる場合は感度を最高に設定する。ステップ9030cで露光時間が設定できる場合は通常撮影モードよりも短い時間に設定する。ステップ9030dで2枚の画像を撮像して輝度の差分を求める。2枚の画像を撮像する間に撮像部の位置や方向が変化した場合はその変化をキャンセルして同じ位置・方向から撮像したかのような画像を生成して差分を求める。ステップ9030eで差分画像、または、撮像画像の露光ラインに平行な方向の輝度値を平均した値を求める。ステップ9030fで前記平均した値を、露光ラインに垂直な方向に並べ離散フーリエ変換を行って、ステップ9030gで所定の周波数の付近にピークがあるかどうかを認識して、ステップ9030hで終了する。
この方法により、露光時間が設定できない場合や通常画像を同時に撮像する場合等、露光時間が長い場合においても信号を受信することができる。
露光時間を自動設定としている場合、カメラを照明として構成される送信機へ向けると、自動露出補正機能によって露光時間は60分の1秒から480分の1秒程度に設定される。露光時間の設定ができない場合には、この条件で信号を受信する。実験では、照明を周期的に点滅させた場合、1周期の時間が露光時間の約16分の1以上であれば、露光ラインに垂直な方向に縞が視認でき、画像処理によって点滅の周期を認識することができた。このとき、照明が写っている部分は輝度が高すぎて縞が確認しづらいため、照明光が反射している部分から信号の周期を求めるのが良い。
周波数偏移変調方式や周波数多重変調方式のように、発光部を周期的に点灯・消灯させる方式を用いた場合は、パルス位置変調方式を用いた場合よりも、同じ変調周波数であっても人間にとってちらつきが視認しづらく、また、ビデオカメラで撮影した動画にもちらつきが現れにくい。そのため、低い周波数を変調周波数として用いることができる。人間の視覚の時間分解能は60Hz程度であるため、この周波数以上の周波数を変調周波数として用いることができる。
なお、変調周波数が受信機の撮像フレームレートの整数倍のときは、2枚の画像の同じ位置の画素は送信機の光パターンが同じ位相の時点で撮像を行うため、差分画像に輝線があらわれず、受信が行いにくい。受信機の撮像フレームレートは通常30fpsであるため、変調周波数は30Hzの整数倍以外に設定すると受信が行い易い。また、受信機の撮像フレームレートは様々なものが存在するため、互いに素な二つの変調周波数を同じ信号に割り当て、送信機は、その二つの変調周波数を交互に用いて送信することで、受信機は、少なくとも一つの信号を受信することで、容易に信号を復元できる。
図53は、送信機の調光(明るさを調整すること)方法の一例を示す図である。
輝度が高い区間と輝度が低い区間の割合を調整することで、平均輝度が変化し、明るさを調整することができる。このとき、輝度の高低を繰り返す周期Tを一定に保つことで、周波数ピークを一定に保つことが出来る。例えば、図53の(a)、(b)、(c)のいずれも、平均輝度よりも明るくなる第1の輝度変化と、第2の輝度変化の間の時間T1は一定に保ちながら、送信機を暗く調光する際には、平均輝度よりも明るく照明する時間を短くする。一方、送信機を明るく調光する際には、平均輝度よりも明るく照明する時間を長くする。図53の(b)、(c)は、(a)よりも暗く調光されており、図53の(c)は、最も暗く調光されている。これにより、同一の意味を持った信号を送信しながら調光を行うことが出来る。
輝度の高い区間の輝度、または、輝度が低い区間の輝度、または、その両方の輝度の値を変化させることで、平均輝度を変化させるとしてもよい。
図54は、送信機の調光機能を構成する方法の一例を示す図である。
構成部品の精度には限界があるため、同じ調光設定を行ったとしても、別の送信機とは明るさが微妙に異なる。しかし、送信機を並べて配置する場合には、隣接する送信機の明るさが異なっていると、不自然さが感じられる。そこで、ユーザは、調光補正操作部を操作することで、送信機の明るさを調整する。調光補正部は、補正値を保持し、調光制御部は、補正値に従って発光部の明るさを制御する。ユーザが調光操作部を操作することによって調光の程度が変化された場合には、調光制御部は、変化された調光設定値と調光補正部に保持された補正値をもとに、発光部の明るさを制御する。また、調光制御部は、連動調光部を通して、他の送信機に調光設定値を伝える。他の機器から連動調光部を通して調光設定値が伝えられた場合には、調光制御部は、その調光設定値と調光補正部に保持された補正値をもとに、発光部の明るさを制御する。
本発明の一つの実施形態によれば、発光体を輝度変化させることによって信号を送信する情報通信装置を制御する制御方法であって、情報通信装置のコンピュータに対して、複数の異なる信号を含む、送信対象の信号を変調させることによって、異なる信号毎に、異なる周波数の輝度変化のパターンを決定させる決定ステップと、単一の周波数に該当する時間に、単一の信号を変調した輝度変化のパターンのみを含むように、発光体を輝度変化させることによって送信対象の信号を送信させる送信ステップと、を有する、制御方法であってもよい。
例えば、単一の周波数に該当する時間に、複数の信号を変調した輝度変化のパターンを含む場合、時間経過による輝度変化の波形が複雑になり、適切に受信することが困難となる。しかしながら、単一の周波数に該当する時間に、単一の信号を変調した輝度変化のパターンのみを含むように制御することにより、受信する際により適切に受信を行うことが可能となる。
本発明の一つの実施の形態によれば、決定ステップは、所定の時間内において、複数の異なる信号のうちの一つの信号を送信させる送信回数が、他の信号を送信させる送信回数と異なるように、送信回数を決定させてもよい。
一つの信号を送信させる送信回数が、他の信号を送信させる送信回数と異なることにより、送信する際のちらつきを防ぐことが可能となる。
本発明の一つの実施の形態によれば、決定ステップは、所定の時間内において、高い周波数に該当する信号の送信回数を、他の信号の送信回数よりも多くさせてもよい。
受信側において周波数変換を行う際に、高い周波数に該当する信号は、輝度が小さくなるが、送信回数を多くすることにより、周波数変換を行う際の輝度値を大きくすることが可能となる。
本発明の一つの実施の形態によれば、輝度変化のパターンは、時間経過による輝度変化の波形が、矩形波、三角波、鋸波のいずれかとなるパターンであってもよい。
矩形波などにすることにより、より適切に受信を行うことが可能となる。
本発明の一つの実施の形態によれば、発光体の平均輝度の値を大きくする場合に、単一の周波数に該当する時間において、発光体の輝度が所定の値よりも大きくなる時間を、前記発光体の平均輝度の値を小さくする場合に対して、長くしてもよい。
単一の周波数に該当する時間において、発光体の輝度が所定の値よりも大きくなる時間を調整することにより、信号を送信し、かつ、発光体の平均輝度を調整することが可能となる。例えば、発光体を照明として使用する場合には、全体の明るさを暗くしたり、明るくしたりしながら、信号を送信することが可能となる。
受信機は,露光時間を設定するAPI(アプリケーション・プログラミング・インタフェースの略で、OSの機能を利用するための手段を指す)を利用することで、露光時間を所定の値に設定することができ、可視光信号を安定して受信することができる。また、受信機は、感度を設定するAPIを利用することで、感度を所定の値に設定することができ、送信信号の明るさが暗い場合や明るい場合でも可視光信号を安定して受信することができる。
(実施の形態8)
本実施の形態では、上記各実施の形態におけるスマートフォンなどの受信機と、LEDや有機ELの点滅パターンとして情報を送信する送信機とを用いた各適用例について説明する。
ここで、EXズームについて説明する。
図55は、EXズームを説明するための図である。
ズーム、つまり、大きな像を得る方法には、レンズの焦点距離を調整して撮像素子に写る像の大きさを変化させる光学ズームと、撮像素子に写った像をデジタル処理で補間して大きな像を得るデジタルズームと、撮像に用いられる複数の撮像素子を変更することで大きな像を得るEXズームとがある。EXズームは、撮像画像の解像度に比べてイメージセンサに含まれる撮像素子の数が多い場合に利用できる。
例えば、図55に示すイメージセンサ10080aでは、32×24個の撮像素子がマトリックス状に配列されている。つまり、撮像素子が横に32個、縦に24個配置されている。このイメージセンサ10080aによる撮像によって、横16×縦12の解像度の画像を得る場合、図55の(a)に示すように、イメージセンサ10080aに含まれる32×24個の撮像素子のうち、イメージセンサ10080aにおいて全体的に均等に分散して配置された16×12個の撮像素子(例えば、図55の(a)におけるイメージセンサ1080a中の黒四角によって示される撮像素子)だけが撮像に用いられる。つまり、縦方向および横方向のそれぞれに配列される複数の撮像素子のうち、奇数番目または偶数番目の撮像素子だけが撮像に用いられる。これにより、所望の解像度の画像10080bが得られる。なお、図55において、イメージセンサ1008aに被写体が現れているが、これは、各撮像素子と、撮像によって得られる画像との対応関係を分かりやすくするためである。
このイメージセンサ10080aを備えた受信機は、広い範囲を撮像することで、送信機を探索したり、多くの送信機からの情報を受信したりする場合は、イメージセンサ10080aにおいて全体的に均等に分散して配置された一部の撮像素子のみを用いて撮像する。
また、受信機は、EXズームを行うときには、図55の(b)に示すように、イメージセンサ10080aにおいて、局所的に密に配置された一部の撮像素子(例えば、図55の(b)におけるイメージセンサ1080a中の黒四角によって示される16×12個の撮像素子)のみを撮像に用いる。これにより、画像10080bのうち、その一部の撮像素子に対応する部分がズームされることになり、画像10080dが得られる。このようなEXズームによって、送信機を大きく撮像することで、可視光信号を長時間受信できるようになり、受信速度が向上し、また、遠くから可視光信号を受信できる。
デジタルズームでは、可視光信号を受ける露光ラインの数を増やすことはできず、可視光信号の受信時間も増加しないため、可能な限り他のズームを用いるほうがよい。光学ズームは、レンズやイメージセンサの物理的な移動時間が必要であるが、EXズームは電子的な設定変更のみで行われるため、ズームにかかる時間が短いという利点がある。この観点から、各ズームの優先順位は、(1)EXズーム、(2)光学ズーム、(3)デジタルズームである。受信機は、この優先順位と、ズーム倍率の必要性とに応じて、いずれか1つまたは複数のズームを選択して用いてもよい。なお、図55の(a)および(b)に示す撮像方法では、使用していない撮像素子を用いることで、画像ノイズを抑えることが可能である。
(実施の形態9)
本実施の形態では、上記各実施の形態におけるスマートフォンなどの受信機と、LEDや有機ELの点滅パターンとして情報を送信する送信機とを用いた各適用例について説明する。
本実施の形態では、露光ライン毎または撮像素子毎に露光時間を設定する。
図56、図57、図58は、実施の形態9における信号受信方法の一例を示す図である。
図56に示すように、受信機に備えられている撮像部であるイメージセンサ10010aでは、露光ライン毎に露光時間が設定される。即ち、所定の露光ライン(図56中における白い露光ライン)には、通常撮像用の長い露光時間が設定され、他の露光ライン(図56中における黒い露光ライン)には、可視光撮像用の短い露光時間が設定されている。例えば、垂直方向に配列されている各露光ラインに対して、長い露光時間と短い露光時間とが交互に設定されている。これにより、輝度変化によって可視光信号を送信する送信機を撮像する際に、通常撮像と可視光撮像(可視光通信)とをほぼ同時に行うことができる。なお、二つの露光時間は1ライン毎に交互に設定されてもよいし、数ライン毎に設定されてもよいし、イメージセンサ10010aの上部と下部で別々の露光時間が設定されてもよい。このように2つの露光時間を用いることにより、同じ露光時間に設定された複数の露光ラインの撮像によって得られたデータをそれぞれまとめると、通常撮像画像10010bと、複数の輝線のパターンを示す輝線画像である可視光撮像画像10010cとが得られる。通常撮像画像10010bでは、長い露光時間で撮像していない部分(つまり、短い露光時間に設定された複数の露光ラインに対応する画像)が欠けているため、その部分を補間することで、プレビュー画像10010dを表示することができる。ここで、プレビュー画像10010dには、可視光通信によって得られた情報を重畳することができる。この情報は、可視光撮像画像10010cに含まれる複数の輝線のパターンを復号することによって得られた可視光信号に関連付けられた情報である。なお、受信機は、通常撮像画像10010b、またはその通常撮像画像10010bに対して補間が行われた画像を撮像画像として保存し、受信した可視光信号、またはその可視光信号に関連付けられた情報を付加情報として、保存される撮像画像に付加することもできる。
図57に示すように、イメージセンサ10010aの代わりにイメージセンサ10011aを用いてもよい。イメージセンサ1011aでは、露光ラインごとにではなく、露光ラインと垂直な方向に沿って配列された複数の撮像素子からなる列(以下、垂直ラインという)ごとに、露光時間が設定される。即ち、所定の垂直ライン(図57中における白い垂直ライン)には、通常撮像用の長い露光時間が設定され、他の垂直ライン(図57中における黒い垂直ライン)には、可視光撮像用の短い露光時間が設定されている。この場合、イメージセンサ10011aでは、イメージセンサ10010aと同様に、露光ラインごとに互いに異なるタイミングで露光が開始されるが、露光ラインのそれぞれで、その露光ラインに含まれる各撮像素子の露光時間が異なる。受信機は、このイメージセンサ10011aによる撮像によって、通常撮像画像10011bと、可視光撮像画像10011cとを得る。さらに、受信機は、この通常撮像画像10011bと、可視光撮像画像10011cから得られた可視光信号に関連付けられた情報とに基づいて、プレビュー画像10011dを生成して表示する。
このイメージセンサ10011aでは、イメージセンサ10010aとは異なり、可視光撮像に全ての露光ラインを用いることができる。その結果、イメージセンサ10011aによって得られる可視光撮像画像10011cには、可視光撮像画像10010cと比べて輝線が多く含まれているため、可視光信号の受信精度を高くすることができる。
また、図58に示すように、イメージセンサ10010aの代わりにイメージセンサ10012aを用いてもよい。イメージセンサ10012aでは、水平方向および垂直方向に沿って各撮像素子に対して連続して同じ露光時間が設定されないように、撮像素子ごとに露光時間が設定される。つまり、長い露光時間が設定される複数の撮像素子と、短い露光時間が設定される複数の撮像素子とが、格子状または市松模様のように分布するように、各撮像素子に対して露光時間が設定される。この場合も、イメージセンサ10010aと同様に、露光ラインごとに互いに異なるタイミングで露光が開始されるが、露光ラインのそれぞれで、その露光ラインに含まれる各撮像素子の露光時間が異なる。受信機は、このイメージセンサ10012aによる撮像によって、通常撮像画像10012bと、可視光撮像画像10012cとを得る。さらに、受信機は、この通常撮像画像10012bと、可視光撮像画像10012cから得られた可視光信号に関連付けられた情報とに基づいて、プレビュー画像10012dを生成して表示する。
イメージセンサ10012aによって得られる通常撮像画像10012bは、格子状に配置された、または均一に配置された複数の撮像素子のデータを持つため、通常撮像画像10010bと通常撮像画像10011bよりも正確に補間やリサイズをすることができる。また、可視光撮像画像10012cは、イメージセンサ10012aの全ての露光ラインを用いた撮像によって生成されている。つまり、このイメージセンサ10012aでは、イメージセンサ10010aとは異なり、可視光撮像に全ての露光ラインを用いることができる。その結果、イメージセンサ10012aによって得られる可視光撮像画像10012cには、可視光撮像画像10011cと同様に、可視光撮像画像10010cと比べて輝線が多く含まれているため、可視光信号の受信を高精度に行うことができる。
ここで、プレビュー画像のインタレース表示について説明する。
図59は、実施の形態9における受信機の画面表示方法の一例を示す図である。
上述の図56に示すイメージセンサ10010aを備える受信機は、奇数番目の露光ライン(以下、奇数ラインという)に設定される露光時間と、偶数番目の露光ライン(以下、偶数ラインという)に設定される露光時間とを所定の時間ごとに入れ替える。例えば、図59に示すように、受信機は、時刻t1で、奇数ラインの各撮像素子に対して長い露光時間を設定し、偶数ラインの各撮像素子に対して短い露光時間を設定し、それらの設定された露光時間を用いた撮像を行う。さらに、受信機は、時刻t2で、奇数ラインの各撮像素子に対して短い露光時間を設定し、偶数ラインの各撮像素子に対して長い露光時間を設定し、それらの設定された露光時間を用いた撮像を行う。そして、受信機は、時刻t3で、時刻t1のときと同様に設定された各露光時間を用いた撮像を行い、時刻t4で、時刻t2のときと同様に設定された各露光時間を用いた撮像を行う。
また、受信機は、時刻t1では、撮像によって複数の奇数ラインのそれぞれから得られる画像(以下、奇数ライン像という)と、撮像によって複数の偶数ラインのそれぞれから得られる画像(以下、偶数ライン像という)とを含むImage1を取得する。このときには、複数の偶数ラインのそれぞれでは露光時間が短いため、偶数ライン像のそれぞれには、被写体が鮮明に映し出されていない。したがって、受信機は、複数の奇数ライン像に対して画素値の補間を行うことによって、複数の補間ライン像を生成する。そして、受信機は、複数の偶数ライン像の代わりに複数の補間ライン像を含むプレビュー画像を表示する。つまり、プレビュー画像には、奇数ライン像と補間ライン像とが交互に配列されている。
受信機は、時刻t2では、撮像によって複数の奇数ライン像と偶数ライン像とを含むImage2を取得する。このときには、複数の奇数ラインのそれぞれでは、露光時間が短いため、奇数ライン像のそれぞれには、被写体が鮮明に映し出されていない。したがって、受信機は、Image2の奇数ライン像の代わりに、Image1の奇数ライン像を含むプレビュー画像を表示する。つまり、プレビュー画像には、Image1の奇数ライン像とImage2の偶数ライン像とが交互に配列されている。
さらに、受信機は、時刻t3では、撮像によって複数の奇数ライン像と偶数ライン像とを含むImage3を取得する。このときには、時刻t1のときと同様に、複数の偶数ラインのそれぞれでは、露光時間が短いため、偶数ライン像のそれぞれには、被写体が鮮明に映し出されていない。したがって、受信機は、Image3の偶数ライン像の代わりに、Image2の偶数ライン像を含むプレビュー画像を表示する。つまり、プレビュー画像には、Image2の偶数ライン像とImage3の奇数ライン像とが交互に配列されている。そして、受信機は、時刻t4では、撮像によって複数の奇数ライン像と偶数ライン像とを含むImage4を取得する。このときには、時刻t2のときと同様に、複数の奇数ラインのそれぞれでは、露光時間が短いため、奇数ライン像のそれぞれには、被写体が鮮明に映し出されていない。したがって、受信機は、Image4の奇数ライン像の代わりに、Image3の奇数ライン像を含むプレビュー画像を表示する。つまり、プレビュー画像には、Image3の奇数ライン像とImage4の偶数ライン像とが交互に配列されている。
このように、受信機は、取得されたタイミングが互いに異なる偶数ライン像と奇数ライン像とを含むImageを表示する、いわゆるインタレース表示を行う。
このような受信機は、可視光撮像を行いながら精細なプレビュー画像を表示することができる。なお、同じ露光時間が設定される複数の撮像素子は、イメージセンサ10010aのように露光ラインに水平な方向に沿って配列されている複数の撮像素子でもよいし、イメージセンサ10011aのように露光ラインに垂直な方向に沿って配列されている複数の撮像素子でもよいし、イメージセンサ10012aのように市松模様にしたがって配列されている複数の撮像素子であってもよい。また、受信機は、プレビュー画像を撮像データとして保存してもよい。
次に、通常撮像と可視光撮像の空間比率について説明する。
図60は、実施の形態9における信号受信方法の一例を示す図である。
受信機に備えられるイメージセンサ10014bでは、上述のイメージセンサ10010aと同様に、露光ラインごとに長い露光時間または短い露光時間が設定される。このイメージセンサ10014bでは、長い露光時間が設定される撮像素子の数と、短い露光時間が設定される撮像素子の数との比は、1:1である。なお、この比は、通常撮像と可視光撮像との比であって、以下、空間比率という。
しかし、本実施の形態では、その空間比率は1:1である必要はない。例えば、受信機は、イメージセンサ10014aを備えていてもよい。このイメージセンサ10014aでは、短い露光時間の撮像素子の方が、長い露光時間の撮像素子よりも多く、空間比率は、1:N(N>1)である。また、受信機は、イメージセンサ10014cを備えていてもよい。このイメージセンサ10014cでは、短い露光時間の撮像素子の方が、長い露光時間の撮像素子よりも少なく、空間比率は、N(N>1):1である。また、受信機は、イメージセンサ10014a~10014cの代わりに、上述の垂直ラインごとに露光時間が設定され、それぞれ1:N、1:1、またはN:1の空間比率を有するイメージセンサ10015a~10015cの何れかを備えてもよい。
このようなイメージセンサ10014a,10015aでは、短い露光時間の撮像素子が多いため、可視光信号の受信精度または受信速度を高めることができる。一方、イメージセンサ10014c,10015cでは、長い露光時間の撮像素子が多いため、精細なプレビュー画像を表示することができる。
また、受信機は、イメージセンサ10014a,10014c,10015a,10015cを用いて、図59に示すように、インタレース表示を行ってもよい。
次に、通常撮像と可視光撮像の時間比率について説明する。
図61は、実施の形態9における信号受信方法の一例を示す図である。
受信機は、図61の(a)に示すように、撮像モードを1フレーム毎に通常撮像モードと可視光撮像モードとに切り替えてもよい。通常撮像モードは、受信機のイメージセンサの全ての撮像素子に対して、通常撮像用の長い露光時間が設定される撮像モードである。可視光撮像モードは、受信機のイメージセンサの全ての撮像素子に対して、可視光撮像用の短い露光時間が設定される撮像モードである。このように、露光時間の長い/短いを切り替えることで、短い露光時間での撮像によって可視光信号を受信しながら、長い露光時間での撮像によってプレビュー画像を表示することができる。
なお、受信機は、長い露光時間を自動露出によって決定する場合には、短い露光時間での撮像によって得られた画像を無視し、長い露光時間での撮像によって得られた画像の明るさのみを基準に自動露出を行ってもよい。これにより、長い露光時間を適切な時間に決定することができる。
また、受信機は、図61の(b)に示すように、撮像モードを複数フレームのセットごとに通常撮像モードと可視光撮像モードとに切り替えてもよい。露光時間の切替に時間がかかる場合や、露光時間が安定するまでに時間がかかる場合には、図61の(b)に示すように、複数フレームのセットごとに露光時間を変化させることで、可視光撮像(可視光信号の受信)と通常撮像とを両立させることができる。また、セットに含まれるフレームの数が多いほど、露光時間の切替の回数が少なくなるため、受信機における電力消費、及び、発熱を抑えることができる。
ここで、通常撮像モードでの長い露光時間の撮像によって連続して生成される少なくとも1つのフレームの数と、可視光撮像モードでの短い露光時間の撮像によって連続して生成される少なくとも1つのフレームの数との比(以下、時間比率という)は、1:1でなくてもよい。つまり、図61の(a)および(b)に示す場合では、時間比率は1:1であるが、その時間比率は1:1でなくてもよい。
例えば、受信機は、図61の(c)に示すように、可視光撮像モードのフレームを、通常撮像モードのフレームより多くしてもよい。これにより、可視光信号の受信速度を速くすることができる。プレビュー画像のフレームレートが所定のレート以上であれば、フレームレートによるプレビュー画像の違いは人間の目には認識されない。撮像のフレームレートが十分高い場合、例えば、そのフレームレートが120fpsの場合には、受信機は、連続する3フレームに対して可視光撮像モードを設定し、次く1フレームに対して可視光撮像モードを設定する。これにより、受信機は、上述の所定のレートよりも十分に高い30fpsのフレームレートでプレビュー画像を表示しながら、高速に可視光信号を受信することができる。また、切替の回数が少なくなるため、図61の(b)で説明した効果も得られる。
また、受信機は、図61の(d)に示すように、通常撮像モードのフレームを、可視光撮像モードのフレームより多くしてもよい。このように、通常撮像モードのフレーム、つまり、長い露光時間での撮像によって得られるフレームを多くすることで、プレビュー画像を滑らかに表示することができる。また、可視光信号の受信処理を行う回数が減るため、省電力効果がある。また、切替の回数が少なくなるため、図61の(b)で説明した効果も得られる。
また、受信機は、図61の(e)に示すように、まず、図61の(a)に示す場合と同様に、1フレームごとに撮像モードを切り替え、次に、可視光信号の受信が完了すると、図61の(d)に示す場合と同様に、通常撮像モードのフレームを多くしてもよい。これにより、可視光信号の受信完了後には、プレビュー画像を滑らかに表示しつつ、新たな可視光信号が存在しないかの探索を続けることができる。また、切替の回数が少なくなるため、図61の(b)で説明した効果も得られる。
図62は、実施の形態9における信号受信方法の一例を示すフローチャートである。
受信機は、可視光信号を受信する処理である可視光受信を開始し(ステップS10017a)、露光時間長短設定比を、ユーザが指定した値に設定する(ステップS10017b)。露光時間長短設定比は、上述の空間比率と時間比率のうちの少なくとも1つである。ユーザは、空間比率のみ、時間比率のみ、または、その空間比率および時間比率の双方の値を指定してもよいし、受信機がユーザによる指定に関わらず自動で設定してもよい。
次に、受信機は、受信性能が所定の値以下であるか否かを判定する(ステップS10017c)。所定の値以下であると判定すると(ステップS10017cのY)、受信機は、短い露光時間の比率を高く設定する(ステップS10017d)。これにより、受信性能を高めることができる。なお、短い露光時間の比率は、空間比率の場合、長い露光時間が設定される撮像素子の数に対する、短い露光時間が設定される撮像素子の数の比率であり、時間比率の場合、通常撮像モードで連続して生成されるフレームの数に対する、可視光撮像モードで連続して生成されるフレームの数の比率である。
次に、受信機は、可視光信号の少なくとも一部を受信し、その受信された可視光信号の少なくとも一部(以下、受信信号という)に優先度が設定されているか否かを判定する(ステップS10017e)。なお、優先度が設定されている場合には、優先度を示す識別子が受信信号に含まれている。受信機は、優先度が設定されていると判定すると(ステップS10017eのY)、その優先度にしたがって露光時間長短比を設定する(ステップS10017f)。すなわち、優先度が高ければ、受信機は、短い露光時間の比率を高く設定する。例えば、送信機として構成された非常灯が輝度変化することによって、高い優先度を示す識別子を発している。この場合、受信機は、短い露光時間の比率を高くすることで受信速度を上げ、速やかに避難経路などを表示することができる。
次に、受信機は、可視光信号の全ての受信が完了したか否かを判定する(ステップS10017g)。ここで、完了していないと判定したときには(ステップS10017gのN)、受信機はステップS10017cからの処理を繰り返し実行する。一方、完了したと判定したときには(ステップS10017gのY)、受信機は、長い露光時間の比率を高く設定し、省電力モードに移行する(ステップS10017h)。なお、長い露光時間の比率は、空間比率の場合、短い露光時間が設定される撮像素子の数に対する、長い露光時間が設定される撮像素子の数の比率であり、時間比率の場合、可視光撮像モードで連続して生成されるフレームの数に対する、通常撮像モードで連続して生成されるフレームの数の比率である。これにより、不要な可視光受信を行わず、プレビュー画像を滑らかに表示することができる。
次に、受信機は、別の可視光信号を発見したか否かを判定する(ステップS10017i)。ここで、発見したと判定したときには(ステップS10017iのY)、受信機は、ステップS10017bからの処理を繰り返し実行する。
次に、可視光撮像と通常撮像との同時実行について説明する。
図63は、実施の形態9における信号受信方法の一例を示す図である。
受信機は、イメージセンサに2以上の露光時間を設定してもよい。つまり、図63の(a)に示すように、イメージセンサに含まれる露光ラインのそれぞれは、設定された2以上の露光時間のうち、最も長い露光時間だけ連続して露光される。受信機は、露光ラインごとに、上述の設定された2以上の露光時間がそれぞれ経過した時点で、その露光ラインの露光によって得られた撮像データを読み出す。ここで、受信機は、最も長い露光時間が経過するまでは、読み出された撮像データをリセットしない。したがって、受信機は、読み出された撮像データの累積値を記録しておくことで、最も長い露光時間の露光だけで、複数の露光時間での撮像データを得ることができる。なお、イメージセンサは、撮像データの累積値の記録を行ってもよいし、行わなくてもよい。イメージセンサが行わない場合には、イメージセンサからデータを読み出す受信機の構成要素が、累積の計算、つまり撮像データの累積値の記録を行う。
例えば、露光時間が2つ設定されている場合には、図63の(a)に示すように、受信機は、短い露光時間の露光によって生成された、可視光信号を含む可視光撮像データを読み出し、続けて、長い露光時間の露光によって生成された通常撮像データを読み出す。
これにより、可視光信号を受信するための撮像である可視光撮像と、通常撮像とを同時に行うことができ、可視光信号を受信しながら通常の撮像を行うことができる。また、複数の露光時間のデータを用いることで、サンプリング定理以上の信号周波数を認識することができ、高周波信号や高密度変調信号の受信を行うことができる。
さらに、受信機は、撮像データを出力する際、図63(b)に示すように、その撮像データを撮像データボディとして含むデータ列を出力する。つまり、受信機は、撮像モード(可視光撮像または通常撮像)を示す撮像モード識別子と、撮像素子または撮像素子が属する露光ラインを特定するための撮像素子識別子と、撮像データボディが何番目の露光時間の撮像データであるかを示す撮像データ番号と、撮像データボディのサイズを示す撮像データ長とを含む付加情報を、撮像データボディに付加することによって、上述のデータ列を生成して出力する。図63の(a)を用いて説明した撮像データの読み出し方法では、それぞれの撮像データが露光ラインの順番に出力されるとは限らない。そこで、図63の(b)に示す付加情報を付加することで、撮像データがどの露光ラインの撮像データであるかを特定することができる。
図64は、実施の形態9における受信プログラムの処理を示すフローチャートである。
この受信プログラムは、受信機に備えられたコンピュータに例えば図56~図63に示す処理を実行させるプログラムである。
つまり、この受信プログラムは、輝度変化する発光体から、情報を受信するための受信プログラムである。具体的には、この受信プログラムは、ステップSA31、ステップSA32およびステップSA33をコンピュータに実行させる。ステップSA31では、イメージセンサに含まれるK個(Kは4以上の整数)の撮像素子のうちの一部の複数の撮像素子に対して第1の露光時間を設定し、K個の撮像素子のうちの残りの複数の撮像素子に対して、第1の露光時間よりも短い第2の露光時間を設定する。ステップSA32では、輝度変化する発光体である被写体を、設定された第1および第2の露光時間でイメージセンサに撮像させることによって、第1の露光時間が設定された複数の撮像素子からの出力に応じた通常画像を取得するとともに、第2の露光時間が設定された複数の撮像素子からの出力に応じた画像であって、イメージセンサに含まれる複数の露光ラインのそれぞれに対応する輝線を含む画像である輝線画像を取得する。ステップSA33では、取得された輝線画像に含まれる複数の輝線のパターンを復号することにより情報を取得する。
これにより、第1の露光時間が設定される複数の撮像素子と、第2の露光時間が設定される複数の撮像素子とによって撮像が行われるため、イメージセンサによる1回の撮像で、通常画像と輝線画像とを取得することができる。つまり、通常画像の撮像と、可視光通信による情報の取得とを同時に行うことができる。
また、露光時間設定ステップSA31では、イメージセンサに含まれるL個(Lは4以上の整数)の撮像素子列のうちの一部の複数の撮像素子列に対して、第1の露光時間を設定し、L個の撮像素子列のうちの残りの複数の撮像素子列に対して、第2の露光時間を設定する。ここで、L個の撮像素子列のそれぞれは、イメージセンサに含まれる、一列に配列された複数の撮像素子からなる。
これにより、小さな単位である撮像素子のそれぞれに対して個別に露光時間を設定することなく、大きな単位である撮像素子列ごとに露光時間を設定することができ、処理負担を軽減することができる。
例えば、L個の撮像素子列のそれぞれは、図56に示すように、イメージセンサに含まれる露光ラインである。または、L個の撮像素子列のそれぞれは、図57に示すように、イメージセンサに含まれる露光ラインに垂直な方向に沿って配列された複数の撮像素子からなる。
また、図59に示すように、露光時間設定ステップSA31では、イメージセンサに含まれるL個の撮像素子列のうちの奇数番目にある撮像素子列のそれぞれに対して同一の露光時間である、第1および第2の露光時間のうちの一方を設定し、L個の撮像素子列のうちの偶数番目にある撮像素子列のそれぞれに対して同一の露光時間である、第1および第2の露光時間のうちの他方を設定してもよい。そして、露光時間設定ステップSA31、画像取得ステップSA32および情報取得ステップSA33を繰り返す場合、繰り返される露光時間設定ステップSA31では、直前の露光時間設定ステップSA31で、奇数番目の撮像素子列のそれぞれに設定されていた露光時間と、偶数番目の撮像素子列のそれぞれに設定されていた露光時間とを入れ替えてもよい。
これにより、通常画像の取得が行われるごとに、その取得に用いられる複数の撮像素子列を、奇数番目の複数の撮像素子列と、偶数番目の複数の撮像素子列とに切り替えることができる。その結果、順次取得される通常画像のそれぞれをインタレースによって表示することができる。また、連続して取得された2つの通常画像を互いに補完することによって、奇数番目の複数の撮像素子列による画像と、偶数番目の複数の撮像素子列による画像と含む新たな通常画像を生成することができる。
また、図60に示すように、露光時間設定ステップSA31では、設定モードを通常優先モードと可視光優先モードとに切り替え、通常優先モードに切り替えられる場合には、第1の露光時間が設定される撮像素子の数を、第2の露光時間が設定される撮像素子の数よりも多くしてもよい。また、可視光優先モードに切り替えられる場合には、第1の露光時間が設定される撮像素子の数を、第2の露光時間が設定される撮像素子の数よりも少なくしてもよい。
これにより、設定モードが通常優先モードに切り替えられた場合には、通常画像の画質を向上することができ、可視光優先モードに切り替えられた場合には、発光体からの情報の受信効率を向上することができる。
また、図58に示すように、露光時間設定ステップSA31では、第1の露光時間が設定される複数の撮像素子と、第2の露光時間が設定される複数の撮像素子とが、市松模様(Checkered pattern)のように分布するように、イメージセンサに含まれる撮像素子ごとに、その撮像素子の露光時間を設定してもよい。
これにより、第1の露光時間が設定される複数の撮像素子と、第2の露光時間が設定される複数の撮像素子とがそれぞれ均一に分布するため、水平方向および垂直方向に画質の偏りのない通常画像および輝線画像を取得することができる。
図65は、実施の形態9における受信装置のブロック図である。
この受信装置A30は、例えば図56~図63に示す処理を実行する上述の受信機である。
つまり、この受信装置A30は、輝度変化する発光体から情報を受信する受信装置であって、複数露光時間設定部A31と、撮像部A32と、復号部A33とを備える。複数露光時間設定部A31は、イメージセンサに含まれるK個(Kは4以上の整数)の撮像素子のうちの一部の複数の撮像素子に対して第1の露光時間を設定し、K個の撮像素子のうちの残りの複数の撮像素子に対して、第1の露光時間よりも短い第2の露光時間を設定する。撮像部A32は、輝度変化する発光体である被写体を、設定された第1および第2の露光時間でイメージセンサに撮像させることによって、第1の露光時間が設定された複数の撮像素子からの出力に応じた通常画像を取得するとともに、第2の露光時間が設定された複数の撮像素子からの出力に応じた画像であって、イメージセンサに含まれる複数の露光ラインのそれぞれに対応する輝線を含む画像である輝線画像を取得する。復号部A33は、取得された輝線画像に含まれる複数の輝線のパターンを復号することにより情報を取得する。このような受信装置A30では、上述の受信プログラムと同様の効果を奏することができる。
次に、受信された可視光信号に関する内容の表示について説明する。
図66および図67は、可視光信号を受信したときの受信機の表示の一例を示す図である。
図66の(a)に示すように、受信機は、送信機10020dを撮像すると、その送信機10020dが映し出された画像10020aを表示する。さらに、受信機は、画像10020aにオブジェクト10020eを重畳することによって、画像10020bを生成して表示する。オブジェクト10020eは、その送信機10020dの像がある場所と、その送信機10020dからの可視光信号を受信していることとを示す画像である。オブジェクト10020eは、可視光信号の受信状態(受信中の状態、送信機を探索している状態、受信の進行の程度、受信速度、またはエラー率等)によって異なる画像であってもよい。例えば、受信機は、オブジェクト1020eの色、線の太さ、線の種類(単線、2重線、または点線等)、または点線の間隔などを変化させる。これにより、ユーザに受信状態を認識させることができる。次に、受信機は、取得データの内容を示す画像を取得データ画像10020fとして画像10020aに重畳することによって、画像10020cを生成して表示する。取得データは、受信した可視光信号、または、受信した可視光信号によって示されるIDに関連付けられたデータである。
受信機は、この取得データ画像10020fを表示する際には、図66の(a)に示すように、送信機10020dからの吹き出しのように取得データ画像10020fを表示したり、送信機10020dの近くに取得データ画像10020fを表示する。また、受信機は、図66の(b)に示すように、取得データ画像10020fが送信機10020dから受信機側に徐々に近づくように、その取得データ画像10020fを表示してもよい。これにより、取得データ画像10020fが、どの送信機から受信された可視光信号に基づくものであるのかを、ユーザに認識させることができる。また、受信機は、図67に示すように、取得データ画像10020fが受信機のディスプレイの端から徐々に出てくるように、その取得データ画像10020fを表示してもよい。これにより、そのときに可視光信号を取得したということをユーザにわかりやすく認識させることができる。
次に、AR(Augmented Reality)について説明する。
図68は、取得データ画像10020fの表示の一例を示す図である。
受信機は、ディスプレイ内で送信機の像が移動した場合には、取得データ画像10020fを送信機の像の移動に合わせて移動させる。これにより、取得データ画像10020fがその送信機に対応しているということをユーザに認識させることができる。また、受信機は、取得データ画像10020fを、その送信機の像ではなく別のものに対応付けて表示してもよい。これにより、AR表示を行うことができる。
次に、取得データの保存および破棄について説明する。
図69は、取得データを保存する、または、破棄する場合の操作の一例を示す図である。
例えば、受信機は、図69の(a)に示すように、取得データ画像10020fに対して、下側へのスワイプがユーザによって行われると、その取得データ画像10020fによって示される取得データを保存する。受信機は、保存した取得データを示す取得データ画像10020fを、他の既に保存されている1つまたは複数の取得データを示す取得データ画像の一番端に配置させる。これにより、取得データ画像10020fによって示される取得データが最後に保存された取得データであることを、ユーザに認識させることができる。例えば、受信機は、図69の(a)に示すように、複数の取得データ画像の中で一番手前に取得データ画像10020fを配置する。
また、受信機は、図69の(b)に示すように、取得データ画像10020fに対して、右側へのスワイプがユーザによって行われると、その取得データ画像10020fによって示される取得データを破棄する。または、受信機は、ユーザが受信機を移動させることによって送信機の像がディスプレイからフレームアウトすると、取得データ画像10020fによって示される取得データを破棄してもよい。なお、スワイプする方向は、上下左右のどちらでも、上述と同様の効果が得られる。受信機は、保存または破棄に対応したスワイプの方向を表示してもよい。これにより、その操作によって保存または破棄ができることをユーザに認識させることができる。
次に、取得データの閲覧について説明する。
図70は、取得データを閲覧する際の表示例を示す図である。
受信機は、図70の(a)に示すように、保存されている複数の取得データの取得データ画像を、ディスプレイの下端に重ねて小さく表示している。このときに、ユーザが表示されている取得データ画像の一部をタップすると、受信機は、図70の(b)に示すように、複数の取得データ画像のそれぞれを大きく表示する。これにより、各取得データの閲覧が必要なときにのみ、それらの取得データ画像を大きく表示し、不要なときは、他の表示のためにディスプレイを有効に利用することができる。
図70の(b)に示す状態で、ユーザが表示したい取得データ画像をタップすると、受信機は、図70の(c)に示すように、そのタップされた取得データ画像をさらに大きく表示し、その取得データ画像の中で多くの情報を表示する。また、裏面表示ボタン10024aをユーザがタップすると、受信機は、取得データ画像の裏面を表示し、その取得データに関連する別のデータを表示する。
次に、事故位置推定時の手ぶれ補正をオフにすることについて説明する。
受信機は、手ぶれ補正を無効(オフ)にする、または、手ぶれ補正の補正方向と補正量に対応して撮像画像を変換することで、正確な撮像方向を取得し、正確に自己位置推定を行うことが出来る。なお、撮像画像は、受信機の撮像部による撮像によって得られる画像である。また、自己位置推定は、受信機が自らの位置を推定することである。自己位置推定では、具体的には、受信機は、受信された可視光信号に基づいて送信機の位置を特定し、撮像画像に映る送信機の大きさ、位置または形状などに基づいて、受信機と送信機との間の相対的な位置関係を特定する。そして、受信機は、送信機の位置と、受信機と送信機との間の相対的な位置関係とに基づいて、受信機の位置を推定する。
また、図56などに示す、一部の露光ラインのみを用いて撮像を行う部分読み出し時には、つまり、図56などに示す撮像が行われるときには、受信機の少しのブレで送信機がフレームアウトしてしまう。このような場合、受信機は、手ぶれ補正を有効にすることで、継続して信号を受信することができる。
次に、非対称形の発光部を用いた自己位置推定について説明する。
図71は、実施の形態9における送信機の一例を示す図である。
上述の送信機は発光部を備え、その発光部を輝度変化させることによって可視光信号を送信する。上述の自己位置推定では、受信機は、撮像画像中の送信機(具体的には発光部)の形状に基づいて、受信機と送信機との間の相対的な位置関係として、受信機と送信機との間の相対角度を求める。ここで、例えば図71に示すように、送信機が回転対称の形状の発光部10090aを備えている場合には、上述のように、撮像画像中の送信機の形状に基づいて、送信機と受信機との間の相対角度を正確に求めることができない。そこで、送信機は、回転対称ではない形状の発光部を備えていることが望ましい。これにより、受信機は上述の相対角度を正確に求めることができる。つまり、角度を取得するための方位センサでは計測結果の誤差が大きいため、受信機は、上述の方法で求めた相対角度を用いることで、正確な自己位置推定を行うことができる。
ここで、送信機は、図71に示すように、完全な回転対称の形状ではない発光部10090bを備えていてもよい。この発光部10090bの形状は、90°の回転に対しては対称形ではあるが、完全な回転対称ではない。この場合は、受信機は、おおまかな角度を方位センサで求め、さらに、撮像画像中の送信機の形状を用いることで、受信機と送信機との間の相対角度を一意に限定することができ、正確な自己位置推定を行うことができる。
また、送信機は、図71に示す発光部10090cを備えていてもよい。この発光部10090cの形状は、基本的には回転対称の形状である。しかし、その発光部10090cの一部分に導光板などが設置されていることで、発光部10090cの形状は、回転対称ではない形状にされている。
また、送信機は、図71に示す発光部10090dを備えてもよい。この発光部10090dは、それぞれ回転対称の形状の照明を具備している。しかし、それらを組み合わせて配置されることによって構成される発光部10090dの全体の形状は、回転対称の形状ではない。したがって、受信機は、その送信機を撮像することにより、正確な自己位置推定を行うことができる。また、発光部10090dに含まれる全ての照明が、可視光信号を送信するために輝度変化する可視光通信用の照明である必要はなく、一部の照明のみが可視光通信用の照明であってもよい。
また、送信機は、図71に示す発光部10090eおよび物体10090fを備えてもよい。ここで、物体10090fは、発光部10090eとの間の位置関係が変化しないように構成されている物体(例えば、火災報知機や配管等)である。発光部10090eと物体10090fとの組み合わせの形状は回転対称の形状ではないため、受信機は、発光部10090eと物体10090fと撮像することにより、正確に自己位置推定を行うことができる。
次に、自己位置推定の時系列処理について説明する。
受信機は、撮像するごとに、撮像画像中の送信機の位置と形状から、自己位置推定を行うことができる。その結果、受信機は、撮像中の受信機の移動方向と距離を推定することができる。また、受信機は、複数のフレームまたは画像を用いた三角測量を行うことで、より正確な自己位置推定を行うことができる。複数の画像を用いた推定結果や、異なる組み合わせの複数の画像を用いた推定結果を総合することで、受信機は、より正確に自己位置推定を行うことができる。この際、受信機は、最近の撮像画像から推定した結果を重要視して総合することで、より正確に自己位置推定を行うことができる。
次に、オプティカルブラックの読み飛ばしについて説明する。
図72は、実施の形態9における受信方法の一例を示す図である。なお、図72に示すグラフの横軸は、時刻を示し、縦軸は、イメージセンサ内の各露光ラインの位置を示す。さらに、そのグラフの実線矢印は、イメージセンサ内の各露光ラインの露光が開始される時刻(露光タイミング)を示す。
受信機は、通常撮像時には、図72の(a)に示すように、イメージセンサにおける水平オプティカルブラックの信号を読み出すが、図72の(b)に示すように、水平オプティカルブラックの信号を読み飛ばしてもよい。これにより、連続的な可視光信号を受信することが出来る。
水平オプティカルブラックは、露光ラインに水平方向のオプティカルブラックである。また、垂直オプティカルブラックは、オプティカルブラックのうち水平オプティカルブラック以外の部分である。
受信機は、オプティカルブラックから読み出される信号によって黒レベルの調整を行うため、可視光撮像開始時には通常撮像時と同様にオプティカルブラックを用いて、黒レベルを調整することができる。垂直オプティカルブラックが利用できる場合は、受信機は、垂直オプティカルブラックのみを用いて黒レベル調整を行うとすることで、連続受信と黒レベル調整が可能である。可視光撮像継続時は、受信機は、所定の時間毎に水平オプティカルブラックを用いて黒レベルを調整してもよい。受信機は、通常撮像と可視光撮像を交互に行う場合において、可視光撮像を連続して行うときには、水平オプティカルブラックの信号を読み飛ばし、それ以外のときには、水平オプティカルブラックの信号を読み出す。そして、受信機は、その読み出された信号に基づいて黒レベルの調整を行うことで、連続的に可視光信号を受信しつつ、黒レベルの調整を行うことができる。受信機は、可視光撮像画像の最も暗い部分を黒として黒レベルの調整を行うとしてもよい。
このように、信号が読み出されるオプティカルブラックを垂直オプティカルブラックのみとすることで、連続的な可視光信号の受信が可能である。また、水平オプティカルブラックの信号を読み飛ばすモードを備えることで、通常撮像時には黒レベル調整を行い、可視光撮像時には必要に応じて連続通信を行うことができる。また、水平オプティカルブラックの信号を読み飛ばすことで、露光ライン間の露光を開始するタイミングの差が大きくなるため、小さくしか写っていない送信機からの可視光信号も受信できる。
次に、送信機の種類を示す識別子について説明する。
送信機は、送信機の種類を示す送信機識別子を可視光信号に付加して送信してもよい。この場合、受信機は、送信機識別子を受信した時点で、その送信機の種類に応じた受信動作を行うことができる。例えば、送信機識別子がデジタルサイネージを示す場合は、送信機は、送信機の個体識別を行うための送信機IDの他に、現在どのコンテンツを表示しているのかを示すコンテンツIDを可視光信号として送信している。受信機は、送信機識別子に基づいて、これらのIDを分けて扱うことで、送信機が現在表示しているコンテンツに合わせた情報を表示することができる。また、例えば、送信機識別子がデジタルサイネージや非常灯を示す場合は、受信機は、感度を上げて撮像することで、受信エラーを低減することができる。
(実施の形態10)
本実施の形態では、上記各実施の形態におけるスマートフォンなどの受信機と、LEDや有機ELの点滅パターンとして情報を送信する送信機とを用いた各適用例について説明する。
ここで、同じアドレスのデータ部を比較する受信方法について説明する。
図73は、本実施の形態における受信方法の一例を示すフローチャートである。
受信機は、パケットを受信し(ステップS10101)、誤り訂正を行う(ステップS10102)。そして、受信機は、受信したパケットのアドレスと同じアドレスのパケットを既に受信しているか否かを判定する(ステップS10103)。ここで、受信していると判定した場合は(ステップS10103のY)、受信機は、それらのデータを比較する。つまり、受信機は、データ部が等しいか否かを判定する(ステップS10104)。ここで、等しくないと判定した場合(ステップS10104のN)、受信機は、さらに、複数のデータ部における差異が所定の数以上であるか、具体的には、異なるビットの数、または、輝度状態が異なるスロットの数が所定の数以上である否かを判定する(ステップS10105)。ここで、所定の数以上であると判定すると(ステップS10105のN)、受信機は、既に受信していたパケットを破棄する(ステップS10106)。これにより、別の送信機からパケットを受信し始めたときに、以前の送信機から受信したパケットとの混信を避ける事ができる。一方、所定の数以上ではないと判定すると(ステップS10105のN)、受信機は、等しいデータ部を持つパケットが最も多いデータ部のデータをそのアドレスのデータとする(ステップS10107)。または、受信機は、等しいビットの最も多いビットを、そのアドレスのそのビットの値とする。または、受信機は、等しい輝度状態が最も多い輝度状態をそのアドレスのそのスロットの輝度状態とし、そのアドレスのデータを復調する。
このように、本実施の形態では、受信機は、まず、複数の輝線のパターンから、データ部およびアドレス部を含む第1のパケットを取得する。次に、受信機は、第1のパケットよりも前に既に取得されている少なくとも1つのパケットのうち、その第1のパケットのアドレス部と同一のアドレス部を含むパケットである少なくとも1つの第2のパケットが存在するか否かを判定する。次に、受信機は、その少なくとも1つの第2のパケットが存在すると判定した場合には、その少なくとも1つの第2のパケットと第1のパケットとのそれぞれのデータ部が全て等しいか否かを判定する。それぞれのデータ部が全て等しくないと判定した場合には、受信機は、その少なくとも1つの第2のパケットのそれぞれにおいて、第2のパケットのデータ部に含まれる各部分のうち、第1のパケットのデータ部に含まれる各部分と異なる部分の数が、所定の数以上存在するか否かを判定する。ここで、受信機は、その少なくとも1つの第2のパケットのうち、異なる部分の数が所定の数以上存在すると判定された第2のパケットがある場合には、その少なくとも1つの第2のパケットを破棄する。一方、その少なくとも1つの第2のパケットのうち、異なる部分の数が所定の数以上存在すると判定された第2パケットがない場合には、受信機は、第1のパケットおよび少なくとも1つの第2のパケットのうち、同一のデータ部を有するパケットの数が最も多い複数のパケットを特定する。そして、受信機は、その複数のパケットのそれぞれに含まれるデータ部を、第1のパケットに含まれるアドレス部に対応するデータ部として復号することによって、可視光識別子(ID)の少なくとも一部を取得する。
これにより、同一のアドレス部を有する複数のパケットが受信されたときに、それらのパケットのデータ部が異なっていても、適切なデータ部を復号することができ、可視光識別子の少なくとも一部を正しく取得することができる。つまり、同一の送信機から送信される同一のアドレス部を有する複数のパケットは、基本的に同一のデータ部を有する。しかし、受信機が、パケットの送信元となる送信機を切り替える場合には、受信機は、同一のアドレス部を有していても互いに異なるデータ部を有する複数のパケットを受信することがある。このような場合には、本実施の形態では、図73のステップS10106のように、既に受信されているパケット(第2のパケット)が破棄され、最新のパケット(第1のパケット)のデータ部を、そのアドレス部に対応する正しいデータ部として復号することができる。さらに、上述のような送信機の切り替えがない場合であっても、可視光信号の送受信状況に応じて、同一のアドレス部を有する複数のパケットのデータ部が少し異なることがある。このような場合には、本実施の形態では、図73のステップS10107のように、いわゆる多数決によって、適切なデータ部を復号することができる。
ここで、複数のパケットからデータ部のデータを復調する受信方法について説明する。
図74は、本実施の形態における受信方法の一例を示すフローチャートである。
まず、受信機は、パケットを受信し(ステップS10111)、アドレス部の誤り訂正を行う(ステップS10112)。このとき、受信機は、データ部の復調を行わず、撮像によって得られる画素値をそのまま保持する。そして、受信機は、既に受信された複数のパケットにおいて、同じアドレスのパケットが所定の数以上存在するか否かを判定する(ステップS10113)。ここで、存在すると判定すると(ステップS10113のY)、受信機は、同じアドレスを持つ複数のパケットのデータ部に相当する部分の画素値を合わせて復調処理を行う(ステップS10114)。
このように本実施の形態における受信方法では、複数の輝線のパターンから、データ部およびアドレス部を含む第1のパケットを取得する。そして、第1のパケットよりも前に既に取得されている少なくとも1つのパケットのうち、第1のパケットのアドレス部と同一のアドレス部を含むパケットである第2のパケットが所定の数以上存在するか否かを判定する。第2のパケットがその所定の数以上存在すると判定した場合には、その所定の数以上の第2のパケットのそれぞれのデータ部に対応する輝線画像の一部の領域の画素値と、第1のパケットのデータ部に対応する輝線画像の一部の領域の画素値とを合わせる。つまり、画素値を加算する。その加算によって、合成画素値を算出し、その合成画素値を含むデータ部を復号することによって、可視光識別子(ID)の少なくとも一部を取得する。
複数のパケットが受信されたタイミングはそれぞれ異なるため、データ部の画素値はそれぞれ微妙に異なる時点の送信機の輝度を反映した値となっている。したがって、上述のように復調処理される部分は、単一のパケットのデータ部よりも多くのデータ量(サンプル数)を含むことになる。これにより、より正確にデータ部を復調することができる。また、サンプル数の増加により、より高い変調周波数で変調された信号を復調することができる。
データ部とその誤り訂正符号部は、ヘッダ部、アドレス部およびアドレス部の誤り訂正符号部よりも、高い周波数で変調されている。上記の復調方法により、データ部以降は高い変調周波数で変調されていても復調可能であるため、この構成により、パケット全体の送信時間を短くすることができ、より遠くからでも、より小さい光源からでも、より速く可視光信号を受信することができる。
次に、可変長アドレスのデータを受信する受信方法について説明する。
図75は、本実施の形態における受信方法の一例を示すフローチャートである。
受信機は、パケットを受信し(ステップS10121)、データ部の全てのビットが0となっているパケット(以下、0終端パケットという)を受信したか否かを判定する(ステップS10122)。ここで、受信したと判定すると、つまり、0終端パケットが存在すると判定すると(ステップS10122のY)、受信機は、その0終端パケットのアドレス以下のアドレスのパケットが全て揃っているか否か、つまり受信しているか否かを判定する(ステップS10123)。なお、アドレスは、送信されるデータを分割することによって生成されたパケットのそれぞれに対して、それらのパケットの送信順にしたがって大きくなる値に設定されている。受信機は、全て揃っていると判定すると(ステップS10123のY)、0終端パケットのアドレスが、送信機から送信されるパケットの最後のアドレスであると判断する。そして、受信機は、0終端パケットまでの各アドレスのパケットのデータをつなげることで、データを復元する(ステップS10124)。さらに、受信機は、復元されたデータのエラーチェックを行う(ステップS10125)。これにより、送信されるデータがいくつに分割されているか分からない場合、つまり、アドレスが固定長ではなく可変長である場合にも、可変長アドレスのデータを送受信することでき、固定長アドレスのデータよりも多くのIDを、高い効率で送受信することができる。
このように、本実施の形態では、受信機は、複数の輝線のパターンから、それぞれデータ部およびアドレス部を含む複数のパケットを取得する。そして、受信機は、取得された複数のパケットのうち、データ部に含まれる全てのビットが0を示すパケットである0終端パケットが存在するか否かを判定する。0終端パケットが存在すると判定した場合には、受信機は、複数のパケットのうち、その0終端パケットのアドレス部に関連付けられているアドレス部を含むパケットであるN個(Nは1以上の整数)の関連パケットが全て存在するか否かを判定する。次に、受信機は、N個の関連パケットが全て存在すると判定した場合には、N個の関連パケットのそれぞれのデータ部を並べて復号することによって、可視光識別子(ID)を取得する。ここで、0終端パケットのアドレス部に関連付けられているアドレス部は、0終端パケットのアドレス部に示されるアドレスよりも小さく0以上のアドレスを示すアドレス部である。
次に、変調周波数の周期より長い露光時間を用いた受信方法について説明する。
図76と図77は、本実施の形態における受信機が、変調周波数の周期(変調周期)より長い露光時間を用いた受信方法を説明するための図である。
例えば図76の(a)に示すように、露光時間が変調周期と等しい時間に設定されると、可視光信号を正しく受信することができない場合がある。なお、変調周期は、上述の1つのスロットの時間である。つまり、このような場合には、あるスロットの輝度の状態を反映している露光ライン(図76中の黒で示している露光ライン)が少ない。その結果、これらの露光ラインの画素値にノイズが偶然多く含まれた場合には、送信機の輝度を推定することは難しい。
一方、例えば図76の(b)に示すように、露光時間が変調周期よりも長い時間に設定されと、可視光信号を正しく受信することができる。つまり、このような場合には、有るスロットの輝度を反映している露光ラインが多いため、多くの露光ラインの画素値から送信機の輝度を推定することができ、ノイズに強い。
また、露光時間が長すぎると、逆に、可視光信号を正しく受信することができない。
例えば、図77の(a)に示すように、露光時間が変調周期と等しい場合には、受信機で受信される輝度変化(つまり、各露光ラインの画素値の変化)は、送信に用いられる輝度変化に追従する。しかし、図77の(b)に示すように、露光時間が変調周期の3倍である場合には、受信機で受信される輝度変化は、送信に用いられる輝度変化に十分に追従することができない。また、図77の(c)に示すように、露光時間が変調周期の10倍である場合には、受信機で受信される輝度変化は、送信に用いられる輝度変化に全く追従するができない。つまり、露光時間が長いほうが、多くの露光ラインから輝度を推定できるためノイズ耐性が高くなるが、露光時間が長くなると、識別マージンが下がる、あるいは識別マージンが小さくなることでノイズ耐性が低くなる。これらのバランスにより、露光時間を変調周期の2~5倍程度とすることで、最もノイズ耐性を高くすることができる。
次に、パケットの分割数について説明する。
図78は、送信データのサイズに対する効率的な分割数を示す図である。
送信機がデータを輝度変化によって送信する場合、送信される全てのデータ(送信データ)を1つのパケットに含めると、そのパケットのデータサイズは大きい。しかし、その送信データを複数の部分データに分割して、それらの部分データを各パケットに含めると、それぞれのパケットのデータサイズは小さくなる。ここで、受信機は、撮像によって、そのパケットを受信する。しかし、パケットのデータサイズが大きいほど、受信機はそのパケットを1回の撮像によって受信することが難しくなり、撮像を繰り返す必要がある。
したがって、送信機は、図78の(a)および(b)に示すように、送信データのデータサイズが大きいほど、その送信データの分割数を多くする方が望ましい。しかし、分割数が多すぎると、それらの部分データを全て受信しなければ送信データを復元することができないため、逆に、受信効率が低下する。
したがって、図78の(a)に示すように、アドレスのデータサイズ(アドレスサイズ)が可変であり、送信データのデータサイズが、2-16ビット、16-24ビット、24-64ビット、66-78ビット、78-128ビット、128ビット以上の場合には、それぞれ、1-2個、2-4個、4個、4-6個、6-8個、7個以上の部分データに送信データを分割すると、送信データを効率よく可視光信号によって送信することができる。また、図78の(b)に示すように、アドレスのデータサイズ(アドレスサイズ)が4ビットに固定され、送信データのデータサイズが、2-8ビット、8-16ビット、16-30ビット、30-64ビット、66-80ビット、80-96ビット、96-132ビット、132ビット以上の場合には、それぞれ、1-2個、2-3個、2-4個、4-5個、4-7個、6個、6-8個、7個以上の部分データに送信データを分割すると、送信データを効率よく可視光信号によって送信することができる。
また、送信機は、複数の部分データのそれぞれを含む各パケットに基づく輝度変化を順次行う。例えば、送信機は、各パケットのアドレス順に、そのパケットに基づく輝度変化を行う。さらに、送信機は、アドレス順と異なる順序で、その複数の部分データに基づく輝度変化を再度行ってもよい。これにより、各部分データを確実に受信機に受信させることができる。
次に、受信機による通知動作の設定方法について説明する。
図79Aは、本実施の形態における設定方法の一例を示す図である。
まず、受信機は、通知動作を識別するための通知動作識別子と、その通知動作識別子の優先度(具体的には、優先度を示す識別子)とを、受信機の近くにあるサーバから取得する(ステップS10131)。ここで、通知動作は、複数の部分データのそれぞれを含む各パケットが輝度変化によって送信されて受信機に受信されたときに、それらのパケットが受信されたことを受信機のユーザに通知する受信機の動作である。例えば、その動作は、音の鳴動、バイブレーション、または画面表示などである。
次に、受信機は、パケット化された可視光信号、つまり複数の部分データのそれぞれを含む各パケットを受信する(ステップS10132)。ここで、受信機は、その可視光信号に含まれている、通知動作識別子と、その通知動作識別子の優先度(具体的には、優先度を示す識別子)とを取得する(ステップS10133)。
さらに、受信機は、受信機の現在の通知動作の設定内容、つまり、受信機に予め設定されている通知動作識別子と、その通知動作識別子の優先度(具体的には、優先度を示す識別子)とを読み出す(ステップS10134)。なお、受信機に予め設定されている通知動作識別子は、例えば、ユーザの操作によって設定されている。
そして、受信機は、予め設定されている通知動作識別子と、ステップS10131およびステップS10133のそれぞれで取得された通知動作識別子とのうち、優先度が最も高い識別子を選択する(ステップS10135)。次に、受信機は、選択した通知動作識別子を改めて自らに設定し直すことにより、選択した通知動作識別子によって示される動作を行い、可視光信号の受信をユーザに通知する(ステップS10136)。
なお、受信機は、ステップS10131およびステップS10133の何れか一方を行わず、2つの通知動作識別子の中から優先度の高い通知動作識別子を選択してもよい。
なお、劇場または美術館などに設置されているサーバから送信される通知動作識別子の優先度、または、それらの施設内で送信される可視光信号に含まれる通知動作識別子の優先度は高く設定されてもよい。これにより、ユーザの設定に関わらず、その施設内では、受信通知のための音を鳴らさないようにすることができる。また、その他の施設では、通知動作識別子の優先度を低くしておくことにより、受信機は、ユーザの設定に応じた動作によって受信を通知することができる。
図79Bは、本実施の形態における設定方法の他の例を示す図である。
まず、受信機は、通知動作を識別するための通知動作識別子と、その通知動作識別子の優先度(具体的には、優先度を示す識別子)とを、受信機の近くにあるサーバから取得する(ステップS10141)。次に、受信機は、パケット化された可視光信号、つまり複数の部分データのそれぞれを含む各パケットを受信する(ステップS10142)。ここで、受信機は、その可視光信号に含まれている、通知動作識別子と、その通知動作識別子の優先度(具体的には、優先度を示す識別子)とを取得する(ステップS10143)。
さらに、受信機は、受信機の現在の通知動作の設定内容、つまり、受信機に予め設定されている通知動作識別子と、その通知動作識別子の優先度(具体的には、優先度を示す識別子)とを読み出す(ステップS10144)。
そして、受信機は、予め設定されている通知動作識別子と、ステップS10141およびステップS10143のそれぞれで取得された通知動作識別子との中に、通知音の発生を禁止する動作を示す動作通知識別子が含まれているか否かを判定する(ステップS10145)。ここで、含まれていると判定すると(ステップS10145のY)、受信機は、受信完了を通知するための通知音を鳴らす(ステップS10146)。一方、含まれていないと判定すると(ステップS10145のN)、受信機は、例えばバイブレーションなどによって、受信完了をユーザに通知する(ステップS10147)。
なお、受信機は、ステップS10141およびステップS10143の何れか一方を行わず、2つの通知動作識別子の中に、通知音の発生を禁止する動作を示す動作通知識別子が含まれているか否かを判定してもよい。
また、受信機は、撮像によって得られる画像に基づいて自己位置推定を行い、推定された位置、またはその位置にある施設に対応付けられた動作によって、受信をユーザに通知してもよい。
図80は、実施の形態10における情報処理プログラムの処理を示すフローチャートである。
この情報処理プログラムは、上述の送信機の発光体を図78に示す分割数にしたがって輝度変化させるためのプログラムである。
つまり、この情報処理プログラムは、送信対象の情報を輝度変化によって送信するために、送信対象の情報をコンピュータに処理させる情報処理プログラムである。具体的には、この情報処理プログラムは、送信対象の情報を符号化することによって符号化信号を生成する符号化ステップSA41と、生成された符号化信号のビット数が24~64ビットの範囲にある場合、符号化信号を4つの部分信号に分割する分割ステップSA42と、4つの部分信号を順次出力する出力ステップSA43とを、コンピュータに実行させる。なお、これらの部分信号はパケットとして出力される。また、情報処理プログラムは、符号化信号のビット数を特定し、その特定されたビット数に基づいて、部分信号の数を決定することをコンピュータにさせてもよい。この場合、情報処理プログラムは、符号化信号を分割することによって、その決定された数の部分信号を生成することをコンピュータにさせる。
これにより、符号化信号のビット数が24~64ビットの範囲にある場合には、符号化信号が4つの部分信号に分割されて出力される。その結果、出力される4つの部分信号にしたがって発光体が輝度変化すると、その4つの部分信号はそれぞれ可視光信号として送信されて受信機によって受信される。ここで、出力される信号のビット数が多いほど、受信機は撮像によってその信号を適切に受信することが難しくなり、受信効率が低下する。そこで、その信号をビット数の少ない信号、つまり小さい信号に分割しておくことが望ましい。しかし、信号を多くの小さい信号に細かく分割しすぎると、受信機は、全ての小さい信号のそれぞれを個別に受信しなければ元の信号を受信することができないため、受信効率が低下する。したがって、上述のように、符号化信号のビット数が24~64ビットの範囲にある場合には、符号化信号を4つの部分信号に分割して順次出力することによって、送信対象の情報を示す符号化信号を最もよい受信効率で可視光信号として送信することができる。その結果、多様な機器間の通信を可能にすることができる。
また、出力ステップSA43では、第1の順序にしたがって4つの部分信号を出力し、さらに、第1の順序と異なる第2の順序にしたがって4つの部分信号を再び出力してもよい。
これにより、それらの4つの部分信号が順番を変えて繰り返し出力されるため、出力される各信号が可視光信号として受信機に送信される場合には、それらの4つの部分信号の受信効率をさらに高めることができる。つまり、4つの部分信号を同じ順番で繰り返し出力しても、同じ部分信号が受信機に受信されない場合が生じるが、その順番を変えることによって、そのような場合が生じるのを抑えることができる。
また、図79Aおよび図79Bに示すように、出力ステップSA43では、さらに、4つの部分信号に通知動作識別子を付随させて出力してもよい。通知動作識別子は、4つの部分信号が輝度変化によって送信されて受信機に受信されたときに、4つの部分信号が受信されたことを受信機のユーザに通知する受信機の動作を識別するための識別子である。
これにより、その通知動作識別子が可視光信号として送信されて受信機に受信される場合には、受信機は、その通知動作識別子によって識別される動作にしたがって、4つの部分信号の受信をユーザに通知することができる。つまり、送信対象の情報を送信する側で、受信機による通知動作を設定することができる。
また、図79Aおよび図79Bに示すように、出力ステップSA43では、さらに、通知動作識別子の優先度を識別するための優先度識別子を4つの部分信号に付随させて出力してもよい。
これにより、その優先度識別子および通知動作識別子が可視光信号として送信されて受信機に受信される場合には、受信機は、その優先度識別子によって識別される優先度にしたがって通知動作識別子を扱うことができる。つまり、受信機が他の通知動作識別子を取得している場合には、受信機は、可視光信号として送信された通知動作識別子によって識別される通知動作と、他の通知動作識別子によって識別される通知動作とのうちの一方を、その優先度に基づいて選択することができる。
本発明の一態様に係る情報処理プログラムは、送信対象の情報を輝度変化によって送信するために、前記送信対象の情報をコンピュータに処理させる情報処理プログラムであって、前記送信対象の情報を符号化することによって符号化信号を生成する符号化ステップと、生成された前記符号化信号のビット数が24~64ビットの範囲にある場合、前記符号化信号を4つの部分信号に分割する分割ステップと、前記4つの部分信号を順次出力する出力ステップとを、前記コンピュータに実行させる。
これにより、図77~図80に示すように、符号化信号のビット数が24~64ビットの範囲にある場合には、符号化信号が4つの部分信号に分割されて出力される。その結果、出力される4つの部分信号にしたがって発光体が輝度変化すると、その4つの部分信号はそれぞれ可視光信号として送信されて受信機によって受信される。ここで、出力される信号のビット数が多いほど、受信機は撮像によってその信号を適切に受信することが難しくなり、受信効率が低下する。そこで、その信号をビット数の少ない信号、つまり小さい信号に分割しておくことが望ましい。しかし、信号を多くの小さい信号に細かく分割しすぎると、受信機は、全ての小さい信号のそれぞれを個別に受信しなければ元の信号を受信することができないため、受信効率が低下する。したがって、上述のように、符号化信号のビット数が24~64ビットの範囲にある場合には、符号化信号を4つの部分信号に分割して順次出力することによって、送信対象の情報を示す符号化信号を最もよい受信効率で可視光信号として送信することができる。その結果、多様な機器間の通信を可能にすることができる。
また、前記出力ステップでは、第1の順序にしたがって前記4つの部分信号を出力し、さらに、前記第1の順序と異なる第2の順序にしたがって前記4つの部分信号を再び出力してもよい。
これにより、それらの4つの部分信号が順番を変えて繰り返し出力されるため、出力される各信号が可視光信号として受信機に送信される場合には、それらの4つの部分信号の受信効率をさらに高めることができる。つまり、4つの部分信号を同じ順番で繰り返し出力しても、同じ部分信号が受信機に受信されない場合が生じるが、その順番を変えることによって、そのような場合が生じるのを抑えることができる。
また、前記出力ステップでは、さらに、前記4つの部分信号に通知動作識別子を付随させて出力し、前記通知動作識別子は、前記4つの部分信号が輝度変化によって送信されて受信機に受信されたときに、前記4つの部分信号が受信されたことを前記受信機のユーザに通知する前記受信機の動作を識別するための識別子であってもよい。
これにより、その通知動作識別子が可視光信号として送信されて受信機に受信される場合には、受信機は、その通知動作識別子によって識別される動作にしたがって、4つの部分信号の受信をユーザに通知することができる。つまり、送信対象の情報を送信する側で、受信機による通知動作を設定することができる。
また、前記出力ステップでは、さらに、前記通知動作識別子の優先度を識別するための優先度識別子を前記4つの部分信号に付随させて出力してもよい。
これにより、その優先度識別子および通知動作識別子が可視光信号として送信されて受信機に受信される場合には、受信機は、その優先度識別子によって識別される優先度にしたがって通知動作識別子を扱うことができる。つまり、受信機が他の通知動作識別子を取得している場合には、受信機は、可視光信号として送信された通知動作識別子によって識別される通知動作と、他の通知動作識別子によって識別される通知動作とのうちの一方を、その優先度に基づいて選択することができる。
次に、電子機器のネットワーク接続の登録について説明する。
図81は、本実施の形態における送受信システムの応用例を説明するための図である。
この送受信システムは、例えば洗濯機等の電子機器として構成される送信機10131bと、例えばスマートフォンとして構成される受信機10131aと、アクセスポイントまたはルータとして構成される通信装置10131cとを備える。
図82は、本実施の形態における送受信システムの処理動作を示すフローチャートである。
送信機10131bは、開始ボタンが押下されると(ステップS10165)、SSID、パスワード、IPアドレス、MACアドレス、または暗号鍵等の、自身に接続するための情報を、Wi-Fi、Bluetooth(登録商標)、またはイーサネット(登録商標)などを介して送信し(ステップS10166)、接続を待ち受ける。送信機10131bは、これらの情報を、直接的に送信してもよいし、間接的に送信してもよい。間接に送信する場合、送信機10131bは、それらの情報に関連付けられたIDを送信する。そのIDを受信した受信機10131aは、例えば、そのIDに関連付けられている情報をサーバ等からダウンロードする。
受信機10131aは、その情報を受信し(ステップS10151)、送信機10131bへ接続し、アクセスポイントやルータとして構成される通信装置10131cへ接続するための情報(SSID、パスワード、IPアドレス、MACアドレス、または暗号鍵等)を送信機10131bへ送信する(ステップS10152)。受信機10131aは、送信機10131bが通信装置10131cへ接続するための情報(MACアドレス、IPアドレスまたは暗号鍵等)を通信装置10131cへ登録し、通信装置10131cに接続を待ち受けさせる。さらに、受信機10131aは、送信機10131bから通信装置10131cへの接続準備が完了したことを送信機10131bへ通知する(ステップS10153)。
送信機10131bは、受信機10131aとの接続を切断し(ステップS10168)、通信装置10131cへ接続する(ステップS10169)。接続が成功すれば(ステップS10170のY)、送信機10131bは、通信装置10131cを介して受信機10131aへ接続成功を通知し、画面表示やLEDの状態や音声等でユーザへ接続成功を通知する(ステップS10171)。接続が失敗すれば(ステップS10170のN)、送信機10131bは、可視光通信で受信機10131aに接続失敗を通知し、成功時と同様にユーザへ通知する(ステップS10172)。なお、接続成功を可視光通信で通知してもよい。
受信機10131aは、通信装置10131cに接続し(ステップS10154)、接続成功や失敗の通知がなければ(ステップS10155のN、且つステップS10156のN)、通信装置10131c経由で送信機10131bへアクセスが可能かどうか確認する(ステップS10157)。できなければ(ステップS10157のN)、受信機10131aは、送信機10131bから受信した情報を用いた送信機10131bへ接続が所定の回数以上行われたか否かを判定する(ステップS10158)。ここで、所定の回数以上行われていないと判定すると(ステップS10158のN)、受信機10131aは、ステップS10152からの処理を繰り返す。一方、所定の回数以上行われたと判定すると(ステップS10158のY)、受信機10131aは、処理失敗をユーザに通知する(ステップS10159)。また、受信機10131aは、ステップS10156で、接続成功の通知があったと判定すると(ステップS10156のY)、処理成功をユーザに通知する(ステップS10160)。つまり、受信機10131aは、送信機10131bが通信装置10131cへ接続することができたかどうかを、画面表示や音声等でユーザへ通知する。これにより、ユーザに複雑な入力をさせなくても、送信機10131bを通信装置10131cへ接続させることができる。
次に、電子機器のネットワーク接続の登録(別の電子機器を介して接続する場合)について説明する。
図83は、本実施の形態における送受信システムの応用例を説明するための図である。
この送受信システムは、エアコン10133bと、エアコン10133bに接続された無線アダプタ等の電子機器として構成される送信機10133cと、例えばスマートフォンとして構成される受信機10133a、アクセスポイントまたはルータとして構成される通信装置10133dと、例えば無線アダプタ、無線アクセスポイントまたはルータ等として構成される別の電子機器10133eとを備える。
図84は、本実施の形態における送受信システムの処理動作を示すフローチャートである。なお、以下、エアコン10133bまたは送信機10133cを電子機器Aと称し、電子機器10133eを電子機器Bと称する。
まず、電子機器Aは、開始ボタンが押下されると(ステップS10188)、自身に接続するための情報(個体ID、パスワード、IPアドレス、MACアドレス、または暗号鍵等)を送信し(ステップS10189)、接続を待ち受ける(ステップS10190)。電子機器Aは、これらの情報を、上述と同様に、直接的に送信してもよいし、間接的に送信してもよい。
受信機10133aは、その情報を電子機器Aから受信し(ステップS10181)、電子機器Bへその情報を送信する(ステップS10182)。電子機器Bは、その情報を受信すると(ステップS10196)、その受信した情報にしたがって電子機器Aへ接続する(ステップS10197)。そして、電子機器Bは、電子機器Aとの接続が成されたか否かを判定し(ステップS10198)、その成否を受信機10133aへ通知する(ステップS10199またはステップS101200)。
電子機器Aは、所定の時間の間に電子機器Bと接続されれば(ステップS10191のY)、電子機器B経由で受信機10133aへ接続成功を通知し(ステップS10192)、接続されなければ(ステップS10191のN)、可視光通信で受信機10133aに接続失敗を通知する(ステップS10193)。また、電子機器Aは、画面表示、発光状態または音声等によって、接続の成否をユーザへ通知する。これにより、ユーザに複雑な入力をさせなくても、電子機器A(送信機10133c)を電子機器B(電子機器10133e)へ接続させることができる。なお、図83に示すエアコン10133bと送信機10133cとは一体に構成されていてもよく、同様に、通信装置10133dと電子機器10133eとも一体に構成されていてもよい。
次に、適切な撮像情報の送信について説明する。
図85は、本実施の形態における送受信システムの応用例を説明するための図である。
この送受信システムは、例えばデジタルスチルカメラやデジタルビデオカメラとして構成される受信機10135aと、例えば照明として構成される送信機10135bとを備える。
図86は、本実施の形態における送受信システムの処理動作を示すフローチャートである。
まず、受信機10135aは、送信機10135bへ、撮像情報送信命令を送る(ステップS10211)。次に、送信機10135bは、撮像情報送信命令を受信した場合、撮像情報送信ボタンが押下された場合、撮像情報送信スイッチがオンとなっている場合、電源が入れられた場合に(ステップS10221のY)、撮像情報を送信する(ステップS10222)。撮像情報送信命令は、撮像情報を送信させるための命令であって、撮像情報は、例えば照明の色温度、スペクトル分布、照度または配光を示す。送信機10135bは、撮像情報を、上述と同様に、直接的に送信してもよいし、間接的に送信してもよい。間接に送信する場合、送信機10135bは、撮像情報に関連付けられたIDを送信する。そのIDを受信した受信機10135aは、例えば、そのIDに関連付けられている撮像情報をサーバ等からダウンロードする。このとき、送信機10135bは、自身へ送信停止命令を送信するための方法(送信停止命令を伝送する電波、赤外線、または音波の周波数、あるいは、自信へ接続するためのSSID、パスワードまたはIPアドレス等)を送信してもよい。
受信機10135aは、撮像情報を受信すると(ステップS10212)、送信停止命令を送信機10135bに送信する(ステップS10213)。ここで、送信機10135bは、受信機10135aから送信停止命令を受信すると(ステップS10223の)、撮像情報の送信を停止し、一様に発光する(ステップS10224)。
さらに、受信機10135aは、ステップS10212で受信した撮像情報に従って撮像パラメータを設定する(ステップS10214)、あるいは、撮像情報をユーザへ通知する。撮像パラメータは、例えばホワイトバランス、露光時間、焦点距離、感度またはシーンモードである。これにより、照明に合わせて最適な設定で撮像することができる。次に、受信機10135aは、送信機10135bからの撮像情報の送信が停止されてから(ステップS10215のY)、撮像する(ステップS10216)。これにより、信号送信による被写体の明るさの変化をなくして撮像を行うことができる。なお、受信機10135aは、ステップS10216の後、撮像情報の送信開始を促す送信開始命令を送信機10135bに送信してもよい(ステップS10217)。
次に、充電状態の表示について説明する。
図87は、本実施の形態における送信機の応用例を説明するための図である。
例えば充電器として構成される送信機10137bは、発光部を備え、バッテリーの充電状態を示す可視光信号を発光部から送信する。これにより、高価な表示装置を備えなくても、バッテリーの充電状態を通知することができる。なお、発光部として小さなLEDを用いた場合には、近くからそのLEDを撮像しないと可視光信号を受信することはできない。また、そのLEDの近くに突起部がある送信機10137cでは、突起部が邪魔でLEDを接写しづらい。したがって、送信機10137cからの可視光信号よりも、LEDの付近に突起部がない送信機10137bからの可視光信号の方が、容易に受信することができる。
(実施の形態11)
本実施の形態では、上記各実施の形態におけるスマートフォンなどの受信機と、LEDや有機ELの点滅パターンとして情報を送信する送信機とを用いた各適用例について説明する。
まず、デモモード時と故障時の送信について説明する。
図88は、本実施の形態における送信機の動作の一例を説明する図である。
送信機は、エラーが発生している場合には、エラーが発生していることを示す信号、または、エラーコードに対応する信号を送信することで、受信機にエラーが発生していることやエラー内容を伝えることができる。受信機は、エラー内容に合わせて適切な対応を示すことで、エラーを修復したり、サービスセンターにエラー内容を適切に報告したりすることができる。
送信機は、デモモードになっている場合は、デモコードを送信する。これにより、例えば店頭で商品である送信機のデモを行っている場合に、来店者がデモコードを受信し、デモコードに関連付けられた商品説明を取得することができる。デモモードであるかどうかの判断は、送信機の動作設定がデモモードになっている、店頭用CASカードが挿入されている、CASカードが挿入されていない、記録用メディアが挿入されていないといった点から判断することができる。
次に、リモコンからの信号送信について説明する。
図89は、本実施の形態における送信機の動作の一例を説明する図である。
例えばエアコンのリモコンとして構成される送信機が、本体情報を受信した際に、送信機が本体情報を送信することで、受信機は、遠くの本体の情報を近くにある送信機から情報を受信することができる。受信機は、ネットワーク越しなど、可視光通信が不可能な場所に存在する本体からの情報を受信することもできる。
次に、明るい場所にあるときだけ送信する処理について説明する。
図90は、本実施の形態における送信機の動作の一例を説明する図である。
送信機は、周囲の明るさが一定以上であれば送信を行い、一定以下になれば送信を停止する。これにより、例えば電車の広告として構成される送信機は、車両が車庫入りした際に自動で動作を停止することができ、電池の消耗を抑えることができる。
次に、送信機の表示に合わせたコンテンツ配信(関連付けの変更・スケジューリング)について説明する。
図91は、本実施の形態における送信機の動作の一例を説明する図である。
送信機は、表示するコンテンツの表示タイミングに合わせて、受信機に取得させたいコンテンツを送信IDに関連付ける。表示コンテンツが変更される度に、関連付けの変更をサーバへ登録する。
送信機は、表示コンテンツの表示タイミングが既知である場合は、表示コンテンツの変化タイミングに合わせて別のコンテンツが受信機に渡されるように、サーバに設定する。サーバは、受信機から送信IDに関連付けられたコンテンツの要求が合った際には、設定されたスケジュールに合わせたコンテンツを受信機へ送信する。
これにより、例えばデジタルサイネージとして構成される送信機が表示内容を次々と変更している場合に、受信機は、送信機が表示しているコンテンツに合わせたコンテンツを取得することができる。
次に、送信機の表示に合わせたコンテンツ配信(時刻による同期)について説明する。
図92は、本実施の形態における送信機の動作の一例を説明する図である。
所定のIDに関連付けられたコンテンツ取得の要求に対し、時刻に応じて異なるコンテンツを渡すように、あらかじめサーバへ登録しておく。
送信機は、サーバと時刻を同期し、所定の時刻に所定の部分が表示されるようにタイミングを調整してコンテンツを表示する。
これにより、例えばデジタルサイネージとして構成される送信機が表示内容を次々と変更している場合に、受信機は、送信機が表示しているコンテンツに合わせたコンテンツを取得することができる。
次に、送信機の表示に合わせたコンテンツ配信(表示時刻の送信)について説明する。
図93は、本実施の形態における送信機と受信機の動作の一例を説明する図である。
送信機は、送信機のIDに加え、表示中のコンテンツの表示時刻を送信する。コンテンツ表示時刻は、現在表示しているコンテンツを特定できる情報であり、例えばコンテンツの開始時点からの経過時刻などで表現できる。
受信機は、受信したIDに関連付けられたコンテンツをサーバから取得し、受信した表示時刻に合わせてコンテンツを表示する。これにより、例えばデジタルサイネージとして構成される送信機が表示内容を次々と変更している場合に、受信機は、送信機が表示しているコンテンツに合わせたコンテンツを取得することができる。
また、受信機は、時間の経過に従って、表示するコンテンツを変更する。これにより、送信機の表示コンテンツが変化した際に再度信号を受信しなくても、表示コンテンツに合わせたコンテンツが表示される。
次に、ユーザの許諾状況に合わせたデータのアップロードについて説明する。
図94は、本実施の形態における受信機の動作の一例を説明する図である。
受信機は、ユーザがアカウント登録をしている場合には、アカウント登録の際等にユーザがアクセス許可を行っている情報(受信機の位置や電話番号やIDやインストールされているアプリやユーザの年齢や性別や職業や嗜好等)を受信したIDと合わせてサーバへ送信する。
アカウント登録がされていない場合には、ユーザが前記のような情報のアップロードを許可していれば、同様にサーバへ送信し、許可していない場合には、受信したIDのみをサーバへ送信する。
これにより、ユーザは受信時の状況や自身のパーソナリティに合わせたコンテンツを受信することができ、また、サーバはユーザの情報を得ることでデータ解析に役立てることが出来る。
次に、コンテンツ再生アプリの起動について説明する。
図95は、本実施の形態における受信機の動作の一例を説明する図である。
受信機は、受信したIDに関連付けられたコンテンツをサーバから取得する。起動中のアプリが取得コンテンツを扱える(表示したり再生したりすることができる)場合には、起動中のアプリで取得コンテンツを表示・再生する。扱えない場合は、扱えるアプリが受信機にインストールされているかどうかを確認し、インストールされている場合は、そのアプリを起動して取得コンテンツの表示・再生を行う。インストールされていない場合は、自動でインストールしたり、インストールを促す表示をしたり、ダウンロード画面を表示させたりし、インストール後に取得コンテンツの表示・再生を行う。
これにより、取得コンテンツを適切に扱う(表示・再生等を行う)ことができる。
次に、指定アプリの起動について説明する。
図96は、本実施の形態における受信機の動作の一例を説明する図である。
受信機は、受信したIDに関連付けられたコンテンツと、起動すべきアプリを指定する情報(アプリID)をサーバから取得する。起動中のアプリが指定アプリである場合は、取得したコンテンツを表示・再生する。指定アプリが受信機にインストールされている場合は、指定アプリを起動して取得コンテンツの表示・再生を行う。インストールされていない場合は、自動でインストールしたり、インストールを促す表示をしたり、ダウンロード画面を表示させたりし、インストール後に取得コンテンツの表示・再生を行う。
受信機は、アプリIDのみをサーバから取得し、指定アプリを起動するとしてもよい。
受信機は、指定された設定を行うとしてもよい。受信機は、指定されたパラメータを設定して、指定されたアプリを起動するとしてもよい。
次に、ストリーミング受信と通常受信の選択について説明する。
図97は、本実施の形態における受信機の動作の一例を説明する図である。
受信機は、受信したデータの所定のアドレスの値が所定の値である場合や、受信したデータが所定の識別子を含む場合は、信号がストリーミング配信されていると判断し、ストリーミングデータの受信方法で受信を行う。そうでない場合は、通常の受信方法で受信する。
これにより、ストリーミング配信と通常配信のどちらの方法で信号が送信されていても受信を行うことができる。
次に、プライベートデータについて説明する。
図98は、本実施の形態における受信機の動作の一例を説明する図である。
受信機は、受信したIDの値が所定の範囲内である場合や、所定の識別子を含む場合には、アプリ内にテーブルを参照し、受信IDがテーブルに存在すれば、そのテーブルで指定されたコンテンツを取得する。そうでない場合には、サーバから受信IDに指定されたコンテンツを取得する。
これにより、サーバに登録を行わなくてもコンテンツを受信することができる。また、サーバとの通信を行わないため、素早いレスポンスが得られる。
次に、周波数に合わせた露光時間の設定について説明する。
図99は、本実施の形態における受信機の動作の一例を説明する図である。
受信機は、信号を検知し、信号の変調周波数を認識する。受信機は、変調周波数の周期(変調周期)に合わせて露光時間を設定する。例えば、変調周期と同程度の露光時間にすることで、信号を受信しやすくすることができる。また、例えば、変調周期の整数倍、または、それに近い値(概ね±30%程度)に露光時間を設定することで、畳み込み復号によって信号を受信しやすくすることができる。
次に、送信機の最適パラメータ設定について説明する。
図100は、本実施の形態における受信機の動作の一例を説明する図である。
受信機は、送信機から受信したデータに加え、現在位置情報やユーザに関連する情報(住所や性別や年齢や嗜好等)をサーバへ送信する。サーバは、受信した情報に合わせて、送信機が最適に動作するためのパラメータを受信機へ送信する。受信機は、受信したパラメータを送信機へ設定できる場合には設定する。設定できない場合には、パラメータを表示し、ユーザが送信機へそのパラメータを設定するように促す。
これにより、例えば、送信機が使われている地域の水の性質に最適化して洗濯機を動作させたり、ユーザの使用している米の種類に最適な方法で炊飯するように炊飯器を動作させたりすることができる。
次に、データの構成を示す識別子について説明する。
図101は、本実施の形態における送信データの構成の一例を説明する図である。
送信される情報は識別子を含み、受信機は、その値によって後続する部分の構成を知ることができる。例えば、データの長さ、エラー訂正符号の種類や長さ、データの分割点などを特定することができる。
これにより、送信機は、送信機や通信路の性質に応じてデータ本体やエラー訂正符号の種類や長さを変更することができる。また、送信機は、送信機のIDに加えて、コンテンツIDを送信することで、受信機にコンテンツIDに応じたIDを取得させることができる。
(実施の形態12)
本実施の形態では、上記各実施の形態におけるスマートフォンなどの受信機と、LEDや有機ELの点滅パターンとして情報を送信する送信機とを用いた各適用例について説明する。
図102は、本実施の形態における受信機の動作を説明するための図である。
本実施の形態における受信機1210aは、イメージセンサによる連続した撮影を行う際に、例えばフレーム単位でシャッター速度を高速と低速とに切り替える。さらに、受信機1210aは、その撮影によって得られるフレームに基づいて、そのフレームに対する処理を、バーコード認識処理と可視光認識処理とに切り替える。ここで、バーコード認識処理とは、低速のシャッター速度によって得られるフレームに映っているバーコードをデコードする処理である。可視光認識処理とは、高速のシャッター速度によって得られるフレームに映っている上述の輝線のパターンをデコードする処理である。
このような受信機1210aは、映像入力部1211と、バーコード・可視光識別部1212と、バーコード認識部1212aと、可視光認識部1212bと、出力部1213とを備えている。
映像入力部1211は、イメージセンサを備え、イメージセンサによる撮影のシャッター速度を切り替える。つまり、映像入力部1211は、例えばフレーム単位でシャッター速度を低速と高速とに交互に切り替える。より具体的には、映像入力部1211は、奇数番目のフレームに対してはシャッター速度を高速に切り替え、偶数番目のフレームに対してはシャッター速度を低速に切り替える。低速のシャッター速度の撮影は、上述の通常撮影モードによる撮影であって、高速のシャッター速度の撮影は、上述の可視光通信モードによる撮影である。つまり、シャッター速度が低速の場合には、イメージセンサに含まれる各露光ラインの露光時間は長く、被写体が映し出された通常撮影画像がフレームとして得られる。また、シャッター速度が高速の場合には、イメージセンサに含まれる各露光ラインの露光時間は短く、上述の輝線が映し出された可視光通信画像がフレームとして得られる。
バーコード・可視光識別部1212は、映像入力部1211によって得られる画像に、バーコードが現れているか否か、または輝線が現れているか否かを判別することによって、その画像に対する処理を切り替える。例えば、バーコード・可視光識別部1212は、低速のシャッター速度の撮影によって得られたフレームにバーコードが現れていれば、その画像に対する処理をバーコード認識部1212aに実行させる。一方、バーコード・可視光識別部1212は、高速のシャッター速度の撮影によって得られた画像に輝線が現れていれば、その画像に対する処理を可視光認識部1212bに実行させる。
バーコード認識部1212aは、低速のシャッター速度の撮影によって得られたフレームに現れているバーコードをデコードする。バーコード認識部1212aは、そのデコードによって、バーコードのデータ(例えばバーコード識別子)を取得し、そのバーコード識別子を出力部1213に出力する。なお、バーコードは、一次元のコードであっても、二次元のコード(例えば、QRコード(登録商標))であってもよい。
可視光認識部1212bは、高速のシャッター速度の撮影によって得られたフレームに現れている輝線のパターンをデコードする。可視光認識部1212bは、そのデコードによって、可視光のデータ(例えば可視光識別子)を取得し、その可視光識別子を出力部1213に出力する。なお、可視光のデータは上述の可視光信号である。
出力部1213は、低速のシャッター速度の撮影によって得られたフレームのみを表示する。したがって、映像入力部1211による撮影の被写体がバーコードである場合には、出力部1213はバーコードを表示する。また、映像入力部1211による撮影の被写体が、可視光信号を送信するデジタルサイネージなどである場合には、出力部1213は、輝線のパターンを表示することなく、そのデジタルサイネージの像を表示する。そして、出力部1213は、バーコード識別子を取得した場合には、そのバーコード識別子に対応付けられている情報を例えばサーバなどから取得し、その情報を表示する。また、出力部1213は、可視光識別子を取得した場合には、その可視光識別子に対応付けられている情報を例えばサーバなどから取得し、その情報を表示する。
つまり、端末装置である受信機1210aは、イメージセンサを備え、イメージセンサのシャッター速度を、第1の速度と、第1の速度よりも高速の第2の速度とに交互に切り替えながら、イメージセンサによる連続した撮影を行う。そして、(a)イメージセンサによる撮影の被写体がバーコードである場合には、受信機1210aは、シャッター速度が第1の速度であるときの撮影によって、バーコードが映っている画像を取得し、その画像に映っているバーコードをデコードすることによって、バーコード識別子を取得する。また、(b)イメージセンサによる撮影の被写体が光源(例えばデジタルサイネージなど)である場合には、受信機1210aは、シャッター速度が第2の速度であるときの撮影によって、イメージセンサに含まれる複数の露光ラインのそれぞれに対応する輝線を含む画像である輝線画像を取得する。そして、受信機1210aは、取得された輝線画像に含まれる複数の輝線のパターンをデコードすることによって可視光信号を可視光識別子として取得する。さらに、この受信機1210aは、シャッター速度が第1の速度であるときの撮影によって得られる画像を表示する。
このような本実施の形態における受信機1210aでは、バーコード認識処理と可視光認識処理とを切り替えて行うことによって、バーコードのデコードを行うとともに、可視光信号を受信することができる。さらに、切り替えによって、消費電力を抑えることができる。
本実施の形態における受信機は、バーコード認識処理の代わりに画像認識処理を可視光処理と同時に行ってもよい。
図103Aは、本実施の形態における受信機の他の動作を説明するための図である。
本実施の形態における受信機1210bは、イメージセンサによる連続した撮影を行う際に、例えばフレーム単位でシャッター速度を高速と低速とに切り替える。さらに、受信機1210bは、その撮影によって得られる画像(フレーム)に対して、画像認識処理と上述の可視光認識処理とを同時に実行する。画像認識処理は、低速のシャッター速度によって得られるフレームに映っている被写体を認識する処理である。
このような受信機1210bは、映像入力部1211と、画像認識部1212cと、可視光認識部1212bと、出力部1215とを備えている。
映像入力部1211は、イメージセンサを備え、イメージセンサによる撮影のシャッター速度を切り替える。つまり、映像入力部1211は、例えばフレームン単位でシャッター速度を低速と高速とに交互に切り替える。より具体的には、映像入力部1211は、奇数番目のフレームに対してはシャッター速度を高速に切り替え、偶数番目のフレームに対してはシャッター速度を低速に切り替える。低速のシャッター速度の撮影は、上述の通常撮影モードによる撮影であって、高速のシャッター速度の撮影は、上述の可視光通信モードによる撮影である。つまり、シャッター速度が低速の場合には、イメージセンサに含まれる各露光ラインの露光時間は長く、被写体が映し出された通常撮影画像がフレームとして得られる。また、シャッター速度が高速の場合には、イメージセンサに含まれる各露光ラインの露光時間は短く、上述の輝線が映し出された可視光通信画像がフレームとして得られる。
画像認識部1212cは、低速のシャッター速度の撮影によって得られたフレームに現れている被写体を認識するとともに、その被写体のフレーム内の位置を特定する。画像認識部1212cは、認識の結果、その被写体がAR(Augmented Reality)の対象とされるもの(以下、AR対象物という)か否かを判断する。そして、画像認識部1212cは、被写体がAR対象物であると判断すると、その被写体に関する情報を表示するためのデータ(例えば、被写体の位置およびARマーカーなど)である画像認識データを生成し、そのARマーカーを出力部1215に出力する。
出力部1215は、上述の出力部1213と同様に、低速のシャッター速度の撮影によって得られたフレームのみを表示する。したがって、映像入力部1211による撮影の被写体が、可視光信号を送信するデジタルサイネージなどである場合には、出力部1213は、輝線のパターンを表示することなく、そのデジタルサイネージの像を表示する。さらに、出力部1215は、画像認識部1212cから画像認識データを取得すると、画像認識データによって示されるフレーム内の被写体の位置に基づいて、その被写体を囲む白い枠状のインジケータをそのフレームに重畳する。
図103Bは、出力部1215によって表示されるインジケータの例を示す図である。
出力部1215は、例えばデジタルサイネージとして構成された被写体の像1215aを囲む白い枠状のインジケータ1215bをフレームに重畳する。つまり、出力部1215は、画像認識された被写体を示すインジケータ1215bを表示する。さらに、出力部1215は、可視光認識部1212bから可視光識別子を取得すると、そのインジケータ1215bの色を例えば白から赤色に変更する。
図103Cは、ARの表示例を示す図である。
出力部1215は、さらに、その可視光識別子に対応付けられている、被写体に関する情報を関連情報として例えばサーバなどから取得する。出力部1215は、画像認識データによって示されるARマーカー1215cに関連情報を記載し、関連情報が記載されたARマーカー1215cを、フレーム内の被写体の像1215aに関連付けて表示する。
このような本実施の形態における受信機1210bでは、画像認識処理と可視光認識処理とを同時に行うことによって、可視光通信を利用したARを実現することができる。なお、図103Aに示す受信機1210aも、受信機1210bと同様に、図103Bに示すインジケータ1215bを表示してもよい。この場合、受信機1210aは、低速のシャッター速度の撮影によって得られたフレームにおいてバーコードが認識されると、そのバーコードを囲む白い枠状のインジケータ1215bを表示する。そして、受信機1210aは、そのバーコードがデコードされると、そのインジケータ1215bの色を白色から赤色に変更する。同様に、受信機1210aは、高速のシャッター速度の撮影によって得られたフレームにおいて輝線のパターンが認識されると、その輝線のパターンがある部位に対応する、低速フレーム内の部位を特定する。例えば、デジタルサイネージが可視光信号を送信している場合には、低速フレーム内のデジタルサイネージの像が特定される。なお、低速フレームとは、低速のシャッター速度の撮影によって得られたフレームである。そして、受信機1210aは、低速フレーム内における特定された部位(例えば、上述のデジタルサイネージの像)を囲む白い枠状のインジケータ1215bを低速フレームに重畳して表示する。そして、受信機1210aは、その輝線のパターンがデコードされると、そのインジケータ1215bの色を白色から赤色に変更する。
図104Aは、本実施の形態における送信機の一例を説明するための図である。
本実施の形態における送信機1220aは、送信機1230と同期して可視光信号を送信する。つまり、送信機1220aは、送信機1230が可視光信号を送信するタイミングで、その可視光信号と同一の可視光信号を送信する。なお、送信機1230は、発光部1231を備え、その発光部1231が輝度変化することによって、可視光信号を送信する。
このような送信機1220aは、受光部1221と、信号解析部1222と、送信クロック調整部1223aと、発光部1224とを備える。発光部1224は、送信機1230から送信される可視光信号と同一の可視光信号を輝度変化によって送信する。受光部1221は、送信機1230からの可視光を受光することによって、送信機1230から可視光信号を受信する。信号解析部1222は、受光部1221によって受信された可視光信号を解析し、その解析結果を送信クロック調整部1223aに送信する。送信クロック調整部1223aは、その解析結果に基づいて、発光部1224から送信される可視光信号のタイミングを調整する。つまり、送信クロック調整部1223aは、送信機1230の発光部1231から可視光信号が送信されるタイミングと、発光部1224から可視光信号が送信されるタイミングとが一致するように、発光部1224による輝度変化のタイミングを調整する。
これにより、送信機1220aによって送信される可視光信号の波形と、送信機1230によって送信される可視光信号の波形とをタイミング的に一致させることができる。
図104Bは、本実施の形態における送信機の他の例を説明するための図である。
本実施の形態における送信機1220bは、送信機1220aと同様に、送信機1230と同期して可視光信号を送信する。つまり、送信機1200bは、送信機1230が可視光信号を送信するタイミングで、その可視光信号と同一の可視光信号を送信する。
このような送信機1220bは、第1の受光部1221aと、第2の受光部1221bと、比較部1225と、送信クロック調整部1223bと、発光部1224とを備える。
第1の受光部1221aは、受光部1221と同様に、送信機1230からの可視光を受光することによって、その送信機1230から可視光信号を受信する。第2の受光部1221bは、発光部1224からの可視光を受光する。比較部1225は、第1の受光部1221aによって可視光が受光された第1のタイミングと、第2の受光部1221bによって可視光が受光された第2のタイミングとを比較する。そして、比較部1225は、その第1のタイミングと第2のタイミングとの差(つまり遅延時間)を送信クロック調整部1223bに出力する。送信クロック調整部1223bは、その遅延時間が縮まるように、発光部1224から送信される可視光信号のタイミングを調整する。
これにより、送信機1220bによって送信される可視光信号の波形と、送信機1230によって送信される可視光信号の波形とをタイミング的により正確に一致させることができる。
なお、図104Aおよび図104Bに示す例では、2つの送信機が同じ可視光信号を送信したが、異なる可視光信号を送信してもよい。つまり、2つの送信機は、同じ可視光信号を送信するときには、上述のように同期をとって送信する。そして、2つの送信機は、異なる可視光信号を送信するときには、2つの送信機のうちの一方の送信機のみが可視光信号を送信し、その間、他方の送信機は一様に点灯または消灯する。その後、一方の送信機は一様に点灯または消灯し、その間、他方の送信機のみが可視光信号を送信する。なお、2つの送信機が、互いに異なる可視光信号を同時に送信してもよい。
図105Aは、本実施の形態における複数の送信機による同期送信の一例を説明するための図である。
本実施の形態における複数の送信機1220は、図105Aに示すように、例えば一列に配列される。なお、これらの送信機1220は、図104Aに示す送信機1220aまたは図104Bに示す送信機1220bと同一の構成を有する。このような複数の送信機1220のそれぞれは、両隣の送信機1220のうちの一方の送信機1220と同期して可視光信号を送信する。
これにより、多くの送信機が可視光信号を同期して送信することができる。
図105Bは、本実施の形態における複数の送信機による同期送信の一例を説明するための図である。
本実施の形態における複数の送信機1220のうちの1つの送信機1220は、可視光信号の同期をとるための基準となり、残りの複数の送信機1220は、その基準に合わせるように可視光信号を送信する。
これにより、多くの送信機が可視光信号をより正確に同期して送信することができる。
図106は、本実施の形態における複数の送信機による同期送信の他の例を説明するための図である。
本実施の形態における複数の送信機1240のそれぞれは、同期信号を受信し、その同期信号に応じて可視光信号を送信する。これにより、複数の送信機1240のそれぞれから可視光信号が同期して送信される。
具体的には、複数の送信機1240のそれぞれは、制御部1241と、同期制御部1242と、フォトカプラ1243と、LEDドライブ回路1244と、LED1245と、フォトダイオード1246とを備える。
制御部1241は、同期信号を受信し、その同期信号を同期制御部1242に出力する。
LED1245は、可視光を放出する光源であって、LEDドライブ回路1244による制御に応じて明滅(つまり輝度変化)する。これにより、可視光信号がLED1245から送信機1240の外に送信される。
フォトカプラ1243は、同期制御部1242とLEDドライブ回路1244との間を電気的に絶縁しながら、その間で信号を伝達する。具体的には、フォトカプラ1243は、同期制御部1242から送信される後述の送信開始信号をLEDドライブ回路1244に伝達する。
LEDドライブ回路1244は、同期制御部1242からフォトカプラ1243を介して送信開始信号を受信すると、その送信開始信号を受信したタイミングで、可視光信号の送信をLED1245に開始させる。
フォトダイオード1246は、LED1245から放たれる可視光を検出し、可視光を検出したことを示す検出信号を同期制御部1242に出力する。
同期制御部1242は、同期信号を制御部1241から受信すると、送信開始信号を、フォトカプラ1243を介してLEDドライブ回路1244に送信する。この送信開始信号が送信されることによって、可視光信号の送信が開始される。また、同期制御部1242は、その可視光信号の送信によってフォトダイオード1246から検出信号を受信すると、その検出信号を受信したタイミングと、制御部1241から同期信号を受信したタイミングとの差である遅延時間を算出する。同期制御部1242は、次の同期信号を制御部1241から受信すると、その算出された遅延時間に基づいて、次の送信開始信号を送信するタイミングを調整する。つまり、同期制御部1242は、次の同期信号に対する遅延時間が予め定められた設定遅延時間になるように、次の送信開始信号を送信するタイミングを調整する。これにより、同期制御部1242は、その調整されたタイミングで、次の送信開始信号を送信する。
図107は、送信機1240における信号処理を説明するための図である。
同期制御部1242は、同期信号を受信すると、所定のタイミングに遅延時間設定パルスが発生する遅延時間設定信号を生成する。なお、同期信号を受信するとは、具体的には同期パルスを受信することである。つまり、同期制御部1242は、同期パルスの立ち下がりから、上述の設定遅延時間だけ経過したタイミングに遅延時間設定パルスが立ち上がるように遅延時間設定信号を生成する。
そして、同期制御部1242は、同期パルスの立ち下がりから、前回に得られた補正値Nだけ遅れたタイミングで送信開始信号を、フォトカプラ1243を介してLEDドライブ回路1244に送信する。その結果、LEDドライブ回路1244によってLED1245から可視光信号が送信される。ここで、同期制御部1242は、同期パルスの立ち下がりから、固有遅延時間と補正値Nとの和だけ遅れたタイミングで、フォトダイオード1246から検出信号を受信する。つまり、そのタイミングから可視光信号の送信が開始される。以下、そのタイミングを送信開始タイミングという。なお、上述の固有遅延時間は、フォトカプラ1243などの回路に起因する遅延時間であり、同期制御部1242が同期信号を受信してすぐに送信開始信号を送信しても発生する遅延時間である。
同期制御部1242は、送信開始タイミングから遅延時間設定パルスの立ち上がりまでの時間差を、修正補正値Nとして特定する。そして、同期制御部1242は、補正値(N+1)を、補正値(N+1)=補正値N+修正補正値Nによって算出して保持しておく。これにより、同期制御部1242は、次の同期信号(同期パルス)を受信したときには、その同期パルスの立ち下がりから、補正値(N+1)だけ遅れたタイミングで送信開始信号をLEDドライブ回路1244に送信する。なお、修正補正値Nは正の値だけでなく負の値にも成り得る。
これにより、複数の送信機1240のそれぞれは、同期信号(同期パルス)を受信してから、設定遅延時間経過後に可視光信号を送信するため、正確に同期して可視光信号を送信することができる。つまり、複数の送信機1240のそれぞれで、フォトカプラ1243などの回路に起因する固有遅延時間にばらつきがあったとしても、そのばらつきに影響を受けることなく、複数の送信機1240のそれぞれからの可視光信号の送信を正確に同期させることができる。
なお、LEDドライブ回路は、大きな電力を消費するものであり、同期信号を扱う制御回路からはフォトカプラなどを用いて電気的に絶縁される。したがって、このようなフォトカプラが用いられる場合には、上述の固有遅延時間のばらつきによって、複数の送信機からの可視光信号の送信を同期させることが難しい。しかし、本実施の形態における複数の送信機1240では、フォトダイオード1246によってLED1245の発光タイミングが検知され、同期制御部1242によって同期信号からの遅延時間が検知され、その遅延時間が予め設定された遅延時間(上述の設定遅延時間)になるように調整される。これにより、それぞれ例えばLED照明として構成される複数の送信機に備えられるフォトカプラに、個体ばらつきがあっても、複数のLED照明から可視光信号(例えば可視光ID)を高精度に同期した状態で送信させることができる。
なお、可視光信号送信期間以外はLED照明を点灯させても、消灯させても良い。前記可視光信号送信期間以外を点灯させる場合は、可視光信号の最初の立下りエッジを検出すればよい。前記可視光信号送信期間以外を消灯させる場合は、可視光信号の最初の立ち上がりエッジを検出すればよい。
なお、上述の例では、送信機1240は、同期信号を受信するたびに、可視光信号を送信するが、同期信号を受信しなくても、可視光信号を送信してもよい。つまり、送信機1240は、同期信号の受信に応じて可視光信号を一度送信すれば、同期信号を受信しなくても可視光信号を順次送信してもよい。具体的には、送信機1240は、同期信号の一度の受信に対して、可視光信号の送信を2~数千回、順次行ってもよい。また、送信機1240は、100m秒に1回の割合または数秒に1回の割合で、同期信号に応じた可視光信号の送信を行ってもよい。
また、同期信号に応じた可視光信号の送信が繰り返し行われるときには、上述の設定遅延時間によってLED1245の発光の連続性が失われる可能性がある。つまり、少し長いブランキング期間が発生する可能性がある。その結果、LED1245の点滅が人に視認されてしまい、いわゆるフリッカが発生する可能性がある。そこで、送信機1240は、60Hz以上の周期で、同期信号に応じた可視光信号の送信を行ってもよい。これにより、点滅が高速に行われ、その点滅は人に視認され難くなる。その結果、フリッカの発生を抑えることができる。または、送信機1240は、例えば数分に1回の周期などの十分に長い周期で、同期信号に応じた可視光信号の送信を行ってもよい。これにより、点滅が人に視認されてしまうが、点滅が繰り返し連続して視認されることを防止することができ、フリッカが人に与える不快感を軽減することができる。
(受信方法の前処理)
図108は、本実施の形態における受信方法の一例を示すフローチャートである。また、図109は、本実施の形態における受信方法の一例を説明するための説明図である。
まず、受信機は、露光ラインに平行な方向に配列されている複数の画素のそれぞれの画素値の平均値を計算する(ステップS1211)。中心極限定理により、N個の画素の画素値を平均すると、ノイズ量の期待値はNのマイナス1/2乗になり、SN比が改善する。
次に、受信機は、全ての色のそれぞれで、画素値が垂直方向に同じ変化をしている部分のみ残し、異なる変化をしている部分では画素値の変化を取り除く(ステップS1212)。送信機に備えられている発光部の輝度によって送信信号(可視光信号)が表現される場合、送信機である照明やディスプレイのバックライトの輝度が変化する。この際には、図109の(b)の部分のように、全ての色のそれぞれで画素値が同じ方向に変化する。図109の(a)および(c)の部分では、各色で画素値が異なる変化をしている。これらの部分では、受信ノイズあるいは、ディスプレイまたはサイネージの絵によって画素値が変動しているため、これらの変動を取り除くことで、SN比を改善することができる。
次に、受信機は、輝度値を求める(ステップS1213)。輝度は色による変化を受けづらいため、ディスプレイまたはサイネージの絵による影響を排除することができ、SN比を改善することができる。
次に、受信機は、輝度値をローパスフィルタにかける(ステップS1214)。本実施の形態における受信方法では、露光時間の長さによる移動平均フィルタがかけられているため、高周波数領域にはほとんど信号は含まれておらず、ノイズが支配的となる。そのため、高周波数領域をカットするローパスフィルタを用いることで、SN比を改善することができる。露光時間の逆数までの周波数までは信号成分が多いため、それ以上の周波数を遮断することで、SN比の改善の効果を大きくすることができる。信号に含まれている周波数成分が有限である場合は、その周波数より高い周波数を遮断することで、SN比を改善することができる。ローパスフィルタには、周波数振動成分を含まないフィルタ(バタワースフィルタ等)が適している。
(畳み込み最尤復号による受信方法)
図110は、本実施の形態における受信方法の他の例を示すフローチャートである。以下、この図を用いて、露光時間が送信周期より長い場合の受信方法について説明する。
露光時間が送信周期の整数倍である場合に、最も精度よく受信を行うことができる。整数倍でない場合であっても、(N±0.33)倍(Nは整数)程度の範囲であれば受信を行うことができる。
まず、受信機は、送受信オフセットを0に設定する(ステップS1221)。送受信オフセットとは、送信のタイミングと受信のタイミングのズレを修正するための値である。このズレは不明であるため、受信機は、その送受信オフセットの候補となる値を少しずつ変化させて、最も辻褄が合う値を送受信オフセットに採用する。
次に、受信機は、送受信オフセットが送信周期未満であるか否かを判定する(ステップS1222)。ここで、受信の周期と送信周期は同期していないため、送信周期に合わせた受信値が得られているとは限らない。そのため、受信機は、ステップS1222で、送信周期未満であると判定すると(ステップS1222のY)、その近辺の受信値を用いて、送信周期ごとに、送信周期に合わせた受信値(例えば画素値)を補間によって計算する(ステップS1223)。補間方法には、線形補間、最近傍値、またはスプライン補間等を用いることができる。次に、受信機は、送信周期毎に求めた受信値の差分を求める(ステップS1224)。
受信機は、送受信オフセットに所定の値を加え(ステップS1226)、ステップS1222からの処理を繰り返し実行する。また、受信機は、ステップS1222で、送信周期未満でないと判定すると(ステップS1222のN)、各送受信オフセットに対して計算された受信信号の尤度のうち最も高い尤度を特定する。そして、受信機は、その最も高い尤度が所定の値以上か否かを判定する(ステップS1227)。所定の値以上と判定すると(ステップS1227のY)、受信機は、最も尤度が高かった受信信号を最終的な推定結果として用いる。または、受信機は、最も高かった尤度から所定の値を引いた値以上の尤度を持つ受信信号を受信信号候補として用いる(ステップS1228)。一方、ステップS1227において、最も高い尤度が所定の値未満と判定すると(ステップS1227のN)、受信機は、推定結果を破棄する(ステップS1229)。
ノイズが多すぎる場合には受信信号の推定が適切にできないことが多く、同時に尤度が低くなる。したがって、尤度が低い場合には推定結果を破棄することで、受信信号の信頼性を向上させることができる。また、入力画像に有効な信号が含まれていない場合でも、最尤復号では有効な信号を推定結果として出力してしまうという問題がある。しかし、この場合も尤度が低くなるため、尤度が低い場合は推定結果を破棄することで、この問題を回避することもできる。
(実施の形態13)
本実施の形態では、可視光通信のプロトコル送出方式について説明する。
(多値振幅パルス信号)
図111、図112および図113は、本実施の形態における送信信号の一例を示す図である。
パルスの振幅に意味を持たせることで、単位時間あたりにより多くの情報を表現することができる。例えば、振幅を3段階に分類すると、図111のように、平均輝度は50%に保ったまま、2スロットの送信時間で3値を表現することができる。ただし、図111の(c)を連続で送信すると輝度変化がないため、信号の存在がわかりにくい。また、デジタル処理では3値は少し扱いにくい。
そこで、図112の(a)から(d)の4種類のシンボルを用いることで、平均輝度は50%に保ったまま、平均3スロットの送信時間で4値を表現することができる。シンボルによって送信時間が異なるが、シンボルの最後の状態を輝度が低い状態とすることで、シンボルの終了時点を認識することができる。輝度が高い状態と低い状態を入れ替えても同様の効果が得られる。図112の(e)は、(a)を2回送信することと区別がつかないため、適さない。図112の(f)と(g)は、中間輝度が連続するため、やや認識しづらいが、利用することはできる。
図113の(a)や(b)のパターンをヘッダとして利用することを考える。これらのパターンは周波数解析において特定の周波数成分を強く持つため、これらのパターンをヘッダとすることで、周波数解析によって信号検出を行うことができる。
図113の(c)のように、(a)や(b)のパターンを用いて送信パケットを構成する。特定の長さのパターンをパケット全体のヘッダとし、異なる長さのパターンをセパレータとして用いることで、データを区切ることができる。また、途中の箇所にこのパターンを含むことで、信号検出を容易にすることができる。これにより、1パケットが1フレームの画像の撮像時間よりも長い場合であっても、受信機は、データをつなぎあわせて復号することができる。また、これにより、セパレータの数を調整することで、パケットの長さを可変とすることができる。パケットヘッダのパターンの長さでパケット全体の長さを表現するとしてもよい。また、セパレータをパケットヘッダとし、セパレータの長さをデータのアドレスとすることで、受信機は、部分的に受信したデータを合成することができる。
送信機は、このように構成したパケットを繰り返し送信する。図113の(c)のパケット1~4の内容は全て同じでも良いし、異なるデータとして受信側で合成するとしてもよい。
(実施の形態14)
本実施の形態では、上記各実施の形態におけるスマートフォンなどの受信機と、LEDや有機ELの点滅パターンとして情報を送信する送信機とを用いた各適用例について説明する。
図114Aは、本実施の形態における送信機を説明するための図である。
本実施の形態における送信機は、例えば液晶ディスプレイのバックライトとして構成され、青色LED2303と、緑色蛍光成分2304および赤色蛍光成分2305からなる蛍光体2310とを備える。
青色LED2303は、青色(B)の光を放つ。蛍光体2310は、青色LED2303から放たれた青色の光を励起光として受けると黄色(Y)に発光する。つまり、蛍光体2310は、黄色の光を放つ。詳細には、蛍光体2130は、緑色蛍光成分2304および赤色蛍光成分2305からなるため、これらの蛍光成分の発光によって黄色の光を放つ。それらの2つの蛍光成分のうち緑色蛍光成分2304は、青色LED2303から放たれた青色の光を励起光として受けると緑色に発光する。つまり、緑色蛍光成分2304は、緑色(G)の光を放つ。上述の2つの蛍光成分のうち赤色蛍光成分2305は、青色LED2303から放たれた青色の光を励起光として受けると赤色に発光する。つまり、赤色蛍光成分2305は、赤色(R)の光を放つ。これにより、RGBまたはY(RG)Bのそれぞれの光が放たれるため、送信機はバックライトとして白色光を出力する。
この送信機は、青色LED2303を上記各実施の形態と同様に輝度変化させることによって、白色光の可視光信号を送信する。このとき、白色光の輝度が変化することによって所定の搬送周波数を有する可視光信号が出力される。
ここで、バーコードリーダは、赤色レーザ光をバーコードに照射し、バーコードから反射される赤色レーザ光の輝度変化に基づいて、そのバーコードを読み取る。この赤色レーザ光におけるバーコードの読み取り周波数は、現在実用化されている一般的な送信機から出力される可視光信号の搬送周波数と一致または近似している場合がある。したがって、このような場合に、バーコードリーダが、その一般的な送信機からの可視光信号である白色光に照らされたバーコードを読み取ろうとすると、その白色光に含まれる赤色の光の輝度変化によって、その読み取りに失敗してしまうことがある。つまり、可視光信号(特に赤色の光)の搬送周波数と、バーコードの読み取り周波数との干渉によって、バーコードの読み取りエラーが発生する。
そこで本実施の形態における、赤色蛍光成分2305には、緑色蛍光成分2304よりも、残光の継続時間が長い蛍光材料が用いられる。つまり、本実施の形態における赤色蛍光成分2305は、青色LED2303および緑色蛍光成分2304の輝度変化の周波数よりも十分に低い周波数で輝度変化する。言い換えれば、赤色蛍光成分2305は、可視光信号に含まれる赤色の輝度変化の周波数をなまらせる。
図114Bは、RGBのそれぞれの輝度変化を示す図である。
青色LED2303からの青色の光は、図114Bの(a)に示すように、可視光信号に含まれて出力される。緑色蛍光成分2304は、図114Bの(b)に示すように、青色LED2303からの青色の光を受けると、緑色に発光する。この緑色蛍光成分2304における残光の継続時間は短い。したがって、その青色LED2303が輝度変化していると、緑色蛍光成分2304は、その青色LED2303の輝度変化の周波数(つまり可視光信号の搬送周波数)と略同一の周波数で輝度変化する緑色の光を放つ。
赤色蛍光成分2305は、図114Bの(c)に示すように、青色LED2303からの青色の光を受けると、赤色に発光する。この赤色蛍光成分2305における残光の継続時間は長い。したがって、その青色LED2303が輝度変化していると、赤色蛍光成分2305は、その青色LED2303の輝度変化の周波数(つまり可視光信号の搬送周波数)よりも、低い周波数で輝度変化する赤色の光を放つ。
図115は、本実施の形態における緑色蛍光成分2304および赤色蛍光成分2305の残光特性を示す図である。
緑色蛍光成分2304は、例えば、青色LED2303が輝度変化することなく点灯している場合、強度I=I0の緑色の光を輝度変化させることなく(つまり輝度変化の周波数f=0の光を)放つ。また、青色LED2303が低い周波数で輝度変化しても、緑色蛍光成分2304は、その低い周波数と略同じ周波数fで輝度変化する、強度I=I0の緑色の光を放つ。しかし、青色LED2303が高い周波数で輝度変化すると、その高い周波数と略同じ周波数fで輝度変化する、緑色蛍光成分2304から放たれる緑色の光の強度Iは、緑色蛍光成分2304における残光の影響によって、強度I0よりも小さくなる。その結果、緑色蛍光成分2304から放たれる緑色の光の強度Iは、図115の点線に示すように、その光の輝度変化の周波数fが閾値fb未満の場合には、I=I0に保たれるが、周波数fが閾値fbを超えて高くなると、次第に小さくなる。
また、本実施の形態における赤色蛍光成分2305の残光の継続時間は、緑色蛍光成分2304の残光の継続時間よりも長い。したがって、赤色蛍光成分2305から放たれる赤色の光の強度Iは、図115の実線に示すように、その光の輝度変化の周波数fが、上記閾値fbよりも低い閾値fa未満まで、I=I0に保たれるが、周波数fが閾値fbを超えて高くなると、次第に小さくなる。言い換えれば、赤色蛍光成分2305から放たれる赤色の光は、緑色蛍光成分2304から放たれる緑色の光の周波数帯域のうちの、高周波領域には存在せず、低周波領域にのみ存在する。
より具体的には、本実施の形態における赤色蛍光成分2305には、可視光信号の搬送周波数f1と同一の周波数fで放たれる赤色の光の強度IがI=I1となる蛍光材料が用いられる。搬送周波数f1は、送信機に備えられている青色LED2303による輝度変化の搬送周波数である。また、上述の強度I1は、強度I0の1/3の強度、または、強度I0の-10dBの強度である。例えば、搬送周波数f1は10kHz、または5~100kHzである。
つまり、本実施の形態における送信機は、可視光信号を送信する送信機であって、輝度変化する青色の光を前記可視光信号に含まれる光として放つ青色LEDと、前記青色の光を受けることによって緑色の光を前記可視光信号に含まれる光として放つ緑色蛍光成分と、前記青色の光を受けることによって赤色の光を前記可視光信号に含まれる光として放つ赤色蛍光成分とを備える。そして、前記赤色蛍光成分における残光の継続時間は、緑色蛍光成分における残光の継続時間よりも長い。なお、前記緑色蛍光成分および前記赤色蛍光成分は、前記青色の光を受けることによって黄色の光を前記可視光信号に含まれる光として放つ単一の蛍光体に含まれていてもよい。あるいは、前記緑色蛍光成分は、緑色蛍光体に含まれ、且つ、前記赤色蛍光成分は、前記緑色蛍光体とは別体の赤色蛍光体に含まれていてもよい。
これにより、赤色蛍光成分における残光の継続時間が長いため、青色および緑色の光の輝度変化における周波数よりも低い周波数で赤色の光を輝度変化させることができる。したがって、白色光の可視光信号に含まれる青色および緑色の光の輝度変化における周波数が、赤色レーザ光におけるバーコードの読み取り周波数と同一または近似していても、白色光の可視光信号に含まれる赤色の光の周波数を、バーコードの読み取り周波数から大きく異ならせることができる。その結果、バーコードの読み取りエラーの発生を抑制することができる。
ここで、前記赤色蛍光成分は、青色LEDから放たれる光の輝度変化の周波数よりも低い周波数で輝度変化する赤色の光を放ってもよい。
また、前記赤色蛍光成分は、青色の光を受けることによって赤色の光を放つ赤色蛍光材料と、所定の周波数帯域の光のみを透過ささるローパスフィルタとを備えてもよい。例えば、前記ローパスフィルタは、前記青色LEDから放たれる青色の光のうち、低域の周波数帯域の光のみを透過させて前記赤色蛍光材料に当てる。なお、前記赤色蛍光材料は、前記緑色蛍光成分と同じ残光特性を有するものであってもよい。または、前記ローパスフィルタは、前記青色LEDから放たれた青色の光が前記赤色蛍光材料に当たることによって、前記赤色蛍光材料から放たれる赤色の光のうち、低域の周波数帯域の光のみを透過させる。このようなローパスフィルタを用いる場合であっても、上述と同様に、バーコードの読み取りエラーの発生を抑制することができる。
また、前記赤色蛍光成分は、予め定められた残光特性を有する蛍光材料からなってもよい。例えば、予め定められた残光特性は、(a)前記赤色蛍光成分から放たれる赤色の光の輝度変化の周波数fが0である場合における前記赤色の光の強度をI0とし、(b)前記青色LEDから放たれる光の輝度変化における搬送周波数をf1とする場合、前記赤色の光の周波数fがf=f1のときに、前記赤色の光の強度が、前記I0の1/3以下、または-10dB以下となる、特性である。
これにより、可視光信号に含まれる赤色の光の周波数を、バーコードの読み取り周波数から確実に大きく異ならせることができる。その結果、バーコードの読み取りエラーの発生を確実に抑制することができる。
また、前記搬送周波数f1は略10kHzであってもよい。
これにより、現在実用化されている、可視光信号の送信に用いられる搬送周波数は9.6kHzであるため、この実用化されている可視光信号の送信において、バーコードの読み取りエラーの発生を有効に抑制することができる。
また、前記搬送周波数f1は略5~100kHzであってもよい。
可視光信号を受信する受信機のイメージセンサ(撮像素子)の進歩により、今後の可視光通信において、20kHz、40kHz、80kHzまたは100kHzなどの搬送周波数が用いられることが想定される。したがって、上述の搬送周波数f1を略5~100kHzとすることにより、今後の可視光通信においても、バーコードの読み取りエラーの発生を有効に抑制することができる。
なお、本実施の形態では、緑色蛍光成分および赤色蛍光成分が単一の蛍光体に含まれているか、それらの2つの蛍光成分のそれぞれが別体の蛍光体に含まれているかに関わらず、上記各効果を奏することができる。つまり、単一の蛍光体が用いられる場合であっても、その蛍光体から放たれる赤色の光および緑色の光のそれぞれの残光特性、すなわち周波数特性は異なる。したがって、赤色の光における残光特性または周波数特性が劣り、緑色の光における残光特性または周波数特性が勝る単一蛍光体を用いることによっても、上記各効果を奏することができる。なお、残光特性または周波数特性が劣るとは、残光の継続時間が長い、または、高周波数帯域における光の強度が弱いということであり、残光特性または周波数特性が勝るとは、残光の継続時間が短い、または、高周波数帯域における光の強度が強いということである。
ここで、図114A~図115に示す例では、可視光信号に含まれる赤色の輝度変化の周波数をなまらせることによって、バーコードの読み取りエラーの発生を抑制したが、可視光信号の搬送周波数を高くすることによって、その読み取りエラーの発生を抑制してもよい。
図116は、バーコードの読み取りエラーの発生を抑制するために新たに発生する課題を説明するための図である。
図116に示すように、可視光信号の搬送周波数fcが約10kHzである場合、バーコードの読み取りに用いられる赤色レーザ光の読み取り周波数も約10~20kHzであるため、互いの周波数が干渉し、バーコードの読み取りエラーが発生する。
そこで、可視光信号の搬送周波数fcを約10kHzから例えば40kHzに上げることにより、バーコードの読み取りエラーの発生を抑制することができる。
しかし、可視光信号の搬送周波数fcが約40kHzであれば、受信機が撮影によって可視光信号をサンプリングするためのサンプリング周波数fsは、80kHz以上である必要がある。
つまり、受信機において必要とされるサンプリング周波数fsが高いために、受信機の処理負担が増大するという新たな課題が生じる。そこで、この新たな課題を解決するために、本実施の形態における受信機はダウンサンプリングを行う。
図117は、本実施の形態における受信機で行われるダウンサンプリングを説明するための図である。
本実施の形態における送信機2301は、例えば液晶ディスプレイ、デジタルサイネージまたは照明機器として構成されている。そして、送信機2301は、周波数変調された可視光信号を出力する。このとき、送信機2301は、その可視光信号の搬送周波数fcを例えば40kHzと45kHzとに切り替える。
本実施の形態における受信機2302は、その送信機2301を例えば30fpsのフレームレートで撮影する。このとき、受信機2302は、上記各実施の形態における受信機と同様に、撮影によって得られる各画像(具体的には各フレーム)に輝線が生じるように、短い露光時間で撮影を行う。また、受信機2302の撮影に用いられるイメージセンサには、例えば1000本の露光ラインがある。したがって、1フレームの撮影では、1000本の露光ラインがそれぞれ異なるタイミングに露光を開始することによって、可視光信号がサンプリングされる。その結果、1秒間では、30fps×1000本=30000回のサンプリング(30ks/秒)が行われる。言い換えれば、可視光信号のサンプリング周波数fsは30kHzとなる。
一般的なサンプリング定理にしたがえば、サンプリング周波数fs=30kHzでは、15kHz以下の搬送周波数の可視光信号しか復調することができない。
しかし、本実施の形態における受信機2302は、サンプリング周波数fs=30kHzで、搬送周波数fc=40kHzまたは45kHzの可視光信号をダウンサンプリングする。このダウンサンプリングによって、フレームにはエイリアスが発生するが、本実施の形態における受信機2302は、そのエイリアスを観察および分析することによって、可視光信号の搬送周波数fcを推定する。
図118は、本実施の形態における受信機2302の処理動作を示すフローチャートである。
まず、受信機2302は、被写体を撮影することにより、搬送周波数fc=40kHzまたは45kHzの可視光信号に対して、サンプリング周波数fs=30kHzのダウンサンプリングを行う(ステップS2310)。
次に、受信機2302は、そのダウンサンプリングによって得られるフレームに発生するエイリアスを観察および分析する(ステップS2311)。これにより、受信機2302は、そのエイリアスの周波数を例えば5.1kHzまたは5.5kHzとして特定する。
そして、受信機2302は、その特定されたエイリアスの周波数に基づいて、可視光信号の搬送周波数fcを推定する(ステップS2311)。つまり、受信機2302は、エイリアスから元の周波数を復元する。これにより、受信機2302は、可視光信号の搬送周波数fcを例えば40kHzまたは45kHzとして推定する。
このように、本実施の形態における受信機2302は、ダウンサンプリングと、エイリアスに基づく周波数の復元とを行うことによって、高い搬送周波数の可視光信号を適切に受信することができる。例えば、受信機2302は、サンプリング周波数がfs=30kHzであっても、30kHz~60kHzの搬送周波数の可視光信号を受信することができる。したがって、可視光信号の搬送周波数を、現在実用化されている周波数(約10kHz)から30kHz~60kHzに上げることができる。その結果、可視光信号の搬送周波数とバーコードの読み取り周波数(10~20kHz)とを大きく異ならせることができ、互いの周波数の干渉を抑えることができる。その結果、バーコードの読み取りエラーの発生を抑制することができる。
このような本実施の形態における受信方法は、被写体から情報を取得する受信方法であって、イメージセンサによる前記被写体の撮影によって得られるフレームに、前記イメージセンサに含まれる複数の露光ラインに対応する複数の輝線が前記被写体の輝度変化に応じて生じるように、前記イメージセンサの露光時間を設定する露光時間設定ステップと、前記イメージセンサに含まれる前記複数の露光ラインのそれぞれが順次異なる時刻で露光を開始することを繰り返すことにより、前記イメージセンサが、所定のフレームレートで、且つ、設定された前記露光時間で、輝度変化する前記被写体を撮影する撮影ステップと、前記撮影によって得られるフレームごとに、当該フレームに含まれる前記複数の輝線のパターンによって特定されるデータを復調することにより情報を取得する情報取得ステップとを含む。そして、前記撮影ステップでは、前記複数の露光ラインのそれぞれが順次異なる時刻で露光を開始することを繰り返すことによって、前記被写体の輝度変化によって送信される可視光信号の搬送周波数よりも低いサンプリング周波数で、前記可視光信号をダウンサンプリングし、前記情報取得ステップでは、前記撮影によって得られるフレームごとに、当該フレームに含まれる前記複数の輝線のパターンによって特定されるエイリアスの周波数を特定し、特定された前記エイリアスの周波数から前記可視光信号の周波数を推定し、推定された前記可視光信号の周波数を復調することによって前記情報を取得する。
このような受信方法では、ダウンサンプリングと、エイリアスに基づく周波数の復元とを行うことによって、高い搬送周波数の可視光信号を適切に受信することができる。
また、前記ダウンサンプリングでは、30kHzよりも高い搬送周波数の可視光信号をダウンサンプリングしてもよい。これにより、可視光信号の搬送周波数とバーコードの読み取り周波数(10~20kHz)との干渉を避けることができ、バーコードの読み取りエラーをより効果的に抑制することができる。
(実施の形態15)
図119は、受信装置(撮像装置)の処理動作を示す図である。具体的には、図119は、可視光通信を受信する場合における、通常撮像モードとマクロ撮像モードとの切り替え処理の一例について説明するための図である。
ここで、受信装置1610は、複数の光源(図119では、4つの光源)から構成される送信装置が発光している可視光を受信する。
まず、受信装置1610は、可視光通信を行うモードに遷移した場合、通常撮像モードで撮像部を起動する(S1601)。なお、受信装置1610は、可視光通信を行うモードに遷移した場合、光源を撮像する枠1611を画面に表示する。
所定時間後に、受信装置1610は、撮像部の撮像モードをマクロ撮像モードに切り替える(S1602)。なお、ステップS1601からステップS1602への切り替えのタイミングは、ステップS1601から所定時間後ではなく、受信装置1610が枠1611内に光源が収まるように撮像されたことを判断したときとしてもよい。このようにマクロ撮像モードに切り替えれば、ユーザは、マクロ撮像モードにより画像がぼける前の通常撮像モードでのクリアな画像で光源を枠1611内に収めればよいので、容易に光源を枠1611内に収めることをできる。
次に、受信装置1610は、光源からの信号を受信したか否かを判定する(S1603)。光源からの信号を受信したと判定すれば(S1603でYes)、ステップS1601の通常撮像モードに戻り、光源からの信号を受信していないと判定すれば(S1603でNo)、ステップ1602のマクロ撮像モードを継続する。なお、ステップS1603でYesの場合には、受信した信号に基づいた処理(例えば、受信した信号に示される画像を表示する処理)を行ってもよい。
この受信装置1610によれば、ユーザーがスマートフォンの光源1611の表示部を指でタッチすることにより通常撮像モードからマクロ撮像モードに切り替えることにより、複数の光源をぼけた状態で撮像することができる。このため、マクロ撮像モードで撮像した画像には、通常撮像モードで撮像した場合の画像よりも明るい領域を多く含む。特に、複数の光源のうちの隣接する2つの光源の間では、2つの光源からの光が重なり合うため、図119の(a)の左図に示すようにストライプ状の映像が離れていたため、連続信号として受信できないという課題を、右図のように連続したストライプになるための連続受信信号として、復調することができる。一度に長い符号を受信できるため、レスポンス時間が短くなるという効果がある。図119の(b)のように、撮影画像をまず通常シャッターと通常焦点で撮影すると美しい通常の画像が得られる。しかし文字のように光源が離れているとシャッターを高速化しても連続データがとれないため復調できない。次にシャッターを高速化するとともにレンズの焦点用駆動部を近距離(マクロ)にすると光源がぼけて拡がるため、4つの光源が、つながるため、データが受信できる。次に焦点を戻して、シャッター速度を通常に戻すと元の美しい画像が得られる。(c)のように表示部には、美しい画像をメモリーに記録し、表示することにより、表示部には美しい画像だけが表示されるという効果がある。通常撮像モードで撮像した画像よりもマクロ撮像モードで撮像した画像の方が所定の明るさより明るい領域を多く含む。よって、マクロ撮像モードでは、その被写体に対して輝線を生成することが可能な露光ラインの数を増やすことができる。
図120は、受信装置(撮像装置)の処理動作を示す図である。具体的には、図120は、可視光通信を受信する場合における、通常撮像モードとマクロ撮像モードとの切り替え処理の別の一例について説明するための図である。
ここで、受信装置1620は、複数の光源(図120では、4つの光源)から構成される送信装置が発光している可視光を受信する。
まず、受信装置1620は、可視光通信を行うモードに遷移した場合、通常撮像モードで撮像部を起動し、受信装置1620の画面に表示されている画像1622よりも広い範囲の画像1623を撮像する。そして、撮像した画像1623を示す画像データと、当該画像1623を撮像したときの受信装置1620のジャイロセンサ、地磁気センサ及び加速度センサにより検出された受信装置1620の姿勢を示す姿勢情報とをメモリに保持する(S1611)。なお、撮像した画像1623は、受信装置1620の画面に表示されている画像1622を基準として上下方向及び左右方向に所定の幅だけ広い範囲の画像である。また、受信装置1620は、可視光通信を行うモードに遷移した場合、光源を撮像する枠1621を画面に表示する。
所定時間後に、受信装置1620は、撮像部の撮像モードをマクロ撮像モードに切り替える(S1612)。なお、ステップS1611からステップS1612への切り替えのタイミングは、ステップS1611から所定時間後ではなく、画像1623を撮像し、撮像した画像1623を示す画像データがメモリに保持されたことを判断したときとしてもよい。このとき、受信装置1620は、メモリに保持された画像データに基づいて画像1623のうちの受信装置1620の画面サイズに対応するサイズの画像1624を表示する。
なお、このとき受信装置1620に表示される画像1624は、画像1623のうちの一部の画像であって、ステップS1611で取得された姿勢情報で示される受信装置1620の姿勢(白破線で示される位置)と、現在の受信装置1620の姿勢との差分から現在の受信装置1620により撮像されていると予測される領域の画像である。つまり、画像1624は、画像1623のうちの一部の画像であって、実際にマクロ撮像モードで撮像されている画像1625の撮像対象に対応する領域の画像である。つまり、ステップS1612では、ステップS1611の時点から変化した姿勢(撮像方向)を取得し、取得した現在の姿勢(撮像方向)から現在撮像されていると推測される撮像対象を特定し、予め撮像した画像1623から現在の姿勢(撮像方向)に応じた画像1624を特定し、画像1624を表示する処理を行っている。このため、受信装置1620は、図120の画像1623で示すように、白破線で示す位置から白抜き矢印の方向に受信装置1620が移動した場合に、当該移動量に応じて画像1623から切り出す画像1624の領域を決定し、決定された領域における画像1623である画像1624を表示できる。
これにより、受信装置1620は、マクロ撮像モードで撮像している場合であっても、マクロ撮像モードで撮像されている画像1625を表示せずに、よりクリアな通常撮像モードで撮像した画像1623から、現在の受信装置1620の姿勢に応じて切り出した画像1624を表示できる。焦点をぼかした画像から距離が離れた複数の光源から、連続した可視光情報を得ると同時に、記憶した通常面像を表示部に表示させる本発明の方式においては、ユーザがスマートフォンを用いて撮影する時、手振れが発生して、実際の撮影画像とメモリから表示する静止画像の方向がずれて、目標とする光源にユーザーが方向を合わせることができないという課題が発生することが予想される。この場合、光源からのデータを受信できなくなるため対策が必要である。しかし、改良した本発明により、手振れしても、画像揺動検知手段や振動ジャイロ当の揺動検出手段により、手振れを検知して、静止画像の中の目標画像が所定の方向にシフトされカメラの方向とのずれがユーザーにわかる。この表示により、ユーザーが目標とする光源にカメラを向けることが可能となるため、通常画像を表示しながら分割された複数の光源を、光学的に連結させて撮影でき、連続的に信号を受信することができる。これにより、通常画像を表示させるから複数に分割された光源を受信することができる。この場合、複数の光源が枠1621に合うように受信装置1620の姿勢を調整することが容易にできる。なお、焦点をボケさせる場合、光源が分散されるため、等価的に輝度がおちるため、カメラのISO等の感度を上げることにより、より確実に可視光データを受信できるという効果がある。
次に、受信装置1620は、光源からの信号を受信したか否かを判定する(S1613)。光源からの信号を受信したと判定すれば(S1613でYes)、ステップS1611の通常撮像モードに戻り、光源からの信号を受信していないと判定すれば(S1613でNo)、ステップ1612のマクロ撮像モードを継続する。なお、ステップS1613でYesの場合には、受信した信号に基づいた処理(例えば、受信した信号に示される画像を表示する処理)を行ってもよい。
この受信装置1620においても受信装置1610と同様に、マクロ撮像モードにおいてより明るい領域を含む画像を撮像できる。このため、マクロ撮像モードでは、その被写体に対して輝線を生成することが可能な露光ラインの数を増やすことができる。
図121は、受信装置(撮像装置)の処理動作を示す図である。
ここで、送信装置1630は、例えば、テレビなどの表示装置であり、所定時間間隔Δ1630で可視光通信により異なる送信IDを送信している。具体的には、時刻t1631、t1632、t1633、t1634において、それぞれ表示される画像1631、1632、1633、1634に対応するデータにそれぞれ紐付けられた送信IDであるID1631、ID1632、ID1633、ID1634を送信する。つまり、送信装置1630からは、ID1631~ID1634が所定時間間隔Δt1630で次々に送信される。
受信装置1640は、可視光通信により受信した送信IDに基づいてサーバ1650に、各送信IDに紐付けられたデータを要求し、サーバからデータを受信し、当該データに対応した画像を表示する。具体的には、ID1631、ID1632、ID1633、ID1634にそれぞれ対応した、画像1641、1642、1643、1644を、それぞれ時刻t1631、t1632、t1633、t1634において表示する。
受信装置1640は、時刻t1631で受信したID1631を取得した場合、サーバ1650から、その後の時刻t1632~t1634で送信装置1630から送信される予定の送信IDを示すID情報を取得してもよい。この場合、受信装置1640は、取得したID情報を用いることで、送信装置1630から送信IDをその都度受信しなくても、時刻t1632~t1634でのID1632~ID1634に紐付けられたデータをサーバ1650に要求し、受信したデータを各時刻t1632~t1634で表示することができる。
また、受信装置1640は、サーバ1650からその後の時刻t1632~t1634で送信装置1630から送信される予定の送信IDを示す情報を取得しなくても、時刻t1631においてID1631に対応するデータを要求すれば、サーバ1650からその後の時刻t1632~t1634に対応する送信IDに紐付けられたデータを受信し、受信したデータを各時刻t1632~t1634で表示するようにしてもよい。つまり、サーバ1650は、受信装置1640から時刻t1631に送信されたID1631に紐付けられたデータの要求を受信した場合、その後の時刻t1632~t1634に対応する送信IDに紐付けられたデータを受信装置1640からの要求がなくても受信装置1640に対して各時刻t1632~t1634において送信する。つまり、この場合、サーバ1650は、各時刻t1631~1634と、各時刻t1631~1634に対応する送信IDに紐付けられたデータとが関連付けられた関連付け情報を保持しており、関連付け情報に基づいて所定の時刻で当該所定の時刻に関連付けられた所定のデータを送信する。
このように、受信装置1640は、時刻t1631において送信ID1631を可視光通信により取得できれば、その後の時刻t1632~t1634では、可視光通信を行わなくてもサーバ1650から各時刻t1632~t1634に対応するデータを受信できる。このため、ユーザは、可視光通信により送信IDを取得するために送信装置1630に受信装置1640を向け続ける必要がなくなり、容易に受信装置1640にサーバ1650から取得したデータを表示させることができる。この場合、受信装置1640は、サーバーからIDに対応するデータを毎回取得すると、サーバーからの時間遅れが生じてレスポンス時間が長くなる。従って、レスポンスを早くするためには、サーバー等から予め、IDに対応したデータを受信機の記憶部に記憶しておき、記憶部の中のIDに対応するデータを表示することにより、レスポンス時間をはやくすることができる。この方式においては、可視光送信機からの送信信号に次のIDを出力する時間情報を入れておけば、受信機側は、連続的に可視光信号を受信しなくても、その時間になれば、次のIDの送信時間を知ることができるため、受信装置を光源の方にずーっと、向けておく必要がなくなるという効果がある。この方式は、可視光を受信したときに、送信機側の時間情報(時計)を受信機側の時間情報(時計)の同期をとるだけで、同期後は、送信機のデータを受け取らなくても、送信機と同期した画面を連続的に表示できるという効果がある。
また、上述の例では、受信装置1640は、時刻t1631、t1632、t1633、およびt1634のそれぞれにおいて、送信IDであるID1631、ID1632、ID1633およびID1634のそれぞれ対応した、画像1641、1642、1643、1644をそれぞれ表示した。ここで、受信装置1640は、図122に示すように、上記各時刻において画像だけでなく他の情報を提示してもよい。つまり、受信装置1640は、時刻t1631において、ID1631に対応した画像1641を表示するとともに、そのID1631に対応した音または音声を出力する。このときさらに、受信装置1640は、その画像に映し出されている例えば商品の購入サイトを表示してもよい。このような音の出力および購入サイトの表示は、時刻t1631以外の時刻t1632、t1633、およびt1634のそれぞれにおいても、同様に行われる。
次に図119の(b)のように立体用の左右2つのカメラを搭載したスマートフォンの場合は、左眼用で通常のシャッター速度、通常の焦点で通常の画質の画像を表示する。同時に右眼用カメラでは、左眼より高速のシャッターで、かつ/もしくは、短い距離の焦点やマクロに設定し、本発明のストライプ状の輝線を得て、データを復調する。これにより、表示部には通常の画質の画像が表示されるとともに、右眼カメラにより、距離的に分割された複数の光源の光通信データを受信できるという効果が得られる。
(実施の形態16)
ここで、音声同期再生の応用例について以下に説明する。
図123は、実施の形態16におけるアプリケーションの一例を示す図である。
例えばスマートフォンとして構成される受信機1800aは、例えば街頭デジタルサイネージとして構成される送信機1800bから送信された信号(可視光信号)を受信する。つまり、受信機1800aは、送信機1800bによる画像再生のタイミングを受信する。受信機1800aは、その画像再生と同じタイミングで、音声を再生する。言い換えれば、受信機1800aは、送信機1800bによって再生される画像と音声とが同期するように、その音声の同期再生を行う。なお、受信機1800aは、送信機1800bによって再生される画像(再生画像)と同一の画像、または、その再生画像に関連する関連画像を、音声とともに再生してもよい。また、受信機1800aは、受信機1800aに接続された機器に、音声などの再生をさせてもよい。また、受信機1800aは、可視光信号を受信した後には、その可視光信号に対応付けられている音声または関連画像などのコンテンツをサーバからダウンロードしてもよい。受信機1800aは、そのダウンロード後に同期再生を行う。
これにより、送信機1800bからの音声が聞こえない場合や、街頭音声再生が禁止されているため送信機1800bからの音声が再生されていない場合でも、ユーザは、送信機1800bの表示に合わせた音声を聞くことができる。また、音声到達までに時間がかかるような距離がある場合でも、表示に合わせた音声を聞くことが出来る。
ここで、音声同期再生による多言語対応について以下に説明する。
図124は、実施の形態16におけるアプリケーションの一例を示す図である。
受信機1800aおよび受信機1800cのそれぞれは、その受信機に設定された言語の音声であって、送信機1800dに表示されている例えば映画などの映像に対応する音声を、サーバから取得して再生する。具体的には、送信機1800dは、表示されている映像を識別するためのIDを示す可視光信号を受信機に送信する。受信機は、その可視光信号を受信すると、その可視光信号に示されるIDと、自らに設定されている言語とを含む要求信号をサーバに送信する。受信機は、その要求信号に対応する音声をサーバから取得して再生する。これにより、ユーザは、自分の設定した言語で送信機1800dに表示された作品を楽しむことが出来る。
ここで、音声同期方法について以下に説明する。
図125および図126は、実施の形態16における送信信号の例と音声同期方法の例とを示す図である。
それぞれ異なるデータ(例えば図125に示すデータ:1~6など)は、一定時間(N秒)ごとの時刻に関連付けられている。これらのデータは、例えば、時間を識別するためのIDであってもよく、時間であってもよく、音声データ(例えば64Kbpsのデータ)であってもよい。以下、データがIDであることを前提に説明する。それぞれ異なるIDは、IDに付随する付加情報部分が異なったものであるとしても良い。
IDを構成するパケットは異なっているほうが望ましい。そのためIDは連続していないほうが望ましい。もしくは、IDをパケット化する際に、非連続な部分を一つのパケットとして構成するパケット化方法が望ましい。誤り訂正信号は、連続したIDであっても異なるパターンとなる傾向が高いため、誤り訂正信号を一つのパケットにまとめるのではなく、複数のパケットに分散させて構成するとしても良い。
送信機1800dは、例えば表示している画像の再生時刻に合わせてIDを送信する。受信機は、IDが変更されたタイミングを検出することで、送信機1800dの画像の再生時刻(同期時刻)を認識することができる。
(a)の場合は、ID:1とID:2の変化時点を受信しているため、正確に同期時刻を認識することができる。
IDが送信されている時間Nが長い場合は、このような機会が少なく、(b)のようにIDが受信されることがある。この場合でも、以下の方法で同期時刻を認識することができる。
(b1)IDが変化した受信区間の中点をID変化点と想定する。また、過去に推定したID変化点から時間Nの整数倍後の時刻もID変化点と推定し、複数のID変化点の中点をより正確なID変化点と推定する。このような推定のアルゴリズムにより、徐々に正確なID変化点を推定することができる。
(b2)上記に加え、IDが変化しなかった受信区間、及び、その時間Nの整数倍後の時刻はID変化点が含まれないと推定することで、徐々にID変化点である可能性のある区間が減り、正確なID変化点を推定することができる。
Nを0.5秒以下に設定することで、正確に同期させることができる。
Nを2秒以下に設定することで、ユーザに遅延を感じさせずに同期させることができる。
Nを10秒以下に設定することで、IDの浪費を抑えて同期させることができる。
図126は、実施の形態16における送信信号の例を示す図である。
図126では、時間パケットによって同期を行うことで、IDの浪費を避けることができる。時間パケットは、送信された時刻を保持しているパケットである。長い時間を表現する必要がある場合は、細かい時間を表す時間パケット1と粗い時間を表す時間パケット2に分割して時間パケットを構成する。例えば、時間パケット2は、時刻のうちの時および分を示し、時間パケット1は、時刻のうちの秒のみを示す。時刻を示すパケットを3以上の時間パケットに分割するとしても良い。粗い時間は必要性が薄いため、細かい時間パケットを荒い時間パケットより多く送信することで、受信機は、素早く正確に同期時刻を認識することができる。
つまり、本実施の形態では、可視光信号は、時刻のうちの時および分を示す第2の情報(時間パケット2)と、時刻のうちの秒を示す第1の情報(時間パケット1)とを含むことによって、可視光信号が送信機1800dから送信される時刻を示す。そして、受信機1800aは、第2の情報を受信するとともに、その第2の情報を受信する回数よりも多くの回数だけ第1の情報を受信する。
ここで、同期時刻調整について以下に説明する。
図127は、実施の形態16における受信機1800aの処理フローの一例を示す図である。
信号が送信されてから受信機1800aで処理され、音声または動画が再生されるまでにはある程度の時間がかかるため、この処理時間を見越して音声または動画を再生する処理を行うことで、正確に同期再生を行うことができる。
まず、受信機1800aには、処理遅延時間が指定される(ステップS1801)。これは、処理プログラム中に保持されていてもよいし、ユーザが指定してもよい。ユーザが補正を行うことで、受信機個体に合わせたより正確な同期が実現可能となる。この処理遅延時間は、受信機のモデル毎、受信機の温度やCPU使用割合によって変化させることで、より正確に同期を行うことが出来る。
受信機1800aは、時間パケットを受信したか否か、または、音声同期用として関連付けられたIDを受信したか否かを判定する(ステップS1802)。ここで、受信機1800aは、受信したと判定すると(ステップS1802のY)、さらに、処理待ち画像があるか否かを判定する(ステップS1804)。処理待ち画像があると判定すると(ステップS1804のY)、受信機1800aは、その処理待ち画像を廃棄し、または、処理待ち画像の処理を後に回して、取得された最新の画像からの受信処理を行う(ステップS1805)。これにより、処理待ち量による不測の遅延を回避することができる。
受信機1800aは、可視光信号(具体的には輝線)が画像中のどの位置にあるのかを計測する(ステップS1806)。つまり、イメージセンサにおける最初の露光ラインから、露光ラインに垂直な方向のどの位置に信号が現れているかを計測することで、画像取得開始時刻から信号受信時刻までの時間差(画像内遅延時間)を計算することができる。
受信機1800aは、認識した同期時刻に、処理遅延時間と画像内遅延時間を加えた時刻の音声または動画を再生することで、正確に同期再生を行うことができる(ステップS1807)。
一方、ステップS1802において、受信機1800aは、時間パケットまたは音声同期用IDを受信していないと判定すると、撮像によって得られた画像から信号を受信する(ステップS1803)。
図128は、実施の形態16における受信機1800aのユーザインタフェースの一例を示す図である。
ユーザは、図128の(a)に示すように、受信機1800aに表示されたボタンBt1~Bt4の何れかを押すことで、上述の処理遅延時間を調整することができる。また、図128の(b)のようにスワイプ動作で処理遅延時間を設定できるとしてもよい。これにより、ユーザの感覚に基づいてより正確に同期再生を行うことができる。
ここで、イヤホン限定再生について以下に説明する。
図129は、実施の形態16における受信機1800aの処理フローの一例を示す図である。
この処理フローによって示されるイヤホン限定再生によって、周囲に迷惑をかけずに音声再生を行うことができる。
受信機1800aは、イヤホン限定の設定が行われているかどうかを確認する(ステップS1811)。イヤホン限定の設定が行われている場合には、例えば、受信機1800aにイヤホン限定の設定がなされている。あるいは、受信された信号(可視光信号)中にイヤホン限定である設定がされている。または、イヤホン限定であることが、受信された信号に関連付けられてサーバまたは受信機1800aに記録されている。
受信機1800aは、イヤホン限定されていることを確認すると(ステップS1811のY)、イヤホンが受信機1800aに接続されているか否かを判定する(ステップS1813)。
受信機1800aは、イヤホン限定がされていないことを確認すると(ステップS1811のN)、または、イヤホンが接続されていると判定すると(ステップS1813のY)、音声を再生する(ステップS1812)。音声を再生するときには、受信機1800aは、音量が設定範囲内となるようにその音量を調整する。この設定範囲は、イヤホン限定の設定と同様に設定されている。
受信機1800aは、イヤホンが接続されていないと判定すると(ステップS1813のN)、イヤホンの接続をユーザに促す通知を行う(ステップS1814)。この通知は、例えば、画面表示、音声出力または振動によって行われる。
また、受信機1800aは、強制的に音声再生を行うことを禁じる設定がされていない場合には、強制再生のためのインタフェース用意し、ユーザが強制再生の操作を行ったか否かを判定する(ステップS1815)。ここで、強制再生の操作を行ったと判定すると(ステップS1815のY)、受信機1800aは、イヤホンが接続されていない場合でも音声を再生する(ステップS1812)。
一方、強制再生の操作を行っていないと判定すると(ステップS1815のN)、受信機1800aは、あらかじめ受信した音声データ、および解析した同期時刻を保持しておくことで、イヤホンが接続された際に速やかに音声の同期再生を行う。
図130は、実施の形態16における受信機1800aの処理フローの他の例を示す図である。
受信機1800aは、まず、送信機1800dからIDを受信する(ステップS1821)。つまり、受信機1800aは、送信機1800dのID、または、送信機1800dに表示されているコンテンツのID、を示す可視光信号を受信する。
次に、受信機1800aは、その受信したIDに関連付けられている情報(コンテンツ)を、サーバからダウンロードする(ステップS1822)。または、受信機1800aは、受信機1800aの内部にあるデータ保持部からその情報を読み出す。以下、この情報を関連情報という。
次に、受信機1800aは、その関連情報に含まれている同期再生フラグがONを示しているか否かを判定する(ステップS1823)。ここで、同期再生フラグがONを示していないと判定すると(ステップS1823のN)、受信機1800aは、その関連情報によって示される内容を出力する(ステップS1824)。つまり、その内容が画像である場合には、受信機1800aは画像を表示し、その内容が音声である場合には、受信機1800aは音声を出力する。
一方、受信機1800aは、同期再生フラグがONを示していると判定すると(ステップS1823のY)、さらに、その関連情報に含まれている時刻合わせモードが、送信機基準モードに設定されているか、絶対時刻モードに設定されているかを判定する(ステップS1825)。絶対時刻モードに設定されていると判定すると、受信機1800aは、最後の時刻合わせが現在時刻から一定時間以内に行われたか否かを判定する(ステップS1826)。このときの時刻合わせは、所定の方法によって時刻情報を入手し、その時刻情報を用いて、受信機1800aに備えられている時計の時刻を、基準クロックの絶対時刻に合わせる処理である。所定の方法は、例えばGPS(Global Positioning System)電波またはNTP(Network Time Protocol)電波を用いた方法である。なお、上述の現在時刻は、端末装置である受信機1800aが可視光信号を受信した時刻であってもよい。
受信機1800aは、最後の時刻合わせが一定時間以内に行われたと判定すると(ステップS1826のY)、受信機1800aの時計の時刻に基づいて関連情報を出力することにより、送信機1800dに表示されるコンテンツと関連情報とを同期させる(ステップS1827)。関連情報によって示される内容が例えば動画像である場合には、受信機1800aは、送信機1800dに表示されるコンテンツに同期するように、その動画像を表示する。関連情報によって示される内容が例えば音声である場合には、受信機1800aは、送信機1800dに表示されるコンテンツに同期するように、その音声を出力する。例えば、関連情報が音声を示す場合には、関連情報は、音声を構成する各フレームを含み、それらのフレームにはタイムスタンプが付けられている。受信機1800aは、自らの時計の時刻に該当するタイプスタンプが付けられているフレームを再生することによって、送信機1800dのコンテンツに同期された音声を出力する。
受信機1800aは、最後の時刻合わせが一定時間以内に行われていないと判定すると(ステップS1826のN)、所定の方法で時刻情報の入手を試み、その時刻情報を入手することができたか否かを判定する(ステップS1828)。ここで、時刻情報を入手することができたと判定すると(ステップS1828のY)、受信機1800aは、その時刻情報を用いて、受信機1800aの時計の時刻を更新する(ステップS1829)。そして、受信機1800aは、上述のステップS1827の処理を実行する。
また、ステップS1825において、時刻合わせモードが送信機基準モードであると判定したとき、または、ステップS1828において、時刻情報を入手することができなかったと判定すると(ステップS1828のN)、受信機1800aは、送信機1800dから時刻情報を取得する(ステップS1830)。つまり、受信機1800aは、可視光通信によって同期信号である時刻情報を送信機1800dから取得する。例えば、同期信号は、図126に示す時間パケット1および時間パケット2である。または、受信機1800aは、Bluetooth(登録商標)またはWi-Fiなどの電波によって時刻情報を送信機1800dから取得する。そして、受信機1800aは、上述のステップS1829およびS1827の処理を実行する。
本実施の形態では、ステップS1829,S1830のように、GPS電波またはNTP電波によって、受信機1800aである端末装置の時計と基準クロックとの間で同期をとるための処理(時刻合わせ)が行われた時刻が、端末装置が可視光信号を受信した時刻から所定の時間より前である場合、送信機1800dから送信された可視光信号が示す時刻により、端末装置の時計と、送信機の時計との間で同期をとる。これにより、端末装置は、送信機1800dで再生される送信機側コンテンツと同期するタイミングに、コンテンツ(動画または音声)を再生することができる。
図131Aは、実施の形態16における同期再生の具体的な方法を説明するための図である。同期再生の方法には、図131Aに示す方法a~eがある。
(方法a)
方法aでは、送信機1800dは、上記各実施の形態と同様に、ディスプレイを輝度変化させることよって、コンテンツIDおよびコンテンツ再生中時刻を示す可視光信号を出力する。コンテンツ再生中時刻は、コンテンツIDが送信機1800dから送信されたときに送信機1800dによって再生されている、コンテンツの一部であるデータの再生時刻である。データは、コンテンツが動画像であれば、その動画像を構成するピクチャまたはシーケンスなどであり、コンテンツが音声であれば、その音声を構成するフレームなどである。再生時刻は、例えば、コンテンツの先頭からの再生時間を時刻として示す。コンテンツが動画像であれば、再生時刻はPTS(Presentation Time Stamp)としてコンテンツに含まれている。つまり、コンテンツには、そのコンテンツを構成するデータごとに、そのデータの再生時刻(表示時刻)が含まれている。
受信機1800aは、上記各実施の形態と同様に送信機1800dを撮影することによって、その可視光信号を受信する。そして、受信機1800aは、可視光信号によって示されるコンテンツIDを含む要求信号をサーバ1800fに送信する。サーバ1800fは、その要求信号を受信し、要求信号に含まれるコンテンツIDに対応付けられているコンテンツを受信機1800aに送信する。
受信機1800aは、そのコンテンツを受信すると、そのコンテンツを、(コンテンツ再生中時刻+ID受信からの経過時間)の時点から再生する。ID受信からの経過時間は、コンテンツIDが受信機1800aによって受信されたときからの経過時間である。
(方法b)
方法bでは、送信機1800dは、上記各実施の形態と同様に、ディスプレイを輝度変化させることよって、コンテンツIDおよびコンテンツ再生中時刻を示す可視光信号を出力する。受信機1800aは、上記各実施の形態と同様に送信機1800dを撮影することによって、その可視光信号を受信する。そして、受信機1800aは、可視光信号によって示されるコンテンツIDおよびコンテンツ再生中時刻を含む要求信号をサーバ1800fに送信する。サーバ1800fは、その要求信号を受信し、要求信号に含まれるコンテンツIDに対応付けられているコンテンツのうち、コンテンツ再生中時刻以降の一部のコンテンツのみを受信機1800aに送信する。
受信機1800aは、その一部のコンテンツを受信すると、その一部のコンテンツを、(ID受信からの経過時間)の時点から再生する。
(方法c)
方法cでは、送信機1800dは、上記各実施の形態と同様に、ディスプレイを輝度変化させることよって、送信機IDおよびコンテンツ再生中時刻を示す可視光信号を出力する。送信機IDは、送信機を識別するための情報である。
受信機1800aは、上記各実施の形態と同様に送信機1800dを撮影することによって、その可視光信号を受信する。そして、受信機1800aは、可視光信号によって示される送信機IDを含む要求信号をサーバ1800fに送信する。
サーバ1800fは、送信機IDごとに、その送信機IDの送信機によって再生されるコンテンツのタイムテーブルである再生予定表を保持している。さらに、サーバ1800fは時計を備えている。このようなサーバ1800fは、その要求信号を受信すると、その要求信号に含まれる送信機IDと、サーバ1800fの時計の時刻(サーバ時刻)とに対応付けられているコンテンツを、再生中のコンテンツとして、再生予定表から特定する。そして、サーバ1800fは、そのコンテンツを受信機1800aに送信する。
受信機1800aは、そのコンテンツを受信すると、そのコンテンツを、(コンテンツ再生中時刻+ID受信からの経過時間)の時点から再生する。
(方法d)
方法dでは、送信機1800dは、上記各実施の形態と同様に、ディスプレイを輝度変化させることよって、送信機IDおよび送信機時刻を示す可視光信号を出力する。送信機時刻は、送信機1800dに備えられている時計によって示される時刻である。
受信機1800aは、上記各実施の形態と同様に送信機1800dを撮影することによって、その可視光信号を受信する。そして、受信機1800aは、可視光信号によって示される送信機IDおよび送信機時刻を含む要求信号をサーバ1800fに送信する。
サーバ1800fは、上述の再生予定表を保持している。このようなサーバ1800fは、その要求信号を受信すると、その要求信号に含まれる送信機IDと送信機時刻とに対応付けられているコンテンツを、再生中のコンテンツとして、再生予定表から特定する。さらに、サーバ1800fは、送信機時刻からコンテンツ再生中時刻を特定する。つまり、サーバ1800fは、特定されたコンテンツの再生開始時刻を再生予定表から見つけ出し、送信機時刻と再生開始時刻との間の時間をコンテンツ再生中時刻として特定する。そして、サーバ1800fは、そのコンテンツおよびコンテンツ再生中時刻を受信機1800aに送信する。
受信機1800aは、そのコンテンツおよびコンテンツ再生中時刻を受信すると、そのコンテンツを、(コンテンツ再生中時刻+ID受信からの経過時間)の時点から再生する。
このように、本実施の形態では、可視光信号は、その可視光信号が送信機1800dから送信される時刻を示す。したがって、端末装置である受信機1800aは、可視光信号が送信機1800dから送信される時刻(送信機時刻)に対応付けられたコンテンツを受信することができる。例えば、送信機時刻が5時43分であれば、5時43分に再生されるコンテンツを受信することができる。
また、本実施の形態では、サーバ1800fは、それぞれ時刻に関連付けられている複数のコンテンツを有している。しかし、可視光信号が示す時刻に関連付けられたコンテンツがサーバ1800fに存在しない場合がある。このような場合には、端末装置である受信機1800aは、その複数のコンテンツのうち、可視光信号が示す時刻に最も近く、かつ、可視光信号が示す時刻の後の時刻に関連付けられているコンテンツを受信してもよい。これにより、可視光信号が示す時刻に関連付けられたコンテンツがサーバ1800fに存在しなくても、そのサーバ1800fにある複数のコンテンツの中から、適切なコンテンツを受信することができる。
また、本実施の形態における再生方法は、光源の輝度変化により可視光信号を送信する送信機1800dから、可視光信号を受信機1800a(端末装置)のセンサにより受信する信号受信ステップと、受信機1800aから、可視光信号に対応付けられたコンテンツを要求するための要求信号をサーバ1800fに送信する送信ステップと、受信機1800aが、サーバ1800fからコンテンツを受信するコンテンツ受信ステップと、コンテンツを再生する再生ステップとを含む。可視光信号は、送信機IDと送信機時刻とを示す。送信機IDはID情報である。また、送信機時刻は、送信機1800dの時計によって示される時刻であり、その可視光信号が送信機1800dから送信される時刻である。そして、コンテンツ受信ステップでは、受信機1800aは、可視光信号によって示される送信機IDおよび送信機時刻に対応付けられたコンテンツを受信する。これにより、受信機1800aは、送信機IDおよび送信機時刻に対して適切なコンテンツを再生することができる。
(方法e)
方法eでは、送信機1800dは、上記各実施の形態と同様に、ディスプレイを輝度変化させることよって、送信機IDを示す可視光信号を出力する。
受信機1800aは、上記各実施の形態と同様に送信機1800dを撮影することによって、その可視光信号を受信する。そして、受信機1800aは、可視光信号によって示される送信機IDを含む要求信号をサーバ1800fに送信する。
サーバ1800fは、上述の再生予定表を保持し、さらに、時計を備えている。このようなサーバ1800fは、その要求信号を受信すると、その要求信号に含まれる送信機IDとサーバ時刻とに対応付けられているコンテンツを、再生中のコンテンツとして、再生予定表から特定する。なお、サーバ時刻は、サーバ1800fの時計によって示される時刻である。さらに、サーバ1800fは、特定されたコンテンツの再生開始時刻も再生予定表から見つけ出す。そして、サーバ1800fは、そのコンテンツおよびコンテンツ再生開始時刻を受信機1800aに送信する。
受信機1800aは、そのコンテンツおよびコンテンツ再生開始時刻を受信すると、そのコンテンツを、(受信機時刻-コンテンツ再生開始時刻)の時点から再生する。なお、受信機時刻は、受信機1800aに備えられている時計によって示される時刻である。
このように、本実施の形態における再生方法は、光源の輝度変化により可視光信号を送信する送信機1800dから、可視光信号を受信機1800a(端末装置)のセンサにより受信する信号受信ステップと、受信機1800aから、可視光信号に対応付けられたコンテンツを要求するための要求信号をサーバ1800fに送信する送信ステップと、受信機1800aが、各時刻と、各時刻に再生されるデータとを含むコンテンツを、サーバ1800fから受信するコンテンツ受信ステップと、そのコンテンツのうち、受信機1800aに備えられている時計の時刻に該当するデータを再生する再生ステップとを含む。したがって、受信機1800aは、そのコンテンツにおけるデータを、間違った時刻に再生してしまうことなく、そのコンテンツに示される正しい時刻に、適切に再生することができる。また、送信機1800dにおいても、そのコンテンツに関連するコンテンツ(送信機側コンテンツ)が再生されていれば、受信機1800aは、コンテンツをその送信機側コンテンツに適切に同期させて再生することができる。
なお、上記方法c~eであっても、方法bのように、サーバ1800fは、コンテンツのうち、コンテンツ再生中時刻以降の一部のコンテンツのみを受信機1800aに送信してもよい。
また、上記方法a~eでは、受信機1800aは、サーバ1800fに要求信号を送信して、サーバ1800fから必要なデータを受信するが、このよう送受信をすることなく、サーバ1800fにあるデータを予め保持しておいてもよい。
図131Bは、上述の方法eによって同期再生を行う再生装置の構成を示すブロック図である。
再生装置B10は、上述の方法eによって同期再生を行う受信機1800aまたは端末装置であって、センサB11と、要求信号送信部B12と、コンテンツ受信部B13と、時計B14と、再生部B15とを備えている。
センサB11は、例えばイメージセンサであって、光源の輝度変化により可視光信号を送信する送信機1800dから、その可視光信号を受信する。要求信号送信部B12は、可視光信号に対応付けられたコンテンツを要求するための要求信号をサーバ1800fに送信する。コンテンツ受信部B13は、各時刻と、各時刻に再生されるデータとを含むコンテンツを、サーバ1800fから受信する。再生部B15は、そのコンテンツのうち、時計B14の時刻に該当するデータを再生する。
図131Cは、上述の方法eによって同期再生を行う端末装置の処理動作を示すフローチャートである。
再生装置B10は、上述の方法eによって同期再生を行う受信機1800aまたは端末装置であって、ステップSB11~SB15の各処理を実行する。
ステップSB11では、光源の輝度変化により可視光信号を送信する送信機1800dから、その可視光信号を受信する。ステップSB12では、可視光信号に対応付けられたコンテンツを要求するための要求信号をサーバ1800fに送信する。ステップSB13では、各時刻と、各時刻に再生されるデータとを含むコンテンツを、サーバ1800fから受信する。ステップSB15では、そのコンテンツのうち、時計B14の時刻に該当するデータを再生する。
このように、本実施の形態における再生装置B10および再生方法では、コンテンツにおけるデータを、間違った時刻に再生してしまうことなく、そのコンテンツに示される正しい時刻に、適切に再生することができる。
なお、本実施の形態において、各構成要素は、専用のハードウェアで構成されるか、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPUまたはプロセッサなどのプログラム実行部が、ハードディスクまたは半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。ここで、本実施の形態の再生装置B10などを実現するソフトウェアは、図131Cに示すフローチャートに含まれる各ステップをコンピュータに実行させるプログラムである。
図132は、実施の形態16における同期再生の事前準備を説明するための図である。
受信機1800aは、同期再生を行うために、受信機1800aに備えられている時計の時刻を基準クロックの時刻に合わせる時刻合わせを行う。この時刻合わせのために、受信機1800aは、以下の(1)~(5)の処理を行う。
(1)受信機1800aは、信号を受信する。この信号は、送信機1800dのディスプレイの輝度変化によって送信される可視光信号であっても、無線機器からのWi-FiまたはBluetooth(登録商標)に基づく電波信号であってもよい。または、受信機1800aは、このような信号を受信する代わりに、受信機1800aの位置を示す位置情報を例えばGPSなどによって取得する。そして、受信機1800aは、その位置情報によって、受信機1800aが予め定められた場所または建物に入ったことを認識する。
(2)受信機1800aは、上記信号を受信すると、または、予め定められた場所に入ったことを認識すると、その信号または場所などに関連付けられているデータ(関連情報)を要求する要求信号をサーバ(可視光ID解決サーバ)1800fに送信する。
(3)サーバ1800fは、上述のデータと、受信機1800aに時刻合わせをさせるための時刻合わせ要求とを受信機1800aに送信する。
(4)受信機1800aは、データと時刻合わせ要求とを受信すると、時刻合わせ要求をGPSタイムサーバ、NTPサーバまたは、電気通信事業者(キャリア)の基地局に送信する。
(5)上記サーバまたは基地局は、その時刻合わせ要求を受信すると、現在時刻(基準クロックの時刻または絶対時刻)を示す時刻データ(時刻情報)を受信機1800aに送信する。受信機1800aは、自らに備えられている時計の時刻を、その時刻データに示される現在時刻に合わせることによって、時刻合わせを行う。
このように本実施の形態では、受信機1800a(端末装置)に備えられている時計と、基準クロックとの間では、GPS(Global Positioning System)電波、または、NTP(Network Time Protocol)電波によって、同期がとられている。したがって、受信機1800aは、基準クロックにしたがった適切な時刻に、その時刻に該当するデータを再生することができる。
図133は、実施の形態16における受信機1800aの応用例を示す図である。
受信機1800aは、上述のようにスマートフォンとして構成されて、例えば、透光性を有する樹脂またはガラスなどの部材で構成されたホルダー1810に保持されて利用される。このホルダー1810は、背板部1810aと、背板部1810aに立設された係止部1810bとを有する。受信機1800aは、背板部1810aと係止部1810bとの間に、その背板部1810aに沿わせるように挿入される。
図134Aは、実施の形態16における、ホルダー1810に保持された受信機1800aの正面図である。
受信機1800aは、上述のように挿入された状態でホルダー1810に保持される。このとき、係止部1810bは、受信機1800aの下部と係止し、その下部を背板部1810aと挟持する。また、受信機1800aの背面は、背板部1810aと対向し、受信機1800aのディスプレイ1801は露出した状態となる。
図134Bは、実施の形態16における、ホルダー1810に保持された受信機1800aの背面図である。
また、背板部1810aには、通孔1811が形成され、その通孔1811の近くに可変フィルタ1812が取り付けられている。受信機1800aがホルダー1810に保持されると、受信機1800aのカメラ1802は、背板部1810aから通孔1811を介して露出する。また、受信機1800aのフラッシュライト1803は、可変フィルタ1812に対向する。
可変フィルタ1812は、例えば円盤状に形成され、それぞれ扇状で同じサイズの3つの色フィルタ(赤色フィルタ、黄色フィルタ、および緑色フィルタ)を有する。また、可変フィルタ1812は、可変フィルタ1812の中心を軸にして回転自在に背板部1810aに取り付けられている。また、赤色フィルタは、赤色の透光性を有するフィルタであって、黄色フィルタは、黄色の透光性を有するフィルタであって、緑色フィルタは、緑色の透光性を有するフィルタである。
したがって、可変フィルタ1812が回転されて、例えば、赤色フィルタがフラッシュライト1803aに対向する位置に配置される。この場合、フラッシュライト1803aから放たれる光は、赤色フィルタを透過することによって、赤色の光としてホルダー1810の内部で拡散する。その結果、ホルダー1810の略全体が赤色に発光する。
同様に、可変フィルタ1812が回転されて、例えば、黄色フィルタがフラッシュライト1803aに対向する位置に配置される。この場合、フラッシュライト1803aから放たれる光は、黄色フィルタを透過することによって、黄色の光としてホルダー1810の内部で拡散する。その結果、ホルダー1810の略全体が黄色に発光する。
同様に、可変フィルタ1812が回転されて、例えば、緑色フィルタがフラッシュライト1803aに対向する位置に配置される。この場合、フラッシュライト1803aから放たれる光は、緑色フィルタを透過することによって、緑色の光としてホルダー1810の内部で拡散する。その結果、ホルダー1810の略全体が緑色に発光する。
つまり、ホルダー1810は、ペンライトのように、赤色、黄色または緑色に点灯する。
図135は、実施の形態16における、ホルダー1810に保持された受信機1800aのユースケースを説明するための図である。
例えば、ホルダー1810に保持された受信機1800aであるホルダー付受信機は、遊園地などで利用される。つまり、遊園地において移動するフロートに向けられた複数のホルダー付受信機は、そのフロートから流れる音楽に合わせて、同期しながら点滅する。つまり、フロートは、上記各実施の形態における送信機として構成され、フロートに取り付けられている光源の輝度変化によって可視光信号を送信する。例えば、フロートは、フロートのIDを示す可視光信号を送信する。そして、ホルダー付受信機は、上記各実施の形態と同様に、受信機1800aのカメラ1802の撮影によって、その可視光信号、つまりIDを受信する。IDを受信した受信機1800aは、そのIDに対応付けられたプログラムを例えばサーバから取得する。このプログラムは、所定の各時刻において受信機1800aのフラッシュライト1803を点灯させる命令からなる。この所定の各時刻は、フロートから流れる音楽に合わせて(同期するように)設定されている。そして、受信機1800aは、そのプログラムにしたがって、フラッシュライト1803aを点滅させる。
これにより、そのIDを受信した各受信機1800aのホルダー1810は、そのIDのフロートから流れる音楽に合わせて同じタイミングで点灯することを繰り返す。
ここで、各受信機1800aは、設定されている色フィルタ(以下、設定フィルタという)に応じてフラッシュライト1803の点滅を行う。設定フィルタとは、受信機1800aのフラッシュライト1803に対向している色フィルタである。また、各受信機1800aは、ユーザによる操作に基づいて、現在の設定フィルタを認識している。または、各受信機1800aは、カメラ1802の撮影によって得られる画像の色などに基づいて、現在の設定フィルタを認識している。
つまり、IDを受信した複数の受信機1800aのうち、所定の時刻では、設定フィルタが赤色フィルタであることを認識している複数の受信機1800aのホルダー1810のみが同時に点灯する。次の時刻では、設定フィルタが緑色フィルタであることを認識している複数の受信機1800aのホルダー1810のみが同時に点灯する。さらに次の時刻では、設定フィルタが黄色フィルタであることを認識している複数の受信機1800aのホルダー1810のみが同時に点灯する。
このように、ホルダー1810に保持される受信機1800aは、上述の図123~図129に示す同期再生と同様に、フロートの音楽と、他のホルダー1810に保持される受信機1800aとに同期して、フラッシュライト1803、すなわちホルダー1810を点滅させる。
図136は、実施の形態16における、ホルダー1810に保持された受信機1800aの処理動作を示すフローチャートである。
受信機1800aは、フロートからの可視光信号によって示されるフロートのIDを受信する(ステップS1831)。次に、受信機1800aは、そのIDに対応付けられているプログラムをサーバから取得する(ステップS1832)。次に、受信機1800aは、そのプログラムを実行することにより、設定フィルタに応じた所定の各時刻にフラッシュライト1803を点灯させる(ステップS1833)。
ここで、受信機1800aは、受信したIDまたは取得したプログラムに応じた画像をディスプレイ1801に表示させてもよい。
図137は、実施の形態16における受信機1800aによって表示される画像の一例を示す図である。
受信機1800aは、例えばサンタクロースのフロートからIDを受信すると、図137の(a)に示すように、サンタクロースの画像を表示させる。さらに、受信機1800aは、図137の(b)に示すように、フラッシュライト1803の点灯と同時に、そのサンタクロースの画像の背景色を、設定フィルタの色に変更してもよい。例えば、設定フィルタの色が赤色の場合には、フラッシュライト1803の点灯によって、ホルダー1810が赤色に点灯すると同時に、赤色の背景色を有するサンタクロースの画像がディスプレイ1801に表示される。つまり、ホルダー1810の点滅と、ディスプレイ1801の表示とが同期する。
図138は、実施の形態16におけるホルダーの他の例を示す図である。
ホルダー1820は、上述のホルダー1810と同様に構成されているが、通孔1811および可変フィルタ1812がない。このようなホルダー1820は、背板部1820aに受信機1800aのディスプレイ1801が向けられた状態で、その受信機1800aを保持する。この場合、受信機1800aは、フラッシュライト1803の代わりに、ディスプレイ1801を発光させる。これにより、ディスプレイ1801からの光がホルダー1820の略全体に拡散する。したがって、受信機1800aが、上述のプログラムに応じて、赤色の光でディスプレイ1801を発光させると、ホルダー1820は赤色に点灯する。同様に、受信機1800aが、上述のプログラムに応じて、黄色の光でディスプレイ1801を発光させると、ホルダー1820は黄色に点灯する。受信機1800aが、上述のプログラムに応じて、緑色の光でディスプレイ1801を発光させると、ホルダー1820は緑色に点灯する。このようなホルダー1820を用いれば、可変フィルタ1812の設定を省くことができる。
(実施の形態17)
(可視光信号)
図139A~図139Dは、実施の形態17における可視光信号の一例を示す図である。
送信機は、上述と同様、例えば図139Aに示すように、4PPMの可視光信号を生成し、この可視光信号にしたがって輝度変化する。具体的には、送信機は、4スロットを一信号単位に割り当て、複数の信号単位からなる可視光信号を生成する。信号単位は、スロットごとにHigh(H)またはLow(L)を示す。そして、送信機は、Hのスロットにおいて明るく発光し、Lのスロットにおいて暗く発光または消灯する。例えば、1スロットは、1/9600秒の時間に相当する期間である。
また、送信機は、例えば図139Bに示すように、一信号単位に割り当てられるスロット数が可変となる可視光信号を生成してもよい。この場合、信号単位では、1つ以上の連続するスロットにおいてHを示す信号と、そのHの信号に続く1つのスロットにおいてLを示す信号とからなる。Hのスロット数が可変であるため、信号単位の全体のスロット数が可変となる。例えば図139Bに示すように、送信機は、3スロットの信号単位、4スロットの信号単位、6スロットの信号単位の順に、それらの信号単位を含む可視光信号を生成する。そして、送信機は、この場合にも、Hのスロットにおいて明るく発光し、Lのスロットにおいて暗く発光または消灯する。
また、送信機は、例えば図139Cに示すように、複数のスロットを一信号単位に割り当てることなく、任意の期間(信号単位期間)を一信号単位に割り当ててもよい。この信号単位期間は、Hの期間と、そのHの期間に続くLの期間とからなる。Hの期間は、変調前の信号に応じて調整される。Lの期間は、固定であって、上記スロットに相当する期間であってもよい。また、Hの期間およびLの期間はそれぞれ例えば100μs以上の期間である。例えば図139Cに示すように、送信機は、信号単位期間が210μsの信号単位、信号単位期間が220μsの信号単位、信号単位期間が230μsの信号単位の順に、それらの信号単位を含む可視光信号を送信する。そして、送信機は、この場合にも、Hの期間において明るく発光し、Lの期間において暗く発光または消灯する。
また、送信機は、例えば図139Dに示すように、LとHとを交互に示す信号を可視光信号として生成してもよい。この場合、可視光信号においてLの期間と、Hの期間とは、それぞれ変調前の信号に応じて調整される。例えば図139Dに示すように、送信機は、100μsの期間においてHを示し、次に、120μsの期間においてLを示し、次に、110μsの期間においてHを示し、さらに、200μsの期間においてLを示す可視光信号を送信する。そして、送信機は、この場合にも、Hの期間において明るく発光し、Lの期間において暗く発光または消灯する。
図140は、実施の形態17における可視光信号の構成を示す図である。
可視光信号は、例えば、信号1と、その信号1に対応する明るさ調整信号と、信号2と、その信号2に対応する明るさ調整信号とを含む。送信機は、変調前の信号を変調することによって信号1および信号2を生成すると、それらの信号に対する明るさ調整信号を生成し、上述の可視光信号を生成する。
信号1に対応する明るさ調整信号は、信号1にしたがった輝度変化による明るさの増減を補う信号である。信号2に対応する明るさ調整信号は、信号2にしたがった輝度変化による明るさの増減を補う信号である。ここで、信号1と、その信号1の明るさ調整信号とにしたがった輝度変化によって、明るさB1が表現され、信号2と、その信号2の明るさ調整信号とにしたがった輝度変化によって、明るさB2が表現される。本実施の形態における送信機は、その明るさB1と明るさB2とが等しくなるように、信号1および信号2のそれぞれの明るさ調整信号を可視光信号の一部として生成する。これにより、明るさが一定に保たれ、ちらつきを抑えることができる。
また、送信機は、上述の信号1を生成するときには、データ1と、そのデータ1に続くプリアンブル(ヘッダ)と、そのプリンブルに続くデータ1とを含む信号1を生成する。ここで、プリアンブルは、その前後に配置されているデータ1に対応する信号である。例えば、このプリアンブルは、データ1を読み出すための識別子となる信号である。このように、2つのデータ1と、それらの間に配置されるプリアンブルとから信号1が構成されているため、受信機は、前にあるデータ1の途中から可視光信号を読み出しても、そのデータ1(すなわち信号1)を正しく復調することができる。
(輝線画像)
図141は、実施の形態17における受信機の撮像によって得られる輝線画像の一例を示す図である。
受信機は、上述のように、輝度変化する送信機を撮像することによって、その送信機から送信される可視光信号を輝線パターンとして含む輝線画像を取得する。このような撮像によって、可視光信号が受信機に受信される。
例えば、図141に示すように、受信機は、イメージセンサに含まれるN個の露光ラインを用いて、時刻t1に撮像することによって、それぞれ輝線パターンが現れている領域aおよび領域bを含む輝線画像を取得する。領域aおよび領域bはそれぞれ、被写体である送信機が輝度変化することによって輝線パターンが現れる領域である。
ここで、受信機は、領域aおよび領域bの輝線パターンから可視光信号を復調する。しかし、受信機は、復調された可視光信号だけでは不十分と判定すると、そのN個の露光ラインのうち、領域aに該当するM(M<N)個の連続する露光ラインのみを用いて、時刻t2に撮像する。これにより、受信機は、領域aおよび領域bのうち領域aのみを含む輝線画像を取得する。受信機は、このような撮像を、時刻t3~t5においても繰り返し実施する。その結果、領域aに対応する被写体からの十分なデータ量の可視光信号を高速に受信することができる。さらに、受信機は、そのN個の露光ラインのうち、領域bに該当するL(L<N)個の連続する露光ラインのみを用いて、時刻t6に撮像する。これにより、受信機は、領域aおよび領域bのうち領域bのみを含む輝線画像を取得する。受信機は、このような撮像を、時刻t7~t9においても繰り返し実施する。その結果、領域bに対応する被写体からの十分なデータ量の可視光信号を高速に受信することができる。
また、受信機は、時刻t10およびt11において、時刻t2~t5と同様の撮像を行うことによって、領域aのみを含む輝線画像を取得してもよい。さらに、受信機は、時刻t12およびt13において、時刻t6~t9と同様の撮像を行うことによって、領域bのみを含む輝線画像を取得してもよい。
また、上述の例では、受信機は、可視光信号が不十分であると判定したときに、時刻t2~t5において、領域aのみを含む輝線画像の連写を行ったが、時刻t1の撮像によって得られた画像に輝線が現れていれば、上述の連写を行ってもよい。同様に、受信機は、可視光信号が不十分であると判定したときに、時刻t6~t9において、領域bのみを含む輝線画像の連写を行ったが、時刻t1の撮像によって得られた画像に輝線が現れていれば、上述の連写を行ってもよい。また、受信機は、領域aのみを含む輝線画像の取得と、領域bのみを含む輝線画像の取得とを交互に行ってもよい。
なお、上記の領域aに該当するM個の連続する露光ラインは、領域aの生成に寄与する露光ラインであり、上記の領域bに該当するL個の連続する露光ラインは、領域bの生成に寄与する露光ラインである。
図142は、実施の形態17における受信機の撮像によって得られる輝線画像の他の例を示す図である。
例えば、図142に示すように、受信機は、イメージセンサに含まれるN個の露光ラインを用いて、時刻t1に撮像することによって、それぞれ輝線パターンが現れている領域aおよび領域bを含む輝線画像を取得する。領域aおよび領域bはそれぞれ、上述と同様に、被写体である送信機が輝度変化することによって輝線パターンが現れる領域である。また、領域aおよび領域bはそれぞれ、輝線または露光ラインの方向に沿って互いに重なる領域(以下、重なり領域という)を有する。
ここで、受信機は、その領域aおよび領域bの輝線パターンから復調された可視光信号が不十分と判定すると、そのN個の露光ラインのうち、重なり領域に該当するP(P<N)個の連続する露光ラインのみを用いて、時刻t2に撮像する。これにより、受信機は、領域aおよび領域bのそれぞれの重なり領域のみを含む輝線画像を取得する。受信機は、このような撮像を、時刻t3およびt4においても繰り返し実施する。その結果、領域aおよび領域bのそれぞれに対応する被写体からの十分なデータ量の可視光信号を、略同時に、且つ高速に受信することができる。
図143は、実施の形態17における受信機の撮像によって得られる輝線画像の他の例を示す図である。
例えば、図143に示すように、受信機は、イメージセンサに含まれるN個の露光ラインを用いて、時刻t1に撮像することによって、輝線パターンが不明瞭に現れている部分aと、明瞭に現れている部分bとからなる領域を含む輝線画像を取得する。この領域は、上述と同様に、被写体である送信機が輝度変化することによって輝線パターンが現れる領域である。
このような場合、受信機は、上述の領域の輝線パターンから復調された可視光信号が不十分と判定すると、そのN個の露光ラインのうち、部分bに該当するQ(Q<N)個の連続する露光ラインのみを用いて、時刻t2に撮像する。これにより、受信機は、上述の領域のうち部分bのみを含む輝線画像を取得する。受信機は、このような撮像を、時刻t3およびt4においても繰り返し実施する。その結果、上述の領域に対応する被写体からの十分なデータ量の可視光信号を、高速に受信することができる。
また、受信機は、部分bのみを含む輝線画像の連写が行われた後に、さらに、部分aのみを含む輝線画像の連写を行ってもよい。
上述のように、輝線画像において輝線パターンが現れている領域(または部分)が複数含まれている場合には、受信機は、それぞれの領域に順番を付けて、その順番にしたがって、その領域のみを含む輝線画像の連写を行う。この場合、その順番は、信号の大きさ(領域または部分の広さ)に応じた順番であっても、輝線の明瞭度に応じた順番であってもよい。また、その順番は、それらの領域に対応する被写体からの光の色に応じた順番であってもよい。例えば、最初の連写は、赤色の光に対応する領域に対して行われ、次の連写では、白色の光に対応する領域に対して行われる。また、赤色の光に対する領域の連写だけが行われてもよい。
(HDR合成)
図144は、実施の形態17における受信機の、HDR合成を行うカメラシステムへの適応を説明するための図である。
車両には、衝突防止などのためにカメラシステムが搭載されている。このカメラシステムは、カメラの撮像によって得られた画像を用いてHDR(High Dynamic Range)合成を行う。このHDR合成によって、輝度のダイナミックレンジが広い画像が得られる。カメラシステムは、この広いダイナミックレンジの画像に基づいて、周辺の車両、障害物または人などの認識を行う。
例えば、カメラシステムは、設定モードとして通常設定モードおよび通信設定モードとを有する。設定モードが通常設定モードの場合、例えば図144に示すように、カメラシステムは、時刻t1~t4において、それぞれ同じ1/100秒のシャッタースピードで、且つそれぞれ異なる感度で、4回の撮像を行う。カメラシステムは、この4回の撮像によって得られた4枚の画像を用いてHDR合成を行う。
一方、設定モードが通信設定モードの場合、例えば図144に示すように、カメラシステムは、時刻t5~t7において、それぞれ同じ1/100秒のシャッタースピードで、且つそれぞれ異なる感度で、3回の撮像を行う。さらに、カメラシステムは、時刻t8において、1/10000秒のシャッタースピードで、且つ、最大の感度(例えばISO=1600)で撮像を行う。カメラシステムは、この4回の撮像のうちの、最初の3回の撮像によって得られた3枚の画像を用いてHDR合成を行う。さらに、カメラシステムは、上述の4回の撮像のうちの最後の撮像によって可視光信号を受信し、その撮像によって得られた画像に現れている輝線パターンを復調する。
また、設定モードが通信設定モードの場合には、カメラシステムは、HDR合成を行わなくてもよい。例えば図144に示すように、カメラシステムは、時刻t9において、1/100秒のシャッタースピードで、且つ低い感度(例えば、ISO=200)で、撮像を行う。さらに、カメラシステムは、時刻t10~t12において、1/10000秒のシャッタースピードで、且つ、互いに異なる感度で3回の撮像を行う。カメラシステムは、この4回の撮像のうちの、最初の1回の撮像によって得られた画像から、周辺の車両、障害物または人などの認識を行う。さらに、カメラシステムは、上述の4回の撮像のうちの最後の3回の撮像によって可視光信号を受信し、その撮像によって得られた画像に現れている輝線パターンを復調する。
なお、図144に示す例では、時刻t10~t12のそれぞれにおいて、互いに異なる感度で撮像が行われているが、同じ感度で撮像を行ってもよい。
このようなカメラシステムでは、HDR合成を行うことができるとともに、可視光信号の受信も行うことができる。
(セキュリティ)
図145は、実施の形態17における可視光通信システムの処理動作を説明するための図である。
この可視光通信システムは、例えばレジに配置される送信機と、受信機であるスマートフォンと、サーバとからなる。なお、スマートフォンとサーバとの間の通信と、送信機とサーバとの間の通信とは、それぞれセキュアな通信回線を介して行われる。また、送信機とスマートフォンとの間の通信は、可視光通信によって行われる。本実施の形態における可視光通信システムは、送信機からの可視光信号が正確にスマートフォンに受信されているか否かを判定することにより、セキュリティを確保する。
具体的には、送信機は、時刻t1において輝度変化することによって、例えば値「100」を示す可視光信号をスマートフォンに送信する。スマートフォンは、時刻t2に、その可視光信号を受信すると、その値「100」を示す電波信号をサーバに送信する。サーバは、時刻t3に、スマートフォンからその電波信号を受信する。このとき、サーバは、その電波信号によって示される値「100」が、送信機からスマートフォンに受信された可視光信号の値であるか否かを判定するための処理を行う。すなわち、サーバは、例えば値「200」を示す電波信号を送信機に送信する。その電波信号を受信した送信機は、時刻t4において輝度変化することによって、その値「200」を示す可視光信号をスマートフォンに送信する。スマートフォンは、時刻t5に、その可視光信号を受信すると、その値「200」を示す電波信号をサーバに送信する。サーバは、時刻t6に、スマートフォンからその電波信号を受信する。サーバは、この受信した電波信号の示す値が、時刻t3において送信した電波信号の示す値と同一であるか否かを判別する。同一であれば、サーバは、時刻t3において受信した可視光信号によって示される値「100」が、送信機からスマートフォンに送信されて受信された可視光信号の値であると判定する。一方、同一でなければ、サーバは、時刻t3において受信した可視光信号によって示される値「100」が、送信機からスマートフォンに送信されて受信された可視光信号の値として疑わしいと判定する。
これにより、サーバは、スマートフォンが送信機から可視光信号を確かに受信したか否かを判定することができる。つまり、スマートフォンが、送信機から可視光信号を受信していないにも関わらず、その可視光信号を受信したかのように見せかけて、信号をサーバに送信するのを防ぐことができる。
なお、上述の例では、スマートフォンとサーバと送信機の間では、電波信号を用いた通信が行われているが、可視光信号以外の光信号による通信、または電気信号による通信が行われてもよい。また、送信機からスマートフォンに送信される可視光信号は、例えば、課金の値、クーポンの値、モンスターの値、またはビンゴの値などを示す。
(車両関係)
図146Aは、実施の形態17における可視光を用いた車車間通信の一例を示す図である。
例えば、先頭の車両は、その車両に搭載されているセンサ(カメラなど)によって、進行方向に事故があることを認識する。このように事故を認識すると、先頭の車両は、テールランプを輝度変化させることによって、可視光信号を送信する。例えば、先頭の車両は、後続車両に対して減速を促す可視光信号を送信する。後続車両は、その車両に搭載されているカメラによる撮像によって、その可視光信号を受信すると、その可視光信号にしたがって、減速するとともに、さらに後続の車両に対して減速を促す可視光信号を送信する。
このように、減速を促す可視光信号は、一列に並んで走行する複数の車両に先頭から順次送信され、その可視光信号を受信した車両は減速する。各車両への可視光信号の送信は早く行われるため、それらの複数の車両は略同時に同じように減速を行うことができる。したがって、事故による渋滞を緩和することができる。
図146Bは、実施の形態17における可視光を用いた車車間通信の他の例を示す図である。
例えば、前の車両は、テールランプを輝度変化させることによって、後の車両に対するメッセージ(例えば「ありがとう」)を示す可視光信号を送信してもよい。このメッセージは、例えばユーザによるスマートフォンへの操作によって生成される。そして、スマートフォンは、そのメッセージを示す信号を上述の前の車両に送信する。その結果、前の車両は、そのメッセージを示す可視光信号を後の車両に送信することができる。
図147は、実施の形態17における複数のLEDの位置決定方法の一例を示す図である。
例えば、車両のヘッドライトは、複数のLED(Light Emitting Diode)を有する。この車両の送信機は、ヘッドライトの複数のLEDのそれぞれを個別に輝度変化させることによって、それぞれのLEDから可視光信号を送信する。他の車両の受信機は、そのヘッドライトを有する車両を撮像することによって、それらの複数のLEDからの可視光信号を受信する。
このとき、受信機は、受信された可視光信号が何れのLEDから送信された信号であるかを認識するために、その撮像によって得られた画像から、複数のLEDのそれぞれの位置を決定する。具体的には、受信機は、その受信機と同じ車両に取り付けられている加速度センサを利用し、その加速度センサによって示される重力の方向(例えば図147中の下向き矢印)を基準に、複数のLEDのそれぞれの位置を決定する。
なお、上述の例では、輝度変化する発光体の一例としてLEDをあげたが、LED以外の発光体であってもよい。
図148は、実施の形態17における、車両を撮像することによって得られる輝線画像の一例を示す図である。
例えば、走行する車両に搭載された受信機は、後の車両(後続車両)を撮像することにより、図148に示す輝線画像を取得する。後続車両に搭載された送信機は、車両の2つのヘッドライトを輝度変化させることによって、可視光信号を前の車両に送信する。前の車両の後部またはサイドミラーなどには、後方を撮像するカメラが取り付けられている。受信機は、後続車両を被写体としたそのカメラによる撮像によって、輝線画像を取得し、その輝線画像に含まれる輝線パターン(可視光信号)を復調する。これにより、後続車両の送信機から送信された可視光信号は、前の車両の受信機に受信される。
ここで、受信機は、2つのヘッドライトから送信されて復調された可視光信号のそれぞれから、そのヘッドライトを有する車両のIDと、その車両の速度と、その車両の車種を取得する。受信機は、2つの可視光信号のそれぞれのIDが同じであれば、その2つの可視光信号が同じ車両から送信された信号であると判断する。そして、受信機は、その車両の車種から、その車両が有する2つのヘッドライトの間の長さ(ライト間距離)を特定する。さらに、受信機は、輝線画像に含まれている、輝線パターンが現れている2つの領域の間の距離L1を計測する。そして、受信機は、その距離L1と、ライト間距離とを用いた三角測量によって、その受信機を搭載する車両から、後続車両までの距離(車間距離)を算出する。受信機は、その車間距離と、可視光信号から取得された車両の速度とに基づいて、衝突の危険性を判断し、その判断結果に応じた警告を、車両の運転者に報知する。これにより、車両の衝突を回避することができる。
なお、上述の例では、受信機は、可視光信号に含まれる車種からライト間距離を特定したが、車種以外の情報からライト間距離を特定してもよい。また、上述の例では、受信機は、衝突の危険性があると判断したときには、警告を発するが、その危険性を回避する動作を車両に実行させるための制御信号を車両に出力してもよい。例えば、その制御信号は、車両を加速させるための信号、または、車両に車線変更させるための信号である。
また、上述の例では、カメラは後続車両を撮像するが、対向車両を撮像してもよい。また、受信機は、カメラによる撮像によって得られる画像から、受信機(つまり受信機を備えた車両)周辺に霧が立ち込めていると判断すると、上述のような可視光信号を受信するモードとなってもよい。これにより、車両の受信機は、周辺に霧が立ち込めていても、対向車両のヘッドライトから送信される可視光信号を受信することによって、その対向車両の位置および速度を特定することができる。
図149は、実施の形態17における受信機と送信機の適用例を示す図である。なお、図149は自動車を後ろから見た図である。
例えば車の2つのテールランプ(発光部またはライト)を有する送信機(車)7006aは、送信機7006aの識別情報(ID)を例えばスマートフォンとして構成される受信機に送信する。受信機は、そのIDを受信すると、そのIDに対応付けられた情報をサーバから取得する。例えば、その情報は、その車または送信機のID、発光部間の距離、発光部の大きさ、車の大きさ、車の形状、車の重さ、車のナンバー、前方の様子、または危険の有無を示す情報である。また、受信機はこれらの情報を送信機7006aから直接取得してもよい。
図150は、実施の形態17における受信機と送信機7006aの処理動作の一例を示すフローチャートである。
送信機7006aのIDと、IDを受信した受信機に渡す情報とを関連付けてサーバに記憶する(7106a)。受信機に渡す情報には、送信機7006aとなる発光部の大きさや、発光部間の距離や、送信機7006aを構成要素の一部とする物体の形状や、重量や、車体ナンバー等の識別番号や、受信機から観察しづらい場所の様子や危険の有無などの情報を含めても良い。
送信機7006aは、IDを送信する(7106b)。送信内容には、前記サーバのURLや、前記サーバに記憶させるとした情報を含めても良い。
受信機は、送信されたID等の情報を受信する(7106c)。受信機は、受信したIDに紐付いた情報をサーバから取得する(7106d)。受信機は、受信した情報やサーバから取得した情報を表示する(7106e)。
受信機は、発光部の大きさ情報と撮像した発光部の見えの大きさから、または、発光部間の距離情報と撮像した発光部間の距離から三角測量の要領で、受信機と発光部との距離を計算する(7106f)。受信機は、受信機から観察しづらい場所の様子や危険の有無などの情報を基に、危険の警告などを行う(7106g)。
図151は、実施の形態17における受信機と送信機の適用例を示す図である。
例えば車の2つのテールランプ(発光部またはライト)を有する送信機(車)7007bは、送信機7007bの情報を例えば駐車場の送受信装置として構成される受信機7007aに送信する。送信機7007bの情報は、送信機7007bの識別情報(ID)、車のナンバー、車の大きさ、車の形状、または車の重さを示す。受信機7007aは、その情報を受信すると、駐車の可否、課金情報、または駐車位置を送信する。なお、受信機7007aは、IDを受信して、ID以外の情報をサーバから取得してもよい。
図152は、実施の形態17における受信機7007aと送信機7007bの処理動作の一例を示すフローチャートである。なお、送信機7007bは、送信だけでなく受信も行なうとため、車載送信機と車載受信機とを備える。
送信機7007bのIDと、IDを受信した受信機7007aに渡す情報とを関連付けてサーバ(駐車場管理サーバ)に記憶する(7107a)。受信機7007aに渡す情報には、送信機7007bを構成要素の一部とする物体の形状や、重量や、車体ナンバー等の識別番号や、送信機7007bのユーザの識別番号や支払いのための情報を含めても良い。
送信機7007b(車載送信機)は、IDを送信する(7107b)。送信内容には、前記サーバのURLや、前記サーバに記憶させる情報を含めても良い。駐車場の受信機7007a(駐車場の送受信装置)は、受信した情報を、駐車場を管理するサーバ(駐車場管理サーバ)に送信する(7107c)。駐車場管理サーバは、送信機7007bのIDをキーに、IDに紐付けられた情報を取得する(7107d)。駐車場管理サーバは、駐車場の空き状況を調査する(7107e)。
駐車場の受信機7007a(駐車場の送受信装置)は、駐車の可否や、駐車位置情報、または、これらの情報を保持するサーバのアドレスを送信する(7107f)。または、駐車場管理サーバは、これらの情報を別のサーバに送信する。送信機(車載受信機)7007bは、上記で送信された情報を受信する(7107g)。または、車載システムは、別のサーバからこれらの情報を取得する。
駐車場管理サーバは、駐車を行いやすいように駐車場の制御を行う(7107h)。例えば、立体駐車場の制御を行う。駐車場の送受信装置は、IDを送信する(7107i)。車載受信機(送信機7007b)は、車載受信機のユーザ情報と受信したIDとを基に、駐車場管理サーバに問い合わせを行う(7107j)。
駐車場管理サーバは、駐車時間等に応じて課金を行う(7107k)。駐車場管理サーバは、駐車された車両にアクセスしやすいように駐車場の制御を行う(7107m)。例えば、立体駐車場の制御を行う。車載受信機(送信機7007b)は、駐車位置への地図を表示し、現在地からのナビゲーションを行う(7107n)。
(電車内)
図153は、実施の形態17における、電車の車内に適用される可視光通信システムの構成を示す図である。
可視光通信システムは、例えば、電車内に配置された複数の照明装置1905と、ユーザが保持するスマートフォン1906と、サーバ1904と、電車内に配置されたカメラ1903とを備える。
複数の照明装置1905のそれぞれは、上述の送信機として構成され、明かりを照らすとともに、輝度変化することによって可視光信号を送信する。この可視光信号は、その可視光信号を送信する照明装置1905のIDを示す。
スマートフォン1906は、上述の受信機として構成され、照明装置1905を撮像することによって、その照明装置1905から送信される可視光信号を受信する。例えば、ユーザは、電車内でトラブル(例えば痴漢または喧嘩など)に巻き込まれた場合、スマートフォン1906にその可視光信号を受信させる。スマートフォン1906は、可視光信号を受信すると、その可視光信号によって示されるIDをサーバ1904に通知する。
サーバ1904は、そのIDの通知を受けると、そのIDによって識別される照明装置1905によって照らし出される範囲を撮像範囲とするカメラ1903を特定する。そして、サーバ1904は、その特定されたカメラ1903に、照明装置1905によって照らし出される範囲を撮像させる。
カメラ1903は、サーバ1904からの指示に応じて撮像し、その撮像によって得られた画像をサーバ1904に送信する。
これにより、電車内でのトラブルの状況を示す画像を取得することができる。この画像は、トラブルの証拠として利用することができる。
また、ユーザは、スマートフォン1906を操作することにより、カメラ1903の撮像によって得られた画像をサーバ1904からスマートフォン1906に送信させもよい。
また、スマートフォン1906は、画面に撮像ボタンを表示し、その撮像ボタンがユーザによってタッチされると、撮像を促す信号をサーバ1904に送信してもよい。これにより、ユーザは、撮像のタイミングを自ら決定することができる。
図154は、実施の形態17における、遊園地などの施設に適用される可視光通信システムの構成を示す図である。
可視光通信システムは、例えば、施設に配置された複数のカメラ1903と、人に取り付けられる装身具1907とを備える。
装身具1907は、例えば複数のLEDが取り付けられたリボンを有するカチューシャなどである。また、この装身具1907は、上述の送信機として構成され、複数のLEDを輝度変化させることによって、可視光信号を送信する。
複数のカメラ1903のそれぞれは、上述の受信機として構成され、可視光通信モードと通常撮像モードとを有する。また、これらの複数のカメラ1903のそれぞれは、施設内の通り道における互いに異なる箇所に配置されている。
具体的には、カメラ1903は、可視光通信モードに設定されているときに、装身具1907が被写体として撮像されると、その装身具1907から可視光信号を受信する。カメラ1903は、その可視光信号を受信すると、設定されているモードを可視光通信モードから通常撮像モードに切り替える。その結果、カメラ1903は、装身具1907を身につけている人を被写体として撮像する。
したがって、装身具1907を付けた人が施設内の通り道を歩いていると、その人の近くにあるカメラ1903が次々にその人を撮像することになる。これにより、その人が施設で楽しんでいる様子を映す画像を自動的に取得して保存することができる。
なお、カメラ1903は、可視光信号を受信すると直ちに通常撮像モードによる撮像を行うのではなく、例えばスマートフォンから撮像開始の指示を受けたときに、通常撮像モードによる撮像を行ってもよい。これにより、ユーザは、スマートフォンの画面に表示される撮像開始ボタンに触れるタイミングで、自らをカメラ1903に撮像させることができる。
図155は、実施の形態17における、遊具とスマートフォンとからなる可視光通信システムの一例を示す図である。
遊具1901は、例えば複数のLEDを備えた上述の送信機として構成されている。つまり、遊具1901は、その複数のLEDを輝度変化させることによって、可視光信号を送信する。
スマートフォン1902は、その遊具1901を撮像することによって、その遊具1901から送信される可視光信号を受信する。そして、図155の(a)に示すように、スマートフォン1902は、その可視光信号を1回目に受信したときには、その可視光信号と1回目とに対応付けられている動画1を例えばサーバなどからダウンロードして再生する。一方、スマートフォン1902は、その可視光信号を2回目に受信したときには、図155の(b)に示すように、その可視光信号と2回目とに対応付けられている動画2を例えばサーバなどからダウンロードして再生する。
つまり、スマートフォン1902は、同じ可視光信号を受信しても、その可視光信号を受信した回数に応じて、再生される動画を切り替える。可視光信号を受信した回数は、スマートフォン1902によってカウントされてもよく、サーバによってカウントされてもよい。または、スマートフォン1902は、複数回、同一の可視光信号を受信しても、連続して同じ動画を再生することはしない。または、スマートフォン1902は、同一の可視光信号に対応付けられている複数の動画のうち、既に再生された動画の出現確率を低下させて、出現確率の高い動画を優先的にダウンロードして再生してもよい。
また、スマートフォン1902は、複数の店舗を有する施設の案内所に備えられているタッチパネルから送信される可視光信号を受信し、その可視光信号に応じた画像を表示してもよい。例えば、タッチパネルは、施設の概要を示す初期画面を表示しているときには、その施設の概要を示す可視光信号を輝度変化によって送信している。したがって、スマートフォンは、その初期画面を表示しているタッチパネルを撮像することによって、その可視光信号を受信すると、施設の概要を示す画像を自らのディスプレイに表示することができる。ここで、ユーザによってタッチパネルが操作されると、タッチパネルは、例えば特定の店舗の情報を示す店舗画像を表示する。このとき、タッチパネルは、その特定の店舗の情報を示す可視光信号を送信している。したがって、スマートフォンは、その店舗画像を表示しているタッチパネルを撮像することによって、その可視光信号を受信すると、特定の店舗の情報を示す店舗画像を表示することができる。このように、スマートフォンは、タッチパネルと同期した画像を表示することができる。
(上記実施の形態のまとめ)
本発明の一態様に係る再生方法は、光源の輝度変化により可視光信号を送信する送信機から、前記可視光信号を端末装置のセンサにより受信する信号受信ステップと、前記端末装置から、前記可視光信号に対応付けられたコンテンツを要求するための要求信号をサーバに送信する送信ステップと、前記端末装置が、各時刻と、前記各時刻に再生されるデータとを含むコンテンツを、前記サーバから受信するコンテンツ受信ステップと、前記コンテンツのうち、前記端末装置に備えられている時計の時刻に該当するデータを再生する再生ステップとを含む。
これにより、図131Cに示すように、各時刻と、その各時刻に再生されるデータとを含むコンテンツが端末装置に受信され、端末装置の時計の時刻に該当するデータが再生される。したがって、端末装置は、そのコンテンツにおけるデータを、間違った時刻に再生してしまうことなく、そのコンテンツに示される正しい時刻に、適切に再生することができる。具体的には、図131Aの方法eのように、端末装置である受信機は、コンテンツを(受信機時刻-コンテンツ再生開始時刻)の時点から再生する。上述の端末装置の時計の時刻に該当するデータは、コンテンツのうちの(受信機時刻-コンテンツ再生開始時刻)の時点にあるデータである。また、送信機においても、そのコンテンツに関連するコンテンツ(送信機側コンテンツ)が再生されていれば、端末装置は、コンテンツをその送信機側コンテンツに適切に同期させて再生することができる。なお、コンテンツは音声または画像である。
また、前記端末装置に備えられている時計と、基準クロックとの間では、GPS(Global Positioning System)電波、または、NTP(Network Time Protocol)電波によって、同期がとられていてもよい。
これにより、図130および図132に示すように、端末装置(受信機)の時計と基準クロックとの間で同期がとられているため、基準クロックにしたがった適切な時刻に、その時刻に該当するデータを再生することができる。
また、前記可視光信号は、前記可視光信号が前記送信機から送信される時刻を示してもよい。
これにより、図131Aの方法dに示すように、端末装置(受信機)は、可視光信号が送信機から送信される時刻(送信機時刻)に対応付けられたコンテンツを受信することができる。例えば、送信機時刻が5時43分であれば、5時43分に再生されるコンテンツを受信することができる。
また、前記再生方法では、さらに、前記GPS電波または前記NTP電波によって、前記端末装置の時計と前記基準クロックとの間で同期をとるための処理が行われた時刻が、前記端末装置が前記可視光信号を受信した時刻から所定の時間より前である場合、前記送信機から送信された前記可視光信号が示す時刻により、前記端末装置の時計と、前記送信機の時計との間で同期をとってもよい。
例えば、端末装置の時計と基準クロックとの間で同期をとるための処理が行われてから所定の時間が経過してしまうと、その同期が適切に保たれていない場合がある。このような場合には、端末装置は、送信機で再生される送信機側コンテンツと同期する時刻に、コンテンツを再生することできない可能性がある。そこで、上記本発明の一態様に係る再生方法では、図130のステップS1829,S1830のように、所定の時間が経過したときには、端末装置(受信機)の時計と送信機の時計との間で同期がとられる。したがって、端末装置は、送信機で再生される送信機側コンテンツと同期する時刻に、コンテンツを再生することができる。
また、前記サーバは、それぞれ時刻に関連付けられている複数のコンテンツを有しており、前記コンテンツ受信ステップでは、前記可視光信号が示す時刻に関連付けられたコンテンツが前記サーバに存在しない場合には、前記複数のコンテンツのうち、前記可視光信号が示す時刻に最も近く、かつ、前記可視光信号が示す時刻の後の時刻に関連付けられているコンテンツを受信してもよい。
これにより、図131Aの方法dに示すように、可視光信号が示す時刻に関連付けられたコンテンツがサーバに存在しなくても、そのサーバにある複数のコンテンツの中から、適切なコンテンツを受信することができる。
また、光源の輝度変化により可視光信号を送信する送信機から、前記可視光信号を端末装置のセンサにより受信する信号受信ステップと、前記端末装置から、前記可視光信号に対応付けられたコンテンツを要求するための要求信号をサーバに送信する送信ステップと、前記端末装置が、前記サーバからコンテンツを受信するコンテンツ受信ステップと、前記コンテンツを再生する再生ステップと、を含み、前記可視光信号は、ID情報と、前記可視光信号が前記送信機から送信される時刻とを示し、前記コンテンツ受信ステップでは、前記可視光信号によって示されるID情報および時刻に対応付けられた前記コンテンツを受信してもよい。
これにより、図131Aの方法dのように、ID情報(送信機ID)に関連付けられている複数のコンテンツの中から、可視光信号が送信機から送信される時刻(送信機時刻)に対応付けられたコンテンツが受信されて再生される。したがって、その送信機IDおよび送信機時刻に対して適切なコンテンツを再生することができる。
また、前記可視光信号は、時刻のうちの時および分を示す第2の情報と、時刻のうちの秒を示す第1の情報とを含むことによって、前記可視光信号が前記送信機から送信される時刻を示し、前記信号受信ステップでは、前記第2の情報を受信するとともに、前記第2の情報を受信する回数よりも多くの回数だけ前記第1の情報を受信してもよい。
これにより、例えば、可視光信号に含まれる各パケットが送信される時刻を秒単位で端末装置に通知する場合には、時、分および秒の全てを用いて表現される現時点の時刻を示すパケットを、1秒経過ごとに端末装置に送信する手間を軽減することができる。つまり、図126に示すように、パケットが送信される時刻のうちの時および分が、前に送信されたパケットに示される時および分から更新されていなければ、秒のみを示すパケット(時間パケット1)である第1の情報だけを送信すればよい。したがって、送信機によって送信される、秒を示すパケット(時間パケット1)である第1の情報よりも、時および分を示すパケット(時間パケット2)である第2の情報を少なくすることによって、冗長な内容を含むパケットの送信を抑えることができる。
また、前記端末装置のセンサは、イメージセンサであって、前記信号受信ステップでは、前記イメージセンサのシャッター速度を、第1の速度と、前記第1の速度よりも高速の第2の速度とに交互に切り替えながら、前記イメージセンサによる連続した撮影を行い、(a)前記イメージセンサによる撮影の被写体がバーコードである場合には、前記シャッター速度が前記第1の速度であるときの撮影によって、バーコードが映っている画像を取得し、前記画像に映っているバーコードをデコードすることによって、バーコード識別子を取得し、(b)前記イメージセンサによる撮影の被写体が前記光源である場合には、前記シャッター速度が前記第2の速度であるときの撮影によって、前記イメージセンサに含まれる複数の露光ラインのそれぞれに対応する輝線を含む画像である輝線画像を取得し、取得された輝線画像に含まれる複数の輝線のパターンをデコードすることによって前記可視光信号を可視光識別子として取得し、前記再生方法では、さらに、前記シャッター速度が前記第1の速度であるときの撮影によって得られる画像を表示してもよい。
これにより、図102に示すように、バーコードからでも可視光信号からでも、それらに応じた識別子を適切に取得することができるとともに、被写体とされているバーコードまたは光源が映し出された画像を表示することができる。
また、前記可視光識別子の取得では、前記複数の輝線のパターンから、データ部およびアドレス部を含む第1のパケットを取得し、前記第1のパケットよりも前に既に取得されている少なくとも1つのパケットのうち、前記第1のパケットのアドレス部と同一のアドレス部を含むパケットである第2のパケットが所定の数以上存在するか否かを判定し、前記第2のパケットが前記所定の数以上存在すると判定した場合には、前記所定の数以上の前記第2のパケットのそれぞれのデータ部に対応する前記輝線画像の一部の領域の画素値と、前記第1のパケットのデータ部に対応する前記輝線画像の一部の領域の画素値とを合わせることによって、合成画素値を算出し、前記合成画素値を含むデータ部を復号することによって、前記可視光識別子の少なくとも一部を取得してもよい。
これにより、図74に示すように、同一のアドレス部を含む複数のパケットのそれぞれでデータ部が少し異なっていても、それらのパケットのデータ部の画素値を合わせることによって、適切なデータ部を復号することができ、可視光識別子の少なくとも一部を正しく取得することができる。
また、前記第1のパケットは、さらに、前記データ部に対する第1の誤り訂正符号と、前記アドレス部に対する第2の誤り訂正符号とを含み、前記信号受信ステップでは、前記送信機から、第2の周波数にしたがった輝度変化によって送信される前記アドレス部および前記第2の誤り訂正符号を受信し、前記第2の周波数よりも高い第1の周波数にしたがった輝度変化によって送信される前記データ部および前記第1の誤り訂正符号を受信してもよい。
これにより、アドレス部を誤って受信することを抑えるとともに、データ量の多いデータ部を迅速に取得することができる。
また、前記可視光識別子の取得では、前記複数の輝線のパターンから、データ部およびアドレス部を含む第1のパケットを取得し、前記第1のパケットよりも前に既に取得されている少なくとも1つのパケットのうち、前記第1のパケットのアドレス部と同一のアドレス部を含むパケットである少なくとも1つの第2のパケットが存在するか否かを判定し、前記少なくとも1つの第2のパケットが存在すると判定した場合には、前記少なくとも1つの第2のパケットと前記第1のパケットとのそれぞれのデータ部が全て等しいか否かを判定し、それぞれの前記データ部が全て等しくないと判定した場合には、前記少なくとも1つの第2のパケットのそれぞれにおいて、当該第2のパケットのデータ部に含まれる各部分のうち、前記第1のパケットのデータ部に含まれる各部分と異なる部分の数が、所定の数以上存在するか否かを判定し、前記少なくとも1つの第2のパケットのうち、異なる部分の数が前記所定の数以上存在すると判定された第2のパケットがある場合には、前記少なくとも1つの第2のパケットを破棄し、前記少なくとも1つの第2のパケットのうち、異なる部分の数が前記所定の数以上存在すると判定された第2パケットがない場合には、前記第1のパケットおよび前記少なくとも1つの第2のパケットのうち、同一のデータ部を有するパケットの数が最も多い複数のパケットを特定し、当該複数のパケットのそれぞれに含まれるデータ部を、前記第1のパケットに含まれるアドレス部に対応するデータ部として復号することによって、前記可視光識別子の少なくとも一部を取得してもよい。
これにより、図73に示すように、同一のアドレス部を有する複数のパケットが受信されたときに、それらのパケットのデータ部が異なっていても、適切なデータ部を復号することができ、可視光識別子の少なくとも一部を正しく取得することができる。つまり、同一の送信機から送信される同一のアドレス部を有する複数のパケットは、基本的に同一のデータ部を有する。しかし、端末装置が、パケットの送信元となる送信機を切り替える場合には、端末装置は、同一のアドレス部を有していても互いに異なるデータ部を有する複数のパケットを受信することがある。このような場合には、上記本発明の一態様に係る再生方法では、図73のステップS10106のように、既に受信されているパケット(第2のパケット)が破棄され、最新のパケット(第1のパケット)のデータ部を、そのアドレス部に対応する正しいデータ部として復号することができる。さらに、上述のような送信機の切り替えがない場合であっても、可視光信号の送受信状況に応じて、同一のアドレス部を有する複数のパケットのデータ部が少し異なることがある。このような場合には、上記本発明の一態様に係る再生方法では、図73のステップS10107のように、いわゆる多数決によって、適切なデータ部を復号することができる。
また、前記可視光識別子の取得では、前記複数の輝線のパターンから、それぞれデータ部およびアドレス部を含む複数のパケットを取得し、取得された前記複数のパケットのうち、前記データ部に含まれる全てのビットが0を示すパケットである0終端パケットが存在するか否かを判定し、前記0終端パケットが存在すると判定した場合には、前記複数のパケットのうち、前記0終端パケットのアドレス部に関連付けられているアドレス部を含むパケットであるN個(Nは1以上の整数)の関連パケットが全て存在するか否かを判定し、前記N個の関連パケットが全て存在すると判定した場合には、前記N個の関連パケットのそれぞれのデータ部を並べて復号することによって、前記可視光識別子を取得してもよい。例えば、前記0終端パケットのアドレス部に関連付けられている前記アドレス部は、前記0終端パケットのアドレス部に示されるアドレスよりも小さく0以上のアドレスを示すアドレス部である。
具体的には、図75に示すように、0終端パケットのアドレス以下のアドレスを有するパケットが関連パケットとして全て揃っているか否かが判定され、揃っていると判定された場合に、それらの関連パケットのそれぞれのデータ部が復号される。これにより、端末装置は、可視光識別子を取得するために、何個の関連パケットが必要であることを事前に知っていなくても、さらに、それらの関連パケットのアドレスを事前に知っていなくても、0終端パケットを取得した時点で、容易に知ることができる。その結果、端末装置は、N個の関連パケットのそれぞれのデータ部を並べて復号することによって、適切な可視光識別子を取得することができる。
(実施の形態18)
以下、可変長・可変分割数対応プロトコルについて説明する。
図156は、本実施の形態における送信信号の一例を示す図である。
送信パケットは、プリアンブル、TYPE、ペイロード、およびチェック部で構成される。パケットは連続で送信されても良いし、断続的に送信されても良い。パケットを送信しない期間を設けることで、バックライト消灯時に液晶の状態を変化させ、液晶ディスプレイの動解像感を向上させることが出来る。パケット送信間隔をランダムにすることで、混信を回避することができる。
プリアンブルには、4PPMに出現しないパターンを用いる。短い基本パターンを用いることで、受信処理を簡単にすることができる。
プリアンブルの種類によってデータの分割数を表現することで、余計な送信スロットを用いることなくデータ分割数を可変にすることができる。
TYPEの値によってペイロード長を変化させることで、送信データを可変長にすることができる。TYPEでは、ペイロード長を表現してもよいし、分割する前のデータ長を表現してもよい。TYPEの値によって、パケットのアドレスを表現することで、受信機は受信したパケットを正しく並べることができる。また、プリアンブルの種類または分割数によって、TYPEの値が表現するペイロード長(データ長)を変化させてもよい。
ペイロード長によってチェック部の長さを変化させることによって、効率的な誤り訂正(検出)ができる。チェック部の最短の長さを2ビットとすることで、効率的に4PPMに変換できる。また、ペイロード長によって誤り訂正(検出)符号の種類を変化させることで、効率的に誤り訂正(検出)ができる。プリアンブルの種類またはTYPEの値によってチェック部の長さまた誤り訂正(検出)符号の種類を変化させるとしてもよい。
ペイロードと分割数の異なる組み合わせで同じデータ長となる組み合わせが存在する。このような場合は、同じデータ値であっても組み合わせごとに異なる意味を持たせることで、より多くの値を表現することができる。
以下、高速送信・輝度変調プロトコルについて説明する。
図157は、本実施の形態における送信信号の一例を示す図である。
送信パケットは、プリアンブル部とボディ部と輝度調整部で構成される。ボディには、アドレス部とデータ部と誤り訂正(検出)符号部を含む。断続的な送信を許可することで、前記と同様の効果が得られる。
(実施の形態19)
(Single frame transmissionのフレーム構成)
図158は、本実施の形態における送信信号の一例を示す図である。
送信フレームは、プリアンブル(PRE)、フレーム長(FLEN)、IDタイプ(IDTYPE)、コンテンツ(ID/DATA)、および検査符号(CRC)とで構成され、コンテンツタイプ(CONTENTTYPE)を含んでもよい。各領域のビット数は一例である。
FLENでID/DATAの長さを指定することで、可変長のコンテンツを送信することができる。
CRCは、PRE以外の部分の誤りを訂正、または、検出する検査符号である。検査領域の長さに応じてCRC長を変化させることで、検査能力を一定以上に保つことが出来る。また、検査領域の長さに応じて異なる検査符号を用いることで、CRC長あたりの検査能力を向上させることができる。
(Multiple frame transmissionのフレーム構成)
図159は、本実施の形態における送信信号の一例を示す図である。
送信フレームは、プリアンブル(PRE)とアドレス(ADDR)と分割されたデータの一部(DATAPART)から構成され、分割数(PARTNUM)とアドレスフラグ(ADDRFRAG)のそれぞれを含んでもよい。各領域のビット数は一例である。
コンテンツを複数の部分に分割して送信することで、遠距離通信を行うことが出来る。
分割する大きさを等分とすることで、最大フレーム長を小さくすることができ、安定して通信を行うことができる。
等分割ができない場合には、一部の分割部分を他の分割部分より小さくすることで、ちょうどよいサイズのデータを送信することができる。
分割する大きさを異なる大きさとし、分割サイズの組み合わせに意味を持たせることで、より多くの情報を送信することができる。例えば、32bitの同じ値のデータであったとしても、8bitが4回で送信された場合と、16bitが2回で送信された場合と、15bitが1回と17が1回で送信された場合では異なる情報として扱うことで、より多くの情報量を表現することができる。
PARTNUMで分割数を示すことで、受信機は分割数を即座に知ることができ、受信の進捗を正確に表示することができる。
ADDRFRAGが0の場合は最後のアドレスではなく、1の場合は最後のアドレスであるとすることで、分割数を示す領域が不要となり、より短い時間で送信することができる。
CRCは、前記と同様に、PRE以外の部分の誤りを訂正、または、検出する検査符号である。この検査により、複数の送信元からの送信フレームを受信した際に、混信を検出することができる。CRC長をDATAPART長の整数倍とすることで、最も効率よく混信を検出することができる。
分割されたフレーム(図159の(a)、(b)または(c)によって示されるフレーム)の末尾に、各フレームのPRE以外の部分を検査する検査符号を加えるとしても良い。
図159の(d)によって示されるIDTYPEは、図158の(a)~(d)と同様に、4bitまたは5bitなどの固定長としてもよいし、IDTYPE長をID/DATA長によって変化させるとしてもよい。これにより、前記と同様の効果が得られる。
(ID/DATA長の指定)
図160は、本実施の形態における送信信号の一例を示す図である。
図158の(a)~(d)の場合に、それぞれ図160に示す表(a)および(b)のように設定することで、128bitのときにucodeを表すことができる。
(CRC長と生成多項式)
図161は、本実施の形態における送信信号の一例を示す図である。
このようにCRC長を設定することで、検査対象の長さに依らず検査能力を保つことができる。
生成多項式は一例であり、別の生成多項式を用いても良い。また、CRC以外の検査符号を用いるとしても良い。これらにより、検査能力を向上することができる。
(プリアンブルの種類によるDATAPART長の指定と最後のアドレスの指定)
図162は、本実施の形態における送信信号の一例を示す図である。
プリアンブルの種類でDATAPART長を示すことで、DATAPART長を示す領域が必要なくなり、より短い送信時間で情報を送信することができる。また、最後のアドレスであるかどうかを示すことで、分割の個数を示す領域が必要なくなり、より短い送信時間で情報を送信することができる。また、図162の(b)の場合は、最後のアドレスの場合はDATAPART長がわからないため、そのフレーム受信の直前または直後に受信した最後のアドレスではないフレームのDATAPART長と同一であると推定して受信処理を行うことで、正常に受信することができる。
プリアンブルの種類によってアドレス長が異なるとしても良い。これにより、送信情報の長さの組み合わせを多くしたり、短い時間で送信したりすることができる。
図162の(c)の場合は、プリアンブルで分割数を規定し、DATAPART長を示す領域を加える。
(アドレスの指定)
図163は、本実施の形態における送信信号の一例を示す図である。
ADDRの値でそのフレームのアドレスを示すことで、受信機は、正しく送信された情報を再構成することができる。
PARTNUMの値で分割数を示すことで、受信機は最初のフレームを受信した時点で必ず分割数を知ることができ、受信の進捗を正確に表示することができる。
(分割数の違いによる混信の防止)
図164と図165は、本実施の形態における送受信システムの一例を示す図とフローチャートである。
送信情報を等分割して分割送信する場合、図164の送信機Aと送信機Bからの信号は、プリアンブルが異なるため、これらの信号を同時に受信した場合でも、受信機は送信元を混同することなく、送信情報を再構成することができる。
送信機A、Bは、分割数設定部を備えることで、ユーザは、近くに設置した送信機の分割数が異なるように設定することができ、混信を防ぐことができる。
受信機は、受信した信号の分割数をサーバに登録することで、サーバは送信機の設定されている分割数を知ることができ、他の受信機はその情報をサーバから取得することで、受信の進捗状況を正確に表示することができる。
受信機は、付近の、または、対応する送信機からの信号は等長分割であるかどうかをサーバから、あるいは、受信機の記憶部から取得する。前記取得した情報が等長分割である場合は、同じDATAPART長のフレームのみから信号を復元する。そうでない場合や、同じDATAPART長のフレームで全てのアドレスが揃わない状況が所定の時間以上継続した場合は、異なるDATAPART長のフレームを合わせて信号を復元する。
(分割数の違いによる混信の防止)
図166は、本実施の形態におけるサーバの動作を示すフローチャートである。
サーバは、受信機が受信したIDと分割構成(どのようなDATAPART長の組み合わせで信号を受信したか)を受信機から受け取る。前記IDが、分割構成による拡張の対象である場合は、分割構成のパターンを数値化したものを補助IDとし、前記IDと前記補助IDを合わせた拡張IDをキーとして関連付けられた情報を受信機へ渡す。
分割構成による拡張の対象でない場合は、IDに関連付けられた分割構成が記憶部に存在するかどうか確認し、受信した分割構成と同じであるかどうか確認する。異なる場合は再確認命令を受信機へ送信する。これにより、受信機の受信エラーによって誤った情報が提示されることを防ぐことができる。
再確認命令を送信後、所定の時間以内に同じIDで同じ分割構成を受信した場合には、分割構成が変更されたと判断し、IDに関連付けられた分割構成を更新する。これにより、図164の説明として記述したように、分割構成が変更された場合に対応することができる。
分割構成が記憶されていない場合、受信した分割構成と記憶されている分割構成が一致した場合、または、分割構成を更新する場合には、IDをキーとして関連付けられた情報を受信機へ渡し、分割構成をIDと関連付けて記憶部へ記憶する。
(受信の進捗状況の表示)
図167~図172は、本実施の形態における受信機の動作の一例を示すフローチャートと図である。
受信機は、受信機が対応している送信機、または、受信機の付近にある送信機の分割数の種類と割合を、サーバや受信機の記憶領域から取得する。また、一部の分割データを既に受信している場合は、その一部に一致する情報を送信している送信機の分割数の種類と割合を取得する。
受信機は、分割されたフレームを受信する。
最後のアドレスを既に受信している場合、前記取得した分割数が1種類だけである場合、または、実行中の受信アプリの対応している分割数が1種類だけである場合は、分割数が既知であるため、その分割数を基準に進捗状況を表示する。
そうでない場合であって、利用可能な処理リソースが少ない、または省エネモードである場合には、受信機は、簡易モードで進捗状況を計算して表示する。一方、利用可能な処理リソースが多い、または省エネモードではない場合には、最尤推定モードで進捗状況を計算して表示する。
図168は、簡易モードでの進捗状況の計算方法を示すフローチャートである。
まず、受信機は、標準分割数Nsを、サーバから取得する。または、受信機は、自らの内部のデータ保持部から標準分割数Nsを読み出す。なお、標準分割数は、(a)その分割数で送信する送信機数の最頻値または期待値、(b)パケット長ごとに定められた分割数、(c)アプリケーションごとに定められた分割数、または、(d)受信機がある場所であって、識別可能な範囲ごとに定められた分割数である。
次に、受信機は、最終アドレスであることを示すパケットを受信しているか否かを判定する。受信していると判定すると、最終パケットのアドレスをNとする。一方、受信していないと判定すると、受信済みの最大アドレスAmaxに1または2以上の数を加えた数をNeとする。ここで、受信機は、Ne>Nsか否かを判定する。Ne>Nsであると判定すると、受信機は、N=Neとする。一方、Ne>Nsではないと判定すると、受信機は、N=Nsとする。
そして、受信機は、受信中の信号の分割数がNであるとして、信号全体の受信に必要なパケットのうち、受信済みパケット数の割合を計算する。
このような簡易モードでは、最尤推定モードよりも単純な計算で進捗状況を計算することができ、処理時間または消費エネルギーの点で有利である。
図169は、最尤推定モードでの進捗状況の計算方法を示すフローチャートである。
まず、受信機は、分割数の事前分布を、サーバから取得する。または、受信機は、自らの内部のデータ保持部から事前分布を読み出す。なお、事前分布は、(a)その分割数で送信する送信機数の分布として定められている、(b)パケット長ごとに定められている、(c)アプリケーションごとに定められている、または、(d)受信機がある場所であって、識別可能な範囲ごとに定められている。
次に、受信機は、パケットxを受信し、分割数がyのときにパケットxを受信する確率P(x|y)を計算する。そして、受信機は、パケットxを受信した場合に送信信号の分割数がyである確率P(y|x)を、P(x|y)×P(y)÷Aとして求める(なお、Aは正規化乗数である)。さらに、受信機は、P(y)=P(y|x)とする。
ここで、受信機は、分割数推定モードが最尤モードであるか、尤度平均モードであるか否かを判定する。最尤モードである場合、受信機は、P(y)が最大となるyを分割数として受信済みのパケット数の割合を算出する。一方、尤度平均モードである場合、受信機は、y×P(y)の総和を分割数として受信済みのパケット数の割合を計算する。
このような最尤推定モードでは、簡易モードよりも正確な進捗度合いを計算することができる。
また、分割数推定モードが最尤モードの場合は、これまでに受信したアドレスから最後のアドレスが何番であるかの尤度を計算し、最尤のものを分割数であると推定して受信の進捗を表示する。この表示方法は、実際の進捗状況に最も近い進捗状況を表示できる。
図170は、進捗状況が減少しない表示方法を示すフローチャートである。
まず、受信機は、信号全体の受信に必要なパケットのうち、受信済みパケット数の割合を計算する。そして、受信機は、計算した割合が、表示中の割合よりも小さいか否かを判定する。表示中の割合よりも小さいと判定すると、受信機は、さらに、表示中の割合が所定の時間以上前の計算結果か否かを判定する。所定の時間以上前の計算結果であると判定すると、受信機は、計算した割合を表示する。一方、所定の時間以上前の計算結果ではないと判定すると、受信機は、表示中の割合を表示し続ける。
また、受信機は、計算した割合が、表示中の割合以上であると判定すると、受信済みの最大アドレスAmaxに1または2以上の数を加えた数をNeとする。そして、受信機は、その計算した割合を表示する。
最終パケットを受信したときなどに、進捗状況の計算結果がそれまでよりも小さくなること、つまり、表示される進捗状況(進捗度合い)が下がることは、不自然である。しかし、上述の表示方法では、このような不自然な表示を抑えることができる。
図171は、複数のパケット長がある場合の進捗状況の表示方法を示すフローチャートである。
まず、受信機は、受信済みパケット数の割合Pを、パケット長ごとに計算する。ここで、受信機は、表示モードが最大モード、全表示モードおよび最新モードのうちの何れであるかを判定する。最大モードであると判定すると、受信機は、複数のパケット長のそれぞれの割合Pのうちの最大の割合を表示する。全表示モードであると判定すると、受信機は、全ての割合Pを表示する。最新モードであると判定すると、受信機は、最後に受信したパケットのパケット長の割合Pを表示する。
図172で、(a)は前記簡易モードとして計算した進捗状況、(b)は前記最尤モードとして計算した進捗状況、(c)は取得した分割数のうち最小のものを分割数として計算した場合の進捗状況である。(a)(b)(c)の順で進捗状況は大きくなるため、このように(a)(b)(c)を重ねて表示することで、全ての進捗状況を同時に表示することができる。
(共通スイッチと画素スイッチによる発光制御)
本実施の形態における送信方法では、例えば、映像表示用のLEDディスプレイに含まれる各LEDを、共通スイッチおよび画素スイッチのスイッチングに応じて、輝度変化させることにより、可視光信号(可視光通信信号ともいう)を送信する。
LEDディスプレイは、例えば屋外に配設される大型ディスプレイとして構成されている。また、LEDディスプレイは、マトリクス状に配列された複数のLEDを備え、映像信号に応じて、これらのLEDを明滅させることにより映像を表示する。このようなLEDディスプレイは、複数の共通ライン(COMライン)からなるとともに、複数の画素ライン(SEGライン)からなる。各共通ラインは、水平方向に一列に配列された複数のLEDからなり、各画素ラインは、垂直方向に一列に配列された複数のLEDからなる。また、複数の共通ラインのそれぞれは、その共通ラインに対応する共通スイッチに接続される。共通スイッチは例えばトランジスタである。複数の画素ラインのそれぞれは、その画素ラインに対応する画素スイッチに接続される。複数の画素ラインに対応する複数の画素スイッチは、例えばLEDドライバ回路(定電流回路)に備えられている。なお、このLEDドライバ回路は、複数の画素スイッチをスイッチングする画素スイッチ制御部として構成されている。
より具体的には、共通ラインに含まれる各LEDのアノードおよびカソードのうちの一方が、その共通ラインに対応するトランジスタのコレクタなどの端子に接続される。また、画素ラインに含まれる各LEDのアノードおよびカソードのうちの他方が、上記LEDドライバ回路における、その画素ラインに対応する端子(画素スイッチ)に接続される。
このようなLEDディスプレイが映像を表示するときには、複数の共通スイッチを制御する共通スイッチ制御部が、それらの共通スイッチを時分割でオンにする。例えば、共通スイッチ制御部は、第1の期間中、複数の共通スイッチのうちの第1の共通スイッチのみをオンにし、次の第2の期間中、複数の共通スイッチのうちの第2の共通スイッチのみをオンにする。そして、LEDドライバ回路は、何れかの共通スイッチがオンにされている期間に、映像信号に応じて各画素スイッチをオンにする。これにより、共通スイッチがオンであり、かつ、画素スイッチがオンである期間だけ、その共通スイッチおよび画素スイッチに対応するLEDが点灯する。この点灯する期間によって、映像中の画素の輝度が表現される。つまり、映像の画素の輝度はPWM制御される。
本実施の形態における送信方法では、このようなLEDディスプレイと、共通スイッチおよび画素スイッチと、共通スイッチ制御部および画素スイッチ制御部とを利用して、可視光信号を送信する。また、このような送信方法によって可視光信号を送信する本実施の形態における送信装置(送信機ともいう)は、その共通スイッチ制御部および画素スイッチ制御部を備える。
図173は、本実施の形態における送信信号の一例を示す図である。
送信機は、予め定められたシンボル周期にしたがって、可視光信号に含まれる各シンボルを送信する。例えば、送信機は、シンボル「00」を4PPMによって送信するときには、4スロットからなるシンボル周期において、そのシンボル(「00」の輝度変化パターン)にしたがって共通スイッチをスイッチングする。そして、送信機は、映像信号などによって示される平均輝度に応じて、画素スイッチをスイッチングする。
より具体的には、シンボル周期における平均輝度を75%にする場合(図173の(a))、送信機は、第1スロットの期間中、共通スイッチをオフにして、第2スロット~第4スロットまでの期間中、共通スイッチをオンにする。さらに、送信機は、第1スロットの期間中、画素スイッチをオフにして、第2スロット~第4スロットまでの期間中、画素スイッチをオンにする。これにより、共通スイッチがオンであり、かつ、画素スイッチがオンである期間だけ、その共通スイッチおよび画素スイッチに対応するLEDが点灯する。つまり、LEDは、4スロットのそれぞれにおいてLO(Low)、HI(High)、HI、HIの輝度で点灯することによって輝度変化する。その結果、シンボル「00」が送信される。
また、シンボル周期における平均輝度が25%の場合(図173の(e))、送信機は、第1スロットの期間中、共通スイッチをオフにして、第2スロット~第4スロットまでの期間中、共通スイッチをオンにする。さらに、送信機は、第1スロット、第3スロットおよび第4スロットの期間中、画素スイッチをオフにして、第2スロットの期間中、画素スイッチをオンにする。これにより、共通スイッチがオンであり、かつ、画素スイッチがオンである期間だけ、その共通スイッチおよび画素スイッチに対応するLEDが点灯する。つまり、LEDは、4スロットのそれぞれにおいてLO(Low)、HI(High)、LO、LOのように点灯することによって輝度変化する。その結果、シンボル「00」が送信される。なお、本実施の形態における送信機は、上述のV4PPM(variable 4PPM)に近い可視光信号を送信するため、同じシンボルを送信する場合でも、平均輝度を可変とすることができる。つまり、互いに異なる平均輝度で同じシンボル(例えば「00」)を送信するときには、送信機は、図173の(a)~(e)に示すように、そのシンボルに固有の輝度の立ち上がり位置(タイミング)を平均輝度に関わらず一定にしている。これにより、受信機は、輝度を意識することなく可視光信号を受信することができる。
なお、共通スイッチは、上述の共通スイッチ制御部によってスイッチングされ、画素スイッチは、上述の画素スイッチ制御部によってスイッチングされる。
このように、本実施の形態における送信方法は、輝度変化によって可視光信号を送信する送信方法であって、決定ステップと、共通スイッチ制御ステップと、第1の画素スイッチ制御ステップとを含む。決定ステップでは、可視光信号を変調することにより、輝度変化パターンを決定する。共通スイッチ制御ステップでは、ディスプレイに備えられた光源群(共通ライン)に含まれる、それぞれ映像中の画素を表すための複数の光源(LED)を、共通に点灯させるための共通スイッチを、その輝度変化パターンにしたがってスイッチングする。第1の画素スイッチ制御ステップでは、その光源群に含まれる複数の光源のうちの第1の光源を点灯させるための第1の画素スイッチをオンにすることにより、共通スイッチがオンであり、かつ、第1の画素スイッチがオンである期間のみに、第1の光源を点灯させることによって、可視光信号を送信する。
これにより、複数のLEDなどを光源として備えたディスプレイから可視光信号を適切に送信することができる。したがって、照明以外の機器を含む態様な機器間の通信を可能とする。また、そのディスプレイが、共通スイッチおよび第1の画素スイッチの制御によって映像を表示するためのディスプレイである場合、その共通スイッチおよび第1の画素スイッチを利用して、可視光信号を送信することができる。したがって、ディスプレイに映像表示するための構成に対して大幅な変更を行うことなく、簡単に可視光信号を送信することができる。
また、画素スイッチの制御タイミングを送信シンボル(4PPM1回分)と一致させ、図173のように制御することで、ちらつきなくLEDディスプレイから可視光信号を送信することができる。画像信号(すなわち映像信号)は通常1/30秒や1/60秒周期で変化するが、シンボル送信周期(シンボル周期)に合わせて画像信号を変化させることで、回路に変更を加えることなく実現することができる。
このように、本実施の形態における送信方法の上記決定ステップでは、輝度変化パターンをシンボル周期ごとに決定する。また、上記第1の画素スイッチ制御ステップでは、シンボル周期に同期させて、画素スイッチをスイッチングする。これにより、シンボル周期が例えば1/2400秒であっても、そのシンボル周期にしたがって可視光信号を適切に送信することができる。
信号(シンボル)が「10」で平均輝度が50%付近のときは、輝度変化パターンが0101に近くなり、輝度の立ち上がり箇所が2箇所となる。しかし、その場合は、後の立ち上がり箇所を優先することで、受信機は正しく信号を受信することができる。すなわち、後の立ち上がり箇所は、シンボル「10」に固有の輝度の立ち上がりが得られるタイミングである。
平均輝度が高いほど、4PPMで変調された信号に近い信号を出力することができる。したがって、画面全体、あるいは、電源ラインが共通な部分の輝度が低い場合は、電流を少なくして輝度の瞬時値を下げることで、HI区間を長くすることができ、エラーを低減させることができる。この場合、画面の最高輝度が下がるが、屋内での用途など、そもそも高い輝度が必要ない場合、または可視光通信を優先する場合などは、これを有効にするスイッチを有効にすることで、通信品質と画質のバランスを最適に設定することができる。
また、本実施の形態における送信方法の上記第1の画素スイッチ制御ステップでは、ディスプレイ(LEDディスプレイ)に映像を表示させるときには、上記第1の光源に対応する、映像中の画素の画素値を表現するための点灯期間のうち、可視光信号の送信のために第1の光源が消灯される期間だけ、その点灯期間を補うように、第1の画素スイッチをスイッチングする。つまり、本実施の形態における送信方法では、LEDディスプレイに映像が表示されているときに、可視光信号を送信する。したがって、映像信号によって示される画素値(具体的には輝度値)を表現するためにLEDが点灯すべき期間において、可視光信号の送信のためにそのLEDが消灯されることがある。このような場合には、本実施の形態における送信方法では、そのLEDが消灯される期間だけ、その点灯期間を補うように、第1の画素スイッチをスイッチングする。
例えば、可視光信号を送信せずに映像信号によって示される映像を表示するときは、1つのシンボル周期中、共通スイッチはオンになり、画素スイッチは、その映像信号によって示される画素値である平均輝度に応じた期間だけオンになる。平均輝度が75%である場合、共通スイッチは、シンボル周期の第1スロット~第4スロットにおいてオンになる。さらに、画素スイッチは、シンボル周期の第1スロット~第3スロットにおいてオンになる。これにより、シンボル周期中、LEDは第1スロット~第3スロットにおいて点灯するため、上述の画素値を表現することができる。しかし、シンボル「01」の送信のためには、第2スロットが消灯される。そこで、本実施の形態における送信方法では、そのLEDが消灯される第2スロットだけ、そのLEDの点灯期間を補うように、つまり、第4スロットにおいてLEDが点灯するように、画素スイッチをスイッチングする。
また、本実施の形態における送信方法では、映像中の画素の画素値を変更することによって、その点灯期間を補う。例えば、上述のような場合には、平均輝度75%の画素値を、平均輝度100%の画素値に変更する。平均輝度100%の場合、LEDは第1スロット~第4スロットで点灯しようとするが、シンボル「01」の送信のためには、第1スロットは消灯される。したがって、可視光信号を送信する場合でも、本来の画素値(平均輝度75%)でLEDを点灯させることができる。
これにより、可視光信号の送信によって映像が崩れてしまうことを抑えることができる。
(画素毎にずらした発光制御)
図174は、本実施の形態における送信信号の一例を示す図である。
本実施の形態における送信機は、図174のように、同じシンボル(例えば「10」)を画素Aと、その画素Aの付近の画素(例えば、画素Bおよび画素C)から送信するときには、それらの画素の発光タイミングをずらす。ただし、送信機は、そのシンボルに固有の輝度の立ち上がりのタイミングを、それらの画素間でずらすことなく、それらの画素を発光させる。なお、画素A~画素Cはそれぞれ、光源(具体的にはLED)に相当する。また、シンボルに固有の輝度の立ち上がりのタイミングは、そのシンボルが「10」であれば、第3スロットと第4スロットとの境界のタイミングである。また、このようなタイミングを、以下、シンボル固有タイミングという。受信機は、このシンボル固有タイミングを特定することによって、そのタイミングに応じたシンボルを受信することができる。
このように発光タイミングをずらすことによって、画素間の平均輝度推移を示す波形は、図174に示すように、シンボル固有タイミングにおける立ち上がりを除いて、緩やかな立ち上がりまたは立下りを有する。つまり、シンボル固有タイミングのける立ち上がりは、他のタイミングの立ち上がりよりも急峻である。したがって、受信機は、複数の立ち上がりのうち、最も急峻な立ち上がりを優先して受信することで、適切なシンボル固有タイミングを特定することができ、その結果、受信誤りを抑えることができる。
つまり、所定の画素からシンボル「10」を送信する場合で、その所定の画素の輝度が25%から75%の中間値の場合は、送信機は、その所定の画素に対応する画素スイッチの開区間を短く、あるいは、長く設定する。さらに、送信機は、その所定の画素の付近の画素に対応する画素スイッチの開区間を逆に調整する。このように、その所定の画素と付近の画素とを含む全体の輝度が変わらないように、各画素スイッチの開区間を設定することでも、エラーを抑えることができる。なお、開区間とは、画素スイッチがオンしている区間である。
このように、本実施の形態における送信方法は、さらに、第2の画素スイッチ制御ステップを含む。この第2の画素スイッチ制御ステップでは、上述の光源群(共通ライン)に含まれる、第1の光源の周囲にある第2の光源を点灯させるための第2の画素スイッチをオンにすることにより、共通スイッチがオンであり、かつ、第2の画素スイッチがオンである期間のみに、その第2の光源を点灯させることによって、可視光信号を送信する。なお、第2の光源は、例えば第1の光源の隣にある光源である。
そして、その第1および第2の画素スイッチ制御ステップでは、第1および第2の光源のそれぞれから、可視光信号に含まれる同一のシンボルを同時に送信するときには、第1および第2の画素スイッチのそれぞれが同一のシンボルを送信するためにオンまたはオフする複数のタイミングのうち、その同一のシンボルに固有の輝度の立ち上がりが得られるタイミングを、第1および第2の画素スイッチのそれぞれで同一にし、他のタイミングを、第1および第2の画素スイッチのそれぞれで異ならせ、その同一のシンボルが送信される期間における、第1および第2の光源の全体の平均輝度を、予め定められた輝度に一致させる。
これにより、図174に示す画素間平均輝度推移のように、空間的に平均された輝度において、シンボルに固有の輝度の立ち上がりが得られるタイミングでのみ、その立ち上がりを急峻にすることができ、受信エラーの発生を抑えることができる。つまり、受信機による可視光信号の受信エラーを抑えることができる。
また、所定の画素からシンボル「10」を送信する場合で、その所定の画素の輝度が25%から75%の中間値の場合は、送信機は、第1の期間における、その所定の画素に対応する画素スイッチの開区間を短く、あるいは、長く設定する。さらに、送信機は、第1の期間と時間的に前または後の第2の期間(例えばフレーム)において、その画素スイッチの開区間を逆に調整する。このように、所定の画素における、第1の期間と第2の期間を含む全体の時間平均輝度が変わらないように、画素スイッチの開区間を設定することでも、エラーを抑えることができる。
すなわち、本実施の形態における送信方法における、上述の第1の画素スイッチ制御ステップでは、例えば、第1の期間と、その第1の期間に続く第2の期間とで、可視光信号に含まれる同一のシンボルを送信する。このとき、その第1および第2の期間のそれぞれにおいて、第1の画素スイッチがその同一のシンボルを送信するためにオンまたはオフする複数のタイミングのうち、同一のシンボルに固有の輝度の立ち上がりが得られるタイミングを同一にし、他のタイミングを異ならせる。そして、その第1および第2の期間の全体における第1の光源の平均輝度を、予め定められた輝度に一致させる。この第1の期間および第2の期間はそれぞれ、フレームを表示するための期間とその次のフレームを表示するための期間であってもよい。また、第1の期間および第2の期間はそれぞれシンボル周期であってもよい。つまり、第1の期間および第2の期間はそれぞれ、1つのシンボルを送信するための期間と次のシンボルを送信するための期間であってもよい。
これにより、図174に示す画素間平均輝度推移と同じように、時間的に平均化された輝度において、シンボルに固有の輝度の立ち上がりが得られるタイミングでのみ、その立ち上がりを急峻にすることができ、受信エラーの発生を抑えることができる。つまり、受信機による可視光信号の受信エラーを抑えることができる。
(画素スイッチが倍速駆動可能な場合の発光制御)
図175は、本実施の形態における送信信号の一例を示す図である。
画素スイッチを、送信シンボル周期の半分の周期で開閉できる場合、つまり、画素スイッチが倍速駆動可能な場合は、図175に示すとおり、V4PPMと同じ発光パターンとすることができる。
言い換えれば、シンボル周期(シンボルが送信される期間)が4スロットからなる場合、画素スイッチを制御するLEDドライバ回路などの画素スイッチ制御部は、2スロットごとに、画素スイッチを制御することができる。つまり、画素スイッチ制御部は、そのシンボル周期の最初の時点から2スロット分の期間において、画素スイッチを任意の時間だけオンすることができる。さらに、画素スイッチ制御部は、そのシンボル周期の3スロット目の最初の時点から2スロット分の期間において、画素スイッチを任意の時間だけオンすることができる。
つまり、本実施の形態における送信方法では、上述のシンボル周期の1/2の周期で画素値を変更してもよい。
この場合、画素スイッチの開閉の1回あたりの細かさが減ってしまう(精度が低下してしまう)可能性がある。そこで、送信優先スイッチが有効のときのみこれを行うことで、画質と送信品質のバランスを最適に設定することができる。
(画素値調整による発光制御のブロック)
図176は、本実施の形態における送信機の一例を示すブロック図である。
図176の(a)は、可視光信号の送信を行わず、映像の表示のみを行う装置、すなわち、上述のLEDディスプレイに映像を表示する表示装置の構成を示すブロック図である。この表示装置は、図176の(a)に示すように、画像・映像入力部1911と、N倍速化部1912と、共通スイッチ制御部1913と、画素スイッチ制御部1914とを備える。
画像・映像入力部1911は、画像または映像を例えば60Hzのフレームレートで示す映像信号をN倍速化部1912に出力する。
N倍速化部1912は、画像・映像入力部1911から入力される映像信号のフレームレートをN(N>1)倍に上げ、その映像信号を出力する。例えば、N倍速化部1912は、フレームレートを10倍(N=10)に、すなわち600Hzのフレームレートに上げる。
共通スイッチ制御部1913は、その600Hzのフレームレートの映像に基づいて共通スイッチをスイッチングする。同様に、画素スイッチ制御部1914は、その600Hzのフレームレートの映像に基づいて画素スイッチをスイッチングする。このように、N倍速化部1912によってフレームレートが上がることによって、共通スイッチまたは画素スイッチなどのスイッチの開閉によるチラつきを回避することができる。また、撮像装置によってLEDディスプレイが高速シャッターで撮像される場合にも、画素抜け、またはチラつきのない画像をその撮像装置に撮像させることができる。
図176の(b)は、映像の表示だけでなく、上述の可視光信号の送信を行う表示装置、すなわち送信機(送信装置)の構成を示すブロック図である。この送信機は、画像・映像入力部1911と、共通スイッチ制御部1913と、画素スイッチ制御部1914と、信号入力部1915と、画素値調整部1916とを備える。信号入力部1915は、複数のシンボルからなる可視光信号を、2400シンボル/秒のシンボルレート(周波数)で画素値調整部1916に出力する。
画素値調整部1916は、その可視光信号のシンボルレートに合わせて、画像・映像入力部1911から入力された画像を複製し,上述の方法にしたがって画素値を調整する。これにより、画素値調整部1916から後段の共通スイッチ制御部1913および画素スイッチ制御部1914は、画像または映像の輝度を変えることなく、可視光信号を出力することができる。
例えば、図176に示す例の場合、可視光信号のシンボルレートが2400シンボル/秒であれば、画素値調整部1916は、映像信号のフレームレート60Hzが4800Hzになるように、映像信号に含まれる画像を複製する。例えば、可視光信号に含まれるシンボルの値が「00」で、複製前の1枚目の画像に含まれる画素の画素値(輝度値)は50%である。この場合、画素値調整部1916は、その画素値を複製後の1枚目の画像では100%に調整し、2枚目の画像では50%に調整する。これにより、図175の(c)に示す、シンボル「00」の場合の輝度変化のように、共通スイッチと画素スイッチのアンドによって、輝度は50%となる。その結果、元の画像の輝度と等しく保ちつつ、可視光信号を送信することができる。なお、共通スイッチと画素スイッチのアンドとは、共通スイッチがオンであり、かつ画素スイッチがオンである期間でのみ、その共通スイッチおよび画素スイッチに対応する光源(すなわちLED)が点灯することである。
また、本実施の形態における送信方法では、映像の表示と可視光信号の送信とを同時に行うことなく、それらを信号送信期間と映像表示時間とで分けて行ってもよい。
つまり、本実施の形態における上述の第1の画素スイッチ制御ステップでは、共通スイッチが輝度変化パターンにしたがってスイッチングしている信号送信期間中、第1の画素スイッチをオンにする。そして、本実施の形態における送信方法は、さらに、その信号送信期間と異なる映像表示期間中、その共通スイッチをオンにし、映像表示期間において第1の画素スイッチを表示対象の映像にしたがってオンにすることにより、共通スイッチがオンであり、かつ、第1の画素スイッチがオンである期間のみに、第1の光源を点灯させることによって、その映像中の画素を表示する映像表示ステップを含んでもよい。
これにより、映像の表示と可視光信号の送信とが互いに異なる期間に行われるためその表示と送信を簡単に行うことができる。
(電源変更のタイミング)
電源ライン変更時には、信号オフの区間が発生してしまうが、4PPMの最後の部分は発光していなくても受信には影響しないため、4PPMシンボルの送信周期に合わせて電源ラインを変更することで、受信品質に影響を与えずに電源ラインを変更することができる。
また、4PPMのLO期間に電源ラインを変更することでも、受信品質に影響を与えずに電源ラインを変更することができる。この場合は、さらに、最大輝度を高く保ったまま送信することができる。
(駆動タイミング)
また、本実施の形態では、図177~図179に示すタイミングでLEDディスプレイを駆動してもよい。
図177~図179は、LEDディスプレイを本発明の光ID変調信号で駆動する場合のタイミングチャートである。
例えば、図178に示すように、可視光信号(光ID)を送信するために、共通スイッチ(COM1)がオフにされるとき(期間t1)には、映像信号の示す輝度でLEDを点灯させることができないため、その期間t1以降に、そのLEDを点灯させる。これにより、可視光信号を適切に送信しながら、映像信号によって示される映像を崩すことなく、その映像を適切に表示することができる。
(まとめ)
図180Aは、本発明の一態様に係る送信方法を示すフローチャートである。
本発明の一態様に係る送信方法は、輝度変化によって可視光信号を送信する送信方法であって、ステップSC11~SC13を含む。
ステップSC11では、上述の各実施の形態と同様に、可視光信号を変調することにより、輝度変化パターンを決定する。
ステップSC12では、ディスプレイに備えられた光源群に含まれる、それぞれ映像中の画素を表すための複数の光源を、共通に点灯させるための共通スイッチを、その輝度変化パターンにしたがってスイッチングする。
ステップS13では、その光源群に含まれる複数の光源のうちの第1の光源を点灯させるための第1の画素スイッチ(すなわち画素スイッチ)をオンにすることにより、共通スイッチがオンであり、かつ、第1の画素スイッチがオンである期間のみに、第1の光源を点灯させることによって、可視光信号を送信する。
図180Bは、本発明の一態様に係る送信装置の機能構成を示すブロック図である。
本発明の一態様に係る送信装置C10は、輝度変化によって可視光信号を送信する送信装置(または送信機)であって、決定部C11と、共通スイッチ制御部C12と、画素スイッチ制御部C13とを備える。決定部C11は、上述の各実施の形態と同様に、可視光信号を変調することにより、輝度変化パターンを決定する。なお、この決定部C11は、例えば、図176に示す信号入力部1915に備えられる。
共通スイッチ制御部C12は、共通スイッチをその輝度変化パターンにしたがってスイッチングする。この共通スイッチは、ディスプレイに備えられた光源群に含まれる、それぞれ映像中の画素を表すための複数の光源を、共通に点灯させるためのスイッチである。
画素スイッチ制御部C13は、光源群に含まれる複数の光源のうちの制御対象の光源を点灯させるための画素スイッチをオンにすることにより、共通スイッチがオンであり、かつ、画素スイッチがオンである期間のみに、制御対象の光源を点灯させることによって、可視光信号を送信する。なお、制御対象の光源は、上述の第1の光源である。
これにより、複数のLEDなどを光源として備えたディスプレイから可視光信号を適切に送信することができる。したがって、照明以外の機器を含む態様な機器間の通信を可能とする。また、そのディスプレイが、共通スイッチおよび画素スイッチの制御によって映像を表示するためのディスプレイである場合、その共通スイッチおよび画素スイッチを利用して、可視光信号を送信することができる。したがって、ディスプレイに映像表示するための構成(すなわち表示装置)に対して大幅な変更を行うことなく、簡単に可視光信号を送信することができる。
(Single frame transmissionのフレーム構成)
図181は、本実施の形態における送信信号の一例を示す図である。
送信フレームは、図181の(a)に示すように、プリアンブル(PRE)、ID長(IDLEN)、IDタイプ(IDTYPE)、コンテンツ(ID/DATA)、および検査符号(CRC)で構成される。各領域のビット数は一例である。
図181の(b)に示すようなプリアンブルを用いることで、受信機は、4PPM、I-4PPMまたはV4PPMでエンコードされている他の部分と区別することができ、信号の区切りを見つけることができる。
図181の(c)に示すように、IDLENでID/DATAの長さを指定することで、可変長のコンテンツを送信することができる。
CRCは、PRE以外の部分の誤りを訂正、または、検出する検査符号である。検査領域の長さに応じてCRC長を変化させることで、検査能力を一定以上に保つことが出来る。また、検査領域の長さに応じて異なる検査符号を用いることで、CRC長あたりの検査能力を向上させることができる。
(Multiple frame transmissionのフレーム構成)
図182と図183は、本実施の形態における送信信号の一例を示す図である。
送信データ(BODY)には、パーティションタイプ(PTYPE)と検査符号(CRC)が付加され、Joined dataとなる。Joined dataは、いくつかのDATAPARTに分割され、プリアンブル(PRE)とアドレス(ADDR)が付加されて送信される。
PTYPE(または、パーティションモード(PMODE))は、BODYの分割方法または意味を示す。図182の(a)に示すように2bitとすることで、4PPMでちょうどよく符号化することができる。図182の(b)に示すように1bitとすることで、送信時間を短くすることができる。
CRCはPTYPEとBODYを検査する検査符号である。図161で定めるように、検査される部分の長さによってCRCの符号長を変化させることで、検査能力を一定以上に保つことができる。
プリアンブルは、図162のように定めることで、分割パターンのバリエーションを確保しつつ、送信時間を短くすることができる。
アドレスは、図163のように定めることで、受信機は、フレームを受信した順序に関わらず、データを復元することができる。
図183は、可能なJoined data長とフレーム数との組み合わせである。下線が引かれた組み合わせは、後述のPTYPEがSingle frame compatibleのときに用いられる組み合わせである。
(BODYフィールドの構成)
図184は、本実施の形態における送信信号の一例を示す図である。
BODYを図のようなフィールド構成とすることで、シングルフレーム送信と同様のIDを送信することができる。
同じIDTYPEで同じIDの場合は、シングルフレーム送信かマルチフレーム送信か、また、パケット送信の組み合わせにかかわらず、同じ意味を表すとすることで、連続送信・受信時間が短い場合などに柔軟に信号を送信することができる。
IDLENでIDの長さを指定し、余った部分はPADDINGを送信する。この部分は全て0または1としてもよいし、IDを拡張するデータを送信してもよいし、検査符号としてもよい。PADDINGは左詰めであっても良い。
図184の(b)、(c)または(d)では、図184の(a)よりも送信時間を短くすることができる。このときIDの長さは、IDとして取れる長さのうち最大のものであるとする。
図184の(b)または(c)の場合は、IDTYPEのビット数が奇数となるが、図182の(b)に示す1bitのPTYPEと組み合わせることで、偶数となり、4PPMで効率よくエンコードすることができる。
図184の(c)では、より長いIDを送信することができる。
図184の(d)では、より多くのIDTYPEを表現することができる。
(PTYPE)
図185は、本実施の形態における送信信号の一例を示す図である。
PTYPEが所定のビットであるときは、BODYがSingle frame compatibleモードであることを示す。これにより、シングルフレーム送信の場合と同じIDを送信することができる。
例えば、PTYPE=00のときには、そのPTYPEに対応するIDまたはIDタイプを、シングルフレーム送信で送信されたIDまたはIDタイプと同様に扱うことができ、IDまたはIDタイプの管理を簡単にすることができる。
PTYPEが所定のビットであるときは、BODYはData streamモードであることを示す。このとき、送信フレーム数とDATAPART長は全ての組み合わせを用いることができ、異なる組み合わせのデータは異なる意味を持つとすることができる。PTYPEのビットによって、前記異なる組み合わせが同じ意味を持つ場合と、異なる意味を保つ場合としてもよい。これにより、送信方法を柔軟に選択することができる。
例えば、PTYPE=01のときには、シングルフレーム送信に定義されていないサイズのIDを送信することができる。また、そのPTYPEに対応するIDがシングルフレーム送信のIDと同一であっても、そのPTYPEに対応するIDを、そのシングルフレーム送信のIDとは別のIDとして扱うことができる。その結果、表現可能なIDの数を多くすることができる。
(Single frame compatible モードのフィールド構成)
図186は、本実施の形態における送信信号の一例を示す図である。
図184の(a)を用いる場合、Single frame compatiblモードでは、図186に示す表の組み合わせで送信する場合が最も効率が良い。
図184の(b)、(c)または(d)を用いる場合は、IDが32bitの場合は、フレーム数13でDATAPART長4bitの組み合わせが効率が良い。また、IDが64bitの場合は、フレーム数が11でDATAPART長が8bitの組み合わせが効率が良い。
表の組み合わせのみで送信されるとすることで、異なる組み合わせは受信エラーと判断することができるようになり、受信エラー率を下げることができる。
(実施の形態19のまとめ)
本発明の一態様に係る送信方法は、輝度変化によって可視光信号を送信する送信方法であって、可視光信号を変調することにより、輝度変化パターンを決定する決定ステップと、ディスプレイに備えられた光源群に含まれる、それぞれ映像中の画素を表すための複数の光源を共通に点灯させるための共通スイッチを、前記輝度変化パターンにしたがってスイッチングする共通スイッチ制御ステップと、前記光源群に含まれる複数の光源のうちの第1の光源を点灯させるための第1の画素スイッチをオンにすることにより、前記共通スイッチがオンであり、かつ、前記第1の画素スイッチがオンである期間のみに、前記第1の光源を点灯させることによって、前記可視光信号を送信する第1の画素スイッチ制御ステップとを含む。
これにより、例えば図173~図180Bに示すように、複数のLEDなどを光源として備えたディスプレイから可視光信号を適切に送信することができる。したがって、照明以外の機器を含む態様な機器間の通信を可能とする。また、そのディスプレイが、共通スイッチおよび第1の画素スイッチの制御によって映像を表示するためのディスプレイである場合、その共通スイッチおよび第1の画素スイッチを利用して、可視光信号を送信することができる。したがって、ディスプレイに映像表示するための構成に対して大幅な変更を行うことなく、簡単に可視光信号を送信することができる。
また、前記決定ステップでは、前記輝度変化パターンをシンボル周期ごとに決定し、前記第1の画素スイッチ制御ステップでは、前記シンボル周期に同期させて、前記第1の画素スイッチをスイッチングしてもよい。
これにより、例えば図173に示すように、シンボル周期が例えば1/2400秒であっても、そのシンボル周期にしたがって可視光信号を適切に送信することができる。
また、前記第1の画素スイッチ制御ステップでは、前記ディスプレイに映像を表示させるときには、前記第1の光源に対応する、前記映像中の画素の画素値を表現するための点灯期間のうち、前記可視光信号の送信のために前記第1の光源が消灯される期間だけ、前記点灯期間を補うように、前記第1の画素スイッチをスイッチングしてもよい。例えば、前記映像中の画素の画素値を変更することによって、前記点灯期間を補ってもよい。
これにより、例えば図173および図175に示すように、可視光信号の送信のために第1の光源が消灯される場合でも、点灯期間が補われるため、本来の映像を崩すことなく適切に表示することができる。
また、前記シンボル周期の1/2の周期で前記画素値を変更してもよい。
これにより、例えば図175に示すように、映像の表示と可視光信号の送信とを適切に行うことができる。
また、前記送信方法は、さらに、前記光源群に含まれる、前記第1の光源の周囲にある第2の光源を点灯させるための第2の画素スイッチをオンにすることにより、前記共通スイッチがオンであり、かつ、前記第2の画素スイッチがオンである期間のみに、前記第2の光源を点灯させることによって、前記可視光信号を送信する第2の画素スイッチ制御ステップとを含み、前記第1および第2の画素スイッチ制御ステップでは、前記第1および第2の光源のそれぞれから、前記可視光信号に含まれる同一のシンボルを同時に送信するときには、前記第1および第2の画素スイッチのそれぞれが前記同一のシンボルを送信するためにオンまたはオフする複数のタイミングのうち、前記同一のシンボルに固有の輝度の立ち上がりが得られるタイミングを、前記第1および第2の画素スイッチのそれぞれで同一にし、他のタイミングを、前記第1および第2の画素スイッチのそれぞれで異ならせ、前記同一のシンボルが送信される期間における、前記第1および第2の光源の全体の平均輝度を、予め定められた輝度に一致させてもよい。
これにより、例えば図174に示すように、空間的に平均化された輝度において、シンボルに固有の輝度の立ち上がりが得られるタイミングでのみ、その立ち上がりを急峻にすることができ、受信エラーの発生を抑えることができる。
また、前記第1の画素スイッチ制御ステップでは、第1の期間と、前記第1の期間に続く第2の期間とで、前記可視光信号に含まれる同一のシンボルを送信するときには、前記第1および第2の期間のそれぞれにおいて、前記第1の画素スイッチが前記同一のシンボルを送信するためにオンまたはオフする複数のタイミングのうち、前記同一のシンボルに固有の輝度の立ち上がりが得られるタイミングを同一にし、他のタイミングを異ならせ、前記第1および第2の期間の全体における前記第1の光源の平均輝度を、予め定められた輝度に一致させてもよい。
これにより、例えば図174に示すように、時間的に平均化された輝度において、シンボルに固有の輝度の立ち上がりが得られるタイミングでのみ、その立ち上がりを急峻にすることができ、受信エラーの発生を抑えることができる。
また、前記第1の画素スイッチ制御ステップでは、前記共通スイッチが前記輝度変化パターンにしたがってスイッチングしている信号送信期間中、前記第1の画素スイッチをオンにし、前記送信方法は、さらに、前記信号送信期間と異なる映像表示期間中、前記共通スイッチをオンにし、前記映像表示期間において前記第1の画素スイッチを表示対象の映像にしたがってオンにすることにより、前記共通スイッチがオンであり、かつ、前記第1の画素スイッチがオンである期間のみに、前記第1の光源を点灯させることによって、前記映像中の画素を表示する映像表示ステップを含んでもよい。
これにより、映像の表示と可視光信号の送信とが互いに異なる期間に行われるためその表示と送信を簡単に行うことができる。
(実施の形態20)
本実施の形態では、上記各実施の形態における可視光信号の詳細または変形例について、具体的に説明する。なお、カメラのトレンドは、高解像度化(4K)、高フレームレート化(60fps)である。高フレームレート化によって、フレームスキャン時間が減少する。その結果、受信距離が減少し、受信時間が増加する。そのため、可視光信号を送信する送信機では、パケット送信時間を短くする必要がある。また、ラインスキャン時間の減少により、受信の時間分解能が高くなる。また、露光時間は1/8000秒である。4PPMでは、信号表現と調光を同時に行っているため、信号密度が低く、効率が悪い。したがって、本実施の形態における可視光信号では、信号部分と調光部分を分離して、受信に必要な部分が短くされている。
図187は、本実施の形態における可視光信号の構成の一例を示す図である。
可視光信号は、図187に示すように、信号部と調光部との組み合わせを複数含む。この組み合わせの時間長は例えば2ms以下(周波数は500Hz以上)である。
図188は、本実施の形態における可視光信号の詳細な構成の一例を示す図である。
可視光信号は、データL(DataL)と、プリアンブル(Preamble)と、データR(DataR)と、調光部(Dimming)とを含む。データLとプリアンブルとデータRとから、上記信号部が構成される。
プリアンブルは、時間軸に沿ってHighとLowの輝度値を交互に示す。つまり、プリアンブルは、時間長PだけHighの輝度値を示し、次の時間長PだけLowの輝度値を示し、次の時間長PだけHighの輝度値を示し、次の時間長PだけLowの輝度値を示す。なお、時間長P~Pは、例えば100μsである。
データRは、時間軸に沿ってHighとLowの輝度値を交互に示し、プリアンブルの直後に配置される。つまり、データRは、時間長DR1だけHighの輝度値を示し、次の時間長DR2だけLowの輝度値を示し、次の時間長DR3だけHighの輝度値を示し、次の時間長DR4だけLowの輝度値を示す。なお、時間長DR1~DR4は、送信対象の信号に応じた数式にしたがって決定される。この数式は、DRi=120+20x(i∈1~4、x∈0~15)である。なお、120および20などの数値は時間(μs)を示す。また、これらの数値は一例である。
データLは、時間軸に沿ってHighとLowの輝度値を交互に示し、プリアンブルの直前に配置される。つまり、データLは、時間長DL1だけHighの輝度値を示し、次の時間長DL2だけLowの輝度値を示し、次の時間長DL3だけHighの輝度値を示し、次の時間長DL4だけLowの輝度値を示す。なお、時間長DL1~DL4は、送信対象の信号に応じた数式にしたがって決定される。この数式は、DLi=120+20×(15-x)である。なお、上述と同様に、120および20などの数値は時間(μs)を示す。また、これらの数値は一例である。
なお、送信対象の信号は4×4=16ビットからなり、xは、その送信対象の信号のうちの4ビットの信号である。可視光信号では、データRにおける時間長DR1~DR4のそれぞれ、またはデータLにおける時間長DL1~DL4のそれぞれによって、そのx(4ビットの信号)の数値を示す。また、送信対象の信号の16ビット中、4ビットはアドレスを示し、8ビットはデータを示し、4ビットはエラー検出に用いられる。
ここで、データRとデータLとは、明るさに対して補完関係がある。つまり、データRの明るさが明るければ、データLの明るさは暗く、逆に、データRの明るさが暗ければ、データLの明るさは明るくなる。つまり、データRの全体の時間長とデータLの時間長との和は、送信対象の信号に関わらずに一定である。
調光部は、可視光信号の明るさ(輝度)を調整するための信号であって、時間長CだけHighの輝度値を示し、次の時間長CだけLowの信号を示す。時間長CおよびCは、任意に調整される。なお、調光部は、可視光信号に含まれていても、含まれていなくてもよい。
また、図188に示す例では、データRおよびデータLが可視光信号に含まれているが、データRおよびデータLのうちの何れか一方のみが含まれていてもよい。可視光信号を明るくしたいときには、データRおよびデータLのうちの明るいデータのみを送信してもよい。また、データRおよびデータLの配置を逆にしてもよい。また、データRが含まれている場合には、調光部の時間長Cは例えば100μsよりも長く、データLが含まれている場合には、調光部の時間長Cは例えば100μsよりも長い。
図189Aは、本実施の形態における可視光信号の他の一例を示す図である。
図188に示す可視光信号では、Highの輝度値を示す時間長と、Lowの輝度値を示す時間長とのそれぞれによって送信対象の信号を表現したが、図189Aの(a)に示すように、Lowの輝度値を示す時間長のみで送信対象の信号を表現してもよい。なお、図189Aの(b)は、図188の可視光信号を示す。
例えば、図189Aの(a)に示すように、プリアンブルでは、Highの輝度値を示す時間長は何れも等しくて比較的短く、Lowの輝度値を示す時間長P~Pはそれぞれ例えば100μsである。また、データRでは、Highの輝度値を示す時間長は何れも等しくて比較的短く、Lowの輝度値を示す時間長DR1~DR4はそれぞれ信号xに応じて調整される。なお、プリアンブルおよびデータRにおいて、Highの輝度値を示す時間長は例えば10μs以下である。
図189Bは、本実施の形態における可視光信号の他の一例を示す図である。
例えば、図189Bに示すように、プリアンブルでは、Highの輝度値を示す時間長は何れも等しくて比較的短く、Lowの輝度値を示す時間長P~Pはそれぞれ例えば160μs、180μs、160μsである。また、データRでは、Highの輝度値を示す時間長は何れも等しくて比較的短く、Lowの輝度値を示す時間長DR1~DR4はそれぞれ信号xに応じて調整される。なお、プリアンブルおよびデータRにおいて、Highの輝度値を示す時間長は例えば10μs以下である。
図189Cは、本実施の形態における可視光信号の信号長を示す図である。
図190は、本実施の形態における可視光信号と、規格IEC(International Electrotechnical Commission)の可視光信号との輝度値の比較結果を示す図である。なお、規格IECは、具体的には、"VISIBLE LIGHT BEACON SYSTEM FOR MULTIMEDIA APPLICATIONS"である。
本実施の形態における可視光信号(実施の形態の方式(Data片側))では、規格IECの可視光信号の最高輝度よりも高い最高輝度82%を得ることができ、規格IECの可視光信号の最低輝度よりも低い最低輝度18%を得ることができる。なお、最高輝度82%および最低輝度18%は、本実施の形態における、データRおよびデータLのうちの何れか一方のみを含む可視光信号によって得られた数値である。
図191は、本実施の形態における可視光信号と、規格IECの可視光信号との、画角に対する受信パケット数および信頼度の比較結果を示す図である。
本実施の形態における可視光信号(実施の形態の方式(both))では、画角が小さくなっても、つまり、可視光信号を送信する送信機から受信機までの距離が長くなっても、規格IECの可視光信号よりも受信パケット数が多く、高い信頼度を得ることができる。なお、図191に示す実施形態の方式(both)の数値は、データRおよびデータLの両方を含む可視光信号によって得られた数値である。
図192は、本実施の形態における可視光信号と、規格IECの可視光信号との、ノイズに対する受信パケット数および信頼度の比較結果を示す図である。
本実施の形態における可視光信号(IEEE)では、ノイズ(ノイズの分散値)に関わらず、規格IECの可視光信号よりも受信パケット数が多く、高い信頼度を得ることができる。
図193は、本実施の形態における可視光信号と、規格IECの可視光信号との、受信側クロック誤差に対する受信パケット数および信頼度の比較結果を示す図である。
本実施の形態における可視光信号(IEEE)では、受信側クロック誤差の広い範囲で、規格IECの可視光信号よりも受信パケット数が多く、高い信頼度を得ることができる。なお、受信側クロック誤差は、受信機のイメージセンサにおける露光ラインが露光を開始するタイミングの誤差である。
図194は、本実施の形態における送信対象の信号の構成を示す図である。
送信対象の信号は、上述のように4ビットの信号(x)を4つ(4×4=16ビット)含む。例えば、送信対象の信号は、信号x~xを含む。信号xは、ビットx11~x14からなり、信号xは、ビットx21~x24からなる。また、信号xは、ビットx31~x34からなり、信号xは、ビットx41~x44からなる。ここで、ビットx11、ビットx21、ビットx31およびビットx41は間違いやすく、それら以外のビットは間違い難い。そこで、信号xに含まれるビットx42~ビットx44はそれぞれ、信号xのビットx11、信号xのビットx21、信号xのビットx31のパリティに用いられ、信号xに含まれるビットx41は使われずに常に0を示す。ビットx42、x43、x44のそれぞれの算出には、図194に示す数式が用いられる。この数式によって、ビットx42=ビットx11、ビットx43=ビットx21、ビットx44=ビットx31のように、ビットx42、x43、x44がそれぞれ算出される。
図195Aは、本実施の形態における可視光信号の受信方法を示す図である。
受信機は、上述の可視光信号の信号部を順次取得する。信号部は、4ビットのアドレス(Addr)と、8ビットのデータ(Data)とを含む。受信機は、それらの信号部のデータをそれぞれ結合し、複数のデータからなるIDと、1つまたは複数のデータからなるパリティ(Partity)とを生成する。
図195Bは、本実施の形態における可視光信号の並び替えを示す図である。
図196は、本実施の形態における可視光信号の他の例を示す図である。
図196に示す可視光信号は、図188に示す可視光信号に対して高周波信号を重畳することによって構成されている。高周波信号の周波数は例えば1~数Gbpsである。これにより、図188に示す可視光信号よりも高速にデータを送信することができる。
図197は、本実施の形態における可視光信号の詳細な構成の他の例を示す図である。なお、図197に示す可視光信号の構成は、図188に示す構成と同様であるが、図197に示す可視光信号における調光部の時間長C1およびC2は、図188に示す時間長C1およびC2とは異なる。
図198は、本実施の形態における可視光信号の詳細な構成の他の例を示す図である。この図198に示す可視光信号では、データRおよびデータLは、V4PPMのシンボルを8つ含む。データLに含まれるシンボルDLiの立ち上がり位置または立ち下り位置は、データRに含まれるシンボルDRiの立ち上がり位置または立ち下がり位置と同じである。しかし、シンボルDLiの平均輝度とシンボルDRiの平均輝度は、同一であっても、異なっていてもよい。
図199は、本実施の形態における可視光信号の詳細な構成の他の例を示す図である。この図199に示す可視光信号は、ID通信用または低平均輝度用途の信号であって、図189Bに示す可視光信号と同一である。
図200は、本実施の形態における可視光信号の詳細な構成の他の例を示す図である。この図200に示す可視光信号では、データ(Data)における偶数番目の時間長D2iと奇数番目の時間長D2i+1とは等しい。
図201は、本実施の形態における可視光信号の詳細な構成の他の例を示す図である。この図201に示す可視光信号におけるデータ(Data)は、パルス位置変調の信号であるシンボルを複数含む。
図202は、本実施の形態における可視光信号の詳細な構成の他の例を示す図である。この図202に示す可視光信号は、連続通信用の信号であって、図198に示す可視光信号と同一である。
図203~図211は、図197のx1~x4の値を決定する方法を説明するための図である。なお、図203~図211に示すx1~x4は、以下の変形例に示す符号w1~w4の値(W1~W4)を決定する方法と同様の方法で決定される。ただし、x1~x4のそれぞれは、4ビットからなる符号であって、第1ビットにパリティを含む点が、以下の変形例に示す符号w1~w4とは異なる。
(変形例1)
図212は、本実施の形態の変形例1に係る可視光信号の詳細な構成の一例を示す図である。この変形例1に係る可視光信号は、上記実施の形態の図188に示す可視光信号と同様であるが、HighまたはLowの輝度値を示す時間長が図188に示す可視光信号と異なっている。例えば、本変形例に係る可視光信号では、プリアンブルの時間長P、Pは90μsである。また、本変形例に係る可視光信号では、上記実施の形態と同様に、データRにおける時間長DR1~DR4は、送信対象の信号に応じた数式にしたがって決定される。しかし、本変形例における数式は、DRi=120+30×wi(i∈1~4、wi∈0~7)である。なお、wiは、3ビットからなる符号であって、0~7の何れかの整数の値を示す送信対象の信号である。また、本変形例に係る可視光信号では、上記実施の形態と同様に、データLにおける時間長DL1~DL4は、送信対象の信号に応じた数式にしたがって決定される。しかし、本変形例における数式は、DLi=120+30×(7-wi)である。
また、図212に示す例では、データRおよびデータLが可視光信号に含まれているが、データRおよびデータLのうちの何れか一方のみが可視光信号に含まれていてもよい。可視光信号を明るくしたいときには、データRおよびデータLのうちの明るいデータのみを送信してもよい。また、データRおよびデータLの配置を逆にしてもよい。
図213は、本変形例に係る可視光信号の他の例を示す図である。
変形例1に係る可視光信号は、図189Aの(a)および図189Bに示す例と同様に、Lowの輝度値を示す時間長のみで送信対象の信号を表現してもよい。
例えば、図213に示すように、プリアンブルでは、Highの輝度値を示す時間長は例えば10μs未満であって、Lowの輝度値を示す時間長P~Pのそれぞれは例えば160μs、180μs、160μsである。また、データ(Data)では、Highの輝度値を示す時間長は10μs未満であって、Lowの輝度値を示す時間長D~Dはそれぞれ信号wiに応じて調整される。具体的には、Lowの輝度値を示す時間長Dは、D=180+30×wi(i∈1~4、wi∈0~7)である。
図214は、本変形例に係る可視光信号のさらに他の例を示す図である。
本変形例に係る可視光信号は、図214に示すようなプリアンブルとデータとを含んでいてもよい。プリアンブルは、図212に示すプリアンブルと同様に、時間軸に沿ってHighとLowの輝度値を交互に示す。また、プリアンブルにおける時間長P~Pのそれぞれは、50μs、40μs、40μs、50μsである。データ(Data)は、時間軸に沿ってHighとLowの輝度値を交互に示す。例えば、データLは、時間長DだけHighの輝度値を示し、次の時間長DだけLowの輝度値を示し、次の時間長DだけHighの輝度値を示し、次の時間長DだけLowの輝度値を示す。
ここで、時間長D2i-1+D2iは、送信対象の信号に応じた数式にしたがって決定される。つまり、Highの輝度値を示す時間長と、その輝度値に続くLowの輝度値を示す時間長との和が、その数式にしたがって決定される。この数式は、例えば、D2i-1+D2i=100+20×x(i∈1~N、x∈0~7、D2i>50μs、D2i+1>50μs)である。
図215は、パケット変調の一例を示す図である。
信号生成装置は、本変形例に係る可視光信号の生成方法によって、可視光信号を生成する。本変形例に係る可視光信号の生成方法では、パケットを上述の送信対象の信号wiに変調(すなわち変換)する。なお、上述の信号生成装置は、上記各実施の形態における送信機に備えられていてもよく、その送信機に備えられていなくてもよい。
例えば、信号生成装置は、図215に示すように、パケットを、符号w1、w2、w3およびw4のそれぞれによって示される数値を含む送信対象の信号に変換する。これらの符号w1、w2、w3およびw4は、それぞれ第1ビットから第3ビットまでの3ビットからなる符号であって、図212に示すように、0~7の整数値を示す。
ここで、符号w1~w4のそれぞれにおいて、第1ビットの値をb1、第2ビットの値をb2、第3ビットの値をb3とする。なお、b1、b2およびb3は、0または1である。この場合、符号w1~w4によって示される数値W1~W4のそれぞれは、例えば、b1×2+b2×2+b3×2である。
パケットは、0~4ビットからなるアドレスデータ(A1~A4)と、4~7ビットからなる主データDa(Da1~Da7)と、3~4ビットからなる副データDb(Db1~Db4)と、ストップビットの値(S)とをデータとして含む。なお、Da1~Da7、A1~A4、Db1~Db4、およびSのそれぞれは、ビットの値、つまり0または1を示す。
すなわち、信号生成装置は、パケットを送信対象の信号に変調するときには、そのパケットに含まれるデータを、符号w1、w2、w3、およびw4の何れかのビットに割り当てる。これによって、パケットは、符号w1、w2、w3、およびw4のそれぞれによって示される数値を含む送信対象の信号に変換される。
信号生成装置は、パケットに含まれるデータを割り当てるときには、具体的には、符号w1~w4のそれぞれの第1ビット(bit1)からなる第1のビット列に、パケットに含まれる主データDaの少なくとも一部(Da1~Da4)を割り当てる。さらに、信号生成装置は、符号w1の第2ビット(bit2)に、パケットに含まれるストップビットの値(S)を割り当てる。さらに、信号生成装置は、符号w2~w4のそれぞれの第2ビット(bit2)からなる第2のビット列に、パケットに含まれる主データDaの一部(Da5~Da7)、または、パケットに含まれるアドレスデータの少なくとも一部(A1~A3)を割り当てる。さらに、信号生成装置は、符号w1~w4のそれぞれの第3ビット(bit3)からなる第3のビット列に、パケットに含まれる副データDbの少なくとも一部(Db1~Db3)と、その副データDbの一部(Db4)またはアドレスデータの一部(A4)とを割り当てる。
なお、符号w1~w4のそれぞれの第3ビット(bit3)が全て0の場合には、上述の「b1×2+b2×2+b3×2」によって、それらの符号が示す数値は、3以下に抑えられる。したがって、図212に示す数式DRi=120+30×w(i∈1~4、w∈0~7)によって、時間長DRiを短くすることができる。その結果、1パケットを送信する時間を短くすることができ、より遠方からでも、そのパケットを受信することができる。
図216~図226は、元データからパケットを生成する処理を示す図である。
本変形例に係る信号生成装置は、元データのビット長に応じてその元データを分割するか否かを判定する。そして、信号生成装置は、その判定の結果に応じた処理を行うことにより、元データから少なくとも1つのパケットを生成する。つまり、信号生成装置は、元データのビット長が長いほど、その元データを多くのパケットに分割する。逆に、信号生成装置は、元データのビット長が所定のビット長よりも短ければ、元データを分割することなくパケットを生成する。
信号生成装置は、このように、元データから少なくとも1つのパケットを生成すると、その少なくとも1つのパケットのそれぞれを上述の送信対象の信号、すなわち、符号w1~w4に変換する。
なお、図216~図226において、Dataは、元データを示し、Dataaは、元データに含まれる主元データを示し、Databは、元データに含まれる副元データを示す。また、Da(k)は、主元データそのもの、または、主元データとパリティとを含むデータを構成する複数の部分のうちのk番目の部分を示す。同様に、Db(k)は、副元データそのもの、または、副元データとパリティとを含むデータを構成する複数の部分のうちのk番目の部分を示す。例えば、Da(2)は、主元データとパリティとを含むデータを構成する複数の部分のうちの2番目の部分を示す。また、Sは、スタートビットを示し、Aは、アドレスデータを示す。
また、各ブロック内に示される最上段の表記は、元データ、主元データ、副元データ、スタートビット、およびアドレスデータなどを識別するためのラベルである。また、各ブロック内に示される、中央の数値は、ビットサイズ(ビット数)であり、最下段の数値は、各ビットの値である。
図216は、元データを1分割する処理を示す図である。
例えば、信号生成装置は、元データ(Data)のビット長が7ビットであれば、その元データを分割することなく、1つのパケットを生成する。具体的には、元データは、4ビットの主元データDataa(Da1~Da4)と、3ビットの副元データDatab(Db1~Db3)とをそれぞれ、主データDa(1)と副データDb(1)として含む。この場合、信号生成装置は、スタートビットS(S=1)と、4ビットからなり「0000」を示すアドレスデータ(A1~A4)とを、その元データに対して付加することによって、パケットを生成する。なお、スタートビットS=1は、そのスタートビットを含むパケットが終端のパケットであることを示す。
信号生成装置は、このパケットを変換することによって、符号w1=(Da1,S=1,Db1)、符号w2=(Da2,A1=0,Db2)、符号w3=(Da3,A2=0,Db3)、および符号w4=(Da4,A3=0,A4=0)を生成する。さらに、信号生成装置は、符号w1、w2、w3およびw4のそれぞれによって示される数値W1、W2、W3およびW4を含む送信対象の信号を生成する。
なお、本変形例では、wiは、3ビットの符号として表現されるとともに、10進数の数値としても表現される。そこで、本変形例では、説明を分かりやすくするために、10進数の数値として用いられるwi(w1~w4)を、数値Wi(W1~W4)として表記する。
図217は、元データを2分割する処理を示す図である。
例えば、信号生成装置は、元データ(Data)のビット長が16ビットであれば、その元データを分割することにより、2つの中間データを生成する。具体的には、元データは、10ビットの主元データDataaと、6ビットの副元データDatabとを含む。この場合、信号生成装置は、主元データDataaと、その主元データDataaに対応する1ビットのパリティとを含む第1中間データを生成し、副元データDatabと、その副元データDatabに対応する1ビットのパリティとを含む第2中間データを生成する。
次に、信号生成装置は、第1中間データを、7ビットからなる主データDa(1)と4ビットからなる主データDa(2)とに分割する。さらに、信号生成装置は、第2中間データを、4ビットからなる副データDb(1)と3ビットからなる副データDb(2)とに分割する。なお、主データは、主元データとパリティとを含むデータを構成する複数の部分のうちの1つの部分である。同様に、副データは、副元データとパリティとを含むデータを構成する複数の部分のうちの1つの部分である。
次に、信号生成装置は、スタートビットS(S=0)と、主データDa(1)と、副データDb(1)とを含む12ビットの第1パケットを生成する。これにより、アドレスデータを含まない第1パケットが生成される。
さらに、信号生成装置は、スタートビットS(S=1)と、4ビットからなり「1000」を示すアドレスデータと、主データDa(2)と、副データDb(2)とを含む12ビットの第2パケットを生成する。なお、スタートビットS=0は、生成される複数のパケットのうち、そのスタートビットを含むパケットが終端にないパケットであることを示す。また、スタートビットS=1は、生成される複数のパケットのうち、そのスタートビットを含むパケットが終端にあるパケットであることを示す。
これにより、元データは、第1パケットと第2パケットに分割される。
信号生成装置は、第1パケットを変換することによって、符号w1=(Da1,S=0,Db1)、符号w2=(Da2,Da7,Db2)、符号w3=(Da3,Da6,Db3)、および符号w4=(Da4,Da5,Db4)を生成する。さらに、信号生成装置は、符号w1、w2、w3およびw4のそれぞれによって示される数値W1、W2、W3およびW4を含む送信対象の信号を生成する。
さらに、信号生成装置は、第2パケットを変換することによって、符号w1=(Da1,S=1,Db1)、符号w2=(Da2,A1=1,Db2)、符号w3=(Da3,A2=0,Db3)、および符号w4=(Da4,A3=0,A4=0)を生成する。さらに、信号生成装置は、符号w1、w2、w3およびw4のそれぞれによって示される数値W1、W2、W3およびW4を含む送信対象の信号を生成する。
図218は、元データを3分割にする処理を示す図である。
例えば、信号生成装置は、元データ(Data)のビット長が17ビットであれば、その元データを分割することにより、2つの中間データを生成する。具体的には、元データは、10ビットの主元データDataaと、7ビットの副元データDatabとを含む。この場合、信号生成装置は、主元データDataaと、その主元データDataaに対応する6ビットのパリティとを含む第1中間データを生成する。さらに、信号生成装置は、副元データDatabと、その副元データDatabに対応する4ビットのパリティとを含む第2中間データを生成する。例えば、信号生成装置は、CRC(Cyclic Redundancy Check)によってパリティを生成する。
次に、信号生成装置は、第1中間データを、6ビットのパリティからなる主データDa(1)と、6ビットからなる主データDa(2)と、4ビットからなる主データDa(3)とに分割する。さらに、信号生成装置は、第2中間データを、4ビットのパリティからなる副データDb(1)と、4ビットからなる副データDb(2)と、3ビットからなる副データDb(3)とに分割する。
次に、信号生成装置は、スタートビットS(S=0)と、1ビットからなり「0」を示すアドレスデータと、主データDa(1)と、副データDb(1)とを含む12ビットの第1パケットを生成する。さらに、信号生成装置は、スタートビットS(S=0)と、1ビットからなり「1」を示すアドレスデータと、主データDa(2)と、副データDb(2)とを含む12ビットの第2パケットを生成する。さらに、信号生成装置は、スタートビットS(S=1)と、4ビットからなり「0100」を示すアドレスデータと、主データDa(3)と、副データDb(3)とを含む12ビットの第3パケットを生成する。
これにより、元データは、第1パケットと、第2パケットと、第3パケットとに分割される。
信号生成装置は、第1パケットを変換することによって、符号w1=(Da1,S=0,Db1)、符号w2=(Da2,A1=0,Db2)、符号w3=(Da3,Da6,Db3)、および符号w4=(Da4,Da5,Db4)を生成する。さらに、信号生成装置は、符号w1、w2、w3およびw4のそれぞれによって示される数値W1、W2、W3およびW4を含む送信対象の信号を生成する。
同様に、信号生成装置は、第2パケットを変換することによって、符号w1=(Da1,S=0,Db1)、符号w2=(Da2,A1=1,Db2)、符号w3=(Da3,Da6,Db3)、および符号w4=(Da4,Da5,Db4)を生成する。さらに、信号生成装置は、符号w1、w2、w3およびw4のそれぞれによって示される数値W1、W2、W3およびW4を含む送信対象の信号を生成する。
同様に、信号生成装置は、第3パケットを変換することによって、符号w1=(Da1,S=1,Db1)、符号w2=(Da2,A1=0,Db2)、符号w3=(Da3,A2=1,Db3)、および符号w4=(Da4,A3=0,A4=0)を生成する。さらに、信号生成装置は、符号w1、w2、w3およびw4のそれぞれによって示される数値W1、W2、W3およびW4を含む送信対象の信号を生成する。
図219は、元データを3分割にする処理の他の例を示す図である。
図218に示す例では、CRCによって6ビットまたは4ビットのパリティを生成するが、1ビットのパリティを生成してもよい。
この場合、信号生成装置は、元データ(Data)のビット長が25ビットであれば、その元データを分割することにより、2つの中間データを生成する。具体的には、元データは、15ビットの主元データDataaと、10ビットの副元データDatabとを含む。この場合、信号生成装置は、主元データDataaと、その主元データDataaに対応する1ビットのパリティとを含む第1中間データを生成し、副元データDatabと、その副元データDatabに対応する1ビットのパリティとを含む第2中間データを生成する。
次に、信号生成装置は、第1中間データを、パリティを含む6ビットからなる主データDa(1)と、6ビットからなる主データDa(2)と、4ビットからなる主データDa(3)とに分割する。さらに、信号生成装置は、第2中間データを、パリティを含む4ビットからなる副データDb(1)と、4ビットからなる副データDb(2)と、3ビットからなる副データDb(3)とに分割する。
次に、信号生成装置は、図218に示す例と同様に、第1中間データおよび第2中間データから、第1パケットと、第2パケットと、第3パケットとを生成する。
図220は、元データを3分割にする処理の他の例を示す図である。
図218に示す例では、主元データDataaに対するCRCによって6ビットのパリティを生成し、副元データDatabに対するCRCによって4ビットのパリティを生成する。しかし、主元データDataaおよび副元データDatabの全体に対するCRCによってパリティを生成してもよい。
この場合、信号生成装置は、元データ(Data)のビット長が22ビットであれば、その元データを分割することにより、2つの中間データを生成する。
具体的には、元データは、15ビットの主元データDataaと、7ビットの副元データDatabとを含む。信号生成装置は、主元データDataaと、その主元データDataaに対応する1ビットのパリティとを含む第1中間データを生成する。さらに、信号生成装置は、主元データDataaおよび副元データDatabの全体に対するCRCによって、その4ビットのパリティを生成する。そして、信号生成装置は、副元データDatabと、4ビットのパリティとを含む第2中間データを生成する。
次に、信号生成装置は、第1中間データを、パリティを含む6ビットからなる主データDa(1)と、6ビットからなる主データDa(2)と、4ビットからなる主データDa(3)とに分割する。さらに、信号生成装置は、第2中間データを、4ビットからなる副データDb(1)と、CRCのパリティの一部を含む4ビットからなる副データDb(2)と、CRCのパリティの残りを含む3ビットからなる副データDb(3)とに分割する。
次に、信号生成装置は、図218に示す例と同様に、第1中間データおよび第2中間データから、第1パケットと、第2パケットと、第3パケットとを生成する。
なお、元データを3分割にする処理の各具体例のうち、図218に示す処理をバージョン1と称し、図219に示す処理をバージョン2と称し、図220に示す処理をバージョン3と称す。
図221は、元データを4分割にする処理を示す図である。また、図222は、元データを5分割にする処理を示す図である。
信号生成装置は、元データを3分割にする処理と同様に、つまり図218~図220に示す処理と同様に、元データを4分割または5分割にする。
図223は、元データを6、7または8分割にする処理を示す図である。
例えば、信号生成装置は、元データ(Data)のビット長が31ビットであれば、その元データを分割することにより、2つの中間データを生成する。具体的には、元データは、16ビットの主元データDataaと、15ビットの副元データDatabとを含む。この場合、信号生成装置は、主元データDataaと、その主元データDataaに対応する8ビットのパリティとを含む第1中間データを生成する。さらに、信号生成装置は、副元データDatabと、その副元データDatabに対応する8ビットのパリティとを含む第2中間データを生成する。例えば、信号生成装置は、リード-ソロモン符号によってパリティを生成する。
ここで、リード-ソロモン符号において4ビットを1シンボルとして扱う場合、主元データDataaおよび副元データDatabのそれぞれのビット長は、4ビットの整数倍でなければならない。ところが、副元データDatabは上述のように15ビットであって、4ビットの整数倍である16ビットよりも1ビット少ない。
したがって、信号生成装置は、第2中間データを生成するときには、副元データDatabに対してパディングを行い、そのパディングが行われた16ビットの副元データDatabに対応する8ビットのパリティをリード-ソロモン符号によって生成する。
次に、信号生成装置は、第1中間データおよび第2中間データのそれぞれを上述と同様の手法で6つの部分(4ビットまたは3ビット)に分割する。そして、信号生成装置は、スタートビットと、3ビットまたは4ビットからなるアドレスデータと、1番目の主データと、1番目の副データとを含む第1パケットを生成する。同様に、信号生成装置は、第2パケット~第6パケットを生成する。
図224は、元データを6、7または8分割にする処理の他の例を示す図である。
図223に示す例では、リード-ソロモン符号によってパリティを生成したが、CRCによってパリティを生成してもよい。
例えば、信号生成装置は、元データ(Data)のビット長が39ビットであれば、その元データを分割することにより、2つの中間データを生成する。具体的には、元データは、20ビットの主元データDataaと、19ビットの副元データDatabとを含む。この場合、信号生成装置は、主元データDataaと、その主元データDataaに対応する4ビットのパリティとを含む第1中間データを生成し、副元データDatabと、その副元データDatabに対応する4ビットのパリティとを含む第2中間データを生成する。例えば、信号生成装置は、CRCによってパリティを生成する。
次に、信号生成装置は、第1中間データおよび第2中間データのそれぞれを上述と同様の手法で6つの部分(4ビットまたは3ビット)に分割する。そして、信号生成装置は、スタートビットと、3ビットまたは4ビットからなるアドレスデータと、1番目の主データと、1番目の副データとを含む第1パケットを生成する。同様に、信号生成装置は、第2パケット~第6パケットを生成する。
なお、元データを6、7または8分割にする処理の各具体例のうち、図223に示す処理をバージョン1と称し、図224に示す処理をバージョン2と称す。
図225は、元データを9分割にする処理を示す図である。
例えば、信号生成装置は、元データ(Data)のビット長が55ビットであれば、その元データを分割することにより、第1パケット~第9パケットまでの9つのパケットを生成する。なお、図225では、第1中間データおよび第2中間データを省略している。
具体的には、元データ(Data)のビット長は55ビットであって、4ビットの整数倍である56ビットよりも1ビット少ない。したがって、信号生成装置は、その元データに対してパディングを行い、パディングが行われた56ビットからなる元データに対するパリティ(16ビット)を、リード-ソロモン符号によって生成する。
次に、信号生成装置は、16ビットのパリティと、55ビットの元データと含むデータ全体を、9つのデータDaDb(1)~DaDb(9)に分割する。
データDaDb(k)のそれぞれは、主元データDataaに含まれるk番目の4ビットからなる部分と、副元データDatabに含まれるk番目の4ビットからなる部分とを含む。なお、kは1~8の何れかの整数である。また、データDaDb(9)は、主元データDataaに含まれる9番目の4ビットからなる部分と、副元データDatabに含まれる9番目の3ビットからなる部分とを含む。
次に、信号生成装置は、9つのデータDaDb(1)~DaDb(9)のそれぞれに、スタートビットSとアドレスデータとを付加することによって、第1パケット~第9パケットを生成する。
図226は、元データを10~16の何れかの数に分割する処理を示す図である。
例えば、信号生成装置は、元データ(Data)のビット長が7×(N-2)ビットであれば、その元データを分割することにより、第1パケット~第NパケットまでのN個のパケットを生成する。なお、Nは10~16の何れかの整数である。また、図226では、第1中間データおよび第2中間データを省略している。
具体的には、信号生成装置は、7×(N-2)ビットからなる元データに対するパリティ(14ビット)を、リード-ソロモン符号によって生成する。なお、このリード-ソロモン符号では、7ビットが1シンボルとして扱われる。
次に、信号生成装置は、14ビットのパリティと、7×(N-2)ビットの元データと含むデータ全体を、N個のデータDaDb(1)~DaDb(N)に分割する。
データDaDb(k)のそれぞれは、主元データDataaに含まれるk番目の4ビットからなる部分と、副元データDatabに含まれるk番目の3ビットからなる部分とを含む。なお、kは1~(N-1)の何れかの整数である。
次に、信号生成装置は、9つのデータDaDb(1)~DaDb(N)のそれぞれに、スタートビットSとアドレスデータとを付加することによって、第1パケット~第Nパケットを生成する。
図227~図229は、元データの分割数と、データサイズと、誤り訂正符号との関係の一例を示す図である。
具体的には、図227~図229は、図216~図226に示す各処理における上記関係をまとめて示す。また、上述のように、元データを3分割にする処理には、バージョン1~3があり、元データを6、7または8分割にする処理には、バージョン1およびバージョン2がある。図227は、分割数に対して複数のバージョンがあれば、複数のバージョンのうちのバージョン1における上記関係を示す。同様に、図228は、分割数に対して複数のバージョンがあれば、複数のバージョンのうちのバージョン2における上記関係を示す。同様に、図229は、分割数に対して複数のバージョンがあれば、複数のバージョンのうちのバージョン3における上記関係を示す。
また、本変形例では、ショートモードとフルモードとがある。シートモードの場合、パケットにおける副データが0であって、図215に示す第3のビット列の全てのビットが0である。この場合、符号w1~w4によって示される数値W1~W4は、上述の「b1×2+b2×2+b3×2」によって、3以下に抑えられる。その結果、図212に示すように、データRにおける時間長DR1~DR4は、DRi=120+30×wi(i∈1~4、wi∈0~7)によって決定されるため、短くなる。すなわち、ショートモードの場合には、1パケットあたりの可視光信号を短くすることができる。1パケットあたりの可視光信号を短くすることによって、受信機はそのパケットを遠くからでも受信することができ、通信距離を長くすることができる。
一方、フルモードの場合、図215に示す第3のビット列のうちの何れかのビットは1である。この場合、可視光信号は、ショートモードのように短くはならない。
本変形例では、図227~図229に示すように、分割数が少なければショートモードの可視光信号を生成することができる。なお、図227~図229におけるショートモードのデータサイズは、主元データ(Dataa)のビット数を示し、フルモードのデータサイズは、元データ(Data)のビット数を示す。
(実施の形態20のまとめ)
図230Aは、本実施の形態における可視光信号の生成方法を示すフローチャートである。
本実施の形態における可視光信号の生成方法は、送信機が備える光源の輝度変化によって送信される可視光信号を生成する方法であって、ステップSD1~SD3を含む。
ステップSD1では、互いに異なる輝度値である第1および第2の輝度値のそれぞれが、所定の時間長だけ、時間軸上に沿って交互に現れるデータであるプリアンブルを生成する。
ステップSD2では、第1および第2の輝度値が時間軸上に沿って交互に現れるデータにおいて、前記第1および第2の輝度値のそれぞれが継続する時間長を、送信対象の信号に応じた第1の方式にしたがって決定することにより、第1のデータを生成する。
最後に、ステップSD3では、プリアンブルと第1のデータとを結合することによって可視光信号を生成する。
例えば、図188に示すように、第1および第2の輝度値は、HighおよびLowであり、第1のデータは、データRまたはデータLである。このように生成された可視光信号を送信することによって、図191~図193に示すように、受信パケット数を増やすことができるとともに、信頼度を高めることができる。その結果、多様な機器間の通信を可能にすることができる。
また、前記可視光信号の生成方法は、さらに、前記第1および第2の輝度値が時間軸上に沿って交互に現れるデータにおいて、前記第1および第2の輝度値のそれぞれが継続する時間長を、送信対象の信号に応じた第2の方式にしたがって決定することによって、前記第1のデータによって表現される明るさと補完関係を有する第2のデータを生成し、前記可視光信号の生成では、前記第1のデータ、前記プリアンブル、前記第2のデータの順に、前記プリアンブルと前記第1および第2のデータとを結合することによって、前記可視光信号を生成してもよい。
例えば、図188に示すように、第1および第2の輝度値は、HighおよびLowであり、第1および第2のデータは、データRおよびデータLである。
また、aおよびbをそれぞれ定数とし、前記送信対象の信号に含まれる数値をnとし、数値nの取り得る最大値である定数をmとする場合、前記第1の方式は、a+b×nによって、前記第1のデータにおける、前記第1または第2の輝度値が継続する時間長を決定する方式であり、前記第2の方式は、a+b×(m-n)によって、前記第2のデータにおける、前記第1または第2の輝度値が継続する時間長を決定する方式であってもよい。
例えば、図188に示すように、aは120μsであり、bは20μsであり、nは0~15のうちの何れかの整数値(信号xの示す数値)であり、mは15である。
また、前記補完関係では、前記第1のデータの全体における時間長と、前記第2のデータの全体における時間長との和が一定となってもよい。
また、前記可視光信号の生成方法は、さらに、前記可視光信号によって表現される明るさを調整するためのデータである調光部を生成し、前記可視光信号の生成では、さらに前記調光部を結合することによって前記可視光信号を生成してもよい。
調光部は、例えば図188における、時間長CだけHighの輝度値を示し、時間長CだけLowの輝度値を示す信号(Dimming)である。これにより、可視光信号の明るさを任意に調整することができる。
図230Bは、本実施の形態における信号生成装置の構成を示すブロック図である。
本実施の形態における信号生成装置D10は、送信機が備える光源の輝度変化によって送信される可視光信号を生成する信号生成装置であって、プリアンブル生成部D11と、データ生成部D12と、結合部D13とを備える。
プリアンブル生成部D11は、互いに異なる輝度値である第1および第2の輝度値のそれぞれが、所定の時間長だけ、時間軸上に沿って交互に現れるデータであるプリアンブルを生成する。
データ生成部D12は、第1および第2の輝度値が時間軸上に沿って交互に現れるデータにおいて、第1および第2の輝度値のそれぞれが継続する時間長を、送信対象の信号に応じた第1の方式にしたがって決定することにより、第1のデータを生成する。
結合部D13は、プリアンブルと第1のデータとを結合することによって可視光信号を生成する。
このように生成された可視光信号を送信することによって、図191~図193に示すように、受信パケット数を増やすことができるとともに、信頼度を高めることができる。その結果、多様な機器間の通信を可能にすることができる。
(実施の形態20の変形例1のまとめ)
また、実施の形態20の変形例1のように、前記可視光信号の生成方法は、さらに、元データのビット長に応じて前記元データを分割するか否かを判定し、その判定の結果に応じた処理を行うことにより、元データから少なくとも1つのパケットを生成してもよい。そして、その少なくとも1つのパケットのそれぞれを送信対象の信号に変換してもよい。
その送信対象の信号への変換では、図215に示すように、その少なくとも1つのパケットに含まれる対象パケットごとに、当該対象パケットに含まれるデータを、それぞれ第1ビットから第3ビットまでの3ビットからなる符号w1、w2、w3およびw4の何れかのビットに割り当てることによって、その対象パケットを、符号w1、w2、w3およびw4のそれぞれによって示される数値を含む送信対象の信号に変換する。
そのデータの割り当てでは、符号w1~w4のそれぞれの第1ビットからなる第1のビット列に、対象パケットに含まれる主データの少なくとも一部を割り当てる。符号w1の第2ビットに、対象パケットに含まれるストップビットの値を割り当てる。符号w2~w4のそれぞれの第2ビットからなる第2のビット列に、対象パケットに含まれる主データの一部、または、対象パケットに含まれるアドレスデータの少なくとも一部を割り当てる、符号w1~w4のそれぞれの第3ビットからなる第3のビット列に、対象パケットに含まれる副データを割り当てる。
ここで、ストップビットは、生成された少なくとも1つのパケットのうち、対象パケットが終端にあるか否かを示す。アドレスデータは、生成された少なくとも1つのパケットのうち、対象パケットの順番をアドレスとして示す。主データおよび副データのそれぞれは、元データを復元するためのデータである。
また、aおよびbをそれぞれ定数とし、符号w1、w2、w3およびw4のそれぞれによって示される数値をW1、W2、W3およびW4とする場合、例えば図212に示すように、上述の第1の方式は、a+b×W1、a+b×W2、a+b×W3およびa+b×W4によって、第1のデータにおける、第1または第2の輝度値が継続する時間長を決定する方式である。
例えば、符号w1~w4のそれぞれにおいて、第1ビットの値をb1、第2ビットの値をb2、第3ビットの値をb3とする。この場合、符号w1~w4によって示される値W1~W4のそれぞれは、例えば、b1×2+b2×2+b3×2である。したがって、符号w1~w4において、第1ビットを1にするよりも、第2ビットを1にした方が、その符号w1~w4によって示される値W1~W4は大きくなる。また、第2ビットを1にするよりも、第3ビットを1にした方が、その符号w1~w4によって示される値W1~W4は大きくなる。これらの符号w1~w4によって示される値W1~W4が大きいと、上述の第1および第2の輝度値のそれぞれが継続する時間長(例えばDRi)は長くなるため、可視光信号の輝度の誤検知を抑制することでき、受信エラーを低減することができる。逆に、これらの符号w1~w4によって示される値W1~W4が小さいと、上述の第1および第2の輝度値のそれぞれが継続する時間長は短くなるため、可視光信号の輝度の誤検知が比較的生じやすい。
そこで、実施の形態20の変形例1では、元データを受信するために重要とされるストップビットおよびアドレスを優先的に、符号w1~w4の第2ビットに割り当てることによって、その受信エラーの低下を図ることができる。また、符号w1は、プリアンブルに最も近いHighまたはLowの輝度値が継続する時間長を定義する。つまり、符号w1は、他の符号w2~w4よりもプリアンブルに近いため、これらの他の符号よりも適切に受信されやすい。そこで、実施の形態20の変形例1では、ストップビットを符号w1の第2ビットに割り当てることによって、受信エラーの低下をより抑えることができる。
また、実施の形態20の変形例1では、主データは、誤検知が比較的に生じやすい第1のビット列に優先的に割り当てられる。しかし、主データに誤り訂正符号(パリティ)を入れておけば、その主データの受信エラーを抑えることができる。
さらに、実施の形態20の変形例1では、符号w1~w4の第3ビットからなる第3のビット列に、副データが割り当てられる。したがって、副データを0にすれば、符号w1~w4によって定義されるHighおよびLowの輝度値のそれぞれが継続する時間長を大幅に短くすることができる。その結果、1パケットあたりの可視光信号の送信時間を大幅に短くすることができる、いわゆるショートモードを実現することができる。このショートモードでは、上述のように送信時間が短いため、パケットを遠くからでも容易に受信することができる。したがって、可視光通信の通信距離を長くすることができる。
また、実施の形態20の変形例1では、図217に示すように、少なくとも1つのパケットの生成では、元データを2つのパケットに分割することによって、2つのパケットを生成し、データの割り当てでは、2つのパケットのうちの終端にないパケットを対象パケットとして送信対象の信号に変換する場合、第2のビット列には、アドレスデータの少なくとも一部を割り当てることなく、終端にないパケットに含まれる主データの一部を割り当てる。
例えば、図217に示す終端にないパケット(Packet1)にはアドレスデータは含まれていない。そして、その終端にないパケットには、主データDa(1)が7ビットある。したがって、図215に示すように、7ビットの主データDa(1)に含まれる、データDa1~Da4が第1のビット列に割り当てられ、データDa5~Da7が第2のビット列に割り当てられる。
このように、元データが2つのパケットに分割される場合、終端にないパケット、つまり、1番目のパケットには、スタートビット(S=0)があれば、アドレスデータは不要であれる。したがって、第2のビット列のすべてのビットを主データに用いることでき、パケットに含まれるデータ量を増すことができる。
また、実施の形態20の変形例1におけるデータの割り当てでは、第2のビット列に含まれる3つのビットのうち、配列順で先頭側のビットを優先的にアドレスデータの割り当てに用い、第2のビット列の先頭側の1つまたは2つのビットに対して、アドレスデータの全てを割り当る場合には、第2のビット列においてアドレスデータが割り当てられない1つまたは2つのビットに対しては、主データの一部を割り当てる。例えば、図218におけるPaket1では、第2のビット列の先頭側の1つのビット(符号w2の第2ビット)に対して、1ビットのアドレスデータA1を割り当る。この場合には、第2のビット列においてアドレスデータが割り当てられない2つのビット(符号w3、w4のそれぞれの第2ビット)に対しては、主データDa6、Da5を割り当てる。
これにより、第2のビット列をアドレスデータと主データの一部とで共用することができ、パケット構成の自由度を増すことができる。
また、実施の形態20の変形例1におけるデータの割り当てでは、第2のビット列にアドレスデータの全てを割り当てることができない場合には、第3のビット列のうちの何れかのビットに、アドレスデータのうちの第2のビット列に割り当てられる部分を除く残りの部分を割り当てる。例えば、図218におけるPaket3では、第2のビット列に4ビットのアドレスデータA1~A4の全てを割り当てることができない。この場合には、第3のビット列のうちの最後のビット(符号w4の第3ビット)に、アドレスデータA1~A4のうちの第2のビット列に割り当てられる部分A1~A3を除く残りの部分A4を割り当てる。
これにより、アドレスデータを符号w1~w4に適切に割り当てることができる。
また、実施の形態20の変形例1におけるデータの割り当てでは、少なくとも1つのパケットのうちの終端のパケットを対象パケットとして送信対象の信号に変換する場合、第2のビット列、および、第3のビット列に含まれる何れか1つのビットに、アドレスデータを割り当てる。例えば、図217~図226における終端のパケットのアドレスデータのビット数は4である。この場合、第2のビット列、および、第3のビット列のうちの最後のビット(符号w4の第3ビット)に、4ビットのアドレスデータA1~A4を割り当てる。
これにより、アドレスデータを符号w1~w4に適切に割り当てることができる。
また、実施の形態20の変形例1における、少なくとも1つのパケットの生成では、元データを2つに分割することによって、2つの分割元データを生成し、前記2つの分割元データのそれぞれの誤り訂正符号を生成する。そして、2つの分割元データと、当該2つの分割元データのそれぞれに対して生成された前記誤り訂正符号とを用いて、2つ以上のパケットを生成する。2つの分割元データのそれぞれの誤り訂正符号の生成では、2つの分割元データのうちの何れかの分割元データのビット数が、誤り訂正符号の生成に必要とされるビット数に満たない場合には、分割元データに対してパディングを行い、パディングされた分割元データの誤り訂正符号を生成する。例えば、図223に示すように、分割元データであるDatabに対して、リード-ソロモン符号によってパリティを生成する際に、そのDatabが15ビットしかなく、16ビットに満たない場合には、そのDatabに対してパディングを行い、パディングされた分割元データ(16ビット)に対して、リード-ソロモン符号によってパリティを生成する。
これにより、分割元データのビット数が、誤り訂正符号の生成に必要とされるビット数に満たなくても、適切な誤り訂正符号を生成することができる。
また、実施の形態20の変形例1におけるデータの割り当てでは、副データが0を示す場合、第3のビット列に含まれる全てのビットに対して0を割り当てる。これにより、上述のショートモードを実現することができ、可視光通信の通信距離を長くすることができる。
(実施の形態21)
図231は、本実施の形態における高周波可視光信号を受信する方法を示す図である。
受信機は、高周波可視光信号を受信するときには、例えば、図231の(a)に示すように、可視光信号の立ち上がりおよび立ち下がりにおいてガードタイム(ガードインターバル)を設ける。そして、受信機は、そのガードタイムにおける高周波信号を用いることなく、そのガードタイムの直前に受信された高周波信号をコピーすることによって、そのガードタイムにおける高周波信号を補う。なお、可視光信号に重畳される高周波信号は、OFDM(Orthogonal Frequency Division Multiplexing)によって変調されていてもよい。
また、受信機は、Highの輝度値を示す高周波信号とLowの輝度値を示す高周波信号を高周波可視光信号から分離すると、それらの高周波信号のゲインを自動調整する(Automatic Gain Control)。これにより、高周波信号のゲイン(輝度値)が統一される。
図232Aは、本実施の形態における高周波可視光信号を受信する他の方法を示す図である。
高周波可視光信号を受信する受信機は、上記各実施の形態と同様にイメージセンサを備えるとともに、さらに、DMD(Digital Mirror Device)素子と、フォトセンサとを備える。フォトセンサは、フォトダイオードまたはアバランシェフォトダイオードである。
受信機は、高周波可視光信号を送信する送信機(光源)をイメージセンサによって撮影する。これにより、受信機は、輝線の縞模様を含む輝線画像を取得する。この輝線の縞模様は、高周波可視光信号における高周波信号以外の信号、つまり図188に示す可視光信号の輝度変化によって現れる。受信機は、その輝線画像における、輝線の縞模様の位置(x1,y1)および(x2,y2)を特定する。そして、受信機は、DMD素子における、その位置(x1,y1)および(x2、y2)のそれぞれに対応するマイクロミラーを特定する。これらのマイクロミラーが、輝線の縞模様を現わす高周波可視光信号の光を受ける。したがって、受信機は、DMD素子に含まれる複数のマイクロミラーのうち、特定されたマイクロミラーによる反射光のみフォトセンサに受光されるように、各マイクロミラーの角度を調整する。つまり、受信機は、位置(x1,y1)に対応するマイクロミラーによる反射光のみフォトセンサ1に受光されるように、そのマイクロミラーをONにする。さらに、受信機は、位置(x2,y2)に対応するマイクロミラーによる反射光のみフォトセンサ2に受光されるように、そのマイクロミラーをONにする。そして、受信機は、それらの特定されたマイクロミラー以外の各マイクロミラーをOFFにする。これによりOFFにされたマイクロミラーによる反射光は、光吸収体(黒体)に吸収される。また、ONにされたマイクロミラーによって、高周波可視光信号が適切にフォトセンサによって受光される。なお、DMD素子の各マイクロミラーは、ONとOFFとの切り替えによって、傾斜角度(+0°または-0°)が切り替えられる。マイクロミラーがONのときには、そのマイクロミラーは、フォトセンサに向けて反射光を出力し、マイクロミラーがOFFのときには、そのマイクロミラーは、光吸収部に向けて反射光を出力する。
また、受信機は、図232Aに示すように、ハーフミラーと発光素子を備えていてもよい。発光素子1は、光を発して輝度変化することにより、可視光信号(または高周波可視光信号)を送信する。この発光素子1から出力された光は、ハーフミラーによって反射されて、さらに、DMD素子において、位置(x1,y1)に対応するONのマイクロミラーによっても反射される。その結果、発光素子1からの可視光信号は、位置(x1,y1)にある輝線の縞模様に対応する送信機に送信される。これにより、受信機と、位置(x1,y1)にある輝線の縞模様に対応する送信機とは、双方向通信を行うことができる。同様に、発光素子2から出力された光は、ハーフミラーによって反射されて、さらに、DMD素子において、位置(x2,y2)に対応するONのマイクロミラーによって反射される。その結果、発光素子2からの可視光信号は、位置(x2,y2)にある輝線の縞模様に対応する送信機に送信される。これにより、受信機と、位置(x2,y2)にある輝線の縞模様に対応する送信機とは、双方向通信を行うことができる。
これにより、イメージセンサによって撮影される送信機(光源)が複数あっても、受信機は、これらの送信機と同時に、且つ高速に双方向通信を行うことができる。例えば、受信機が、10Gbpsで受信可能なフォトセンサを100個備え、それらの受信機が100個の送信機と通信する場合には、1Tbpsの通信速度を実現することができる。
図232Bは、本実施の形態における高周波可視光信号を受信する、さらに他の方法を示す図である。
受信機は、例えば、レンズL1およびL2と、複数のハーフミラーと、DMD素子と、イメージセンサと、光吸収部(黒体)と、処理部と、DMD制御部と、フォトセンサ1および2と、発光素子1および2とを備える。
このような受信機は、図232Aに示す例と同様の原理で、2つの車と双方向通信する。2つの車は、ヘッドライトから光を出力してそのヘッドライトを輝度変化させることによって、高周波可視光信号を送信する。また、1つの車は、ヘッドライトから通常の光(輝度変化しない光)を出力する。
イメージセンサは、レンズL1を介してそれらの高周波可視光信号と通常の光を受ける。これにより、図232Aに示す例と同様に、それらの高周波可視光信号によって生じる輝線の縞模様を含む輝線画像が得られる。処理部は、その輝線画像におけるそれらの縞模様の位置を特定する。DMD制御部は、DMD素子に含まれる複数のマイクロミラーの中から、それらの特定された縞模様の位置に対応するマイクロミラーを特定して、それらのマイクロミラーをONにする。
これにより、2つの車のそれぞれからレンズL1およびハーフミラーを透過した高周波可視光信号は、DMD素子のマイクロミラーによって反射されて、レンズL2に向かう。また、1つの車のヘッドライトの通常の光は、その光によって輝線の縞模様が生じないため、レンズL1およびハーフミラーを透過しても、DMD素子のOFFのマイクロミラーによって反射される。OFFのマイクロミラーによって反射された光は、光吸収部(黒体)によって吸収される。
レンズL2を通過した高周波可視光信号は、ハーフミラーを通過してフォトセンサ1または2によって受信される。これにより、各車からの高周波可視光信号を受信することができる。また、発光素子1および2がハーフミラーに対して可視光信号(または高周波可視光信号)を出力すれば、その可視光信号はハーフミラーによって反射されて、レンズL2を透過して、さらに、DMD素子におけるONのマイクロミラーによって反射される。その結果、発光素子1および2からの可視光信号は、ハーフミラーおよびレンズL1を介して、高周波可視光信号を送信した車に対して送信される。つまり、受信機は、高周波可視光信号を送信する複数の車との間で、双方向通信を行うことができる。
このように、本実施の形態における受信機は、イメージセンサにより輝線画像を取得し、その輝線画像における輝線の縞模様の位置を特定する。そして、受信機は、DMD素子に含まれる複数のマイクロミラーのうち、その縞模様の位置に対応するマイクロミラーを特定する。そして、受信機は、そのマイクロミラーをONにすることによって、高周波可視光信号をフォトセンサで受信する。また、受信機は、発光素子から可視光信号を出力して、そのONにされたマイクロミラーに反射させることによって、その可視光信を送信機に送信することができる。
なお、図232Aおよび図232Bに示す例では、光学機器としてハーフミラーおよびレンズなど用いたが、これらと同様の機能を有するものであれば、どのような光学機器を用いてもよい。また、DMD素子、ハーフミラー、およびレンズなどの配置は、一例であり、どのように配置されてもよい。また、図232Aおよび図232Bに示す例では、受信機はフォトセンサと発光素子との組を2組備えるが、1組だけ備えてもよく、3組以上備えてもよい。また、1つの発光素子が、複数のONのマイクロレンズに対して可視光信号を送信してもよい。これにより、受信機は、複数の送信機に対して同じ可視光信号を同時に送信することができる。また、受信機は、図232Aおよび図232Bに示す各構成要素を全て備えることなく、それらの構成要素の一部だけを備えていてもよい。
図233は、本実施の形態における高周波信号を出力する方法を示す図である。
図188に示す可視光信号に重畳される高周波信号を出力する信号出力装置は、例えば、ブルーレーザーと蛍光体とを備える。つまり、図114Aに示す例と同様に、その信号出力装置は、ブルーレーザーから高周波数の青色レーザー光を蛍光体に照射させる。これにより、信号出力装置は、高周波数の自然光を高周波信号として出力する。
(実施の形態22)
本実施の形態では、上記各実施の形態における可視光通信を利用した自律飛行装置(ドローンともいう)について説明する。
図234は、本実施の形態における自律飛行装置を説明するための図である。
本実施の形態における自律飛行装置1921は、監視カメラ1922の内部に収納されている。例えば、監視カメラ1922によって、不審者の画像が捉えられると、監視カメラ1922の扉が開き、内部に収納されている自律飛行装置1921は、その監視カメラ1922から飛び立って、その不審者の追跡を開始する。自律飛行装置1921は、小型カメラを備え、監視カメラ1922によって捉えられた不審者の画像が、その小型カメラによっても捉えられるように追跡を行う。また、自律飛行装置1921は、飛行などを行うための電力が不足していることを検知すると、監視カメラ1922に戻って、監視カメラ1922の内部に収納される。このときに、監視カメラ1922に他の自律飛行装置1921が収納されていれば、この他の自律飛行装置1921が、電力不足の自律飛行装置1921に代わって、不審者の追跡を開始する。また、電力不足の自律飛行装置1921は、監視カメラ1922に備えられているワイヤレス給電装置1921aによって給電される。なお、ワイヤレス給電装置1921aによる給電は、例えば規格Qiにしたがって行われる。
自律飛行装置1921の小型カメラおよび監視カメラ1922は、上記各実施の形態における可視光信号を受信することができ、この受信された可視光信号に応じた動作を行うことができる。また、自律飛行装置1921および監視カメラ1922の少なくとも一方に、可視光信号の送信機を備えれば、自律飛行装置1921と監視カメラ1922との間で可視光通信を行うことができる。その結果、不審者の追跡をより効率的に行うことができる。
(実施の形態23)
本実施の形態では、光IDを用いたAR(Augmented Reality)を実現する表示方法などについて説明する。
図235は、本実施の形態における受信機がAR画像を表示する例を示す図である。
本実施の形態における受信機200は、上記実施の形態1~22のうちの何れかの実施の形態における、イメージセンサおよびディスプレイ201を備えた受信機であって、例えばスマートフォンとして構成されている。このような受信機200は、そのイメージセンサによる被写体の撮像によって、上述の通常撮影画像である撮像表示画像Paと、上述の可視光通信画像または輝線画像である復号用画像とを取得する。
具体的には、受信機200のイメージセンサは、駅名標として構成されている送信機100を撮像する。送信機100は、上記実施の形態1~22のうちの何れかの実施の形態における送信機であって、1つまたは複数の発光素子(例えばLED)を備える。この送信機100は、その1つまたは複数の発光素子を点滅させることによって輝度変化し、その輝度変化によって光ID(光識別情報)を送信する。この光IDは、上述の可視光信号である。
受信機200は、送信機100を通常露光時間で撮像することによって、その送信機100が映し出された撮像表示画像Paを取得するとともに、その通常露光時間よりも短い通信用露光時間で送信機100を撮像することによって、復号用画像を取得する。なお、通常露光時間は、上述の通常撮影モードにおける露光時間であり、通信用露光時間は、上述の可視光通信モードにおける露光時間である。
受信機200は、その復号用画像に対する復号によって光IDを取得する。つまり、受信機200は、送信機100から光IDを受信する。受信機200は、その光IDをサーバに送信する。そして、受信機200は、その光IDに対応するAR画像P1と認識情報とをサーバから取得する。受信機200は、撮像表示画像Paのうち、その認識情報に応じた領域を対象領域として認識する。例えば、受信機200は、送信機100である駅名標が映し出されている領域を対象領域として認識する。そして、受信機200は、その対象領域にAR画像P1を重畳し、AR画像P1が重畳された撮像表示画像Paをディスプレイ201に表示する。例えば、送信機100である駅名標に、駅名として日本語で「京都駅」が記載されている場合、受信機200は、英語で駅名が記載されたAR画像P1、つまり「Kyoto Station」と記載されているAR画像P1を取得する。この場合、撮像表示画像Paの対象領域にそのAR画像P1が重畳されるため、英語で駅名が記載されている駅名標が現実に存在するように、撮像表示画像Paを表示することができる。その結果、英語を理解できるユーザは、日本語が読めなくても、その撮像表示画像Paを見れば、その送信機100である駅名標に記載されている駅名を容易に理解することができる。
例えば、認識情報は、認識対象の画像(例えば上述の駅名標の画像)であってもよく、その画像の特徴点および特徴量であってもよい。特徴点および特徴量は、例えば、SIFT(Scale-invariant feature transform)、SURF(Speed-Upped Robust Feature)、ORB(Oriented-BRIEF)、AKAZE(Accelerated KAZE)などの画像処理によって得られる。または、認識情報は、認識対象の画像に類似する白い四角形の画像であってもよく、さらに、その四角形の縦横比(アスペクト比)を示してもよい。または、識別情報は、認識対象の画像に現れるランダムドットであってもよい。さらに、認識情報は、上述の白い四角形またはランダムドットなどの、所定の方向を基準とする向きを示してもよい。所定の方向は、例えば重力方向である。
受信機200は、撮像表示画像Paの中から、このような認識情報に応じた領域を対象領域として認識する。具体的には、認識情報が画像であれば、受信機200は、その認識情報である画像に類似する領域を対象領域として認識する。また、認識情報が、画像処理によって得られた特徴点および特徴量であれば、受信機200は、その画像処理を撮像表示画像Paに対して行うことによって、特徴点検出および特徴量抽出を行う。そして、受信機200は、撮像表示画像Paにおいて、認識情報である特徴点および特徴量に類似する、特徴点および特徴量を有する領域を対象領域として認識する。また、認識情報が、白い四角形とその向きを示してれば、受信機200は、まず、自らに備えられた加速度センサによって重力方向を検出する。そして、受信機200は、重力方向を基準にして配置された撮像表示画像Paから、認識情報により示される向きに向けられた白い四角形に類似する領域を対象領域として認識する。
ここで、認識情報は、撮像表示画像Paのうちの基準領域を特定するための基準情報と、その基準領域に対する対象領域の相対位置を示す対象情報とを含んでいてもよい。基準情報は、上述のような、認識対象の画像、特徴点および特徴量、白い四角形の画像、またはランダムドットなどである。この場合、受信機200は、対象領域を認識するときには、まず、基準情報に基づいて撮像表示画像Paから基準領域を特定する。そして、受信機200は、撮像表示画像Paのうち、基準領域の位置を基準として対象情報により示される相対位置にある領域を、対象領域として認識する。なお、対象情報は、対象領域が基準領域と同じ位置にあることを示していてもよい。このように、認識情報が基準情報と対象情報とを含むことによって、幅広い範囲で対象領域を認識することができる。また、AR画像が重畳される場所をサーバが自由に設定して受信機200に教えることができる。
また、基準情報は、撮像表示画像Paにおける基準領域が、撮像表示画像のうちのディスプレイが映し出されている領域であることを示していてもよい。この場合、送信機100が例えばテレビなどのディスプレイとして構成されていれば、そのディスプレイが映し出されている領域を基準にして対象領域を認識することができる。
言い換えれば、本実施の形態における受信機200は、光IDに基づいて、基準画像と、画像認識方法とを特定する。画像認識方法は、撮像表示画像Paを認識する方法であって、例えば、幾何学的特徴量抽出、スペクトル特徴量抽出、またはテクスチャ特徴量抽出などである。基準画像は、基準となる特徴量を示すデータである。その特徴量は、例えば、画像の白色の外枠の特徴量であって、具体的には、画像の特徴をベクトルで表現したデータであってもよい。受信機200は、撮像表示画像Paから、画像認識方法にしたがって特徴量を抽出し、その特徴量と基準画像の特徴量とを比較することによって、撮像表示画像Paから上述の基準領域または対象領域を見つけ出す。
また、画像認識方法には、例えば、ロケーション利用方法、マーカー利用方法、およびマーカーレス方法があってもよい。ロケーション利用方法は、GPSの位置情報(すなわち受信機200の位置)を活用した方法であって、その位置情報に基づいて撮像表示画像Paから対象領域が認識される。マーカー利用方法は、二次元バーコードのような白および黒の図形で構成されたマーカーをターゲット特定用のマークとして用いる方法である。つまり、このマーカー利用方法では、撮像表示画像Paに映し出されているマーカーに基づいて対象領域が認識される。マーカーレス方法では、撮像表示画像Paに対する画像分析により、その撮像表示画像Paから特徴点または特徴量を抽出し、その抽出された特徴点または特徴量に基づいて、ターゲットの位置および領域を特定する方法である。つまり、画像認識方法がマーカーレス方法である場合、その画像認識方法は、上述の幾何学的特徴量抽出、スペクトル特徴量抽出、またはテクスチャ特徴量抽出などである。
このような受信機200は、送信機100から光IDを受信し、その光ID(以下、受信光IDという)に対応付けられた基準画像および画像認識方法をサーバから取得することによって、その基準画像および画像認識方法を特定してもよい。つまり、サーバには、基準画像および画像認識方法を含むセットが複数保存され、複数のセットのそれぞれは互いに異なる光IDに対応付けられている。これにより、サーバに保存されている複数のセットの中から、受信光IDに対応付けられた1つのセットを特定することができる。したがって、AR画像の重畳のための画像処理の速度を向上させることができる。また、受信機200は、サーバに問い合わせることによって、受信光IDに対応付けられた基準画像などを取得してもよく、自らが予め保持している複数の基準画像の中から、その受信光IDに対応付けられた基準画像を取得してもよい。
また、サーバは、光IDごとに、その光IDに対応付けられた相対位置情報を、基準画像、画像認識方法およびAR画像とともに保持していてもよい。相対位置情報は、例えば、上述の基準領域と対象領域との相対的な位置関係を示す情報である。これにより、受信機200は、受信光IDをサーバに送信して問い合わせたときには、その受信光IDに対応付けられた基準画像、画像認識方法、AR画像および相対位置情報を取得する。この場合、受信機200は、基準画像および画像認識方法に基づいて撮像表示画像Paから上述の基準領域を特定する。そして、受信機200は、その基準領域の位置から、上述の相対位置情報によって示される方向および距離にある領域を、上述の対象領域として認識し、その対象領域にAR画像を重畳する。また、受信機200は、相対位置情報がなければ、上述の基準領域を対象領域として認識し、その基準領域にAR画像を重畳してもよい。つまり、受信機200は、相対位置情報の取得に代えて、基準画像に基づいてAR画像を表示するプログラムを予め保持し、例えば、基準領域である白枠内にAR画像を表示してもよい。この場合には、相対位置情報は不要である。
基準画像、相対位置情報、AR画像、および画像認識方法の保持または取得には、以下の4つのバリエーション(1)~(4)がある。
(1)サーバは、基準画像、相対位置情報、AR画像、および画像認識方法からなるセットを複数保持している。受信機200は、それらのセットの中から、受信光IDに対応付けられた1つのセットを取得する。
(2)サーバは、基準画像およびAR画像からなるセットを複数保持している。受信機200は、予め定められた相対位置情報および画像認識方法を用い、かつ、それらのセットの中から、受信光IDに対応付けられた1つのセットを取得する。または、受信機200は、相対位置情報および画像認識方法からなる複数のセットを予め保持し、その複数のセットの中から、受信光IDに対応付けられた1つのセットを選択してもよい。この場合、受信機200は、受信光IDをサーバに送信して問い合わせ、その受信光IDに対応する相対位置情報および画像認識方法を特定するための情報をサーバから取得してもよい。そして、受信機200は、予め保持している、それぞれ相対位置情報および画像認識方法からなる複数のセットの中から、そのサーバから取得された情報に基づいて1つのセットを選択する。あるいは、受信機200は、サーバに問い合わせることなく、予め保持している、それぞれ相対位置情報および画像認識方法からなる複数のセットの中から、受信光IDに対応付けられた1つのセットを選択してもよい。
(3)受信機200は、基準画像、相対位置情報、AR画像、および画像認識方法からなるセットを複数保持し、それらのセットの中から1つのセットを選択する。受信機200は、上記(2)と同様に、サーバに問い合わせることによって、1つのセットを選択してもよく、受信機光IDに対応付けられた1つのセットを選択してもよい。
(4)受信機200は、基準画像およびAR画像からなるセットを複数保持し、受信光IDに対応付けられた1つのセットを選択する。受信機200は、予め定められた画像認識方法および相対位置情報を用いる。
図236は、本実施の形態における表示システムの一例を示す図である。
本実施の形態における表示システムは、例えば、上述の駅名標である送信機100と、受信機200と、サーバ300とを備える。
受信機200は、上述のようにAR画像が重畳された撮像表示画像を表示するために、まず、送信機100から光IDを受信する。次に、受信機200は、その光IDをサーバ300に送信する。
サーバ300は、光IDごとに、その光IDに対応付けられたAR画像および認識情報を保持している。そこで、サーバ300は、受信機200から光IDを受信すると、その受信された光IDに対応付けられたAR画像および認識情報を選択し、その選択されたAR画像および認識情報を受信機200に送信する。これにより、受信機200は、サーバ300から送信されたAR画像および認識情報を受信し、AR画像が重畳された撮像表示画像を表示する。
図237は、本実施の形態における表示システムの他の例を示す図である。
本実施の形態における表示システムは、例えば、上述の駅名標である送信機100と、受信機200と、第1のサーバ301と、第2のサーバ302とを備える。
受信機200は、上述のようにAR画像が重畳された撮像表示画像を表示するために、まず、送信機100から光IDを受信する。次に、受信機200は、その光IDを第1のサーバ301に送信する。
第1のサーバ301は、受信機200から光IDを受信すると、その受信された光IDに対応付けられたURL(Uniform Resource Locator)とKeyを受信機200に通知する。このような通知を受けた受信機200は、そのURL基づいて第2のサーバ302にアクセスし、Keyを第2のサーバ302に受け渡す。
第2のサーバ302は、Keyごとに、そのKeyに対応付けられたAR画像および認識情報を保持している。そこで、第2のサーバ302は、受信機200からKeyを受け取ると、そのKeyに対応付けられたAR画像および認識情報を選択し、その選択されたAR画像および認識情報を受信機200に送信する。これにより、受信機200は、第2のサーバ302から送信されたAR画像および認識情報を受信し、AR画像が重畳された撮像表示画像を表示する。
図238は、本実施の形態における表示システムの他の例を示す図である。
本実施の形態における表示システムは、例えば、上述の駅名標である送信機100と、受信機200と、第1のサーバ301と、第2のサーバ302とを備える。
受信機200は、上述のようにAR画像が重畳された撮像表示画像を表示するために、まず、送信機100から光IDを受信する。次に、受信機200は、その光IDを第1のサーバ301に送信する。
第1のサーバ301は、受信機200から光IDを受信すると、その受信された光IDに対応付けられたKeyを第2のサーバ302に通知する。
第2のサーバ302は、Keyごとに、そのKeyに対応付けられたAR画像および認識情報を保持している。そこで、第2のサーバ302は、第1のサーバ301からKeyを受け取ると、そのKeyに対応付けられたAR画像および認識情報を選択し、その選択されたAR画像および認識情報を、第1のサーバ301に送信する。第1のサーバ301は、第2のサーバ302からAR画像および認識情報を受信すると、そのAR画像および認識情報を受信機200に送信する。これにより、受信機200は、第1のサーバ301から送信されたAR画像および認識情報を受信し、AR画像が重畳された撮像表示画像を表示する。
なお、上述の例では、第2のサーバ302は、AR画像および認識情報を第1のサーバ301に送信したが、第1のサーバ301に送信することなく、受信機200に送信してもよい。
図239は、本実施の形態における受信機200の処理動作の一例を示すフローチャートである。
まず、受信機200は、上述の通常露光時間および通信用露光時間による撮像を開始する(ステップS101)。そして、受信機200は、通信用露光時間での撮像により得られる復号用画像に対する復号によって、光IDを取得する(ステップS102)。次に、受信機200は、その光IDをサーバに送信する(ステップS103)。
受信機200は、送信された光IDに対応するAR画像と認識情報とをサーバから取得する(ステップS104)。次に、受信機200は、通常露光時間の撮像により得られる撮像表示画像のうち、その認識情報に応じた領域を対象領域として認識する(ステップS105)。そして、受信機200は、その対象領域にAR画像を重畳し、そのAR画像が重畳された撮像表示画像を表示する(ステップS106)。
次に、受信機200は、撮像と撮像表示画像の表示とを終了すべきか否かを判定する(ステップS107)。ここで、受信機200は、終了すべきでないと判定すると(ステップS107のN)、さらに、受信機200の加速度が閾値以上であるか否かを判定する(ステップS108)。この加速度は、受信機200に備えられている加速度センサによって計測される。受信機200は、加速度が閾値未満であると判定すると(ステップS108のN)、ステップS105からの処理を実行する。これにより、受信機200のディスプレイ201に表示されている撮像表示画像がずれる場合であっても、その撮像表示画像の対象領域にAR画像を追従させることができる。また、受信機200は、加速度が閾値以上であると判定すると(ステップS108のY)、ステップS102からの処理を実行する。これにより、撮像表示画像に送信機100が映らなくなった場合に、送信機100と異なる被写体が映し出されている領域を誤って対象領域として認識してしまうことを抑えることができる。
このように本実施の形態では、AR画像が撮像表示画像に重畳されて表示されるため、ユーザに有益な画像を表示することができる。さらに、処理負荷を抑えて適切な対象領域にAR画像を重畳することができる。
つまり、一般的な拡張現実(すなわちAR)では、予め保存されている膨大な数の認識対象画像と、撮像表示画像とを比較することによって、その撮像表示画像に何れかの認識対象画像が含まれているか否かが判定される。そして、認識対象画像が含まれていると判定されれば、その認識対象画像に対応するAR画像が撮像表示画像に重畳される。このとき、認識対象画像を基準にAR画像の位置合わせが行われる。このように、一般的な拡張現実では、膨大な数の認識対象画像と撮像表示画像とを比較するため、さらに、位置合わせにおいても撮像表示画像における認識対象画像の位置検出が必要となるため、計算量が多く、処理負荷が高いという問題がある。
しかし、本実施の形態にける表示方法では、被写体の撮像によって得られる復号用画像を復号することによって光IDが取得される。つまり、被写体である送信機から送信された光IDが受信される。さらに、この光IDに対応するAR画像と認識情報とがサーバから取得される。したがって、サーバでは、膨大な数の認識対象画像と撮像表示画像とを比較する必要がなく、光IDに予め対応付けられているAR画像を選択して表示装置に送信することができる。これにより、計算量を減らして処理負荷を大幅に抑えることができる。さらに、AR画像の表示処理を高速にすることができる。
また、本実施の形態では、この光IDに対応する認識情報がサーバから取得される。認識情報は、撮像表示画像においてAR画像が重畳される領域である対象領域を認識するための情報である。この認識情報は、例えば白い四角形が対象領域であることを示す情報であってもよい。この場合には、対象領域を簡単に認識することができ、処理負荷をさらに抑えることができる。つまり、認識情報の内容に応じて、処理負荷をさらに抑えることができる。また、サーバでは、光IDに応じてその認識情報の内容を任意に設定することができるため、処理負荷と認識精度とのバランスを適切に保つことができる。
なお、本実施の形態では、受信機200が光IDをサーバに送信した後に、受信機200がその光IDに対応するAR画像および認識情報をサーバから取得するが、AR画像および認識情報のうちの少なくとも一方を予め取得しておいてもよい。つまり、受信機200は、受信される可能性のある複数の光IDに対応する複数のAR画像および複数の認識情報をまとめてサーバから取得して保存しておく。その後、受信機200は、光IDを受信すると、自らに保存されている複数のAR画像および複数の認識情報から、その光IDに対応するAR画像および認識情報を選択する。これにより、AR画像の表示処理をさらに高速にすることができる。
図240は、本実施の形態における受信機200がAR画像を表示する他の例を示す図である。
送信機100は、例えば図240に示すように、照明装置として構成され、施設の案内板101を照らしながら輝度変化することによって、光IDを送信している。案内板101は、その送信機100からの光によって照らされているため、送信機100と同様に輝度変化し、光IDを送信している。
受信機200は、送信機100によって照らされた案内板101を撮像することによって、上述と同様に、撮像表示画像Pbと復号用画像とを取得する。受信機200は、その復号用画像に対する復号によって光IDを取得する。つまり、受信機200は、案内板101から光IDを受信する。受信機200は、その光IDをサーバに送信する。そして、受信機200は、その光IDに対応するAR画像P2と認識情報とをサーバから取得する。受信機200は、撮像表示画像Pbのうち、その認識情報に応じた領域を対象領域として認識する。例えば、受信機200は、案内板101における枠102が映し出されている領域を対象領域として認識する。この枠102は、施設の待ち時間を示すための枠である。そして、受信機200は、その対象領域にAR画像P2を重畳し、AR画像P2が重畳された撮像表示画像Pbをディスプレイ201に表示する。例えば、AR画像P2は、文字列「30分」を含む画像である。この場合、撮像表示画像Pbの対象領域にそのAR画像P2が重畳されるため、受信機200は、待ち時間「30分」が記載された案内板101が現実に存在するように、撮像表示画像Pbを表示することができる。これにより、案内板101に特別な表示装置を備えることなく、受信機200のユーザに待ち時間を簡単に、かつ、分かりやすく知らせることができる。
図241は、本実施の形態における受信機200がAR画像を表示する他の例を示す図である。
送信機100は、例えば図241に示すように、2つの照明装置からなる。送信機100は、施設の案内板104を照らしながら輝度変化することによって、光IDを送信している。案内板104は、その送信機100からの光によって照らされているため、送信機100と同様に輝度変化し、光IDを送信している。また、案内板104は、例えば「ABCランド」および「アドベンチャーランド」などの複数の施設の名称を示す。
受信機200は、送信機100によって照らされた案内板104を撮像することによって、上述と同様に、撮像表示画像Pcと復号用画像とを取得する。受信機200は、その復号用画像に対する復号によって光IDを取得する。つまり、受信機200は、案内板104から光IDを受信する。受信機200は、その光IDをサーバに送信する。そして、受信機200は、その光IDに対応するAR画像P3と認識情報とをサーバから取得する。受信機200は、撮像表示画像Pcのうち、その認識情報に応じた領域を対象領域として認識する。例えば、受信機200は、案内板104が映し出されている領域を対象領域として認識する。そして、受信機200は、その対象領域にAR画像P3を重畳し、AR画像P3が重畳された撮像表示画像Pcをディスプレイ201に表示する。例えば、AR画像P3は、複数の施設の名称を示す画像である。このAR画像P3では、施設の待ち時間が長いほど、その施設の名称が小さく表示され、逆に、施設の待ち時間が短いほど、その施設の名称が大きく表示されている。この場合、撮像表示画像Pcの対象領域にそのAR画像P3が重畳されるため、受信機200は、待ち時間に応じた大きさの各施設名称が記載された案内板104が現実に存在するように、撮像表示画像Pcを表示することができる。これにより、案内板104に特別な表示装置を備えることなく、受信機200のユーザに各施設の待ち時間を簡単に、かつ、分かりやすく知らせることができる。
図242は、本実施の形態における受信機200がAR画像を表示する他の例を示す図である。
送信機100は、例えば図242に示すように、2つの照明装置からなる。送信機100は、城壁105を照らしながら輝度変化することによって、光IDを送信している。城壁105は、その送信機100からの光によって照らされているため、送信機100と同様に輝度変化し、光IDを送信している。また、城壁105には、例えば、キャラクターの顔を模った小さいマークが隠れキャラクター106として刻まれている。
受信機200は、送信機100によって照らされた城壁105を撮像することによって、上述と同様に、撮像表示画像Pdと復号用画像とを取得する。受信機200は、その復号用画像に対する復号によって光IDを取得する。つまり、受信機200は、城壁105から光IDを受信する。受信機200は、その光IDをサーバに送信する。そして、受信機200は、その光IDに対応するAR画像P4と認識情報とをサーバから取得する。受信機200は、撮像表示画像Pdのうち、その認識情報に応じた領域を対象領域として認識する。例えば、受信機200は、城壁105のうち隠れキャラクター106を含む範囲が映し出されている領域を対象領域として認識する。そして、受信機200は、その対象領域にAR画像P4を重畳し、AR画像P4が重畳された撮像表示画像Pdをディスプレイ201に表示する。例えば、AR画像P4は、キャラクターの顔を模った画像である。このAR画像P4は、撮像表示画像Pdに映し出されている隠れキャラクター106よりも十分に大きい画像である。この場合、撮像表示画像Pdの対象領域にそのAR画像P4が重畳されるため、受信機200は、キャラクターの顔を模った大きなマークが刻まれた城壁105が現実に存在するように、撮像表示画像Pdを表示することができる。これにより、受信機200のユーザに、隠れキャラクター106の位置を分かりやすく知らせることができる。
図243は、本実施の形態における受信機200がAR画像を表示する他の例を示す図である。
送信機100は、例えば図243に示すように、2つの照明装置からなる。送信機100は、施設の案内板107を照らしながら輝度変化することによって、光IDを送信している。案内板107は、その送信機100からの光によって照らされているため、送信機100と同様に輝度変化し、光IDを送信している。また、案内板107の隅の複数箇所には、赤外線遮断塗料108が塗布されている。
受信機200は、送信機100によって照らされた案内板107を撮像することによって、上述と同様に、撮像表示画像Peと復号用画像とを取得する。受信機200は、その復号用画像に対する復号によって光IDを取得する。つまり、受信機200は、案内板107から光IDを受信する。受信機200は、その光IDをサーバに送信する。そして、受信機200は、その光IDに対応するAR画像P5と認識情報とをサーバから取得する。受信機200は、撮像表示画像Peのうち、その認識情報に応じた領域を対象領域として認識する。例えば、受信機200は、案内板107が映し出されている領域を対象領域として認識する。
具体的には、認識情報には、複数箇所の赤外線遮断塗料108に外接する矩形が対象領域であることが示されている。また、赤外線遮断塗料108は、送信機100から照射される光に含まれる赤外線を遮断する。したがって、受信機200のイメージセンサには、赤外線遮断塗料108がその周辺よりも暗い像として認識される。受信機200は、それぞれ暗い像として現れる複数箇所の赤外線遮断塗料108に外接する矩形を対象領域として認識する。
そして、受信機200は、その対象領域にAR画像P5を重畳し、AR画像P5が重畳された撮像表示画像Peをディスプレイ201に表示する。例えば、AR画像P5は、案内板107の施設において行われる催しのスケジュールを示す。この場合、撮像表示画像Peの対象領域にそのAR画像P5が重畳されるため、受信機200は、催しのスケジュールが記載された案内板107が現実に存在するように、撮像表示画像Peを表示することができる。これにより、案内板107に特別な表示装置を備えることなく、受信機200のユーザに施設の催しのスケジュールを分かりやすく知らせることができる。
なお、案内板107には、赤外線遮断塗料108の代わりに、赤外線反射塗料が塗布されていてもよい。赤外線反射塗料は、送信機100から照射される光に含まれる赤外線を反射する。したがって、受信機200のイメージセンサには、赤外線反射塗料がその周辺よりも明るい像として認識される。つまり、この場合には、受信機200は、それぞれ明るい像として現れる複数箇所の赤外線反射塗料に外接する矩形を対象領域として認識する。
図244は、本実施の形態における受信機200がAR画像を表示する他の例を示す図である。
送信機100は、駅名標として構成され、駅出口案内板110の近くに配置されている。駅出口案内板110は、光源を備えて発光しているが、送信機100とは異なり、光IDを送信しない。
受信機200が送信機100および駅出口案内板110を撮像することによって撮像表示画像Ppreおよび復号用画像Pdecを取得する。送信機100は輝度変化し、駅出口案内板110は発光しているため、その復号用画像Pdecには、送信機100に対応する輝線パターン領域Pdec1と、駅出口案内板110に対応する明領域Pdec2とが現れる。輝線パターン領域Pdec1は、受信機200のイメージセンサが有する複数の露光ラインの通信用露光時間での露光によって現れる複数の輝線のパターンからなる領域である。
ここで、識別情報は、上述のように、撮像表示画像Ppreのうちの基準領域Pbasを特定するための基準情報と、その基準領域Pbasに対する対象領域Ptarの相対位置を示す対象情報とを含んでいる。例えば、その基準情報は、撮像表示画像Ppreにおける基準領域Pbasの位置が、復号用画像Pdecにおける輝線パターン領域Pdec1の位置と同じであることを示す。さらに、対象情報は、対象領域の位置が基準領域の位置であることを示す。
したがって、受信機200は、基準情報に基づいて撮像表示画像Ppreから基準領域Pbasを特定する。つまり、受信機200は、撮像表示画像Ppreにおいて、復号用画像Pdecにおける輝線パターン領域Pdec1の位置と同一の位置にある領域を、基準領域Pbasとして特定する。さらに、受信機200は、撮像表示画像Ppreのうち、基準領域Pbasの位置を基準として対象情報により示される相対位置にある領域を、対象領域Ptarとして認識する。上述の例では、対象情報は、対象領域Ptarの位置が基準領域Pbasの位置であることを示すため、受信機200は、撮像表示画像Ppreのうちの基準領域Pbasを対象領域Ptarとして認識する。
そして、受信機200は、撮像表示画像Ppreにおける対象領域PtarにAR画像P1を重畳する。
このように、上述の例では、対象領域Ptarを認識するために、輝線パターン領域Pdec1を利用している。一方、輝線パターン領域Pdec1を利用せずに、撮像表示画像Ppreだけから、送信機100が映し出されている領域を、対象領域Ptarとして認識しようとする場合には、誤認識が生じる可能性がある。つまり、撮像表示画像Ppreのうちの、送信機100が映し出されている領域ではなく、駅出口案内板110が映し出されている領域を、対象領域Ptarとして誤認識してしまう可能性がある。これは、撮像表示画像Ppreにおける、送信機100の画像と駅出口案内板110の画像とが似ているからである。しかし、上述の例のように、輝線パターン領域Pdec1を利用する場合には、誤認識の発生を抑えて、正確に対象領域Ptarを認識することができる。
図245は、本実施の形態における受信機200がAR画像を表示する他の例を示す図である。
図244に示す例では、送信機100は、駅名標の全体を輝度変化させることによって光IDを送信し、対象情報は、対象領域の位置が基準領域の位置であることを示している。しかし、本実施の形態では、送信機100は、駅名標の全体を輝度変化させることなく、駅名標の外枠の一部に配置された発光素子を輝度変化させることによって光IDを送信してもよい。また、対象情報は、基準領域Pbasに対する対象領域Ptarの相対位置を示していればよく、例えば、対象領域Ptarの位置が基準領域Pbasの上(具体的には、鉛直方向上向き)であることを示していてもよい。
図245に示す例では、送信機100は、駅名標の外枠下部に水平方向に沿って配置された複数の発光素子を輝度変化させることによって光IDを送信する。また、対象情報は、対象領域Ptarの位置が基準領域Pbasの上であることを示す。
このような場合、受信機200は、基準情報に基づいて撮像表示画像Ppreから基準領域Pbasを特定する。つまり、受信機200は、撮像表示画像Ppreにおいて、復号用画像Pdecにおける輝線パターン領域Pdec1の位置と同一の位置にある領域を、基準領域Pbasとして特定する。具体的には、受信機200は、水平方向に長く垂直方向に短い矩形状の基準領域Pbasを特定する。さらに、受信機200は、撮像表示画像Ppreのうち、基準領域Pbasの位置を基準として対象情報により示される相対位置にある領域を、対象領域Ptarとして認識する。つまり、受信機200は、撮像表示画像Ppreのうちの基準領域Pbasよりも上にある領域を、対象領域Ptarとして認識する。なお、このときには、受信機200は、自らに備えられている加速度センサによって計測される重力方向に基づいて、基準領域Pbasよりも上の向きを特定する。
なお、対象情報は、対象領域Ptarの相対位置だけでなく、対象領域Ptarのサイズ、形状およびアスペクト比を示してもよい。この場合、受信機200は、対象情報によって示されるサイズ、形状およびアスペクト比の対象領域Ptarを認識する。また、受信機200は、基準領域Pbasのサイズに基づいて、対象領域Ptarのサイズを決定してもよい。
図246は、本実施の形態における受信機200の処理動作の他の例を示すフローチャートである。
受信機200は、図239に示す例と同様に、ステップS101~S104の処理を実行する。
次に、受信機200は、復号用画像Pdecから輝線パターン領域Pdec1を特定する(ステップS111)。次に、受信機200は、撮像表示画像Ppreから、その輝線パターン領域Pdec1に対応する基準領域Pbasを特定する(ステップS112)。そして、受信機200は、認識情報(具体的には対象情報)とその基準領域Pbasとに基づいて、撮像表示画像Ppreから対象領域Ptarを認識する(ステップS113)。
次に、受信機200は、図239に示す例と同様に、撮像表示画像Ppreの対象領域PtarにAR画像を重畳し、そのAR画像が重畳された撮像表示画像Ppreを表示する(ステップS106)。そして、受信機200は、撮像と撮像表示画像Ppreの表示とを終了すべきか否かを判定する(ステップS107)。ここで、受信機200は、終了すべきでないと判定すると(ステップS107のN)、さらに、受信機200の加速度が閾値以上であるか否かを判定する(ステップS114)。この加速度は、受信機200に備えられている加速度センサによって計測される。受信機200は、加速度が閾値未満であると判定すると(ステップS114のN)、ステップS113からの処理を実行する。これにより、受信機200のディスプレイ201に表示されている撮像表示画像Ppreがずれる場合であっても、その撮像表示画像Ppreの対象領域PtarにAR画像を追従させることができる。また、受信機200は、加速度が閾値以上であると判定すると(ステップS114のY)、ステップS111またはステップS102からの処理を実行する。これにより、送信機100と異なる被写体(例えば、駅出口案内板110)が映し出されている領域を誤って対象領域Ptarとして認識してしまうことを抑えることができる。
図247は、本実施の形態における受信機200がAR画像を表示する他の例を示す図である。
受信機200は、表示されている撮像表示画像PpreにおけるAR画像P1がタップされると、そのAR画像P1を拡大して表示する。または、受信機200は、タップされると、AR画像P1に示されている内容よりも詳細な内容を示す新たなAR画像を、そのAR画像P1の代わりに表示してもよい。また、AR画像P1が、複数ページからなる情報誌の1ページ分の情報を示す場合には、受信機200は、AR画像P1のページの次のページの情報を示す新たなAR画像を、そのAR画像P1の代わりに表示してもよい。または、受信機200は、タップされると、そのAR画像P1に関連する動画像を新たなAR画像として、そのAR画像P1の代わりに表示してもよい。このとき、受信機200は、対象領域Ptarからオブジェクト(図247の例では紅葉)が出ていくような動画像をAR画像として表示してもよい。
図248は、本実施の形態における受信機200の撮像によって取得される撮像表示画像Ppreおよび復号用画像Pdecを示す図である。
受信機200は、撮像しているときには、例えば図248の(a1)に示すように、30fpsのフレームレートで撮像表示画像Ppreおよび復号用画像Pdecなどの撮像画像を取得する。具体的には、受信機200は、時刻t1に撮像表示画像Ppre「A」を取得し、時刻t2に復号用画像Pdecを取得し、時刻t3に撮像表示画像Ppre「B」を取得するように、撮像表示画像Ppreと復号用画像Pdecとを交互に取得する。
また、受信機200は、撮像画像を表示しているときには、撮像画像のうち撮像表示画像Ppreのみを表示し、復号用画像Pdecを表示しない。つまり、受信機200は、図248の(a2)に示すように、復号用画像Pdecを取得するときには、その復号用画像Pdecの代わりに、直前に取得された撮像表示画像Ppreを表示する。具体的には、受信機200は、時刻t1には、取得された撮像表示画像Ppre「A」を表示し、時刻t2には、時刻t1で取得された撮像表示画像Ppre「A」を再び表示する。これにより、受信機200は、15fpsのフレームレートで撮像表示画像Ppreを表示する。
ここで、図248の(a1)に示す例では、受信機200は、撮像表示画像Ppreと復号用画像Pdecとを交互に取得するが、本実施の形態におけるこれらの画像の取得形態は、このような形態に限らない。つまり、受信機200は、N(Nは1以上の整数)枚の復号用画像Pdecを連続して取得し、その後、M(Mは1以上の整数)枚の撮像表示画像Ppreを連続して取得することを繰り返してもよい。
また、受信機200は、取得される撮像画像を、撮像表示画像Ppreと復号用画像Pdecとに切り替える必要があり、この切り替えに時間がかかってしまうことがある。そこで、図248の(b1)に示すように、受信機200は、撮像表示画像Ppreの取得と、復号用画像Pdecの取得と間の切り替え時において、切り替え期間を設けてもよい。具体的には、受信機200は、時刻t3に復号用画像Pdecを取得すると、時刻t3~t5までの切り替え期間において、撮像画像を切り替えるための処理を実行し、時刻t5に撮像表示画像Ppre「A」を取得する。その後、受信機200は、時刻t5~t7までの切り替え期間において、撮像画像を切り替えるための処理を実行し、時刻t7に復号用画像Pdecを取得する。
このように切り替え期間が設けられた場合、受信機200は、図248の(b2)に示すように、切り替え期間では、直前に取得された撮像表示画像Ppreを表示する。したがって、この場合には、受信機200における撮像表示画像Ppreの表示のフレームレートは低く、例えば3fpsとなる。このようにフレームレートが低い場合には、ユーザが受信機200を動かしても、表示されている撮像表示画像Ppreがその受信機200の動きに応じて移動しないことがある。つまり、撮像表示画像Ppreはライブビューとして表示されない。そこで、受信機200は、撮像表示画像Ppreを受信機200の動きに応じて移動させてもよい。
図249は、本実施の形態における受信機200に表示される撮像表示画像Ppreの一例を示す図である。
受信機200は、例えば図249の(a)に示すように、撮像によって得られた撮像表示画像Ppreをディスプレイ201に表示する。ここで、ユーザが受信機200を左側に動かす。このとき、受信機200による撮像によって新たな撮像表示画像Ppreが取得されない場合、受信機200は、図249の(b)に示すように、表示されている撮像表示画像Ppreを右側に移動させる。つまり、受信機200は、加速度センサを備え、その加速度センサによって計測される加速度に応じて、受信機200の動きに整合するように、表示されている撮像表示画像Ppreを移動させる。これにより、受信機200は、撮像表示画像Ppreを擬似的にライブビューとして表示することができる。
図250は、本実施の形態における受信機200の処理動作の他の例を示すフローチャートである。
受信機200は、まず、上述と同様に、撮像表示画像Ppreの対象領域PtarにAR画像を重畳して、その対象領域Ptarに追従させる(ステップS122)。つまり、撮像表示画像Ppreにおける対象領域Ptarと共に移動するAR画像が表示される。そして、受信機200は、AR画像の表示を維持するか否かを判定する(ステップS122)。ここで、AR画像の表示を維持しないと判定すると(ステップS122のN)、受信機200は、撮像によって新たな光IDを取得すれば、その光IDに対応する新たなAR画像を撮像表示画像Ppreに重畳して表示する(ステップS123)。
一方、AR画像の表示を維持すると判定すると(ステップS122のY)、受信機200は、ステップS121からの処理を繰り返し実行させる。このときには、受信機200は、他のAR画像を取得していても他のAR画像を表示しない。または、受信機200は、新たな復号用画像Pdecを取得していても、その復号用画像Pdecに対する復号によって光IDを取得することは行わない。このときには、復号にかかる消費電力を抑えることができる。
このように、AR画像の表示を維持することによって、表示されているそのAR画像が消去されたり、他のAR画像の表示によって見え難くなってしまうことを抑えることができる。つまり、表示されているAR画像をユーザに見え易くすることができる。
例えば、ステップS122では、受信機200は、AR画像が表示されてから予め定められた期間(一定期間)が経過するまでは、AR画像の表示を維持すると判定する。つまり、受信機200は、撮像表示画像Ppreを表示するときには、ステップS121で重畳されているAR画像である第1のAR画像と異なる第2のAR画像の表示を抑制しながら、予め定められた表示期間だけ、その第1のAR画像を表示する。受信機200は、この表示期間には、新たに取得される復号用画像Pdecに対する復号を禁止してもよい。
これにより、ユーザが一度表示された第1のAR画像を見ているときに、その第1のAR画像がそれとは異なる第2のAR画像にすぐに置き換わってしまうことを抑えることができる。さらに、新たに取得される復号用画像Pdecの復号は、第2のAR画像の表示が抑制されているときには無駄な処理であるため、その復号を禁止することによって、消費電力を抑えることができる。
または、ステップS122では、受信機200は、フェイスカメラを備え、そのフェイスカメラによる撮像結果に基づいて、ユーザの顔が近付いていることを検出すると、AR画像の表示を維持すると判定してもよい。つまり、受信機200は、撮像表示画像Ppreを表示するときには、さらに、受信機200に備えられたフェイスカメラによる撮像によって、受信機200にユーザの顔が近づいている否かを判定する。そして、受信機200は、顔が近づいていると判定すると、ステップS121で重畳されているAR画像である第1のAR画像と異なる第2のAR画像の表示を抑制しながら、その第1のAR画像を表示する。
または、ステップS122では、受信機200は、加速度センサを備え、その加速度センサによる計測結果に基づいて、ユーザの顔が近付いていることを検出すると、AR画像の表示を維持すると判定してもよい。つまり、受信機200は、撮像表示画像Ppreを表示するときには、さらに、加速度センサによって計測される受信機200の加速度によって、受信機200にユーザの顔が近づいている否かを判定する。例えば、加速度センサによって計測される受信機200の加速度が、受信機200のディスプレイ201に対して垂直外向きの方向に正の値を示す場合に、受信機200はユーザの顔が近付いていると判定する。そして、受信機200は、顔が近づいていると判定すると、ステップS121で重畳されているAR画像である第1の拡張現実画像と異なる第2のAR画像の表示を抑制しながら、その第1のAR画像を表示する。
これにより、ユーザが第1のAR画像を見ようとして受信機200に顔を近づけているときに、その第1のAR画像がそれとは異なる第2のAR画像に置き換わってしまうことを抑えることができる。
または、ステップS122では、受信機200は、その受信機200に備えられているロックボタンが押下されると、AR画像の表示を維持すると判定してもよい。
また、ステップS122では、受信機200は、上述の一定期間(すなわち表示期間)が経過すると、AR画像の表示を維持しないと判定する。また、受信機200は、上述の一定期間が経過していない場合であっても、加速度センサによって閾値以上の加速度が計測されたときには、AR画像の表示を維持しないと判定する。つまり、受信機200は、撮像表示画像Ppreを表示するときには、さらに、上述の表示期間において、受信機200の加速度を加速度センサによって計測し、計測された加速度が閾値以上か否かを判定する。そして、受信機200は、閾値以上と判定したときには、第2のAR画像の表示の抑制を解除することによって、ステップS123において、第1のAR画像の代わりに第2のAR画像を表示する。
これにより、閾値以上の表示装置の加速度が計測されたときに、第2のAR画像の表示の抑制が解除される。したがって、例えば、ユーザが他の被写体にイメージセンサを向けようとして受信機200を大きく動かしたときには、第2のAR画像を直ぐに表示することができる。
図251は、本実施の形態における受信機200がAR画像を表示する他の例を示す図である。
送信機100は、例えば図251に示すように、照明装置として構成され、小さい人形用のステージ111を照らしながら輝度変化することによって、光IDを送信している。ステージ111は、その送信機100からの光によって照らされているため、送信機100と同様に輝度変化し、光IDを送信している。
2つの受信機200は、送信機100によって照らされたステージ111を左右から撮像する。
2つの受信機200のうちの左側の受信機200は、送信機100によって照らされたステージ111を左側から撮像することによって、上述と同様に、撮像表示画像Pfと復号用画像とを取得する。左側の受信機200は、その復号用画像に対する復号によって光IDを取得する。つまり、左側の受信機200は、ステージ111から光IDを受信する。左側の受信機200は、その光IDをサーバに送信する。そして、左側の受信機200は、その光IDに対応する三次元のAR画像と認識情報とをサーバから取得する。この三次元のAR画像は、例えば人形を立体的に表示するための画像である。左側の受信機200は、撮像表示画像Pfのうち、その認識情報に応じた領域を対象領域として認識する。例えば、左側の受信機200は、ステージ111中央の上側の領域を対象領域として認識する。
次に、左側の受信機200は、撮像表示画像Pfに映し出されているステージ111の向きに基づいて、その向きに応じた二次元のAR画像P6aを三次元のAR画像から生成する。そして、左側の受信機200は、その対象領域に二次元のAR画像P6aを重畳し、AR画像P6aが重畳された撮像表示画像Pfをディスプレイ201に表示する。この場合、撮像表示画像Pfの対象領域にその二次元のAR画像P6aが重畳されるため、左側の受信機200は、ステージ111上に人形が現実に存在するように、撮像表示画像Pfを表示することができる。
同様に、2つの受信機200のうちの右側の受信機200は、送信機100によって照らされたステージ111を右側から撮像することによって、上述と同様に、撮像表示画像Pgと復号用画像とを取得する。右側の受信機200は、その復号用画像に対する復号によって光IDを取得する。つまり、右側の受信機200は、ステージ111から光IDを受信する。右側の受信機200は、その光IDをサーバに送信する。そして、右側の受信機200は、その光IDに対応する三次元のAR画像と認識情報とをサーバから取得する。右側の受信機200は、撮像表示画像Pgのうち、その認識情報に応じた領域を対象領域として認識する。例えば、右側の受信機200は、ステージ111中央の上側の領域を対象領域として認識する。
次に、右側の受信機200は、撮像表示画像Pgに映し出されているステージ111の向きに基づいて、その向きに応じた二次元のAR画像P6bを三次元のAR画像から生成する。そして、右側の受信機200は、その対象領域に二次元のAR画像P6bを重畳し、AR画像P6bが重畳された撮像表示画像Pgをディスプレイ201に表示する。この場合、撮像表示画像Pgの対象領域にその二次元のAR画像P6bが重畳されるため、右側の受信機200は、ステージ111上に人形が現実に存在するように、撮像表示画像Pgを表示することができる。
このように、2つの受信機200は、ステージ111上の同じ位置に、AR画像P6aおよびP6bを表示する。また、これらのAR画像P6aおよびP6bは、仮想的な人形が実際に所定の方向を向いているように、受信機200の向きに応じて生成されている。したがって、ステージ111のどの方向から撮像しても、ステージ111上に人形が現実に存在するように、撮像表示画像を表示することができる。
なお、上述の例では、受信機200は、三次元のAR画像から、受信機200とステージ111との間の位置関係に応じた二次元のAR画像を生成したが、その二次元のAR画像をサーバから取得してもよい。つまり、受信機200は、光IDと共に、その位置関係を示す情報をサーバに送信し、三次元のAR画像の代わりに、その二次元のAR画像をサーバから取得する。これにより、受信機200の負担を軽減することができる。
図252は、本実施の形態における受信機200がAR画像を表示する他の例を示す図である。
送信機100は、例えば図252に示すように、照明装置として構成され、円柱状の構造物112を照らしながら輝度変化することによって、光IDを送信している。構造物112は、その送信機100からの光によって照らされているため、送信機100と同様に輝度変化し、光IDを送信している。
受信機200は、送信機100によって照らされた構造物112を撮像することによって、上述と同様に、撮像表示画像Phと復号用画像とを取得する。受信機200は、その復号用画像に対する復号によって光IDを取得する。つまり、受信機200は、構造物112から光IDを受信する。受信機200は、その光IDをサーバに送信する。そして、受信機200は、その光IDに対応するAR画像P7と認識情報とをサーバから取得する。受信機200は、撮像表示画像Phのうち、その認識情報に応じた領域を対象領域として認識する。例えば、受信機200は、構造物112の中央部が映し出されている領域を対象領域として認識する。そして、受信機200は、その対象領域にAR画像P7を重畳し、AR画像P7が重畳された撮像表示画像Phをディスプレイ201に表示する。例えば、AR画像P7は、文字列「ABCD」を含む画像であって、その文字列は構造物112の中央部の曲面に合わせて歪んでいる。この場合、撮像表示画像Phの対象領域にその歪んだ文字列を含むAR画像P2が重畳されるため、受信機200は、構造物112に対して描かれた文字列が現実に存在するように、撮像表示画像Phを表示することができる。
図253は、本実施の形態における受信機200がAR画像を表示する他の例を示す図である。
送信機100は、例えば図253に示すように、飲食店のメニュー113を照らしながら輝度変化することによって、光IDを送信している。メニュー113は、その送信機100からの光によって照らされているため、送信機100と同様に輝度変化し、光IDを送信している。また、メニュー113は、例えば「ABCスープ」、「XYZサラダ」および「KLMランチ」などの複数の料理の名称を示す。
受信機200は、送信機100によって照らされたメニュー113を撮像することによって、上述と同様に、撮像表示画像Piと復号用画像とを取得する。受信機200は、その復号用画像に対する復号によって光IDを取得する。つまり、受信機200は、メニュー113から光IDを受信する。受信機200は、その光IDをサーバに送信する。そして、受信機200は、その光IDに対応するAR画像P8と認識情報とをサーバから取得する。受信機200は、撮像表示画像Piのうち、その認識情報に応じた領域を対象領域として認識する。例えば、受信機200は、メニュー113が映し出されている領域を対象領域として認識する。そして、受信機200は、その対象領域にAR画像P8を重畳し、AR画像P8が重畳された撮像表示画像Piをディスプレイ201に表示する。例えば、AR画像P8は、複数の料理のそれぞれに使われている食材をマークで示す画像である。例えば、AR画像P8は、卵が使われている料理「XYZサラダ」に対しては、卵を模ったマークを示し、豚肉が使われている料理「KLMランチ」に対しては、豚を模ったマークを示す。この場合、撮像表示画像Piの対象領域にそのAR画像P8が重畳されるため、受信機200は、食材のマークが付されたメニュー113が現実に存在するように、撮像表示画像Piを表示することができる。これにより、メニュー113に特別な表示装置を備えることなく、受信機200のユーザに各料理の食材を簡単に、かつ、分かりやすく知らせることができる。
また、受信機200は、複数のAR画像を取得して、ユーザによって設定されたユーザ情報に基づいて、それらの複数のAR画像からユーザに適したAR画像を選択し、そのAR画像を重畳してもよい。例えば、ユーザが卵にアレルギー反応を示すことがユーザ情報に示されていれば、受信機200は、卵が使われた料理に対して卵のマークが付されたAR画像を選択する。また、豚肉の摂取が禁止されていることがユーザ情報に示されていれば、受信機200は、豚肉が使われた料理に対して豚のマークが付されたAR画像を選択する。または、受信機200は、光IDと共に、そのユーザ情報をサーバに送信し、その光IDとユーザ情報に応じたAR画像をサーバから取得してもよい。これにより、ユーザごとに、そのユーザに対して喚起を促すメニューを表示することができる。
図254は、本実施の形態における受信機200がAR画像を表示する他の例を示す図である。
送信機100は、例えば図254に示すように、テレビとして構成され、ディスプレイに映像を表示しながら輝度変化することによって、光IDを送信している。また、送信機100の近傍には、通常のテレビ114が配置されている。テレビ114は、ディスプレイに映像を表示しているが、光IDを送信していない。
受信機200は、例えば送信機100とともにテレビ114を撮像することによって、上述と同様に、撮像表示画像Pjと復号用画像とを取得する。受信機200は、その復号用画像に対する復号によって光IDを取得する。つまり、受信機200は、送信機100から光IDを受信する。受信機200は、その光IDをサーバに送信する。そして、受信機200は、その光IDに対応するAR画像P9と認識情報とをサーバから取得する。受信機200は、撮像表示画像Pjのうち、その認識情報に応じた領域を対象領域として認識する。
例えば、受信機200は、復号用画像の輝線パターン領域を利用することによって、撮像表示画像Pjにおいて、光IDを送信している送信機100が映し出されている領域の下部を第1の対象領域として認識する。なお、このとき、認識情報に含まれる基準情報は、撮像表示画像Pjにおける基準領域の位置が、復号用画像における輝線パターン領域の位置と同じであることを示す。さらに、認識情報に含まれる対象情報は、その基準領域の下部に対象領域があることを示す。受信機200は、このような認識情報を用いて上述の第1の対象領域を認識している。
さらに、受信機200は、撮像表示画像Pjの下部において予め位置が固定されている領域を第2の対象領域として認識する。第2の対象領域は、第1の対象領域よりも大きい。なお、認識情報に含まれる対象情報は、さらに、第1の対象領域の位置だけでなく、上述のような第2の対象領域の位置およびサイズも示している。受信機200は、このような認識情報を用いて上述の第2の対象領域を認識している。
そして、受信機200は、その第1の対象領域および第2の対象領域にAR画像P9を重畳し、AR画像P8が重畳された撮像表示画像Pjをディスプレイ201に表示する。このAR画像P9の重畳では、受信機200は、そのAR画像P9のサイズを第1の対象領域のサイズに合わせ、サイズ調整されたAR画像P9をその第1の対象領域に重畳する。さらに、受信機200は、AR画像P9のサイズを第2の対象領域のサイズに合わせ、サイズ調整されたAR画像P9をその第2の対象領域に重畳する。
例えば、AR画像P9は、送信機100の映像に対する字幕を示す。また、AR画像P9の字幕の言語は、受信機200に設定登録されているユーザ情報に応じた言語である。つまり、受信機200は、光IDをサーバに送信するときに、そのユーザ情報(例えば、ユーザの国籍または使用言語などを示す情報)もサーバに送信する。そして、受信機200は、そのユーザ情報に応じた言語の字幕を示すAR画像P9を取得する。または、受信機200は、それぞれ異なる言語の字幕を示す複数のAR画像P9を取得し、設定登録されているユーザ情報に応じて、それらの複数のAR画像P9から、重畳に使用されるAR画像P9を選択してもよい。
言い換えれば、図254に示す例では、受信機200は、それぞれ画像を表示している複数のディスプレイを被写体として撮像することによって、撮像表示画像Pjおよび復号用画像を取得する。そして、受信機200は、対象領域を認識するときには、撮像表示画像Pjのうち、複数のディスプレイのうちの光IDを送信しているディスプレイである送信ディスプレイ(すなわち送信機100)が現れている領域を対象領域として認識する。次に、受信機200は、送信ディスプレイに表示されている画像に対応する第1の字幕をAR画像としてその対象領域に重畳する。さらに、受信機200は、撮像表示画像Pjのうちの対象領域よりも大きい領域に、第1の字幕が拡大された字幕である第2の字幕を重畳する。
これにより、受信機200は、送信機100の映像に字幕が現実に存在するように、撮像表示画像Pjを表示することができる。さらに、受信機200は、撮像表示画像Pjの下部にも、大きな字幕を重畳するため、送信機100の映像に付されている字幕が小さくても、字幕を見やすくすることができる。なお、送信機100の映像に付される字幕がなく、撮像表示画像Pjの下部に大きな字幕だけが重畳される場合には、その重畳されている字幕が送信機100の映像に対する字幕か、テレビ114の映像に対する字幕かを判断することが困難である。しかし、本実施の形態では、光IDを送信する送信機100の映像に対しても字幕が付されるため、ユーザは、重畳されている字幕が何れの映像に対する字幕かを容易に判断することができる。
また、受信機200は、撮像表示画像Pjの表示では、さらに、サーバから取得される情報に、音声情報が含まれているか否かを判定してもよい。そして、受信機200は、音声情報が含まれていると判定したときには、第1および第2の字幕よりも、音声情報が示す音声を優先して出力する。これにより、音声が優先的に出力されるため、ユーザが字幕を読む負担を軽減することができる。
また、上述の例では、ユーザ情報(すなわちユーザの属性)に応じて字幕の言語を異ならせたが、送信機100に表示されている映像(すなわちコンテンツ)そのものを異ならせてもよい。例えば、送信機100に表示されている映像がニュースの映像である場合において、ユーザが日本人であることがユーザ情報に示されていれば、受信機200は、日本で放送されているニュース映像をAR画像として取得する。そして、受信機200は、そのニュース映像を、送信機100のディスプレイが映し出されている領域(すなわち対象領域)に重畳する。一方、ユーザが米国人であることがユーザ情報に示されていれば、受信機200は、米国で放送されているニュース映像をAR画像として取得する。そして、受信機200は、そのニュース映像を、送信機100のディスプレイが映し出されている領域(すなわち対象領域)に重畳する。これにより、ユーザに適した映像を表示することができる。なお、ユーザ情報には、ユーザの属性として、例えば、国籍または使用言語などが示され、受信機200はその属性に基づいて上述のAR画像を取得する。
図255は、本実施の形態における認識情報の一例を示す図である。
認識情報が例えば上述のような特徴点および特徴量などであっても、誤認識が生じる可能性がある。例えば、送信機100aおよび100bは、それぞれ送信機100と同様に駅名標として構成されている。これらの送信機100aおよび100bは、互に異なる駅名標であっても、互に近い位置にあれば、類似しているために誤認識される可能性がある。
そこで、送信機100aおよび100bのそれぞれの認識情報は、送信機100aまたは100bの画像全体の各特徴点および各特徴量を示すことなく、その画像のうちの特徴的な一部分のみの各特徴点および各特徴量を示してもよい。
例えば、送信機100aの部分a1と、送信機100bの部分b1とは互に大きく異なり、送信機100aの部分a2と、送信機100bの部分b2とは互に大きく異なる。そこで、サーバは、送信機100aおよび100bが予め定められた範囲内(すなわち近距離)に設置されていれば、送信機100aに対応する認識情報として、部分a1および部分a2のそれぞれの画像の特徴点および特徴量を保持する。同様に、サーバは、送信機100bに対応する識別情報として、部分b1および部分b2のそれぞれの画像の特徴点および特徴量を保持する。
これにより、受信機200は、互に類似する送信機100aおよび100bが互に近くにある場合(上述の予め定められた範囲内にある場合)であっても、それらの識別情報を用いて適切に対象領域を認識することができる。
図256は、本実施の形態における受信機200の処理動作の他の例を示すフローチャートである。
受信機200は、まず、受信機200に設定登録されているユーザ情報に基づいて、ユーザに視覚障害があるか否かを判定する(ステップS131)。ここで、受信機200は、視覚障害があると判定すると(ステップS131のY)、重畳して表示されるAR画像の文字を音声で出力する(ステップS132)。一方、受信機200は、視覚障害がないと判定すると(ステップS131のN)、さらに、ユーザ情報に基づいて、ユーザに聴覚障害があるか否かを判定する(ステップS133)。ここで、受信機200は、聴覚障害があると判定すると(ステップS133のY)、音声出力を停止する(ステップS134)。このとき、受信機200は、全ての機能による音声の出力を停止する。
なお、受信機200は、ステップS131において視覚障害があると判定したときに(ステップS131のY)、ステップS133の処理を行ってもよい。つまり、受信機200は、視覚障害があり、かつ、聴覚障害がないと判定したときに、重畳して表示されるAR画像の文字を音声で出力してもよい。
図257は、本実施の形態における受信機200が輝線パターン領域を識別する一例を示す図である。
受信機200は、まず、それぞれ光IDを送信する2つの送信機を撮像することによって復号用画像を取得し、その復号用画像に対する復号によって、図257の(e)に示すように、光IDを取得する。このとき、復号用画像には2つの輝線パターン領域XおよびYが含まれているため、受信機200は、輝線パターン領域Xに対応する送信機の光IDと、輝線パターン領域Yに対応する送信機の光IDとを取得する。輝線パターン領域Xに対応する送信機の光IDは、例えば、アドレス0~9のそれぞれに対応する数値(すなわちデータ)からなり、「5,2,8,4,3,6,1,9,4,3」を示す。輝線パターン領域Xに対応する送信機の光IDも同様に、例えば、アドレス0~9のそれぞれに対応する数値からなり、「5,2,7,7,1,5,3,2,7,4」を示す。
受信機200は、これらの光IDを一度取得しても、すなわちこれらの光IDが既知であっても、撮像しているときに、それぞれの光IDがどちらの輝線パターン領域から得られたのか分からない状況になることがある。このような場合、受信機200は、図257の(a)~(d)に示す処理を行うことによって、それぞれの既知の光IDがどちらの輝線パターン領域から得られたのかを容易に、かつ、迅速に判定することができる。
具体的には、受信機200は、まず、図257の(a)に示すように、復号用画像Pdec11を取得して、その復号用画像Pdec11に対する復号によって、輝線パターン領域XおよびYのそれぞれの光IDのアドレス0の数値を取得する。例えば、輝線パターン領域Xの光IDのアドレス0の数値は「5」であり、輝線パターン領域Yの光IDのアドレス0の数値も「5」である。それぞれの光IDのアドレス0の数値が「5」であるため、このときには、既知の光IDがどちらの輝線パターン領域から得られたのかを判定することができない。
そこで、受信機200は、図257の(b)に示すように、復号用画像Pdec12を取得して、その復号用画像Pdec12に対する復号によって、輝線パターン領域XおよびYのそれぞれの光IDのアドレス1の数値を取得する。例えば、輝線パターン領域Xの光IDのアドレス1の数値は「2」であり、輝線パターン領域Yの光IDのアドレス1の数値も「2」である。それぞれの光IDのアドレス1の数値が「2」であるため、このときにも、既知の光IDがどちらの輝線パターン領域から得られたのかを判定することができない。
そこで、さらに、受信機200は、図257の(c)に示すように、復号用画像Pdec13を取得して、その復号用画像Pdec13に対する復号によって、輝線パターン領域XおよびYのそれぞれの光IDのアドレス2の数値を取得する。例えば、輝線パターン領域Xの光IDのアドレス2の数値は「8」であり、輝線パターン領域Yの光IDのアドレス2の数値は「7」である。このときには、既知の光ID「5,2,8,4,3,6,1,9,4,3」が輝線パターン領域Xから得られたと判定することができ、既知の光ID「5,2,7,7,1,5,3,2,7,4」が輝線パターン領域Yから得られたと判定することができる。
しかし、受信機200は、信頼度を高めるために、さらに、図257の(d)に示すように、それぞれの光IDのアドレス3の数値を取得してもよい。つまり、受信機200は、復号用画像Pdec14を取得して、その復号用画像Pdec14に対する復号によって、輝線パターン領域XおよびYのそれぞれの光IDのアドレス3の数値を取得する。例えば、輝線パターン領域Xの光IDのアドレス3の数値は「4」であり、輝線パターン領域Yの光IDのアドレス3の数値は「7」である。このときには、既知の光ID「5,2,8,4,3,6,1,9,4,3」が輝線パターン領域Xから得られたと判定することができ、既知の光ID「5,2,7,7,1,5,3,2,7,4」が輝線パターン領域Yから得られたと判定することができる。つまり、アドレス2だけでなくアドレス3によっても、輝線パターン領域XおよびYの光IDを識別することができるため、信頼度を高めることができる。
このように、本実施の形態では、光IDの全てのアドレスの数値(すなわちデータ)を改めて取得することなく、少なくとも1つのアドレスの数値を取得し直す。これによって、既知の光IDがどちらの輝線パターン領域から得られたのかを容易に、かつ、迅速に判定することができる。
なお、上述の図257の(c)および(d)に示す例では、所定のアドレスに対して取得された数値が、既知の光IDの数値と一致しているが、一致していなくてもよい。例えば、図257の(d)に示す例において、受信機200は、輝線パターン領域Yの光IDのアドレス3の数値として「6」を取得する。このアドレス3の数値「6」は、既知の光ID「5,2,7,7,1,5,3,2,7,4」のアドレス3の数値「7」とは異なる。しかし、数値「6」は数値「7」に近い数値であるため、受信機200は、既知の光ID「5,2,7,7,1,5,3,2,7,4」が輝線パターン領域Yから得られたと判定してもよい。なお、受信機は、数値「6」が数値「7」±n(nは例えば1以上の数)の範囲内にあるか否かによって、数値「6」が数値「7」に近い数値であるか否かを判定してもよい。
図258は、本実施の形態における受信機200の他の例を示す図である。
受信機200は、上述の例ではスマートフォンとして構成されているが、図19~図21に示す例と同様に、イメージセンサを備えたヘッドマウントディスプレイ(グラスともいう)として構成されていてもよい。
このような受信機200は、上述のようなAR画像の表示のための処理回路(以下、AR処理回路という)を常に起動しておくと消費電力が多くなるため、予め定められた信号を検出したときに、そのAR処理回路を起動してもよい。
例えば、受信機200は、タッチセンサ202を備えている。タッチセンサ202は、ユーザの指などに触れると、タッチ信号を出力する。受信機200は、そのタッチ信号を検出したときに、AR処理回路を起動する。
または、受信機200は、Bluetooth(登録商標)またはWi-Fi(登録商標)などの電波信号を検出したときに、AR処理回路を起動してもよい。
または、受信機200は、加速度センサを備え、その加速度センサによって重力の向きと反対の向きへの閾値以上の加速度が計測されたときに、AR処理回路を起動してもよい。つまり、受信機200は、上記加速度を示す信号を検出したときに、AR処理回路を起動する。例えば、ユーザが、グラスとして構成されている受信機200の鼻あて部分を下から指先で上向きに突きあげると、受信機200は上記加速度を示す信号を検出して、AR処理回路を起動する。
または、受信機200は、GPSおよび9軸センサなどによって、イメージセンサが送信機100に向けられたことを検知したときに、AR処理回路を起動してもよい。つまり、受信機200は、受信機200が所定の向きに向けられたことを示す信号を検出したときに、AR処理回路を起動する。この場合、送信機100が上述の日本語の駅名標などであれば、受信機200は、英語の駅名を示すAR画像をその駅名標に重畳して表示する。
図259は、本実施の形態における受信機200の処理動作の他の例を示すフローチャートである。
受信機200は、送信機100から光IDを取得すると(ステップS141)、その光IDに応じたモード指定情報を受信することによって、ノイズキャンセルのモードを切り替える(ステップS142)。そして、受信機200は、そのモードの切り替え処理を終了すべきか否かを判定し(ステップS143)、終了すべきでないと判定すると(ステップS143のN)ステップS141からの処理を繰り返し実行する。ノイズキャンセルのモードの切り替えは、例えば、飛行機内におけるエンジンなどの騒音を消去するモード(ON)と、その騒音の消去を行わないモード(OFF)である。具体的には、受信機200を携帯するユーザは、その受信機200に接続されるイヤホンを耳にあてて、その受信機200から出力される音楽などの音声を聞いている。このようなユーザが飛行機に搭乗すると、受信機200は光IDを取得する。その結果、受信機200は、ノイズキャンセルのモードをOFFからONに切り替える。これにより、ユーザは、機内であっても、エンジンの騒音などのノイズが含まれない音声を聞くことができる。また、ユーザが飛行機から出るときにも、受信機200は光IDを取得する。この光IDを取得した受信機200は、ノイズキャンセルのモードをONからOFFに切り替える。なお、ノイズキャンセルの対象となるノイズは、エンジンの騒音だけでなく、人の声など、どのような音であってもよい。
図260は、本実施の形態における複数の送信機を含む送信システムの一例を示す図である。
この送信システムは、予め定められた順に配列された複数の送信機120を備えている。これらの送信機120は、送信機100と同様、上記実施の形態1~22のうちの何れかの実施の形態における送信機であって、1つまたは複数の発光素子(例えばLED)を備える。先頭の送信機120は、予め定められた周波数(キャリア周波数)にしたがって1つまたは複数の発光素子の輝度を変化させることによって、光IDを送信する。さらに、先頭の送信機120は、その輝度の変化を示す信号を同期信号として後続の送信機120に出力する。後続の送信機120は、その同期信号を受けると、その同期信号にしたがって1つまたは複数の発光素子の輝度を変化させることによって、光IDを送信する。さらに、後続の送信機120は、その輝度の変化を示す信号を同期信号として次の後続の送信機120に出力する。これにより、送信システムに含まれる全ての送信機120は、同期して光IDを送信する。
ここで、同期信号は、先頭の送信機120から後続の送信機120に受け渡され、後続の送信機120からさらに次の後続の送信機120に受け渡されて、最後の送信機120にまで届く。同期信号の受け渡しには例えば約1μ秒かかる。したがって、送信システムに、N(Nは2以上の整数)台の送信機120が備えられていれば、同期信号が先頭の送信機120から最後の送信機120に届くまで1×Nμ秒かかることになる。その結果、光IDの送信のタイミングが最大Nμ秒ずれることになる。例えば、N台の送信機120が9.6kHzの周波数にしたがって光IDを送信し、受信機200が9.6kHzの周波数で光IDを受信しようとしても、受信機200は、Nμ秒ずれた光IDを受信するため、その光IDを正しく受信することができない場合がある。
そこで、本実施の形態では、先頭の送信機120は、送信システムに含まれる送信機120の台数に応じて速めに光IDを送信する。例えば、先頭の送信機120は、9.605kHzの周波数にしたがって光IDを送信する。一方、受信機200は、9.6kHzの周波数で光IDを受信する。このとき、受信機200はNμ秒ずれた光IDを受信しても、先頭の送信機120の周波数が受信機200の周波数よりも0.005kHzだけ高いため、その光IDのずれによる受信エラーの発生を抑えることができる。
また、先頭の送信機120は、最後の送信機120から同期信号をフィードバックしてもらうことによって、周波数の調整量を制御してもよい。例えば、先頭の送信機120は、自ら同期信号を出力してから、最後の送信機120からフィードバックされた同期信号を受け取るまでの時間を計測する。そして、先頭の送信機120は、その時間が長いほど、基準の周波数(例えば、9.6kHz)よりも高い周波数にしたがって光IDを送信する。
図261は、本実施の形態における複数の送信機および受信機を含む送信システムの一例を示す図である。
この送信システムは、例えば2つの送信機120と受信機200とを備えている。2つの送信機120のうちの一方の送信機120は、9.599kHzの周波数にしたがって光IDを送信する。他方の送信機120は、9.601kHzの周波数にしたがって光IDを送信する。このような場合、2つの送信機120はそれぞれ、自らの光IDの周波数を電波信号で受信機200に通知する。
受信機200は、それらの周波数の通知を受けると、通知された周波数のそれぞれにしたがった復号を試みる。つまり、受信機200は、9.599kHzの周波数にしたがって、復号用画像に対する復号を試み、これにより光IDが受信できなければ、9.601kHzの周波数にしたがって、復号用画像に対する復号を試みる。このように、受信機200は、通知された全ての周波数のそれぞれにしたがって、復号用画像に対する復号を試みる。言い換えれば、受信機200は、通知されたそれぞれの周波数に対して総当たりを行う。または、受信機200は、通知された全ての周波数の平均周波数にしたがった復号を試みてもよい。つまり、受信機200は、9.599kHzと9.601kHzとの平均周波数である9.6kHzにしたがった復号を試みる。
これにより、受信機200と送信機120とのそれぞれの周波数の違いによる受信エラーの発生率を低下させることができる。
図262Aは、本実施の形態における受信機200の処理動作の一例を示すフローチャートである。
受信機200は、まず、撮像を開始して(ステップS151)、パラメータNを1に初期化する(ステップS152)。次に、受信機200は、その撮像によって得られた復号用画像を、パラメータNに対応する周波数にしたがって復号し、その復号結果に対する評価値を算出する(ステップS153)。例えば、パラメータN=1、2、3、4、5のそれぞれには、9.6kHz、9.601kHz、9.599kHz、9.602kHzなどの周波数が予め対応付けられている。評価値は、復号結果が正しい光IDに類似しているほど高い数値を示す。
次に、受信機200は、パラメータNの数値が、予め定められた1以上の整数であるNmaxに等しいか否かを判定する(ステップS154)。ここで、受信機200は、Nmaxに等しくないと判定すると(ステップS154のN)、パラメータNをインクリメントして(ステップS155)、ステップS153からの処理を繰り返し実行する。一方、受信機200は、Nmaxに等しいと判定すると(ステップS154のY)、最大の評価値が算出された周波数を最適周波数として、受信機200の場所を示す場所情報に対応付けてサーバに登録する。このように登録される最適周波数および場所情報は、登録後、その場所情報に示される場所に移動してきた受信機200による光IDの受信のために用いられる。また、場所情報は、例えばGPSによって計測される位置を示す情報であってもよく、無線LAN(Local Area Network)におけるアクセスポイントの識別情報(例えば、SSID:Service Set Identifier)であってもよい。
また、サーバへの登録を行った受信機200は、その最適周波数による復号によって得られた光IDにしたがって、例えば上述のようなAR画像の表示を行う。
図262Bは、本実施の形態における受信機200の処理動作の一例を示すフローチャートである。
図262Aに示すサーバへの登録が行われた後、受信機200は、自らが存在する場所を示す場所情報をサーバに送信する(ステップS161)。次に、受信機200は、その場所情報に対応付けて登録されている最適周波数をそのサーバから取得する(ステップS162)。
次に、受信機200は、撮像を開始し(ステップS163)、その撮像によって得られた復号用画像を、ステップS162で取得した最適周波数にしたがって復号する(ステップS164)。受信機200は、この復号によって得られた光IDにしたがって、例えば上述のようなAR画像の表示を行う。
このように、サーバへの登録が行われた後では、受信機200は、図262Aに示す処理を実行することなく、最適周波数を取得して光IDを受信することができる。なお、受信機200は、ステップS162において最適周波数を取得することができなかったときに、図262Aに示す処理を実行することによって最適周波数を取得してもよい。
[実施の形態23のまとめ]
図263Aは、本実施の形態における表示方法を示すフローチャートである。
本実施の形態における表示方法は、上述の受信機200である表示装置が画像を表示する表示方法であって、ステップSL11~SL16を含む。
ステップSL11では、イメージセンサが被写体を撮像することによって撮像表示画像および復号用画像を取得する。ステップSL12では、その復号用画像に対する復号によって光IDを取得する。ステップSL13では、その光IDをサーバに送信する。ステップSL14では、その光IDに対応するAR画像と認識情報とをサーバから取得する。ステップSL15では、撮像表示画像のうち、認識情報に応じた領域を対象領域として認識する。ステップSL16では、対象領域にAR画像が重畳された撮像表示画像を表示する。
これにより、AR画像が撮像表示画像に重畳されて表示されるため、ユーザに有益な画像を表示することができる。さらに、処理負荷を抑えて適切な対象領域にAR画像を重畳することができる。
つまり、一般的な拡張現実(すなわちAR)では、予め保存されている膨大な数の認識対象画像と、撮像表示画像とを比較することによって、その撮像表示画像に何れかの認識対象画像が含まれているか否かが判定される。そして、認識対象画像が含まれていると判定されれば、その認識対象画像に対応するAR画像が撮像表示画像に重畳される。このとき、認識対象画像を基準にAR画像の位置合わせが行われる。このように、一般的な拡張現実では、膨大な数の認識対象画像と撮像表示画像とを比較するため、さらに、位置合わせにおいても撮像表示画像における認識対象画像の位置検出が必要となるため、計算量が多く、処理負荷が高いという問題がある。
しかし、本実施の形態にける表示方法では、図235~図262Bにも示すように、被写体の撮像によって得られる復号用画像を復号することによって光IDが取得される。つまり、被写体である送信機から送信された光IDが受信される。さらに、この光IDに対応するAR画像と認識情報とがサーバから取得される。したがって、サーバでは、膨大な数の認識対象画像と撮像表示画像とを比較する必要がなく、光IDに予め対応付けられているAR画像を選択して表示装置に送信することができる。これにより、計算量を減らして処理負荷を大幅に抑えることができる。
また、本実施の形態における表示方法では、この光IDに対応する認識情報がサーバから取得される。認識情報は、撮像表示画像においてAR画像が重畳される領域である対象領域を認識するための情報である。この認識情報は、例えば白い四角形が対象領域であることを示す情報であってもよい。この場合には、対象領域を簡単に認識することができ、処理負荷をさらに抑えることができる。つまり、認識情報の内容に応じて、処理負荷をさらに抑えることができる。また、サーバでは、光IDに応じてその認識情報の内容を任意に設定することができるため、処理負荷と認識精度とのバランスを適切に保つことができる。
ここで、認識情報は、撮像表示画像のうちの基準領域を特定するための基準情報であり、対象領域の認識では、その基準情報に基づいて撮像表示画像から基準領域を特定し、撮像表示画像のうち、その基準領域の位置により対象領域を認識してもよい。
または、認識情報は、撮像表示画像のうちの基準領域を特定するための基準情報と、その基準領域に対する対象領域の相対位置を示す対象情報とを含んでいてもよい。この場合、対象領域の認識では、基準情報に基づいて撮像表示画像から基準領域を特定し、撮像表示画像のうち、その基準領域の位置を基準として対象情報により示される相対位置にある領域を、対象領域として認識する。
これにより、図244および図245に示すように、撮像表示画像において認識される対象領域の位置の自由度を広げることができる。
また、基準情報は、撮像表示画像における基準領域の位置が、復号用画像における、イメージセンサが有する複数の露光ラインの露光によって現れる複数の輝線のパターンからなる輝線パターン領域の位置と同じであることを示してもよい。
これにより、図244および図245に示すように、撮像表示画像における輝線パターン領域に対応する領域を基準にして対象領域を認識することができる。
また、基準情報は、撮像表示画像における基準領域が、撮像表示画像のうちのディスプレイが映し出されている領域であることを示してもよい。
これにより、図235に示すように、例えば駅名標をディスプレイとすれば、そのディスプレイが映し出されている領域を基準にして対象領域を認識することができる。
また、撮像表示画像の表示では、上述のAR画像である第1のAR画像と異なる第2のAR画像の表示を抑制しながら、予め定められた表示期間だけ、第1のAR画像を表示してもよい。
これにより、図250に示すように、ユーザが一度表示された第1のAR画像を見ているときに、その第1のAR画像がそれとは異なる第2のAR画像にすぐに置き換わってしまうことを抑えることができる。
また、撮像表示画像の表示では、表示期間には、新たに取得される復号用画像に対する復号を禁止してもよい。
これにより、図250に示すように、新たに取得される復号用画像の復号は、第2のAR画像の表示が抑制されているときには無駄な処理であるため、その復号を禁止することによって、消費電力を抑えることができる。
また、撮像表示画像の表示では、さらに、表示期間において、表示装置の加速度を加速度センサによって計測し、計測された加速度が閾値以上か否かを判定してもよい。そして、閾値以上と判定したときには、第2のAR画像の表示の抑制を解除することによって、第1のAR画像の代わりに第2のAR画像を表示してもよい。
これにより、図250に示すように、閾値以上の表示装置の加速度が計測されたときに、第2のAR画像の表示の抑制が解除される。したがって、例えば、ユーザが他の被写体にイメージセンサを向けようと表示装置を大きく動かしたときには、第2のAR画像を直ぐに表示することができる。
また、撮像表示画像の表示では、さらに、表示装置に備えられたフェイスカメラによる撮像によって、表示装置にユーザの顔が近づいている否かを判定してもよい。そして、顔が近づいていると判定すると、第1のAR画像と異なる第2のAR画像の表示を抑制しながら、第1のAR画像を表示してもよい。または、撮像表示画像の表示では、さらに、加速度センサによって計測される表示装置の加速度によって、表示装置にユーザの顔が近づいている否かを判定してもよい。そして、顔が近づいていると判定すると、第1のAR画像と異なる第2のAR画像の表示を抑制しながら、第1のAR画像を表示してもよい。
これにより、図250に示すように、ユーザが第1のAR画像を見ようとして表示装置に顔を近づけているときに、その第1のAR画像がそれとは異なる第2のAR画像に置き換わってしまうことを抑えることができる。
また、図254に示すように、撮像表示画像および復号用画像の取得では、それぞれ画像を表示している複数のディスプレイを被写体として撮像することによって、その撮像表示画像および復号用画像を取得してもよい。このとき、対象領域の認識では、撮像表示画像のうち、複数のディスプレイのうちの光IDを送信しているディスプレイである送信ディスプレイが現れている領域を対象領域として認識する。また、撮像表示画像の表示では、送信ディスプレイに表示されている画像に対応する第1の字幕をAR画像として対象領域に重畳し、さらに、撮像表示画像のうちの対象領域よりも大きい領域に、第1の字幕が拡大された字幕である第2の字幕を重畳する。
これにより、送信ディスプレイの画像に第1の字幕が重畳されるため、その第1の字幕が複数のディスプレイのうちの何れのディスプレイの画像に対する字幕であるかを、ユーザに容易に把握させることができる。また、第1の字幕が拡大された字幕である第2の字幕も表示されるため、第1の字幕が小さくて読み難い場合であっても、第2の字幕の表示によって、字幕を読み易くすることができる。
また、撮像表示画像の表示では、さらに、上述のサーバから取得される情報に、音声情報が含まれているか否かを判定し、含まれていると判定したときには、第1および第2の字幕よりも、その音声情報が示す音声を優先して出力してもよい。
これにより、音声が優先的に出力されるため、ユーザが字幕を読む負担を軽減することができる。
図263Bは、本実施の形態における表示装置の構成を示すブロック図である。
本実施の形態における表示装置10は、画像を表示する表示装置であって、イメージセンサ11と、復号部12と、送信部13と、取得部14と、認識部15と、表示部16とを備える。なお、この表示装置10は、上述の受信機200に相当する。
イメージセンサ11は、被写体を撮像することによって撮像表示画像および復号用画像を取得する。復号部12は、その復号用画像に対する復号によって光IDを取得する。送信部13は、その光IDをサーバに送信する。取得部14は、光IDに対応するAR画像と認識情報とをサーバから取得する。認識部15は、撮像表示画像のうち、その認識情報に応じた領域を対象領域として認識する。表示部16は、その対象領域にAR画像が重畳された撮像表示画像を表示する。
これにより、AR画像が撮像表示画像に重畳されて表示されるため、ユーザに有益な画像を表示することができる。さらに、処理負荷を抑えて適切な対象領域にAR画像を重畳することができる。
なお、本実施の形態において、各構成要素は、専用のハードウェアで構成されるか、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPUまたはプロセッサなどのプログラム実行部が、ハードディスクまたは半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。ここで、本実施の形態の受信機200または表示装置10などを実現するソフトウェアは、図239、図246、図250、図256、図259、および図262A~図263Aに示すフローチャートに含まれる各ステップをコンピュータに実行させるプログラムである。
[実施の形態23の変形例1]
以下、実施の形態23の変形例1、つまり、光IDを用いたARを実現する表示方法の変形例1について説明する。
図264は、実施の形態23の変形例1における受信機がAR画像を表示する例を示す図である。
受信機200は、そのイメージセンサによる被写体の撮像によって、上述の通常撮影画像である撮像表示画像Pkと、上述の可視光通信画像または輝線画像である復号用画像とを取得する。
具体的には、受信機200のイメージセンサは、ロボットとして構成されている送信機100cと、送信機100cの隣にいる人物21を撮像する。送信機100cは、上記実施の形態1~22のうちの何れかの実施の形態における送信機であって、1つまたは複数の発光素子(例えばLED)131を備える。この送信機100cは、その1つまたは複数の発光素子131を点滅させることによって輝度変化し、その輝度変化によって光ID(光識別情報)を送信する。この光IDは、上述の可視光信号である。
受信機200は、送信機100cおよび人物21を通常露光時間で撮像することによって、それらが映し出された撮像表示画像Pkを取得する。さらに、受信機200は、その通常露光時間よりも短い通信用露光時間で送信機100cおよび人物21を撮像することによって、復号用画像を取得する。
受信機200は、その復号用画像に対する復号によって光IDを取得する。つまり、受信機200は、送信機100cから光IDを受信する。受信機200は、その光IDをサーバに送信する。そして、受信機200は、その光IDに対応するAR画像P10と認識情報とをサーバから取得する。受信機200は、撮像表示画像Pkのうち、その認識情報に応じた領域を対象領域として認識する。例えば、受信機200は、送信機100cであるロボットが映し出されている領域の右側にある領域を対象領域として認識する。具体的には、受信機200は、撮像表示画像Pkに映し出されている送信機100cの2つのマーカ132aおよび132bの間の距離を特定する。そして、受信機200は、その距離に応じた幅および高さを有する領域を対象領域として認識する。つまり、認識情報は、マーカ132aおよび132bの形状と、それらのマーカ132aおよび132bを基準とする対象領域の位置および大きさとを示している。
そして、受信機200は、その対象領域にAR画像P10を重畳し、AR画像P10が重畳された撮像表示画像Pkをディスプレイ201に表示する。例えば、受信機200は、送信機100cとは異なる他のロボットを示すAR画像P10を取得する。この場合、撮像表示画像Pkの対象領域にそのAR画像P10が重畳されるため、送信機100cの隣に他のロボットが現実に存在するように、撮像表示画像Pkを表示することができる。その結果、人物21は、他のロボットが実在していなくても、送信機100cと共に他のロボットと一緒に写真に写ることができる。
図265は、実施の形態23の変形例1における受信機200がAR画像を表示する他の例を示す図である。
送信機100は、例えば図265に示すように、表示パネルを有する画像表示装置として構成され、その表示パネルに静止画像PSを表示しながら輝度変化することによって、光IDを送信している。なお、表示パネルは、例えば液晶ディスプレイまたは有機EL(electroluminescence)ディスプレイである。
受信機200は、送信機100を撮像することによって、上述と同様に、撮像表示画像Pmと復号用画像とを取得する。受信機200は、その復号用画像に対する復号によって光IDを取得する。つまり、受信機200は、送信機100から光IDを受信する。受信機200は、その光IDをサーバに送信する。そして、受信機200は、その光IDに対応するAR画像P11と認識情報とをサーバから取得する。受信機200は、撮像表示画像Pmのうち、その認識情報に応じた領域を対象領域として認識する。例えば、受信機200は、送信機100における表示パネルが映し出されている領域を対象領域として認識する。そして、受信機200は、その対象領域にAR画像P11を重畳し、AR画像P11が重畳された撮像表示画像Pmをディスプレイ201に表示する。例えば、AR画像P11は、送信機100の表示パネルに表示されている静止画像PSと同一または実質的に同一のピクチャを表示順で先頭のピクチャとして有する動画像である。つまり、AR画像P11は、静止画像PSから動きだす動画像である。
この場合、撮像表示画像Pmの対象領域にそのAR画像P11が重畳されるため、受信機200は、動画像を表示する画像表示装置が現実に存在するように、撮像表示画像Pmを表示することができる。
図266は、実施の形態23の変形例1における受信機200がAR画像を表示する他の例を示す図である。
送信機100は、例えば図266に示すように駅名標として構成され、輝度変化することによって、光IDを送信している。
受信機200は、図266の(a)に示すように、送信機100から離れた位置から送信機100を撮像する。これにより、受信機200は、上述と同様に、撮像表示画像Pnと復号用画像とを取得する。受信機200は、その復号用画像に対する復号によって光IDを取得する。つまり、受信機200は、送信機100から光IDを受信する。受信機200は、その光IDをサーバに送信する。そして、受信機200は、その光IDに対応するAR画像P12~P14と認識情報とをサーバから取得する。受信機200は、撮像表示画像Pnのうち、その認識情報に応じた2つの領域を第1および第2の対象領域として認識する。例えば、受信機200は、送信機100の周囲の領域を第1の対象領域として認識する。そして、受信機200は、その第1の対象領域にAR画像P12を重畳し、AR画像P12が重畳された撮像表示画像Pnをディスプレイ201に表示する。例えば、AR画像P12は、受信機200のユーザに対して送信機100への接近を促す矢印である。
この場合、撮像表示画像Pnの第1の対象領域にそのAR画像P12が重畳されて表示されるため、ユーザは、受信機200を送信機100に向けた状態で送信機100に近づく。このような受信機200の送信機100への接近によって、撮像表示画像Pnに映し出されている送信機100の領域(上述の基準領域に相当)は大きくなる。その領域の大きさが第1の閾値以上になると、受信機200は、例えば図266の(b)に示すように、さらに、送信機100が映し出されている領域である第2の対象領域にAR画像P13を重畳する。つまり、受信機200は、AR画像P12およびP13が重畳された撮像表示画像Pnをディスプレイ201に表示する。例えば、AR画像P13は、ユーザに対して、駅名標に示される駅周辺の概要を知らせるメッセージである。また、AR画像P13は、撮像表示画像Pnに映し出されている送信機100の領域の大きさと等しい。
また、この場合にも、撮像表示画像Pnの第1の対象領域に矢印であるAR画像P12が重畳されて表示されるため、ユーザは、受信機200を送信機100に向けた状態で送信機100に近づく。このような受信機200の送信機100への接近によって、撮像表示画像Pnに映し出されている送信機100の領域(上述の基準領域に相当)はさらに大きくなる。その領域の大きさが第2の閾値以上になると、受信機200は、例えば図266の(c)に示すように、第2の対象領域に重畳されているAR画像P13をAR画像P14に変更する。さらに、受信機200は、第1の対象領域に重畳されているAR画像P12を削除する。
つまり、受信機200は、AR画像P14が重畳された撮像表示画像Pnをディスプレイ201に表示する。例えば、AR画像P14は、ユーザに対して、駅名標に示される駅周辺の詳細を知らせるメッセージである。また、AR画像P14は、撮像表示画像Pnに映し出されている送信機100の領域の大きさと等しい。この送信機100の領域は、受信機200が送信機100に近いほど大きい。したがって、AR画像P14は、AR画像P13よりも大きい。
このように、受信機200は、送信機100に近づくほど、AR画像を大きくし、多くの情報を表示する。また、AR画像P12のようなユーザに接近を促す矢印が表示されるため、送信機100に近づくと多くの情報が表示されることをユーザに容易に把握させることができる。
図267は、実施の形態23の変形例1における受信機200がAR画像を表示する他の例を示す図である。
図266に示す例では、受信機200は、送信機100に近づくと多くの情報を表示させるが、送信機100との間の距離に関わらず、多くの情報を例えば吹き出しの形態で表示してもよい。
具体的には、受信機200は、図267に示すように、送信機100を撮像することにより、上述と同様に、撮像表示画像Poと復号用画像とを取得する。受信機200は、その復号用画像に対する復号によって光IDを取得する。つまり、受信機200は、送信機100から光IDを受信する。受信機200は、その光IDをサーバに送信する。そして、受信機200は、その光IDに対応するAR画像P15と認識情報とをサーバから取得する。受信機200は、撮像表示画像Poのうち、その認識情報に応じた領域を対象領域として認識する。例えば、受信機200は、送信機100の周囲の領域を対象領域として認識する。そして、受信機200は、その対象領域にAR画像P15を重畳し、AR画像P15が重畳された撮像表示画像Poをディスプレイ201に表示する。例えば、AR画像P15は、ユーザに対して、駅名標に示される駅周辺の詳細を吹き出しの形態で知らせるメッセージである。
この場合、撮像表示画像Poの対象領域にそのAR画像P15が重畳されるため、受信機200のユーザは送信機100に近づかなくても多くの情報を受信機200に表示させることができる。
図268は、実施の形態23の変形例1における受信機200の他の例を示す図である。
受信機200は、上述の例ではスマートフォンとして構成されているが、図19~図21および図258に示す例と同様に、イメージセンサを備えたヘッドマウントディスプレイ(グラスともいう)として構成されていてもよい。
このような受信機200は、復号用画像の一部の復号対象領域に対してのみ復号を行うことによって光IDを取得する。例えば、受信機200は、図268の(a)に示すように、視線検出カメラ203を備えている。視線検出カメラ203は、受信機200であるヘッドマウントディスプレイを装着しているユーザの眼を撮像する。受信機200は、この視線検出カメラ203による撮像によって得られた眼の画像に基づいて、そのユーザの視線を検出する。
受信機200は、図268の(b)に示すように、例えば、ユーザの視界のうち、検出された視線が向けられている領域に視線枠204が現れるように、その視線枠204を表示する。したがって、この視線枠204は、ユーザの視線の動きに応じて移動する。受信機200は、復号用画像のうち、その視線枠204内に相当する領域を復号対象領域として扱う。つまり、受信機200は、復号用画像のうち復号対象領域外に輝線パターン領域があっても、その輝線パターン領域に対する復号を行わず、復号対象領域内の輝線パターン領域に対してのみ復号を行う。これにより、復号用画像に複数の輝線パターン領域が有る場合でも、それらの全ての輝線パターン領域に対する復号を行わないため、処理負荷を軽減することができるとともに、余計なAR画像の表示を抑えることができる。
また、受信機200は、それぞれ音声を出力するための複数の輝線パターン領域が復号用画像に含まれている場合には、復号対象領域内の輝線パターン領域のみを復号して、その輝線パターン領域に対応する音声のみを出力してもよい。あるいは、受信機200は、復号用画像に含まれる複数の輝線パターン領域のそれぞれを復号し、復号対象領域内の輝線パターン領域に対応する音声を大きく出力し、復号対象領域外の輝線パターン領域に対応する音声を小さく出力してもよい。また、復号対象領域外に複数の輝線パターン領域がある場合には、受信機200は、復号対象領域に近い輝線パターン領域ほど、その輝線パターン領域に対応する音声を大きく出力してもよい。
図269は、実施の形態23の変形例1における受信機200がAR画像を表示する他の例を示す図である。
送信機100は、例えば図269に示すように、表示パネルを有する画像表示装置として構成され、その表示パネルに画像を表示しながら輝度変化することによって、光IDを送信している。
受信機200は、送信機100を撮像することによって、上述と同様に、撮像表示画像Ppと復号用画像とを取得する。
このとき、受信機200は、復号用画像における輝線パターン領域と同じ位置にあってその輝線パターン領域と同じ大きさの領域を、撮像表示画像Ppの中から特定する。そして、受信機200は、その領域の一端から他端に向けて繰り返し移動する走査線P100を表示してもよい。
この走査線P100が表示されている間、受信機200は、復号用画像に対する復号によって光IDを取得し、その光IDをサーバに送信する。そして、受信機200は、その光IDに対応するAR画像と認識情報とをサーバから取得する。受信機200は、撮像表示画像Ppのうち、その認識情報に応じた領域を対象領域として認識する。
このような対象領域を認識すると、受信機200は、走査線P100の表示を終了し、その対象領域にAR画像を重畳し、そのAR画像が重畳された撮像表示画像Ppをディスプレイ201に表示する。
これにより、送信機100の撮像が行われてからAR画像が表示されるまでの間、移動する走査線P100が表示されるため、光IDおよびAR画像の読み取りなどの処理が行われていることをユーザに対して知らせることができる。
図270は、実施の形態23の変形例1における受信機200がAR画像を表示する他の例を示す図である。
2つの送信機100はそれぞれ、例えば図270に示すように、表示パネルを有する画像表示装置として構成され、その表示パネルに同一の静止画像PSを表示しながら輝度変化することによって、光IDを送信している。ここで、2つの送信機100はそれぞれ、互いに異なる態様で輝度変化することによって、互いに異なる光ID(例えば光ID「01」および「02」)を送信している。
受信機200は、図265に示す例と同様に、2つの送信機100を撮像することによって、撮像表示画像Pqと復号用画像とを取得する。受信機200は、その復号用画像に対する復号によって光ID「01」および「02」を取得する。つまり、受信機200は、2つの送信機100のうちの一方から光ID「01」を受信し、他方から光ID「02」を受信する。受信機200は、それらの光IDをサーバに送信する。そして、受信機200は、その光ID「01」に対応するAR画像P16と認識情報とをサーバから取得する。さらに、受信機200は、光ID「02」に対応するAR画像P17と認識情報とをサーバから取得する。
受信機200は、撮像表示画像Pqのうち、それらの認識情報に応じた領域を対象領域として認識する。例えば、受信機200は、2つの送信機100のそれぞれの表示パネルが映し出されている領域を対象領域として認識する。そして、受信機200は、光ID「01」に対応する対象領域にAR画像P16を重畳し、光ID「02」に対応する対象領域にAR画像P17を重畳する。そして、受信機200は、AR画像P16およびP17が重畳された撮像表示画像Pqをディスプレイ201に表示する。例えば、AR画像P16は、光ID「01」に対応する送信機100の表示パネルに表示されている静止画像PSと同一または実質的に同一のピクチャを表示順で先頭のピクチャとして有する動画像である。また、AR画像P17は、光ID「02」に対応する送信機100の表示パネルに表示されている静止画像PSと同一または実質的に同一のピクチャを表示順で先頭のピクチャとして有する動画像である。つまり、それぞれ動画像であるAR画像P16およびAR画像P17の先頭のピクチャは同じである。しかし、AR画像P16およびAR画像P17は互いに異なる動画像であって、それぞれの先頭以外のピクチャは異なっている。
したがって、このようなAR画像P16およびAR画像P17が撮像表示画像Pqに重畳されるため、受信機200は、同じピクチャから再生される互いに異なる動画像を表示する画像表示装置が現実に存在するように、撮像表示画像Pqを表示することができる。
図271は、実施の形態23の変形例1における受信機200の処理動作の一例を示すフローチャートである。この図271のフローチャートによって示される処理動作は、具体的には、図265に示す送信機100が2つある場合に、それらの送信機100を個別に撮像する受信機200の処理動作の一例である。
まず、受信機200は、第1の送信機100を第1の被写体として撮像することによって第1の光IDを取得する(ステップS201)。次に、受信機200は、撮像表示画像の中から、その第1の被写体を認識する(ステップS202)。つまり、受信機200は、第1の光IDに対応する第1のAR画像および第1の認識情報をサーバから取得し、その第1の認識情報に基づいて第1の被写体を認識する。そして、受信機200は、その第1のAR画像である第1の動画像の再生を最初から開始する(ステップS203)。つまり、受信機200は、第1の動画像の先頭のピクチャから再生を開始する。
ここで、受信機200は、第1の被写体が撮像表示画像から外れたか否かを判定する(ステップS204)。つまり、受信機200は、撮像表示画像から第1の被写体を認識することができなくなったか否かを判定する。ここで、第1の被写体が撮像表示画像から外れたと判定すると(ステップS204のY)、受信機200は、第1のAR画像である第1の動画像の再生を中断する(ステップS205)。
次に、受信機200は、第1の送信機100とは異なる第2の送信機100を第2の被写体として撮像することによって、ステップS201で取得された第1の光IDとは異なる第2の光IDを取得したか否かを判定する(ステップS206)。ここで、受信機200は、第2の光IDを取得したと判定すると(ステップS206のY)、第1の光IDを取得したとき以降のステップS202~S203と同様の処理を行う。つまり、受信機200は、撮像表示画像の中から、第2の被写体を認識する(ステップS207)。そして、受信機200は、第2の光IDに対応する第2のAR画像である第2の動画像の再生を最初から開始する(ステップS208)。つまり、受信機200は、第2の動画像の先頭のピクチャから再生を開始する。
一方、受信機200は、ステップS206において、第2の光IDを取得していないと判定すると(ステップS206のN)、第1の被写体が再び撮像表示画像に入ったか否かを判定する(ステップS209)。つまり、受信機200は、撮像表示画像から第1の被写体を再び認識したか否かを判定する。ここで、受信機200は、第1の被写体が撮像表示画像に入ったと判定すると(ステップS209のY)、さらに、予め定められた時間(すなわち所定時間)が経過したか否かを判定する(ステップS210)。つまり、受信機200は、第1の被写体が撮像表示画像から外れてから再び入るまでにおいて、所定時間が経過したか否かを判定する。ここで、所定時間が経過していないと判定すると(ステップS210のY)、受信機200は、中断された第1の動画像の途中からの再生を開始する(ステップS211)。なお、この途中からの再生開始時に最初に表示される第1の動画像のピクチャである再生再開先頭ピクチャは、第1の動画像の再生が中断されたときの最後に表示されたピクチャの次の表示順のピクチャであってもよい。あるいは、再生再開先頭ピクチャは、最後に表示されたピクチャからn(nは1以上の整数)枚だけ表示順で前のピクチャであってもよい。
一方、所定時間が経過したと判定すると(ステップS210のN)、受信機200は、中断された第1の動画像の最初からの再生を開始する(ステップS212)。
また、上述の例では、受信機200は、撮像表示画像の対象領域にAR画像を重畳するが、このときに、AR画像の明るさを調整してもよい。つまり、受信機200は、サーバから取得したAR画像の明るさが、撮像表示画像の対象領域の明るさと一致するか否かを判定する。そして、受信機200は、一致しないと判定すると、AR画像の明るさを調整することによって、そのAR画像の明るさを対象領域の明るさに一致させる。そして、受信機200は、明るさが調整されたAR画像を撮像表示画像の対象領域に重畳する。これにより、重畳されるAR画像を、より実在するオブジェクトの画像に近づけることができ、ユーザのAR画像に対する違和感を抑えることができる。なお、AR画像の明るさは、そのAR画像の空間的な平均の明るさであり、対象領域の明るさも、その対象領域の空間的な平均の明るさである。
また、受信機200は、図247に示すように、AR画像をタップすると、そのAR画像を拡大してディスプレイ201の全体に表示してもよい。また、図247に示す例では、受信機200は、AR画像がタップされるそのAR画像を他のAR画像に切り替えるが、タップに関わらずに、自動的にAR画像を切り替えてもよい。例えば、受信機200は、AR画像が表示されている時間があらかじめ定められた時間だけ経過すると、そのAR画像を他のAR画像に切り替えて表示する。また、受信機200は、現在時刻があらかじめ定められた時刻になると、それまで表示されていたAR画像を、他のAR画像に切り替えて表示する。これにより、ユーザは操作を行うことなく、簡単に新たなAR画像を見ることができる。
[実施の形態23の変形例2]
以下、実施の形態23の変形例2、つまり、光IDを用いたARを実現する表示方法の変形例2について説明する。
図272は、実施の形態23またはその変形例1における受信機200において想定されるAR画像を表示するときの課題の一例を示す図である。
例えば、実施の形態23またはその変形例1における受信機200は、時刻t1に、被写体を撮像する。なお、上述の被写体は、輝度変化によって光IDを送信するテレビなどの送信機、または、その送信機からの光によって照らされるポスター、案内板、もしくは看板などである。その結果、受信機200は、イメージセンサの有効画素領域によって得られる画像の全体(以下、全撮像画像という)を、ディスプレイ201に撮像表示画像として表示する。このとき、受信機200は、その撮像表示画像のうち、光IDに基づいて取得された認識情報に応じた領域を、AR画像が重畳される対象領域として認識する。対象領域は、例えばテレビなどの送信機の像またはポスターなどの像を示す領域である。そして、受信機200は、その撮像表示画像の対象領域にAR画像を重畳し、AR画像が重畳された撮像表示画像をディスプレイ201に表示する。なお、AR画像は、静止画または動画でもよく、1つ以上の文字または記号からなる文字列であってもよい。
ここで、受信機200のユーザは、AR画像を大きく表示させるために被写体に近づくと、時刻t2において、イメージセンサにおける対象領域に対応する領域(以下、認識領域という)が有効画素領域からはみ出す。なお、認識領域は、イメージセンサの有効画素領域中、撮像表示画像における対象領域の画像が投影される領域である。つまり、イメージセンサにおける有効画素領域と認識領域はそれぞれ、ディスプレイ201における撮像表示画像および対象領域に相当する。
認識領域が有効画素領域からはみ出すことによって、受信機200は、撮像表示画像から対象領域を認識することできず、AR画像を表示することができない状態となる。
そこで、本変形例における受信機200は、ディスプレイ201の全体に表示される撮像表示画像よりも画角の広い画像を全撮像画像として取得する。
図273は、実施の形態23の変形例2における受信機200がAR画像を表示する例を示す図である。
本変形例に係る受信機200の全撮像画像の画角、つまりイメージセンサの有効画素領域の画角は、ディスプレイ201の全体に表示される撮像表示画像の画角よりも広い。なお、イメージセンサにおいて、ディスプレイ201に表示される画像範囲に相当する領域を、以下、表示領域という。
例えば、受信機200は、時刻t1に、被写体を撮像する。その結果、受信機200は、イメージセンサの有効画素領域によって得られる全撮像画像のうち、有効画素領域よりも狭い表示領域によって得られる画像のみを、撮像表示画像としてディスプレイ201に表示する。このとき、受信機200は、上述と同様、その全撮像画像のうち、光IDに基づいて取得された認識情報に応じた領域を、AR画像が重畳される対象領域として認識する。そして、受信機200は、その撮像表示画像の対象領域にAR画像を重畳し、AR画像が重畳された撮像表示画像をディスプレイ201に表示する。
ここで、受信機200のユーザは、AR画像を大きく表示させるために被写体に近づくと、イメージセンサにおける認識領域が拡大する。そして、時刻t2において、その認識領域はイメージセンサにおける表示領域からはみ出す。つまり、ディスプレイ201に表示されている撮像表示画像から、対象領域の画像(例えば、ポスターの像など)がはみ出してしまう。しかし、イメージセンサにおける認識領域は、有効画素領域からははみ出していない。つまり、受信機200は、時刻t2においても、対象領域を含む全撮像画像を取得している。その結果、受信機200は、全撮像画像から対象領域を認識することでき、対象領域のうち撮像表示画像内にある一部の領域にのみ、その領域に対応するAR画像の一部を重畳してディスプレイ201に表示する。
これにより、ユーザがAR画像を大きく表示させるために被写体に近づき、対象領域が撮像表示画像からはみ出しても、AR画像の表示を継続することができる。
図274は、実施の形態23の変形例2における受信機200の処理動作の一例を示すフローチャートである。
受信機200は、イメージセンサが被写体を撮像することによって全撮像画像および復号用画像を取得する(ステップS301)。次に、受信機200は、その復号用画像に対する復号によって光IDを取得する(ステップS302)。次に、受信機200は、その光IDをサーバに送信する(ステップS303)。次に、受信機200は、その光IDに対応するAR画像と認識情報とをサーバから取得する(ステップS304)。次に、受信機200は、全撮像画像のうち、認識情報に応じた領域を対象領域として認識する(ステップS305)。
ここで、受信機200は、イメージセンサの有効画素領域中の、その対象領域の画像に対応する領域である認識領域が、表示領域からはみ出しているか否かを判定する(ステップS306)。ここで、はみ出していると判定すると(ステップS306のYes)、受信機200は、対象領域のうち、撮像表示画像内にある一部の領域にのみ、その領域に対応するAR画像の一部を表示する(ステップS307)。一方、受信機200は、はみ出していないと判定すると(ステップS306のNo)、受信機200は、撮像表示画像の対象領域にAR画像を重畳し、そのAR画像が重畳された撮像表示画像を表示する(ステップS308)。
そして、受信機200は、AR画像の表示処理を終了すべきか否かを判定し(ステップS309)、終了すべきでないと判定すると(ステップS309のNo)、ステップS305からの処理を繰り返し実行する。
図275は、実施の形態23の変形例2における受信機200がAR画像を表示する他の例を示す図である。
受信機200は、上述の表示領域に対する認識領域の大きさの比率によってAR画像の画面表示を切り替えてもよい。
イメージセンサの表示領域の水平方向の幅をw1、垂直方向の幅をh1とし、認識領域の水平方向の幅をw2、垂直方向の幅をh2とする場合、受信機は、比率(h2/h1)および(w2/w1)のうちの大きい方の比率を閾値と比較する。
例えば、受信機200は、図275の(画面表示1)のように、AR画像が対象領域に重畳された撮像表示画像を表示しているときには、その大きい方の比率を、第1の閾値(例えば、0.9)と比較する。そして、大きい方の比率が0.9以上になったときには、受信機200は、図275の(画面表示2)のように、ディスプレイ201の全体にAR画像を拡大して表示する。なお、認識領域が表示領域よりも大きくなったとき、さらに、有効画素領域よりも大きくなったときにも、受信機200は、ディスプレイ201の全体にAR画像を拡大して表示し続ける。
また、受信機200は、例えば、図275の(画面表示2)のように、ディスプレイ201の全体にAR画像を拡大して表示しているときには、その大きい方の比率を、第2の閾値(例えば、0.7)と比較する。第2の閾値は、第1の閾値よりも小さい。そして、大きい方の比率が0.7以下になったときには、受信機200は、図275の(画面表示1)のように、AR画像が対象領域に重畳された撮像表示画像を表示する。
図276は、実施の形態23の変形例2における受信機200の処理動作の他の例を示すフローチャートである。
受信機200は、まず、光ID処理を行う(ステップS301a)。この光ID処理は、図274に示すステップS301~S304を含む処理である。次に、受信機200は、撮像表示画像のうち、認識情報に応じた領域を対象領域として認識する(ステップS311)。そして、受信機200は、撮像表示画像の対象領域にAR画像を重畳し、そのAR画像が重畳された撮像表示画像を表示する(ステップS312)。
次に、受信機200は、認識領域の比率、すなわち比率(h2/h1)および(w2/w1)のうちの大きい方の比率が第1の閾値K(例えばK=0.9)以上であるか否かを判定する(ステップS313)。ここで、第1の閾値K以上でないと判定すると(ステップS313のNo)、受信機200は、ステップS311からの処理を繰り返し実行する。一方、第1の閾値K以上であると判定すると(ステップS313のYes)、受信機200は、AR画像をディスプレイ201の全体に拡大して表示する(ステップS314)。このとき、受信機200は、イメージセンサの電源をオンとオフとに周期的に切り換える。イメージセンサの電源を周期的にオフにすることによって、受信機200の省電力化を図ることができる。
次に、受信機200は、イメージセンサの電源が周期的にオンにされているときに、認識領域の比率が第2の閾値L(例えばL=0.7)以下であるか否かを判定する。ここで、第2の閾値L以下でないと判定すると(ステップS315のNo)、受信機200は、ステップS314からの処理を繰り返し実行する。一方、第2の閾値L以下であると判定すると(ステップS315のYes)、受信機200は、撮像表示画像の対象領域にAR画像を重畳し、そのAR画像が重畳された撮像表示画像を表示する(ステップS316)。
そして、受信機200は、AR画像の表示処理を終了すべきか否かを判定し(ステップS317)、終了すべきでないと判定すると(ステップS317のNo)、ステップS313からの処理を繰り返し実行する。
このように、第2の閾値Lを第1の閾値Kよりも小さい値にしておくことによって、受信機200の画面表示が(画面表示1)と(画面表示2)とで頻繁に切り替えられることを防ぎ、画面表示の状態を安定化させることができる。
なお、図275および図276に示す例では、表示領域と有効画素領域とは同一であってもよく、異なっていてもよい。また、その例では、表示領域に対する認識領域の大きさの比率を用いたが、表示領域と有効画素領域とが異なる場合には、表示領域の代わりに、有効画素領域に対する認識領域の大きさの比率を用いてもよい。
図277は、実施の形態23の変形例2における受信機200がAR画像を表示する他の例を示す図である。
図277に示す例では、図273に示す例と同様、受信機200のイメージセンサは、表示領域よりも広い有効画素領域を有する。
例えば、受信機200は、時刻t1に、被写体を撮像する。その結果、受信機200は、イメージセンサの有効画素領域によって得られる全撮像画像のうち、有効画素領域よりも狭い表示領域によって得られる画像のみを、撮像表示画像としてディスプレイ201に表示する。このとき、受信機200は、上述と同様、その全撮像画像のうち、光IDに基づいて取得された認識情報に応じた領域を、AR画像が重畳される対象領域として認識する。そして、受信機200は、その撮像表示画像の対象領域にAR画像を重畳し、AR画像が重畳された撮像表示画像をディスプレイ201に表示する。
ここで、ユーザは、受信機200(具体的にはイメージセンサ)の向きを変えると、イメージセンサにおける認識領域が、例えば図277中左上方向に移動し、時刻t2では、表示領域からはみ出す。つまり、ディスプレイ201に表示されている撮像表示画像から、対象領域の画像(例えば、ポスターの像など)がはみ出してしまう。しかし、イメージセンサにおける認識領域は、有効画素領域からははみ出していない。つまり、受信機200は、時刻t2においても、対象領域を含む全撮像画像を取得している。その結果、受信機200は、全撮像画像から対象領域を認識することでき、対象領域のうちの撮像表示画像内にある一部の領域にのみ、その領域に対応するAR画像の一部を重畳してディスプレイ201に表示する。さらに、受信機200は、イメージセンサにおける認識領域の動き、すなわち全撮像画像における対象領域の動きに応じて、表示されるAR画像の一部の大きさおよび位置を変更する。
また、上述のように認識領域が表示領域からはみ出したときには、受信機200は、有効画素領域の縁と、表示領域の縁との間の距離(以下、領域間距離という)に対応するピクセル数を閾値と比較する。
例えば、有効画素領域の上辺と、表示領域の上辺との間と距離と、有効画素領域の下辺と、表示領域の下辺との間と距離とのうち、短い方の距離(以下、第1の距離という)に対応するピクセル数をdhとする。また、有効画素領域の左辺と、表示領域の左辺との間と距離と、有効画素領域の右辺と、表示領域の右辺との間と距離とのうち、短い方の距離(以下、第2の距離という)に対応するピクセル数をdwとする。このとき、上述の領域間距離は、第1および第2の距離のうちの短い方の距離である。
つまり、受信機200は、ピクセル数dw、dhのうちの小さい方のピクセル数を、閾値Nと比較する。そして、受信機200は、例えば時刻t2において、その小さい方のピクセル数が閾値N以下になれば、そのイメージセンサにおける認識領域の位置に応じてAR画像の一部の大きさおよび位置を変更することなく固定する。すなわち、受信機200は、AR画像の画面表示を切り替える。例えば、受信機200は、表示されるAR画像の一部の大きさおよび位置を、その小さい方のピクセル数が閾値Nとなったときにディスプレイ201に表示されていたAR画像の一部の大きさおよび位置に固定する。
したがって、時刻t3において、認識領域がさらに移動し、有効画素領域からはみ出すことになっても、受信機200は、時刻t2と同様にAR画像の一部を表示し続ける。すなわち、受信機200は、ピクセル数dw、dhのうちの小さい方のピクセル数が閾値N以下であるかぎり、時刻t2のときと同様、大きさおよび位置が固定されたAR画像の一部を撮像表示画像に重畳して表示し続ける。
図277に示す例では、受信機200は、イメージセンサにおける認識領域の移動に応じて、表示されるAR画像の一部の大きさおよび位置を変更したが、AR画像全体の表示倍率および位置を変更してもよい。
図278は、実施の形態23の変形例2における受信機200がAR画像を表示する他の例を示す図である。具体的には、図278は、AR画像の表示倍率が変更される例を示す。
例えば、図277に示す例と同様、時刻t1の状態から、ユーザは、受信機200(具体的にはイメージセンサ)の向きを変えると、イメージセンサにおける認識領域が、例えば図278中左上方向に移動し、時刻t2では、表示領域からはみ出す。つまり、ディスプレイ201に表示されている撮像表示画像から、対象領域の画像(例えば、ポスターの像など)がはみ出してしまう。しかし、イメージセンサにおける認識領域は、有効画素領域からははみ出していない。つまり、受信機200は、時刻t2においても、対象領域を含む全撮像画像を取得している。その結果、受信機200は、全撮像画像から対象領域を認識することできる。
そこで、図278に示す例では、受信機200は、対象領域のうちの撮像表示画像内にある一部の領域のサイズに、AR画像全体のサイズが一致するように、そのAR画像の表示倍率を変更する。つまり、受信機200はAR画像を縮小する。そして、受信機200は、表示倍率が変更された(すなわち縮小された)AR画像をその領域に重畳してディスプレイ201に表示する。さらに、受信機200は、イメージセンサにおける認識領域の動き、すなわち全撮像画像における対象領域の動きに応じて、表示されるAR画像の表示倍率および位置を変更する。
また、上述のように認識領域が表示領域からはみ出したときには、受信機200は、ピクセル数dw、dhのうちの小さい方のピクセル数を、閾値Nと比較する。そして、受信機200は、例えば時刻t2において、その小さい方のピクセル数が閾値N以下になれば、そのイメージセンサにおける認識領域の位置に応じてAR画像の表示倍率および位置を変更することなく固定する。つまり、受信機200は、AR画像の画面表示を切り替える。例えば、受信機200は、表示されるAR画像の表示倍率および位置を、その小さい方のピクセル数が閾値Nとなったときにディスプレイ201に表示されていたAR画像の表示倍率および位置に固定する。
したがって、時刻t3において、認識領域がさらに移動し、有効画素領域からはみ出すことになっても、受信機200は、時刻t2と同様にAR画像を表示し続ける。すなわち、受信機200は、ピクセル数dw、dhのうちの小さい方のピクセル数が閾値N以下であるかぎり、時刻t2のときと同様、表示倍率および位置が固定されたAR画像を撮像表示画像に重畳して表示し続ける。
なお、上述の例では、ピクセル数dw、dhのうちの小さい方と閾値とを比較したが、その小さい方のピクセル数の比率と閾値とを比較してもよい。そのピクセル数dwの比率は、例えば、有効画素領域の水平方向のピクセル数w0に対するピクセル数dwの比率(dw/w0)である。同様に、ピクセル数dhの比率は、例えば、有効画素領域の垂直方向のピクセル数h0に対するピクセル数dhの比率(dh/h0)である。または、有効画素領域の水平方向または垂直方向のピクセル数の代わりに、表示領域の水平方向または垂直方向のピクセル数を用いて、ピクセル数dw、dhのそれぞれの比率を表してもよい。ピクセル数dw、dhの比率と比較される閾値は、例えば0.05である。
また、ピクセル数dw、dhのうちの小さい方の画角と閾値とを比較してもよい。有効画素領域の対角線のピクセル数がmであって、その対角線に対応する画角がθ(例えば55°)である場合、ピクセル数dwに対応する画角は、θ×dw/mであり、ピクセル数dhに対応する画角は、θ×dh/mである。
また、図277および図278に示す例では、受信機200は、有効画素領域と認識領域との間の領域間距離に基づいて、AR画像の画面表示を切り替えたが、表示領域と認識領域との関係に基づいて、AR画像の画面表示を切り替えてもよい。
図279は、実施の形態23の変形例2における受信機200がAR画像を表示する他の例を示す図である。具体的には、図279は、表示領域と認識領域との関係に基づいてAR画像の画面表示を切り替える例を示す。また、図279に示す例では、図273に示す例と同様、受信機200のイメージセンサは、表示領域よりも広い有効画素領域を有する。
例えば、受信機200は、時刻t1に、被写体を撮像する。その結果、受信機200は、イメージセンサの有効画素領域によって得られる全撮像画像のうち、有効画素領域よりも狭い表示領域によって得られる画像のみを、撮像表示画像としてディスプレイ201に表示する。このとき、受信機200は、上述と同様、その全撮像画像のうち、光IDに基づいて取得された認識情報に応じた領域を、AR画像が重畳される対象領域として認識する。そして、受信機200は、その撮像表示画像の対象領域にAR画像を重畳し、AR画像が重畳された撮像表示画像をディスプレイ201に表示する。
ここで、ユーザは、受信機200の向きを変えると、受信機200は、イメージセンサにおける認識領域の動きに応じて、表示されるAR画像の位置を変更させる。そして、例えば、イメージセンサにおける認識領域が、例えば図279中左上方向に移動し、時刻t2では、認識領域の縁の一部と表示領域の縁の一部とが一致する。つまり、ディスプレイ201に表示されている撮像表示画像の隅に、対象領域の画像(例えばポスターなどの像)が配置される。その結果、受信機200は、撮像表示画像の隅にある対象領域にAR画像を重畳してディスプレイ201に表示する。
そして、認識領域がさらに移動して表示領域からはみ出すときには、受信機200は、時刻t2で表示されていたAR画像の大きさおよび位置を変更することなく固定する。つまり、受信機200は、AR画像の画面表示を切り替える。
したがって、時刻t3において、認識領域がさらに移動し、有効画素領域からはみ出すことになっても、受信機200は、時刻t2と同様にAR画像を表示し続ける。すなわち、受信機200は、認識領域が表示領域からはみ出ているかぎり、受信機200は、時刻t2のときと同じサイズのAR画像を、撮像表示画像における時刻t2のときと同じ位置に重畳して表示し続ける。
このように、図279に示す例では、受信機200は、認識領域が表示領域からはみ出すか否かに応じてAR画像の画面表示を切り替える。また、受信機200は、表示領域を包含し、その表示領域よりも大きく有効画素領域よりも小さい判定領域を、表示領域の代わりに用いてもよい。この場合、受信機200は、認識領域が判定領域からはみ出すか否かに応じてAR画像の画面表示を切り替える。
以上、図273~図279を用いてAR画像の画面表示について説明したが、受信機200は、全撮像画像から対象領域を認識することができなくなったときに、その直前まで認識されていた対象領域の大きさのAR画像を撮像表示画像に重畳して表示してもよい。
図280は、実施の形態23の変形例2における受信機200がAR画像を表示する他の例を示す図である。
なお、図243に示す例では、受信機200は、送信機100によって照らされた案内板107を撮像することによって、上述と同様に、撮像表示画像Peと復号用画像とを取得する。受信機200は、その復号用画像に対する復号によって光IDを取得する。つまり、受信機200は、案内板107から光IDを受信する。しかし、案内板107の表面全体が、光を吸収するような色(例えば暗色)であれば、その表面は送信機100によって照らされても暗いため、受信機200は、光IDを正しく受信することができない場合がある。または、案内板107の表面全体が、復号用画像(すなわち輝線画像)のような縞模様であっても、受信機200は、光IDを正しく受信することができない場合がある。
そこで、図280に示すように、案内板107の近くに反射板109を配置しておいてもよい。これにより、受信機200は、送信機100から反射板109によって反射された光、つまり、送信機100から送信される可視光(具体的には光ID)を受けることができる。その結果、受信機200は、適切に光IDを受信してAR画像P5を表示することができる。
[実施の形態23の変形例1および2のまとめ]
図281Aは、本発明の一態様に係る表示方法を示すフローチャートである。
本発明の一態様に係る表示方法は、ステップS41~S43を含む。
ステップS41では、光の輝度変化により信号を送信する送信機によりライトアップされている対象物を被写体として撮像センサにより撮像することによって、撮像画像を取得する。ステップS42では、その撮像画像から信号を復号する。ステップS43では、復号された信号に対応する動画像をメモリから読み出し、撮像画像中のその被写体に対応する対象領域に、動画像を重畳させてディスプレイに表示する。ここで、ステップS43では、その動画像に含まれる複数の画像のうちの何れかの画像であって、その対象物を含む画像と、前記対象物を含む画像の表示時間で前後にある所定の数の複数の画像とのうちの、何れかの画像から、その動画像を表示する。例えば、その所定の数は、10フレームである。あるいは、対象物は、静止画であり、ステップS43では、静止画と同一の画像から、その動画像を表示する。なお、動画像の表示が開始される画像は、静止画と同一の画像に限らず、その静止画と同一の画像、すなわち対象物を含む画像から、表示順で所定のフレーム数だけ前後にある画像であってもよい。また、対象物は、静止画に限らず、人形などであってもよい。
なお、撮像センサおよび撮像画像は、例えば、実施の形態23におけるイメージセンサおよび全撮像画像である。また、ライトアップされる静止画は、画像表示装置の表示パネルに表示される静止画像であってもよく、送信機からの光によって照らされるポスター、案内板、もしくは看板などであってもよい。
また、このような表示方法は、さらに、信号をサーバに送信する送信ステップと、その信号に対応する動画像をサーバから受信する受信ステップとを含んでもよい。
これにより、例えば図265に示すように、静止画が動き出すように仮想現実的に動画像を表示することができ、ユーザに有益な画像を表示することができる。
また、静止画は、所定の色の外枠を有し、本発明の一態様に係る表示方法は、さらに、その所定の色により、撮像画像から対象領域を認識する認識ステップを含んでもよい。この場合、ステップS43では、認識された対象領域のサイズと同一となるように、動画像をリサイズし、撮像画像中の対象領域に、リサイズされた動画像を重畳させてディスプレイに表示してもよい。例えば、所定の色の外枠は、静止画を取り囲む白色または黒色の矩形枠であり、実施の形態23における認識情報によって示される。そして、実施の形態23におけるAR画像が動画像としてリサイズされて重畳される。
これにより、動画像が被写体として実在するように、より現実的にその動画像を表示することができる。
また、撮像センサの撮像領域のうち、その撮像領域よりも小さい領域である表示領域に投影される画像のみがディスプレイに表示される。この場合、ステップS43では、その撮像領域において被写体が投影されている投影領域が、表示領域よりも大きい場合には、投影領域のうち、表示領域を越えた部分によって得られる画像を、ディスプレイに表示しなくてもよい。ここで、例えば図273に示すように、撮像領域および投影領域は、イメージセンサの有効画素領域および認識領域である。
これにより、例えば図273に示すように、被写体である静止画に撮像センサが近づくことによって、投影領域(図273の認識領域)によって得られる画像の一部がディスプレイに表示されなくても、被写体である静止画の全体が撮像領域に投影されている場合がある。したがって、この場合には、被写体である静止画を適切に認識することができ、撮像画像中の被写体に対応する対象領域に、動画像を適切に重畳させることができる。
また、例えば、表示領域の水平方向および垂直方向のそれぞれの幅が、w1およびh1であり、投影領域の水平方向および垂直方向のそれぞれの幅が、w2およびh2である。この場合、ステップS43では、h2/h1またはw2/w1のいずれか大きい値が所定の値以上である場合には、動画像をディスプレイの全画面に表示し、h2/h1またはw2/w1のいずれか大きい値が所定の値よりも小さい場合には、撮像画像中の対象領域に動画像を重畳させてディスプレイに表示してもよい。
これにより、例えば図275に示すように、被写体である静止画に撮像センサが近づくと、動画像が全画面に表示されるため、ユーザは、撮像センサをさらに静止画に近づけて動画像を大きく表示させる必要がない。そのため、撮像センサを静止画に近づけすぎて、投影領域(図275の認識領域)が撮像領域(有効画素領域)からはみ出してしまうことによって、信号を復号することができなくなることを抑えることができる。
また、本発明の一態様に係る表示方法は、さらに、動画像をディスプレイの全画面に表示する場合には、撮像センサの動作をオフにする制御ステップを含んでいてもよい。
これにより、例えば図276のステップS314に示すように、撮像センサの動作をオフにすることによって、撮像センサの消費電力を抑えることができる。
また、ステップS43では、撮像センサが移動することにより、撮像画像から対象領域が認識できなくなった場合には、認識できなくなる直前に認識していた対象領域のサイズと同一のサイズで動画像を表示してもよい。なお、撮像画像から対象領域が認識できないとは、例えば、被写体である静止画に対応する対象領域の少なくとも一部が撮像画像に含まれていない状況である。このように、対象領域が認識できない場合には、例えば図279の時刻t3のときのように、直前に認識していた対象領域のサイズと同じサイズの動画像が表示される。したがって、撮像センサを移動させてしまったために、動画像の少なくとも一部が表示されなくなることを抑えることができる。
また、ステップS43では、撮像センサが移動することにより、対象領域のうちの一部のみが、撮像画像のうちのディスプレイに表示される領域に含まれる場合には、その対象領域の一部に対応する動画像の空間領域の一部を、対象領域の一部に重畳させてディスプレイに表示してもよい。なお、動画像の空間領域の一部とは、動画像を構成する各ピクチャのうちの一部である。
これにより、例えば図277の時刻t2のときのように、動画像(図277のAR画像)の空間領域の一部のみがディスプレイに表示される。その結果、撮像センサが被写体となる静止画に適切に向けられていないことをユーザに知らせることができる。
また、ステップS43では、撮像センサが移動することにより、撮像画像から対象領域が認識できなくなった場合には、認識できなくなる直前に表示されていた、対象領域の一部に対応する動画像の空間領域の一部を、継続して表示してもよい。
これにより、例えば図277の時刻t3のときのように、ユーザが、被写体となる静止画と異なる方向に撮像センサを向けたときにも、動画像(図277のAR画像)の空間領域の一部が継続して表示される。その結果、撮像センサをどのように向ければ動画像の全体が表示されるかを、ユーザに把握しやすくすることができる。
また、ステップS43では、撮像センサの撮像領域における水平方向および垂直方向のそれぞれの幅が、w0およびh0であり、撮像領域において被写体が投影されている投影領域と、その撮像領域との間の水平方向および垂直方向のそれぞれの距離が、dhおよびdwである場合、dw/w0またはdh/h0のいずれか小さい方の値が、所定値以下の場合に、対象領域が認識できないと判断してもよい。なお、投影領域は、例えば図277に示す認識領域である。または、ステップS43では、撮像センサの撮像領域において被写体が投影されている投影領域と、その撮像領域との間の水平方向および垂直方向のそれぞれの距離のうちの短い方に対応する画角が所定値以下の場合に、対象領域が認識できないと判断してもよい。
これにより、対象領域が認識できるか否かを適切に判断することができる。
図281Bは、本発明の一態様に係る表示装置の構成を示すブロック図である。
本発明の一態様に係る表示装置A10は、撮像センサA11と、復号部A12と、表示制御部A13とを備える。
撮像センサA11は、光の輝度変化により信号を送信する送信機によりライトアップされている静止画を被写体として撮像することによって、撮像画像を取得する。
復号部A12は、その撮像画像から信号を復号する復号部する。
表示制御部A13は、復号された信号に対応する動画像をメモリから読み出し、その撮像画像中の被写体に対応する対象領域に、その動画像を重畳させてディスプレイに表示する。ここで、表示制御部A13は、その動画像に含まれる複数の画像のうち、静止画と同一の画像である先頭画像から、その複数の画像を順に表示する。
これにより、上述の表示方法と同様の効果を奏することができる。
また、撮像センサA11は、複数のマイクロミラーと、フォトセンサとを有し、表示装置A10は、さらに、撮像センサを制御する撮像制御部を備えてもよい。この場合、撮像制御部は、撮像画像のうち、信号を含む領域を信号領域として特定し、複数のマイクロミラーのうち、特定した信号領域に対応するマイクロミラーの角度を制御する。そして、撮像制御部は、複数のマイクロミラーのうち、角度が制御されたマイクロミラーによる反射光のみを、上述のフォトセンサに受光させる。
これにより、例えば図232Aに示すように、光の輝度変化によって表される信号である可視光信号に高周波成分が含まれていても、その高周波成分を正しく復号することができる。
なお、上記各実施の形態および各変形例において、各構成要素は、専用のハードウェアで構成されるか、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPUまたはプロセッサなどのプログラム実行部が、ハードディスクまたは半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。例えばプログラムは、図271、図274、図276および図281Aのフローチャートによって示される表示方法をコンピュータに実行させる。
以上、一つまたは複数の態様に係る表示方法について、上記各実施の形態および各変形例に基づいて説明したが、本発明は、この実施の形態に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態および変形例における構成要素を組み合わせて構築される形態も、本発明の範囲内に含まれてもよい。
[実施の形態23の変形例3]
以下、実施の形態23の変形例3、つまり、光IDを用いたARを実現する表示方法の変形例3について説明する。
図282は、AR画像の拡大および移動の一例を示す図である。
受信機200は、図282の(a)に示すように、上記実施の形態23もしくはその変形例1または2と同様、撮像表示画像Ppreの対象領域にAR画像P21を重畳する。そして、受信機200は、そのAR画像P21が重畳された撮像表示画像Ppreをディスプレイ201に表示する。例えば、AR画像P21は動画像である。
ここで、受信機200は、図282の(b)に示すように、サイズ変更の指示を受け付けると、その指示に応じてAR画像P21のサイズを変更する。例えば、受信機200は、拡大の指示を受け付けると、その指示に応じてAR画像P21を拡大する。サイズ変更の指示は、ユーザによるAR画像P21に対する例えばピンチ操作、ダブルタップまたは長押しによって行われる。具体的には、受信機200は、ピンチアウトによって行われる拡大の指示を受け付けると、その指示に応じてAR画像P21を拡大する。逆に、受信機200は、ピンチインによって行われる縮小の指示を受け付けると、その指示に応じてAR画像P21を縮小する。
また、受信機200は、図282の(c)に示すように、位置変更の指示を受け付けると、その指示に応じてAR画像P21の位置を変更する。位置変更の指示は、ユーザによるAR画像に対する例えばスワイプなどによって行われる。具体的には、受信機200は、スワイプによって行われる位置変更の指示を受け付けると、その指示に応じてAR画像P21の位置を変更する。すなわち、AR画像P21が移動する。
これにより、動画像であるAR画像の拡大によって、そのAR画像をより見易くすることができるとともに、動画像であるAR画像の縮小または移動によって、AR画像に隠れている撮像表示画像Ppreの領域をユーザに表示することができる。
図283は、AR画像の拡大の一例を示す図である。
受信機200は、図283の(a)に示すように、上記実施の形態23もしくはその変形例1または2と同様、撮像表示画像Ppreの対象領域にAR画像P22を重畳する。そして、受信機200は、そのAR画像P22が重畳された撮像表示画像Ppreをディスプレイ201に表示する。例えば、AR画像P22は、文字列が記載されている静止画像である。
ここで、受信機200は、図283の(b)に示すように、サイズ変更の指示を受け付けると、その指示に応じてAR画像P22のサイズを変更する。例えば、受信機200は、拡大の指示を受け付けると、その指示に応じてAR画像P22を拡大する。サイズ変更の指示は、上述と同様、ユーザによるAR画像P22に対する例えばピンチ操作、ダブルタップまたは長押しによって行われる。具体的には、受信機200は、ピンチアウトによって行われる拡大の指示を受け付けると、その指示に応じてAR画像P22を拡大する。このAR画像P22の拡大によって、AR画像P22に記載されている文字列をユーザに対して読み易くすることができる。
また、受信機200は、図283の(c)に示すように、さらに、サイズ変更の指示を受け付けると、その指示に応じてAR画像P22のサイズを変更する。例えば、受信機200は、さらなる拡大の指示を受け付けると、その指示に応じてAR画像P22をさらに拡大する。このAR画像P22の拡大によって、AR画像P22に記載されている文字列をユーザに対してさらに読み易くすることができる。
なお、受信機200は、拡大の指示を受け付けたときに、その指示に応じたAR画像の拡大率が閾値以上になる場合には、高解像度のAR画像を取得してもよい。この場合、受信機200は、既に表示されている元のAR画像の代わりに、その高解像度のAR画像を上述の拡大率まで拡大して表示してもよい。例えば、受信機200は、640×480画素のAR画像の代わりに、1920×1080画素のAR画像を表示する。これにより、AR画像が現実に被写体として撮像されているように、そのAR画像を拡大することができるとともに、光学ズームでは得られない高解像度の画像を表示することができる。
図284は、受信機200によるAR画像の拡大および移動に関する処理動作の一例を示すフローチャートである。
まず、受信機200は、図239のフローチャートに示すステップS101と同様に、通常露光時間および通信用露光時間による撮像を開始する(ステップS401)。この撮像が開始されると、通常露光時間による撮像表示画像Ppreと、通信用露光時間による復号用画像(すなわち輝線画像)Pdecとがそれぞれ周期的に得られる。そして、受信機200は、その復号用画像Pdecを復号することによって光IDを取得する。
次に、受信機200は、図239のフローチャートに示すステップS102~S106の処理を含むAR画像重畳処理を行う(ステップS402)。このAR画像重畳処理が行われると、AR画像が撮像表示画像Ppreに重畳されて表示される。このとき、受信機200は、光ID取得レートを下げる(ステップS403)。光ID取得レートとは、ステップS401において開始される撮像によって得られる単位時間あたりの撮像画像の枚数のうちの、復号用画像(すなわち輝線画像)Pdecの枚数の割合である。例えば、光ID取得レートが下がることによって、単位時間あたりに得られる復号用画像Pdecの枚数は、単位時間あたりに得られる撮像表示画像Ppreの枚数よりも少なくなる。
次に、受信機200は、サイズ変更の指示を受け付けたか否かを判定する(ステップS404)。ここで、サイズ変更の指示を受け付けたと判定すると(ステップS404のYes)、受信機200は、さらに、そのサイズ変更の指示が拡大の指示か否かを判定する(ステップS405)。サイズ変更の指示が拡大の指示であると判定すると(ステップS405のYes)、受信機200は、さらに、AR画像の再取得が必要か否かを判定する(ステップS406)。例えば、受信機200は、拡大の指示に応じたAR画像の拡大率が閾値以上になると判断した場合に、AR画像の再取得が必要と判定する。ここで、受信機200は、再取得が必要と判定すると(ステップS406のYes)、高解像度のAR画像を例えばサーバから取得して、重畳して表示されているAR画像を、その高解像度のAR画像に置き換える(ステップS407)。
そして、受信機200は、受け付けられたサイズ変更の指示に応じて、AR画像のサイズを変更する(ステップS408)。つまり、ステップS407で高解像度のAR画像を取得した場合には、受信機200は、その高解像度のAR画像を拡大する。また、ステップS406で、AR画像の再取得が不要と判定された場合には(ステップS406のNo)、受信機200は、重畳されているAR画像を拡大する。また、ステップS405で、サイズ変更の指示が縮小の指示であると判定すると(ステップS405のNo)、受信機200は、受け付けられたサイズ変更の指示、すなわち縮小の指示に応じて、重畳して表示されているAR画像を縮小する。
一方、受信機200は、ステップS404で、サイズ変更の指示を受け付けていないと判定すると(ステップS404のNo)、位置変更の指示を受け付けたか否かを判定する(ステップS409)。ここで、位置変更の指示を受け付けたと判定すると(ステップS409のYes)、受信機200は、その位置変更の指示に応じて、重畳して表示されているAR画像の位置を変更する(ステップS410)。つまり、受信機200は、AR画像を移動させる。また、位置変更の指示を受け付けていないと判定すると(ステップS409のNo)、受信機200は、ステップS404からの処理を繰り返し実行する。
ステップS408でAR画像のサイズが変更されると、または、ステップS410でAR画像の位置が変更されると、受信機200は、ステップS401から周期的に取得されている光IDが、取得されなくなったか否かを判定する(ステップS411)。ここで、光IDが取得されなくなったと判定すると(ステップS411のYes)、受信機200は、AR画像の拡大および移動に関する処理動作を終了する。一方、現在も光IDが取得されていると判定すると(ステップS411のNo)、受信機200は、ステップS404からの処理を繰り返し実行する。
図285は、受信機200によるAR画像の重畳の一例を示す図である。
受信機200は、上述のように、撮像表示画像Ppre中の対象領域にAR画像P23を重畳する。ここで、図285に示すように、AR画像P23は、AR画像P23の各部位がAR画像P23の端に近いほどその部位における透過率が高くなるように構成されている。透過率は、重畳される画像が透けて表示される度合いである。例えば、AR画像の全体の透過率が100%とは、撮像表示画像の対象領域にAR画像が重畳されていても、ディスプレイ201にはそのAR画像が表示されずに対象領域のみが表示されることを意味する。逆に、AR画像の全体の透過率が0%とは、ディスプレイ201には撮像表示画像の対象領域は表示されず、その対象領域に重畳されているAR画像のみが表示されることを意味する。
例えば、AR画像P23が矩形状である場合、AR画像P23における各部位の透過率は、その部位が矩形の上端、下端、左端または右端に近いほど高い。より具体的には、それらの端における透過率は100%である。また、AR画像P23の中央部分には、AR画像P23よりも小さい透過率0%の矩形領域があり、その矩形領域には、例えば「Kyoto Station」と英語で記載されている。つまり、AR画像P23の周縁部では、透過率がグラデーションのように0%から100%まで段階的に変化している。
受信機200は、このようなAR画像P23を、図285に示すように、撮像表示画像Ppre中の対象領域に重畳する。このとき、受信機200は、AR画像P23のサイズを対象領域のサイズに合わせて、そのリサイズされたAR画像P23を対象領域に重畳する。例えば、対象領域には、AR画像P23の中央部にある矩形領域と同じ背景色の駅名標の像が現れている。なお、駅名標には日本語で「京都」と記載されている。
ここで、上述のように、AR画像P23の各部位の透過率は、その部位がAR画像P23の端に近いほど高い。したがって、対象領域にAR画像P23が重畳されると、AR画像P23の中央部分の矩形領域は表示されても、そのAR画像P23の端は表示されず、対象領域の端、すなわち、駅名標の像の端が表示される。
これにより、AR画像P23と対象領域とのずれを目立ち難くすることができる。つまり、AR画像P23が対象領域に重畳されても、受信機200の動きなどによって、AR画像P23と対象領域との間にずれが生じることがある。この場合、仮にAR画像P23の全体の透過率が0%であれば、AR画像P23の端と、対象領域の端とが表示され、そのずれが目立ってしまう。しかし、本変形例におけるAR画像P23では、端に近い部位ほどその部位の透過率が高いため、AR画像P23の端が表示され難くすることができ、その結果、AR画像P23と対象領域との間のずれを目立ち難くすることができる。さらに、AR画像P23の周縁部では、グラデーションのように透過率が変化しているため、AR画像P23が対象領域に重畳されていることを目立ち難くすることができる。
図286は、受信機200によるAR画像の重畳の一例を示す図である。
受信機200は、上述のように、撮像表示画像Ppre中の対象領域にAR画像P24を重畳する。ここで、図286に示すように、撮像される被写体は、例えば飲食店のメニューである。このメニューは白枠に囲われ、さらに、その白枠は黒枠に囲われている。つまり、被写体は、メニューと、そのメニューを囲う白枠と、その白枠を囲う黒枠とを含む。
受信機200は、撮像表示画像Ppreのうちの、白枠の像よりも大きく、黒枠の像よりも小さい領域を対象領域として認識する。そして、受信機200は、AR画像P24のサイズをその対象領域のサイズに合わせて、そのリサイズされたAR画像P24を対象領域に重畳する。
これにより、重畳されているAR画像P24が、受信機200の動きなどによって、対象領域からずれてしまった場合でも、そのAR画像P24を、黒枠に囲まれた状態で表示させ続けることができる。したがって、AR画像P24と対象領域との間のずれを目立ち難くすることができる。
なお、図286に示す例では、枠の色は黒または白であるが、これらの色に限定されず、どのような色であってもよい。
図287は、受信機200によるAR画像の重畳の一例を示す図である。
例えば、受信機200は、夜空にライトアップされた城が描かれたポスターを被写体として撮像する。例えば、このポスターは、バックライトとして構成された上述の送信機100によって照らされ、そのバックライトによって可視光信号(すなわち光ID)を送信している。受信機200は、その撮像によって、そのポスターである被写体の像を含む撮像表示画像Ppreと、その光IDに対応するAR画像P25とを取得する。ここで、AR画像P25は、上述の城が描かれている領域が抜き取られたポスターの像と同一の形状を有する。すなわち、AR画像P25における、ポスターの像の城に対応する領域は、マスキングされている。さらに、AR画像P25は、上述のAR画像P23と同様、AR画像P25の各部位がAR画像P25の端に近いほどその部位における透過率が高くなるように構成されている。また、AR画像P25において透過率が0%である中央部分には、夜空に打ち上げられる花火が動画として表示される。
受信機200は、このようなAR画像P25のサイズを、被写体の像である対象領域のサイズに合わせて、そのリサイズされたAR画像P25を対象領域に重畳する。その結果、ポスターに描かれている城は、AR画像ではなく、被写体の像として表示され、さらに、花火の動像がAR画像として表示される。
これにより、ポスターの中で現実に花火が打ち上げられているように撮像表示画像Ppreを表示することができる。また、AR画像P25の各部位の透過率は、その部位がAR画像P25の端に近いほど高い。したがって、対象領域にAR画像P25が重畳されると、AR画像P25の中央部分は表示されても、そのAR画像P25の端は表示されず、対象領域の端が表示される。その結果、AR画像P25と対象領域とのずれを目立ち難くすることができる。さらに、AR画像P25の周縁部では、グラデーションのように透過率が変化しているため、AR画像P25が対象領域に重畳されていることを目立ち難くすることができる。
図288は、受信機200によるAR画像の重畳の一例を示す図である。
例えば、受信機200は、テレビとして構成されている送信機100を被写体として撮像する。具体的には、この送信機100は、夜空にライトアップされた城をディスプレイに表示するとともに、可視光信号(すなわち光ID)を送信している。受信機200は、その撮像によって、送信機100が映し出された撮像表示画像Ppreと、その光IDに対応するAR画像P26とを取得する。ここで、受信機200は、まず、撮像表示画像Ppreをディスプレイ201に表示する。このとき、受信機200は、ディスプレイ201に、ユーザに消灯を促すメッセージmも表示する。具体的には、そのメッセージmは、例えば「部屋の照明をオフにして、部屋を暗くしてください」である。
このメッセージmの表示によって、ユーザが消灯し、送信機100が設置されている部屋が暗くなると、受信機200は、AR画像P26を撮像表示画像Ppreに重畳して表示する。ここで、AR画像P26は、撮像表示画像Ppreと同じサイズであって、そのAR画像P26における、撮像表示画像Ppreの城に対応する領域はくり抜かれている。つまり、AR画像P26における、撮像表示画像Ppreの城に対応する領域はマスキングされている。したがって、その領域から撮像表示画像Ppreの城をユーザに見せることができる。また、AR画像P26におけるその領域の周縁部では、上述と同様に、透過率がグラデーションのように0%から100%まで段階的に変化していてもよい。この場合には、撮像表示画像PpreとAR画像P26との間のずれを目立ち難くすることができる。
上述の例では、周縁部の透過率が高いAR画像を、撮像表示画像Ppreの対象領域に重畳することによって、AR画像と対象領域とのずれを目立ち難くしている。しかし、このようなAR画像の代わりに、撮像表示画像Ppreと同じサイズであって、全体が半透明(すなわち透過率が50%)のAR画像を撮像表示画像Ppreに重畳してもよい。この場合であっても、AR画像と対象領域とのずれを目立ち難くすることができる。また、撮像表示画像Ppreが全体的に明るい場合には、均一に透明度が低いAR画像を撮像表示画像Ppreに重畳し、逆に、撮像表示画像Ppreが全体的に暗い場合には、均一に透明度が高いAR画像を撮像表示画像Ppreに重畳してもよい。
なお、AR画像P25およびAR画像P26の花火などのオブジェクトは、CG(computer graphics)によって表現されてもよい。この場合には、マスキングを不要にすることができる。また、図288に示す例では、受信機200は、ユーザに消灯を促すメッセージmを表示するが、このような表示を行うことなく、自動的に消灯してもよい。例えば、受信機200は、Bluetooth(登録商標)、ZigBee、または特定小電力無線局等によって、テレビである送信機100が設定されている照明装置に対して消灯信号を出力する。これによって、自動的に照明装置の消灯が行われる。
図289Aは、受信機200による撮像によって得られる撮像表示画像Ppreの一例を示す図である。
例えば、送信機100は、スタジアムに設置されている大型ディスプレイとして構成されている。そして、送信機100は、例えばファーストフードおよびドリンクの注文が光IDで可能であることを示すメッセージを表示するとともに、可視光信号(すなわち光ID)を送信する。このようなメッセージが表示されると、ユーザは受信機200を送信機100に向けて撮像を行う。つまり、受信機200は、スタジアムに設置されている大型ディスプレイとして構成されている送信機100を被写体として撮像する。
受信機200は、その撮像によって撮像表示画像Ppreと復号用画像Pdecとを取得する。そして、受信機200は、その復号用画像Pdecを復号することによって光IDを取得し、その光IDと撮像表示画像Ppreとをサーバに送信する。
サーバは、光IDごとに、その光IDに対応付けられた設置情報の中から、受信機200から送信された光IDに対応付けられた、撮像された大型ディスプレイの設置情報を特定する。例えば、設置情報は、大型ディスプレイが設置されている位置および向きと、その大型ディスプレイの大きさとなどを示す。さらに、サーバは、その撮像表示画像Ppreに映し出されている大型ディスプレイの大きさおよび向きと、その設置情報とに基づいて、スタジアムにおいてその撮像表示画像Ppreの撮像が行われた座席の番号を特定する。そして、サーバは、その座席の番号を含むメニュー画面を受信機200に表示させる。
図289Bは、受信機200のディスプレイ201に表示されるメニュー画面の一例を示す図である。
メニュー画面m1は、例えば商品ごとに、その商品の注文数が入力される入力欄ma1と、サーバによって特定されたスタジアムの座席の番号が記載されている座席欄mb1と、注文ボタンmc1とを含む。ユーザは、受信機200を操作することによって、所望の商品に対応する入力欄ma1にその商品の注文数を入力し、注文ボタンmc1を選択する。これにより、注文が確定され、受信機200は、その入力結果に応じた注文内容をサーバに送信する。
サーバは、その注文内容を受信すると、その注文内容にしたがった注文数の商品を、上述のように特定された番号の座席に届けるようにスタジアムのスタッフに指示する。
図290は、受信機200とサーバとの処理動作の一例を示すフローチャートである。
受信機200は、まず、スタジアムの大型ディスプレイとして構成されている送信機100を撮像する(ステップS421)。受信機200は、その撮像によって得られる復号用画像Pdecを復号することによって、送信機100から送信される光IDを取得する(ステップS422)。受信機200は、ステップS422で取得された光IDと、ステップS421の撮像によって得られた撮像表示画像Ppreとをサーバに送信する(ステップS423)。
サーバは、その光IDおよび撮像表示画像Ppreを受信すると(ステップS424)、その光IDに基づいて、スタジアムに設置されている大型ディスプレイの設置情報を特定する(ステップS425)。例えば、サーバは、光IDごとに、その光IDに対応付けられた大型ディスプレイの設置情報を示すテーブルを保持し、受信機200から送信された光IDに対応付けられた設置情報をそのテーブルから検索することによって、その設置情報を特定する。
次に、サーバは、その特定された設置情報と、撮像表示画像Ppreに映っている大型ディスプレイの大きさおよび向きとに基づいて、スタジアムにおいて、その撮像表示画像Ppreの取得(すなわち撮像)が行われた座席の番号を特定する(ステップS426)。そして、サーバは、特定された座席の番号を含むメニュー画面m1のURL(Uniform Resource Locator)を受信機200に送信する(ステップS427)。
受信機200は、サーバから送信されたメニュー画面m1のURLを受信すると(ステップS428)、そのURLにアクセスし、メニュー画面m1を表示する(ステップS429)。ここで、ユーザは、受信機200を操作することによって、注文内容をメニュー画面m1に入力し、注文ボタンmc1を選択することによって、注文を確定する。これにより、受信機200は、注文内容をサーバに送信する(ステップS430)。
サーバは、その受信機200から送信された注文内容を受信すると、その注文内容にしたがった受注処理を行う(ステップS431)。このとき、サーバは、例えば、その注文内容に応じた注文数の商品を、ステップS426で特定された番号の座席に届けるようにスタジアムのスタッフに指示する。
このように、受信機200による撮像によって得られた撮像表示画像Ppreに基づいて、座席の番号が特定されるため、受信機200のユーザは、商品の注文の際に、わざわざ座席の番号を入力する必要がない。したがって、ユーザは、座席の番号の入力を省いて簡単に商品の注文を行うことができる。
なお、上述の例では、サーバが座席の番号を特定したが、受信機200が座席の番号を特定してもよい。この場合には、受信機200は、サーバから設置情報を取得して、その設置情報と、撮像表示画像Ppreに映っている大型ディスプレイの大きさおよび向きとに基づいて座席の番号を特定する。
図291は、受信機1800aによって再生される音声の音量を説明するための図である。
受信機1800aは、図123に示す例と同様に、例えば街頭デジタルサイネージとして構成される送信機1800bから送信された光ID(可視光信号)を受信する。そして、受信機1800aは、送信機1800bによる画像再生と同じタイミングで、音声を再生する。つまり、受信機1800aは、送信機1800bによって再生される画像と同期するように音声を再生する。なお、受信機1800aは、送信機1800bによって再生される画像(再生画像)と同一の画像、または、その再生画像に関連するAR画像(ARの動画像)を、音声とともに再生してもよい。
ここで、受信機1800aは、上述のように音声を再生するときには、送信機1800bまでの距離に応じてその音声の音量を調整する。具体的には、受信機1800aは、送信機1800bまでの距離が長いほど音量を小さく調整し、逆に、送信機1800bまでの距離が短いほど音量を大きく調整する。
受信機1800aは、送信機1800bまでの距離を、GPS(Global Positioning System)などを利用して特定してもよい。具体的には、受信機1800aは、光IDに対応付けられた送信機1800bの位置情報をサーバなどから取得し、さらに、GPSによって受信機1800aの位置を特定する。そして、受信機1800aは、サーバから取得された位置情報によって示される送信機1800bの位置と、特定された受信機1800aの位置との間の距離を、上述の送信機1800bまでの距離として特定する。なお、受信機1800aは、GPSの代わりにBluetooth(登録商標)などを利用して、送信機1800bまでの距離を特定してもよい。
また、受信機1800aは、撮像によって得られる上述の復号用画像Pdecの輝線パターン領域の大きさに基づいて、送信機1800bまでの距離を特定してもよい。輝線パターン領域は、図245および図246に示す例と同様、受信機1800aのイメージセンサが有する複数の露光ラインの通信用露光時間での露光によって現れる複数の輝線のパターンからなる領域である。この輝線パターン領域は、撮像表示画像Ppreに映し出されている送信機1800bのディスプレイの領域に相当する。具体的には、受信機1800aは、輝線パターン領域が大きいほど短い距離を送信機1800bまでの距離として特定し、逆に、輝線パターン領域が小さいほど長い距離を送信機1800bまでの距離として特定する。また、受信機1800aは、輝線パターン領域の大きさと距離との関係を示す距離データを用い、その距離データにおいて、撮像表示画像Ppre中の輝線パターン領域の大きさに対応付けられている距離を、送信機1800bまでの距離として特定してもよい。なお、受信機1800aは、上述のように受信された光IDをサーバに送信し、その光IDに対応付けられた距離データをそのサーバから取得してもよい。
このように、送信機1800bまでの距離に応じて音量が調整されるため、受信機1800aのユーザは、受信機1800aによって再生される音声を、現実に送信機1800bによって再生されている音声のように聞き取ることができる。
図292は、受信機1800aから送信機1800bまでの距離と音量との関係を示す図である。
例えば、送信機1800bまでの距離がL1~L2[m]の間では、音量は、Vmin~Vmax[dB]までの範囲において、その距離に比例して増加または減少する。具体的には、受信機1800aは、送信機1800bまでの距離がL1[m]からL2[m]まで長くなれば、音量をVmax[dB]からVmin[dB]まで直線的に減少させる。また、送信機1800bまでの距離がL1[m]よりも短くなっても、受信機1800aは、音量をVmax[dB]に維持し、送信機1800bまでの距離がL2[m]よりも長くなっても、音量をVmin[dB]に維持する。
このように、受信機1800aは、最大音量Vmaxと、その最大音量Vmaxの音声が出力される最長距離L1と、最小音量Vminと、その最小音量Vminの音声が出力される最短距離L2とを記憶している。また、受信機1800aは、自らに設定されている属性に応じて、その最大音量Vmax、最小音量Vmin、最長距離L1および最短距離L2を変更してもよい。例えば、属性がユーザの年齢であって、その年齢が高齢を示す場合には、受信機1800aは、最大音量Vmaxを基準最大音量よりも大きくし、最小音量Vminを基準最小音量よりも大きくしてもよい。また、属性は、音声の出力が、スピーカから行われるかイヤホンから行われるかを示す情報であってもよい。
このように、受信機1800aには最小音量Vminが設定されているため、受信機1800aが送信機1800bから遠すぎるために、音声が聞こえないことを抑えることができる。さらに、受信機1800aには最大音量Vmaxが設定されているため、受信機1800aが送信機1800bから近すぎるために、必要以上に大音量の音声が出力されてしまうことを抑えることができる。
図293は、受信機200によるAR画像の重畳の一例を示す図である。
受信機200は、ライトアップされた看板を撮像する。ここで、看板は、光IDを送信する上述の送信機100である照明装置によってライトアップされている。したがって、受信機200は、その撮像によって撮像表示画像Ppreと復号用画像Pdecとを取得する。そして、受信機200は、復号用画像Pdecを復号することによって光IDを取得し、その光IDに対応付けられた複数のAR画像P27a~P27cと認識情報とをサーバから取得する。受信機200は、認識情報に基づいて、撮像表示画像Ppreのうちの看板が映し出されている領域m2の周辺を対象領域として認識する。
具体的には、受信機200は、図293の(a)に示すように、領域m2の左側に接する領域を第1の対象領域として認識し、その第1の対象領域にAR画像P27aを重畳する。
次に、受信機200は、図293の(b)に示すように、領域m2の下側を含む領域を第2の対象領域として認識し、その第2の対象領域にAR画像P27bを重畳する。
次に、受信機200は、図293の(c)に示すように、領域m2の上側に接する領域を第3の対象領域として認識し、その第3の対象領域にAR画像P27cを重畳する。
ここで、AR画像P27a~P27cのそれぞれは、例えば雪男のキャラクターの画像であって、動画であってもよい。
また、受信機200は、光IDを継続して繰り返し取得している間、予め定められた順序およびタイミングで、認識される対象領域を第1~第3の対象領域のうちの何れかに切り替えてもよい。つまり、受信機200は、認識される対象領域を、第1の対象領域、第2の対象領域、第3の対象領域の順に切り替えてもよい。あるいは、受信機200は、上述の光IDを取得するごとに、予め定められた順序で、認識される対象領域を第1~第3の対象領域のうちの何れかに切り替えてもよい。つまり、受信機200は、最初に光IDを取得し、その光IDを継続して繰り返し取得している間には、図293の(a)に示すように、第1の対象領域を認識して、その第1の対象領域にAR画像P27aを重畳する。そして、受信機200は、その光IDを取得できなくなった場合には、AR画像P27aを非表示にする。次に、受信機200は、再び光IDを取得した場合には、その光IDを継続して繰り返し取得している間、図293の(b)に示すように、第2の対象領域を認識して、その第2の対象領域にAR画像P27bを重畳する。そして、受信機200は、再び、その光IDを取得できなくなった場合には、AR画像P27bを非表示にする。次に、受信機200は、再び光IDを取得した場合には、その光IDを継続して繰り返し取得している間、図293の(c)に示すように、第3の対象領域を認識して、その第3の対象領域にAR画像P27cを重畳する。
このように光IDを取得するごとに、認識される対象領域を切り替える場合には、受信機200は、N(Nは2以上の整数)回に1回の頻度で、表示されるAR画像の色を変更してもよい。N回は、AR画像が表示される回数であって、例えば200回であってもよい。つまり、AR画像P27a~P27cは、全て同じ白色のキャラクターの画像であるが、200回に1回の頻度で、例えばピンク色のキャラクターのAR画像が表示される。受信機200は、そのピンク色のキャラクターのAR画像が表示されているときに、ユーザによるそのAR画像に対する操作を受け付けると、そのユーザに対してポイントを付与してもよい。
このように、AR画像が重畳される対象領域を切り替えたり、AR画像の色を所定の頻度で変更することによって、送信機100によってライトアップされた看板の撮像にユーザの興味を向けることができ、ユーザに光IDを繰り返し取得させることができる。
図294は、受信機200によるAR画像の重畳の一例を示す図である。
受信機200は、例えば建物内における複数の通路が交差する位置の床面に描かれたマークM4を撮像することによって、ユーザの進むべき進路を提示する、いわゆるウェイファインダー(Way Finder)としての機能を有する。建物は、例えばホテルなどであって、提示される進路は、チェックインを行ったユーザが自らの部屋に向かう進路である。
マークM4は、輝度変化によって光IDを送信する上述の送信機100である照明装置によってライトアップされている。したがって、受信機200は、そのマークM4の撮像によって撮像表示画像Ppreと復号用画像Pdecとを取得する。そして、受信機200は、復号用画像Pdecを復号することによって光IDを取得し、その光IDと受信機200の端末情報とをサーバに送信する。受信機200は、その光IDおよび端末情報に対応付けられた複数のAR画像P28と認識情報とをサーバから取得する。なお、光IDおよび端末情報は、ユーザのチェックインのときに、複数のAR画像P28および認識情報に対応付けてサーバに格納されている。
受信機200は、認識情報に基づいて、撮像表示画像PpreのうちのマークM4が映し出されている領域m4の周辺において複数の対象領域を認識する。そして、受信機200は、図294に示すように、その複数の対象領域のそれぞれに、例えば動物の足跡のようなAR画像P28を重畳して表示する。
具体的には、認識情報は、マークM4の位置で右に曲がる進路を示す。受信機200は、このような認識情報に基づいて、撮像表示画像Ppreにおける経路を特定し、その経路に沿って配列される複数の対象領域を認識する。この経路は、ディスプレイ201の下側から領域m4に向かい、領域m4で右に曲がる経路である。受信機200は、あたかも動物がその経路に沿って歩いたかのように、認識された複数の対象領域のそれぞれにAR画像P28を配置する。
ここで、受信機200は、撮像表示画像Ppreにおける経路を特定する場合には、自らに備えられている9軸センサによって検出される地磁気を利用してもよい。この場合、認識情報は、マークM4の位置で進むべき方位を地磁気の向きを基準として示す。例えば、認識情報は、マークM4の位置で進むべき方向として西を示す。受信機200は、このような認識情報に基づいて、撮像表示画像Ppreにおいて、ディスプレイ201の下側から領域m4に向かい、領域m4で西に向かう経路を特定する。そして、受信機200は、その経路に沿って配列される複数の対象領域を認識する。なお、受信機200は、9軸センサによる重力加速度の検出によって、ディスプレイ201の下側を特定する。
このように、受信機200によってユーザの進路が提示されるため、ユーザはその進路にしたがって進めば、簡単に目的地に辿り着くことができる。また、その進路は、撮像表示画像PpreにおけるAR画像として表示されるため、ユーザに分かりやすくその進路を提示することができる。
なお、送信機100である照明装置は、短パルスの光でマークM4を照らすことによって、明るさを抑えながら光IDを適切に送信することができる。また、受信機200は、マークM4を撮像したが、ディスプレイ201側に配置されているカメラ(いわゆる自取りカメラ)を用いて、照明装置を撮像してもよい。また、受信機200は、マークM4および照明装置の両方を撮像してもよい。
図295は、受信機200によるラインスキャン時間の求め方の一例を説明するための図である。
受信機200は、復号用画像Pdecを復号する場合には、ラインスキャン時間を用いて復号を行う。このラインスキャン時間は、イメージセンサに含まれる1つの露光ラインの露光が開始されてから、次の露光ラインの露光が開始されるまでの時間である。受信機200は、このラインスキャン時間が判明していれば、その判明しているラインスキャン時間を用いて復号用画像Pdecを復号する。しかし、そのラインスキャン時間が判明していない場合には、受信機200は、ラインスキャン時間を復号用画像Pdecから求める。
例えば、受信機200は、図295に示すように、復号用画像Pdecにおいて輝線パターンを構成する複数の明線と複数の暗線の中から、最小幅の線を見つけ出す。なお、明線は、送信機100の輝度が高いときに、1つまたは複数の連続する露光ラインのそれぞれが露光することによって生じる復号用画像Pdec上の線である。また、暗線は、送信機100の輝度が低いときに、1つまたは複数の連続する露光ラインのそれぞれが露光することによって生じる復号用画像Pdec上の線である。
受信機200は、その最小幅の線を見つけると、その最小幅の線に対応する露光ラインのライン数、つまりピクセル数を特定する。送信機100が光IDを送信するために輝度変化するキャリア周波数が9.6kHzである場合、送信機100の輝度が高い時間または低い時間は、最短で104μsである。したがって、受信機200は、104μsを、特定された最小幅のピクセル数で除算することによって、ラインスキャン時間を算出する。
図296は、受信機200によるラインスキャン時間の求め方の一例を説明するための図である。
受信機200は、復号用画像Pdecの輝線パターンに対してフーリエ変換を行い、そのフーリエ変換によって得られる空間周波数に基づいてラインスキャン時間を求めてもよい。
例えば図296に示すように、受信機200は、上述のフーリエ変換によって、空間周波数と、復号用画像Pdecにおけるその空間周波数の成分の強度との関係を示すスペクトルを導出する。次に、受信機200は、そのスペクトルに示される複数のピークのそれぞれを順に選択する。そして、受信機200は、ピークを選択するごとに、その選択されたピークの空間周波数(例えば図296における空間周波数f2)が、9.6kHzの時間周波数によって得られるようなラインスキャン時間を、ラインキャン時間候補として算出する。9.6kHzは、上述のように送信機100の輝度変化のキャリア周波数である。これにより、複数のラインスキャン時間候補が算出される。受信機200は、これらの複数のラインスキャン時間候補のうちの最尤の候補を、ラインスキャン時間として選択する。
最尤の候補を選択するためには、受信機200は、撮像におけるフレームレートと、イメージセンサに含まれる露光ラインの数とに基づいて、ラインスキャン時間の許容範囲を算出する。つまり、受信機200は、1×10[μs]/{(フレームレート)×(露光ライン数)}によって、ラインスキャン時間の最大値を算出する。そして、受信機200は、その最大値×定数K(K<1)~最大値までを、ラインスキャン時間の許容範囲として決定する。定数Kは、例えば0.9または0.8などである。
受信機200は、複数のラインスキャン時間候補のうち、この許容範囲にある候補を最尤の候補、すなわちラインスキャン時間として選択する。
なお、受信機200は、図295に示す例によって算出されたラインスキャン時間が上述の許容範囲にあるか否かによって、その算出されたラインスキャン時間の信頼性を評価してもよい。
図297は、受信機200によるラインスキャン時間の求め方の一例を示すフローチャートである。
受信機200は、復号用画像Pdecの復号を試みることによって、ラインスキャン時間を求めてもよい。具体的には、まず、受信機200は、撮像を開始する(ステップS441)。次に、受信機200は、ラインスキャン時間が判明しているか否かを判定する(ステップS442)。例えば、受信機200は、自らの種類および型式をサーバに通知し、その種類および型式に応じたラインスキャン時間を問い合わせることによって、そのラインスキャン時間が判明しているか否かを判定してもよい。ここで、判明していると判定すると(ステップS442のYes)、受信機200は、光IDの基準取得回数をn(nは2以上の整数であって、例えば4)に設定する(ステップS443)。次に、受信機200は、その判明しているラインスキャン時間を用いて復号用画像Pdecを復号することによって、光IDを取得する(ステップS444)。このとき、受信機200は、ステップS441で開始された撮像によって順次得られる複数の復号用画像Pdecのそれぞれに対して復号を行うことによって、複数の光IDを取得する。ここで、受信機200は、同じ光IDを基準取得回数(すなわちn回)だけ取得したか否かを判定する(ステップS445)。n回取得したと判定すると(ステップS445のYes)、受信機200は、その光IDを信用し、その光IDを用いた処理(例えばAR画像の重畳)を開始する(ステップS446)。一方、n回取得していないと判定すると(ステップS445のNo)、受信機200は、その光IDを信用せず、処理を終了する。
ステップS442において、ラインスキャン時間が判明していないと判定すると(ステップS442のNo)、受信機200は、光IDの基準取得回数をn+k(kは1以上の整数)に設定する(ステップS447)。つまり、受信機200は、ラインスキャン時間が判明していないときには、ラインスキャン時間が判明しているときよりも多い基準取得回数を設定する。次に、受信機200は、仮のラインスキャン時間を決定する(ステップS448)。そして、受信機200は、仮決めのラインスキャン時間を用いて復号用画像Pdecを復号することによって、光IDを取得する(ステップS449)。このとき、受信機200は、上述と同様、ステップS441で開始された撮像によって順次得られる複数の復号用画像Pdecのそれぞれに対して復号を行うことによって、複数の光IDを取得する。ここで、受信機200は、同じ光IDを基準取得回数(すなわち(n+k)回)だけ取得したか否かを判定する(ステップS450)。
(n+k)回取得したと判定すると(ステップS450のYes)、受信機200は、仮決めのラインスキャン時間が正しいラインスキャン時間であると判断する。そして、受信機200は、受信機200の種類および型式と、そのラインスキャン時間とをサーバに通知する(ステップS451)。これにより、サーバでは、受信機の種類および型式と、その受信機に適したラインスキャン時間とが対応付けて記憶される。したがって、同じ種類および型式の他の受信機が撮像を開始した場合には、他の受信機は、サーバに問い合わせることによって、自らのラインスキャン時間を特定することができる。つまり、他の受信機は、ステップS442の判定において、ラインスキャン時間が判明していると判定することができる。
そして、受信機200は、(n+k)回取得された光IDを信用し、その光IDを用いた処理(例えばAR画像の重畳)を開始する(ステップS446)。
また、ステップS450において、同じ光IDを(n+k)回取得していないと判定すると(ステップS450のNo)、受信機200は、さらに、終了条件が満たされたか否かを判定する(ステップS452)。終了条件は、例えば、撮像開始から予め定められた時間が経過したこと、あるいは、光IDの取得が最大取得回数以上行われたことなどである。このような終了条件が満たされたと判定すると(ステップS452のYes)、受信機200は処理を終了する。一方、終了条件が満たされていないと判定すると(ステップS452のNo)、受信機200は、仮決めのラインスキャン時間を変更する(ステップS453)。そして、受信機200は、その変更された仮決めのラインスキャン時間を用いてステップS449からの処理を繰り返し実行する。
このように、受信機200は、ラインスキャン時間が判明していなくても、図295~図297に示す例のように、そのラインスキャン時間を求めることができる。これにより、受信機200の種類および型式がどのようなものであっても、受信機200は、復号用画像Pdecを適切に復号して光IDを取得することができる。
図298は、受信機200によるAR画像の重畳の一例を示す図である。
受信機200は、テレビとして構成されている送信機100を撮像する。この送信機100は、例えばテレビ番組を表示しながら輝度変化することによって、光IDとタイムコードを周期的に送信している。タイムコードは、送信されるたびに、その送信時の時刻を示す情報であって、例えば図126に示す時間パケットであってもよい。
受信機200は、上述の撮像によって、撮像表示画像Ppreと復号用画像Pdecとを周期的に取得する。そして、受信機200は、周期的に取得される撮像表示画像Ppreをディスプレイ201に表示しながら、復号用画像Pdecを復号することによって、上述の光IDとタイムコードを取得する。次に、受信機200は、その光IDをサーバ300に送信する。サーバ300は、その光IDを受信すると、その光IDに対応付けられた音声データと、AR開始時刻情報と、AR画像P29と、認識情報とを受信機200に送信する。
受信機200は、音声データを取得すると、その音声データを送信機100に映し出されているテレビ番組の映像と同期させて再生する。つまり、音声データは、複数の音声単位データからなり、それらの複数の音声単位データにはタイムコードが含まれている。受信機200は、音声データのうち、光IDとともに送信機100から取得されるタイムコードと同一の時刻を示すタイムコードを含む音声単位データから、複数の音声単位データの再生を開始する。これにより、音声データの再生が、テレビ番組の映像と同期される。なお、このような音声と映像との同期は、図123以降の各図によって示される音声同期再生と同様の方法によって行われてもよい。
受信機200は、AR画像P29および認識情報を取得すると、撮像表示画像Ppreのうち、その認識情報に応じた領域を対象領域として認識し、その対象領域にAR画像P29を重畳する。例えば、AR画像P29は、受信機200のディスプレイ201の亀裂を示す画像であって、対象領域は、撮像表示画像Ppreのうちの送信機100の像を横切る領域である。
ここで、受信機200は、上述のようなAR画像P29が重畳された撮像表示画像Ppreを、AR開始時刻情報に応じたタイミングに表示する。AR開始時刻情報は、AR画像P29が表示される時刻を示す情報である。つまり、受信機200は、送信機100から随時送信されるタイムコードのうち、AR開始時刻情報と同一の時刻を示すタイムコードを受信したタイミングに、上述のAR画像P29が重畳された撮像表示画像Ppreを表示する。例えば、AR開始時刻情報によって示される時刻は、テレビ番組において、魔法使いの少女が氷の魔法をかけるシーンが登場する時刻である。また、この時刻には、受信機200は、音声データの再生によって、そのAR画像P29の亀裂が生じる音を受信機200のスピーカから出力してもよい。
これにより、ユーザは、テレビ番組のシーンを、より臨場感を持って視聴することできる。
また、受信機200は、AR開始時刻情報によって示される時刻に、受信機200に備えられているバイブレータを振動させてもよく、光源をフラッシュのように発光させてもよく、ディスプレイ201を瞬間的に明るくさせたり点滅させたりしてもよい。また、AR画像P29は、亀裂を示す画像だけでなく、ディスプレイ201の結露が凍り付いた状態を示す画像を含んでいてもよい。
図299は、受信機200によるAR画像の重畳の一例を示す図である。
受信機200は、例えば玩具の杖として構成されている送信機100を撮像する。この送信機100は、光源を備え、その光源が輝度変化することによって、光IDを送信している。
受信機200は、上述の撮像によって、撮像表示画像Ppreと復号用画像Pdecとを周期的に取得する。そして、受信機200は、周期的に取得される撮像表示画像Ppreをディスプレイ201に表示しながら、復号用画像Pdecを復号することによって、上述の光IDを取得する。次に、受信機200は、その光IDをサーバ300に送信する。サーバ300は、その光IDを受信すると、その光IDに対応付けられたAR画像P30と認識情報とを受信機200に送信する。
ここで、認識情報は、さらに、送信機100を把持する人物によるジェスチャ(すなわち動作)を示すジェスチャ情報を含む。ジェスチャ情報は、例えば、人物が送信機100を右から左に動かすジェスチャを示す。受信機200は、各撮像表示画像Ppreに映し出されている、送信機100を把持する人物によるジェスチャと、ジェスチャ情報によって示されるジェスチャとを比較する。そして、受信機200は、それらのジェスチャが一致すると、例えば、多くの星型のAR画像P30が、そのジェスチャによって移動する送信機100の軌跡に沿って配列されるように、それらのAR画像P30を撮像表示画像Ppreに重畳する。
図300は、受信機200によるAR画像の重畳の一例を示す図である。
受信機200は、上述と同様に、例えば玩具の杖として構成されている送信機100を撮像する。
受信機200は、その撮像によって、撮像表示画像Ppreと復号用画像Pdecとを周期的に取得する。そして、受信機200は、周期的に取得される撮像表示画像Ppreをディスプレイ201に表示しながら、復号用画像Pdecを復号することによって、上述の光IDを取得する。次に、受信機200は、その光IDをサーバ300に送信する。サーバ300は、その光IDを受信すると、その光IDに対応付けられたAR画像P31と認識情報とを受信機200に送信する。
ここで、認識情報は、上述と同様に、送信機100を把持する人物によるジェスチャを示すジェスチャ情報を含む。ジェスチャ情報は、例えば、人物が送信機100を右から左に動かすジェスチャを示す。受信機200は、各撮像表示画像Ppreに映し出されている、送信機100を把持する人物によるジェスチャと、ジェスチャ情報によって示されるジェスチャとを比較する。そして、受信機200は、それらのジェスチャが一致すると、例えば、撮像表示画像Ppreにおいて、その送信機100を把持する人物が映し出されている領域である対象領域に、ドレスの衣装を示すAR画像P30を重畳する。
このように、本変形例における表示方法では、光IDに対応するジェスチャ情報をサーバから取得する。次に、周期的に取得される撮像表示画像によって示される被写体の動きが、サーバから取得されたジェスチャ情報によって示される動きと一致するか否かを判定する。そして、一致すると判定されたときに、AR画像が重畳された撮像表示画像Ppreを表示する。
これにより、例えば人物などの被写体の動きに応じてAR画像を表示することができる。つまり、適切なタイミングにAR画像を表示することができる。
図301は、受信機200の姿勢に応じて取得される復号用画像Pdecの一例を示す図である。
例えば、図301の(a)に示すように、受信機200は、横向きの姿勢で、輝度変化によって光IDを送信する送信機100を撮像する。なお、横向きの姿勢は、受信機200のディスプレイ201の長手方向が水平方向に沿う姿勢である。また、受信機200に備えられているイメージセンサの各露光ラインは、ディスプレイ201の長手方向に対して直交している。上述のような撮像によって、輝線の数が少ない輝線パターン領域Xを含む復号用画像Pdecが取得される。この復号用画像Pdecの輝線パターン領域Xでは、輝線の数が少ない。つまり、輝度がHighまたはLowに変化する部位が少ない。したがって、受信機200は、その復号用画像Pdecに対する復号によって適切に光IDを取得することができない場合がある。
そこで、例えば、図301の(b)に示すように、ユーザは、受信機200の姿勢を横向きから縦向きに変える。なお、縦向きの姿勢は、受信機200のディスプレイ201の長手方向が垂直方向に沿う姿勢である。このような姿勢の受信機200は、光IDを送信する送信機100を撮像すると、輝線の数が多い輝線パターン領域Yを含む復号用画像Pdecを取得することができる。
このように、受信機200の姿勢に応じて、光IDを適切に取得することができない場合があるため、受信機200に光IDを取得させるときには、撮像している受信機200の姿勢を適宜変更するとよい。姿勢が変更されているときには、受信機200は、光IDを取得し易い姿勢になったタイミングで、光IDを適切に取得することができる。
図302は、受信機200の姿勢に応じて取得される復号用画像Pdecの他の例を示す図である。
例えば、送信機100は、喫茶店のデジタルサイネージとして構成され、映像表示期間に、喫茶店の広告に関する映像を表示し、光ID送信期間に、輝度変化によって光IDを送信する。つまり、送信機100は、映像表示期間における映像の表示と、光ID送信期間における光IDの送信とを交互に繰り返し実行する。
受信機200は、送信機100の撮像によって、撮像表示画像Ppreと復号用画像Pdecとを周期的に取得する。このとき、送信機100の映像表示期間および光ID送信期間の繰り返し周期と、受信機200による撮像表示画像Ppreおよび復号用画像Pdecの取得の繰り返し周期との同期によって、輝線パターン領域を含む復号用画像Pdecを取得することができない場合がある。さらに、受信機200の姿勢によって、輝線パターン領域を含む復号用画像Pdecを取得することができない場合がある。
例えば、受信機200は、図302の(a)に示すような姿勢で、送信機100を撮像する。つまり、受信機200は、送信機100に近づき、受信機200のイメージセンサの全体に送信機100の像が投影されるように、その送信機100を撮像する。
ここで、受信機200が撮像表示画像Ppreを取得するタイミングが、送信機100の映像表示期間内にあれば、受信機200は、送信機100が映し出された撮像表示画像Ppreを適切に取得する。
そして、受信機200が復号用画像Pdecを取得するタイミングが、送信機100の映像表示期間と光ID送信期間とに跨る場合であっても、受信機200は、輝線パターン領域Z1を含む復号用画像Pdecを取得することができる。
つまり、イメージセンサに含まれる各露光ラインの露光は、垂直方向の上端にある露光ラインから下側に順に開始される。したがって、映像表示期間において、受信機200が復号用画像Pdecを取得するためにイメージセンサの露光を開始しても、輝線パターン領域を得ることはできない。しかし、その映像表示期間が光ID送信期間に切り替わると、その光ID送信期間に露光が行われる各露光ラインに対応した輝線パターン領域を得ることができる。
ここで、受信機200は、図302の(b)に示すような姿勢で、送信機100を撮像する。つまり、受信機200は、送信機100から離れ、受信機200のイメージセンサの上側の領域のみに送信機100の像が投影されるように、その送信機100を撮像する。このときには、上述と同様、受信機200が撮像表示画像Ppreを取得するタイミングが、送信機100の映像表示期間内にあれば、受信機200は、送信機100が映し出された撮像表示画像Ppreを適切に取得する。しかし、受信機200が復号用画像Pdecを取得するタイミングが、送信機100の映像表示期間と光ID送信期間とに跨る場合には、受信機200が、輝線パターン領域を含む復号用画像Pdecを取得することができないことがある。つまり、送信機100の映像表示期間が光ID送信期間に切り替わっても、その光ID送信期間に露光が行われるイメージセンサの下側にある各露光ラインには、輝度変化する送信機100の像が投影されないことがある。したがって、輝線パターン領域を有する復号用画像Pdecを取得することができない。
一方、受信機200は、図302の(c)に示すように、送信機100から離れた状態で、受信機200のイメージセンサの下側の領域のみに送信機100の像が投影されるように、その送信機100を撮像する。このときには、上述と同様、受信機200が撮像表示画像Ppreを取得するタイミングが、送信機100の映像表示期間内にあれば、受信機200は、送信機100が映し出された撮像表示画像Ppreを適切に取得する。さらに、受信機200が復号用画像Pdecを取得するタイミングが、送信機100の映像表示期間と光ID送信期間とに跨る場合でも、受信機200が輝線パターン領域を含む復号用画像Pdecを取得することができることがある。つまり、送信機100の映像表示期間が光ID送信期間に切り替わると、その光ID送信期間に露光が行われるイメージセンサの下側にある各露光ラインには、輝度変化する送信機100の像が投影される。したがって、輝線パターン領域Z2を有する復号用画像Pdecを取得することができる。
このように、受信機200の姿勢に応じて、光IDを適切に取得することができない場合があるため、受信機200は、光IDを取得するときには、受信機200の姿勢を変えるようにユーザに促してもよい。つまり、受信機200は、撮像が開始されると、受信機200の姿勢が変わるように、例えば「動かしてください」または「振ってください」というメッセージの表示または音声出力を行う。これにより、受信機200は、姿勢を変えながら撮像を行うため、光IDを適切に取得することができる。
図303は、受信機200の処理動作の一例を示すフローチャートである。
例えば、受信機200は、撮像しているときに、受信機200が振られているか否かを判定する(ステップS461)。具体的には、受信機200は、受信機200に備えられた9軸センサの出力に基づいて、振られているか否かを判定する。ここで、受信機200は、撮像中に振られていると判定すると(ステップS461のYes)、上述の光ID取得レートを上げる(ステップS462)。具体的には、受信機200は、撮像中に得られる単位時間あたりの全ての撮像画像を復号用画像(すなわち輝線画像)Pdecとして取得し、取得された全ての復号用画像のそれぞれをデコードする。または、受信機200は、全ての撮像画像が撮像表示画像Ppreとして取得されているときには、つまり、復号用画像Pdecの取得およびデコードが停止されているときには、その取得およびデコードを開始する。
一方、受信機200は、撮像中に振られていないと判定すると(ステップS461のNo)、低い光ID取得レートで復号用画像Pdecを取得する(ステップS463)。具体的には、光ID取得レートがステップS462で上げられて現在も高い光ID取得レートになっていれば、受信機200は、現在の光ID取得レートが高いため、その光ID取得レートを下げる。これにより、受信機200による復号用画像Pdecの復号処理が行われる頻度が少なくなるため、消費電力を抑えることができる。
そして、受信機200は、光ID取得レートの調整処理を終了するための終了条件が満たされたか否かを判定し(ステップS464)、満たされていないと判定すると(ステップS464のNo)、ステップS461からの処理を繰り返し実行する。一方、受信機200は、終了条件が満たされたと判定すると(ステップS464のYes)、光ID取得レートの調整処理を終了する。
図304は、受信機200によるカメラレンズの切り替え処理の一例を示す図である。
受信機200は、広角レンズ211と望遠レンズ212とをそれぞれカメラレンズとして備えていてもよい。広角レンズ211を用いた撮像によって得られる撮像画像は、画角の広い画像であって、その画像には被写体が小さく映し出される。一方、望遠レンズ212を用いた撮像によって得られる撮像画像は、画角の狭い画像であって、その画像には被写体が大きく映し出される。
上述のような受信機200は、撮像を行うときには、図304に示す方法A~Eの何れかの方法によって、撮像に用いられるカメラレンズを切り替えてもよい。
方法Aでは、受信機200は、通常撮像の場合でも、光IDを受信する場合でも、撮像するときには常に望遠レンズ212を用いる。ここで、通常撮像の場合とは、撮像によって全ての撮像画像を撮像表示画像Ppreとして取得する場合である。また、光IDを受信する場合とは、撮像によって撮像表示画像Ppreと復号用画像Pdecを周期的に取得する場合である。
方法Bでは、受信機200は、通常撮像の場合には、広角レンズ211を用いる。一方、光IDを受信する場合には、受信機200は、まず、広角レンズ211を用いる。そして、受信機200は、その広角レンズ211を用いているときに取得された復号用画像Pdecに輝線パターン領域が含まれていれば、カメラレンズを広角レンズ211から望遠レンズ212に切り替える。この切り替え後には、受信機200は、画角の狭い、すなわち輝線パターン領域が大きく表れた復号用画像Pdecを取得することができる。
方法Cでは、受信機200は、通常撮像の場合には、広角レンズ211を用いる。一方、光IDを受信する場合には、受信機200は、カメラレンズを広角レンズ211と望遠レンズ212とに切り替える。つまり、受信機200は、広角レンズ211を用いて撮像表示画像Ppreを取得し、望遠レンズ212を用いて復号用画像Pdecを取得する。
方法Dでは、受信機200は、通常撮像の場合でも、光IDを受信する場合でも、ユーザによる操作に応じて、カメラレンズを広角レンズ211と望遠レンズ212とに切り替える。
方法Eでは、受信機200は、光IDを受信する場合、広角レンズ211を用いて取得された復号用画像Pdecを復号し、正しく復号できなければ、カメラレンズを広角レンズ211から望遠レンズ212に切り替える。または、受信機200は、望遠レンズ212を用いて取得された復号用画像Pdecを復号し、正しく復号できなければ、カメラレンズを望遠レンズ212から広角レンズ211に切り替える。なお、受信機200は、復号用画像Pdecを正しく復号できたか否かを判定するときには、まず、その復号用画像Pdecに対する復号によって得られる光IDをサーバに送信する。サーバは、その光IDが自らに登録されている光IDに一致していれば、一致していることを示す一致情報を受信機200に通知し、一致していなければ、一致していないことを示す不一致情報を受信機200に通知する。受信機200は、サーバから通知された情報が一致情報であれば、復号用画像Pdecが正しく復号できたと判定し、サーバから通知された情報が不一致情報であれば、復号用画像Pdecが正しく復号できなかったと判定する。または、受信機200は、復号用画像Pdecの復号によって得られる光IDが、予め定められた条件を満たす場合には、復号用画像Pdecが正しく復号できたと判定する。一方、その条件を満たさない場合には、受信機200は、復号用画像Pdecが正しく復号できなかったと判定する。
このようにカメラレンズを切り替えることによって、適切な復号用画像Pdecを取得することができる。
図305は、受信機200によるカメラの切り替え処理の一例を示す図である。
例えば、受信機200は、カメラとしてインカメラ213とアウトカメラ(図305では図示せず)とを備える。インカメラ213は、フェイスカメラまたは自撮りカメラともいい、受信機200におけるディスプレイ201と同じ面に配置されているカメラである。アウトカメラは、受信機200におけるディスプレイ201の面と反対側の面に配置されているカメラである。
このような受信機200は、インカメラ213を上に向けた状態で、照明装置として構成された送信機100をインカメラ213によって撮像する。この撮像によって、受信機200は、復号用画像Pdecを取得し、その復号用画像Pdecに対する復号によって、送信機100から送信される光IDを取得する。
次に、受信機200は、その取得された光IDをサーバに送信することによって、その光IDに対応付けられたAR画像および認識情報をサーバから取得する。受信機200は、アウトカメラおよびインカメラ213のそれぞれによって得られる各撮像表示画像Ppreの中から、その認識情報に応じた対象領域を認識する処理を開始する。ここで、受信機200は、アウトカメラおよびインカメラ213のそれぞれによって得られた撮像表示画像Ppreの何れからも、対象領域を認識することができない場合、受信機200を動かすようにユーザに促す。受信機200に促されたユーザは、受信機200を動かす。具体的には、ユーザは、インカメラ213およびアウトカメラがユーザの前後方向を向くように、受信機200を動かす。その結果、受信機200は、アウトカメラによって取得された撮像表示画像Ppreの中から、対象領域を認識する。つまり、受信機200は、人が映し出された領域を対象領域として認識し、撮像表示画像Ppreのうちのその対象領域にAR画像を重畳し、そのAR画像が重畳された撮像表示画像Ppreを表示する。
図306は、受信機200とサーバとの処理動作の一例を示すフローチャートである。
受信機200は、照明装置である送信機100をインカメラ213で撮像することによって、その送信機100から送信される光IDを取得し、その光IDをサーバに送信する(ステップS471)。サーバは、受信機200から光IDを受信し(ステップS472)、その光IDに基づいて、受信機200の位置を推定する(ステップS473)。例えば、サーバは、光IDごとに、その光IDを送信する送信機100が配置されている部屋、建物、またはスペースなど示すテーブルを記憶している。そして、サーバは、そのテーブルにおいて、受信機200から送信された光IDに対応付けられた部屋などを、受信機200の位置として推定する。さらに、サーバは、その推定された位置に対応付けられたAR画像および認識情報を受信機200に送信する(ステップS474)。
受信機200は、サーバから送信されたAR画像および認識情報を取得する(ステップS475)。ここで、受信機200は、アウトカメラおよびインカメラ213のそれぞれによって得られた各撮像表示画像Ppreの中から、その認識情報に応じた対象領域を認識する処理を開始する。そして、受信機200は、例えばアウトカメラによって取得された撮像表示画像Ppreの中から対象領域を認識する(ステップS476)。受信機200は、撮像表示画像Ppreのうちの対象領域にAR画像を重畳し、そのAR画像が重畳された撮像表示画像Ppreを表示する(ステップS477)。
なお、上述の例では、受信機200は、サーバから送信されたAR画像および認識情報を取得すると、ステップS476において、アウトカメラおよびインカメラ213のそれぞれによって得られた各撮像表示画像Ppreの中から対象領域を認識する処理を開始した。しかし、受信機200は、ステップS476において、アウトカメラのみによって得られた撮像表示画像Ppreの中から対象領域を認識する処理を開始してもよい。つまり、光IDを取得するためのカメラ(上述の例ではインカメラ213)と、AR画像が重畳される撮像表示画像Ppreを取得するためのカメラ(上述の例ではアウトカメラ)とを、常に異ならせてもよい。
また、上述の例では、受信機200は、照明装置である送信機100をインカメラ213で撮像したが、送信機100によって照らされた床面をアウトカメラで撮影してもよい。このようなアウトカメラによる撮像でも、受信機200は、送信機100から送信される光IDを取得することができる。
図307は、受信機200によるAR画像の重畳の一例を示す図である。
受信機200は、例えばコンビニエンスストアなどの店舗に設置された電子レンジとして構成されている送信機100を撮像する。この送信機100は、電子レンジの庫内を撮像するためのカメラと、その庫内を照らす照明装置とを備える。そして、送信機100は、庫内に収納された飲食物(すなわち温め対象物)を、カメラによる撮像によって認識する。また、送信機100は、その飲食物を温めるときには、上述の照明装置を発光させるとともに、その照明装置を輝度変化させることによって、認識された飲食物を示す光IDを送信する。なお、この照明装置は電子レンジの庫内を照らすが、その照明装置の光は、電子レンジの透過性を有する窓部から外部に放たれる。したがって、光IDは、照明装置から電子レンジの窓部を介して、電子レンジの外部に送信される。
ここで、ユーザは、コンビニエンスストアにて飲食物を購入し、その飲食物を温めるために、電子レンジである送信機100にその飲食物を入れる。このとき、送信機100は、カメラによってその飲食物を認識し、その認識された飲食物を示す光IDを送信しながら飲食物の温めを開始する。
受信機200は、その温めを開始した送信機100を撮像することによって、送信機100から送信された光IDを取得し、その光IDをサーバに送信する。次に、受信機200は、その光IDに対応付けられたAR画像、音声データおよび認識情報をサーバから取得する。
上述のAR画像は、送信機100の内部の仮想的な様子を示す動画であるAR画像P32aと、庫内に収納された飲食物を詳細に示すAR画像P32bと、送信機100から湯気が出ている様子を動画によって示すAR画像P32cと、飲食物の温め完了までの残り時間を動画によって示すAR画像P32dとを含む。
例えば、AR画像P32aは、電子レンジの庫内に収納された飲食物がピザであれば、ピザを載せたターンテーブルが回転していて、そのピザの周りを複数の小人が踊っている動画である。AR画像P32bは、例えば、庫内に収納された飲食物がピザであれば、その商品名「ピザ」と、そのピザの材料とを示す画像である。
受信機200は、認識情報に基づいて、撮像表示画像Ppreのうちの送信機100の窓部が映し出されている領域を、AR画像P32aの対象領域として認識し、その対象領域にAR画像P32aを重畳する。さらに、受信機200は、認識情報に基づいて、撮像表示画像Ppreのうちの、送信機100が映し出されている領域よりも上にある領域を、AR画像P32bの対象領域として認識し、その対象領域にAR画像P32bを重畳する。さらに、受信機200は、認識情報に基づいて、撮像表示画像Ppreのうち、AR画像P32aの対象領域と、AR画像P32bの対象領域との間にある領域を、AR画像P32cの対象領域として認識し、その対象領域にAR画像P32cを重畳する。さらに、受信機200は、認識情報に基づいて、撮像表示画像Ppreのうち、送信機100が映し出されている領域の下にある領域を、AR画像P32dの対象領域として認識し、その対象領域にAR画像P32dを重畳する。
さらに、受信機200は、音声データを再生することによって、飲食物が加熱されるときに生じる音を出力する。
受信機200によって上述のようなAR画像P32a~P32dが表示され、さらに、音が出力されることによって、飲食物の温めが完了するまでの間、ユーザの興味を受信機200に引き付けることができる。その結果、温めの完了を待っているユーザの負担を軽減することができる。また、湯気などを示すAR画像P32cが表示され、飲食物が加熱されるときに生じる音が出力されることによって、ユーザにシズル感を与えることができる。また、AR画像P32dの表示によって、ユーザは、飲食物の温め完了までの残り時間を容易に知ることができる。したがって、ユーザは、温め完了までの間、例えば、電子レンジである送信機100から離れて店舗内に陳列されている本などを読むことができる。また、受信機200は、残り時間が0になったときには、温めが完了したことをユーザに通知してもよい。
なお、上述の例では、AR画像P32aは、ピザを載せたターンテーブルが回転していて、そのピザの周りを複数の小人が踊っている動画であったが、例えば、庫内の温度分布を仮想的に示す画像であってもよい。また、AR画像P32bは、庫内に収納された飲食物の商品名および材料を示す画像であったが、栄養成分またはカロリーを示す画像であってもよい。あるいは、AR画像P32bは、割引券を示す画像であってもよい。
このように本変形例における表示方法では、被写体は、照明装置を備えた電子レンジであって、照明装置は、電子レンジの庫内を照らし、かつ、輝度変化することによって光IDを電子レンジの外部に送信する。そして、撮像表示画像Ppreおよび復号用画像Pdecの取得では、光IDを送信している電子レンジを撮像することによって撮像表示画像Ppreおよび復号用画像Pdecを取得する。対象領域の認識では、撮像表示画像Ppreに映し出されている電子レンジの窓部分を対象領域として認識する。撮像表示画像Ppreの表示では、庫内の状態変化を示すAR画像が重畳された撮像表示画像Ppreを表示する。
これにより、電子レンジの庫内の状態変化がAR画像として表示されるため、電子レンジの利用者に庫内の様子を分かりやすく伝えることができる。
図308は、受信機200、電子レンジ、中継サーバおよび電子決済用サーバを含むシステムの処理動作を示すシーケンス図である。なお、電子レンジは、上述と同様、カメラおよび照明装置を備え、その照明装置の輝度を変化させることによって光IDを送信する。つまり、電子レンジは送信機100としての機能を有する。
まず、電子レンジは、庫内に収納された飲食物をカメラによって認識する(ステップS481)。次に、電子レンジは、その認識された飲食物を示す光IDを照明装置の輝度変化によって受信機200に送信する。
受信機200は、電子レンジを撮像することによって、その電子レンジから送信された光IDを受信し(ステップS483)、光IDとカード情報とを中継サーバに送信する。カード情報は、受信機200に予め保存されているクレジットカードなどの情報であって、電子決済に必要な情報である。
中継サーバは、光IDごとに、その光IDに対応するAR画像、認識情報および商品情報を示すテーブルを保持している。この商品情報は、光IDによって示される飲食物の料金などを示す。このような中継サーバは、受信機200から送信された光IDとカード情報とを受信すると(ステップS486)、その光IDに対応付けられた商品情報を上述のテーブルから見つけ出す。そして、中継サーバは、その商品情報とカード情報とを電子決済用サーバに送信する(ステップS486)。電子決済用サーバは、中継サーバから送信された商品情報とカード情報とを受信すると(ステップS487)、その商品情報とカード情報とに基づいて電子決済の処理を行う(ステップS488)。そして、電子決済用サーバは、その電子決済の処理が完了すると、その完了を中継サーバに通知する(ステップS489)。
中継サーバは、電子決済用サーバからの決済完了の通知を確認すると(ステップS490)、飲食物の温め開始しを電子レンジに指示する(ステップS491)。さらに、中継サーバは、上述のテーブルにおいて、ステップS485で受信した光IDに対応付けられているAR画像および認識情報を受信機200に送信する(ステップS493)。
電子レンジは、中継サーバから温め開始の指示を受けると、庫内に収納された飲食物の温めを開始する(ステップS492)。また、受信機200は、中継サーバから送信されたAR画像および認識情報を受信すると、ステップS483から開始されている撮像によって周期的に取得される撮像表示画像Ppreから、その認識情報に応じた対象領域を認識する。そして、受信機200は、その対象領域にAR画像を重畳する(ステップS494)。
これにより、受信機200のユーザは、電子レンジの庫内に飲食物を入れて撮像を行えば、簡単に決済を済ませて、飲食物の温めを開始することができる。また、決済ができない場合には、ユーザによる飲食物の温めを禁止することができる。さらに、温めが開始されたときには、図307に示すAR画像P32aなどの表示を行うことができ、庫内の様子をユーザに知らせることができる。
図309は、POS端末、サーバ、受信機200および電子レンジを含むシステムの処理動作を示すシーケンス図である。なお、電子レンジは、上述と同様、カメラおよび照明装置を備え、その照明装置の輝度を変化させることによって光IDを送信する。つまり、電子レンジは送信機100としての機能を有する。また、POS(point-of-sale)端末は、電信レンジと同じコンビニエンスストアなどの店舗に設置された端末である。
まず、受信機200のユーザは、店舗で、商品である飲食物を選び、その飲食物を購入するためにPOS端末が設置された場所に向かう。その店舗の店員は、POS端末を操作し、飲食物の代金をユーザから受け取る。この店員によるPOS端末の操作によって、POS端末は、操作入力データと販売情報とを取得する(ステップS501)。販売情報は、例えば商品の名称、個数および値段と、販売場所と、販売日時とを示す。操作入力データは、例えば、店員によって入力されたユーザの性別および年代などを示す。POS端末は、その操作入力データと販売情報とをサーバに送信する(ステップS502)。サーバは、POS端末から送信された操作入力データと販売情報とを受信する(ステップS503)。
一方、受信機200のユーザは、店員に飲食物の代金を支払うと、その飲食物を温めるために電位レンジの庫内に飲食物を入れる。電子レンジは、庫内に収納された飲食物をカメラによって認識する(ステップS504)。次に、電子レンジは、その認識された飲食物を示す光IDを照明装置の輝度変化によって受信機200に送信する(ステップS505)。そして、電子レンジは、飲食物の温めを開始する(ステップS507)。
受信機200は、電子レンジを撮像することによって、その電子レンジから送信された光IDを受信し(ステップS508)、光IDと端末情報とをサーバに送信する(ステップS509)。端末情報は、受信機200に予め保存されている情報であって、例えば、受信機200のディスプレイ201に表示される言語の種別(例えば英語または日本語など)を示す。
サーバは、受信機200からアクセスされ、受信機200から送信された光IDと端末情報とを受信すると、その受信機200からのアクセスが、最初のアクセスか否かを判定する(ステップS510)。最初のアクセスは、ステップS503の処理が行われたときから所定時間内において最初に行われるアクセスである。ここで、サーバは、その受信機200からのアクセスが最初のアクセスであると判定すると(ステップS510のYes)、操作入力データと端末情報とを関連付けて保存する(ステップS511)。
なお、サーバは、受信機200からのアクセスが最初のアクセスか否かを判定したが、販売情報によって示される商品が、光IDによって示される飲食物に一致するか否かを判定してもよい。また、サーバは、ステップS511では、操作入力データと端末情報とを関連付けるだけでなく、販売情報もそれらに関連付けて保存してもよい。
(屋内での利用)
図310は、地下街等の屋内での利用の様子を示す図である。
受信機200は、照明装置として構成された送信機100の送信する光IDを受信し、自身の現在位置を推定する。また、受信機200は、地図上に現在位置を表示して道案内を行ったり、付近の店舗の情報を表示したりする。
緊急時には送信機100から災害情報や避難情報を送信することで、通信が混雑している場合や、通信基地局が故障した場合や、通信基地局からの電波が届かない場所にいる場合であっても、これらの情報を得ることができる。これは、緊急放送を聞き逃した場合や、緊急放送を聞くことができない聴覚障害者に有効である。
つまり、受信機200は、撮像することによって、送信機100から送信された光IDを取得し、さらに、その光IDに対応付けられたAR画像P33と認識情報とをサーバから取得する。そして、受信機200は、上述の撮像によって得られた撮像表示画像Ppreから、認識情報に応じた対象領域を認識し、その対象領域に、矢印の形状をしたAR画像P33を重畳する。これにより、受信機200を上述のウェイファインダー(図294参照)として利用することができる。
(拡張現実オブジェクトの表示)
図311は、拡張現実オブジェクトを表示する様子を示す図である。
拡張現実を表示させる舞台2718eは、上述の送信機100として構成され、発光部2718a、2718b、2718c、2718dの発光パターンや位置パターンで、拡張現実オブジェクトの情報や、拡張現実オブジェクトを表示させる基準位置を送信する。
受信機200は、受信した情報を基に、AR画像である拡張現実オブジェクト2718fを撮像画像に重畳して表示させる。
なお、これらの包括的または具体的な態様は、装置、システム、方法、集積回路、コンピュータプログラムまたはコンピュータ読み取り可能なCD-ROMなどの記録媒体で実現されてもよく、装置、システム、方法、集積回路、コンピュータプログラムまたは記録媒体の任意な組み合わせで実現されてもよい。また、一実施形態に関わる方法を実行するコンピュータプログラムがサーバの記録媒体に保存されており、端末の要求に応じて、サーバから端末に配信する態様で実現されてもよい。
[実施の形態23の変形例4]
図312は、実施の形態23の変形例4における表示システムの構成を示す図である。
この表示システム500は、可視光信号を用いた物体認識と拡張現実(Augmented Reality/Mixed Reality)表示とを行う。
受信機200は、撮像を行い、可視光信号の受信と、物体認識または空間認識のための特徴量の抽出とを行う。特徴量の抽出は、撮像によって得られる撮像画像からの画像特徴量の抽出である。なお、可視光信号は、赤外線または紫外線などの可視光隣接キャリア信号であってもよい。また、本変形例では、受信機200が、拡張現実感画像(すなわちAR画像)が表示される対象物の認識を行う認識装置として構成されている。なお、図312に示す例では、対象物は例えばAR対象物501などである。
送信機100は、自身またはAR対象物501を識別するためのID等の情報を、可視光信号または電波信号として送信する。なお、IDは、例えば上述の光IDなどの識別情報であり、AR対象物501は、上述の対象領域である。可視光信号は、送信機100が有する光源の輝度変化により送信される信号である。
受信機200またはサーバ300は、送信機100が送信する識別情報と、AR認識情報及びAR表示情報を紐付けて保持している。紐付けは1対1であってもよいし、1対多であってもよい。AR認識情報とは、上述の認識情報であって、AR表示を行うためのAR対象物501を認識するための情報である。具体的には、AR認識情報は、AR対象物501の画像特徴量(SIFT特徴量、SURF特徴量、またはORB特徴量等)、色、形状、大きさ、反射率、透過率、または三次元モデル等である。また、AR認識情報は、どの認識手法を用いて認識を行うかを示す識別情報または認識アルゴリズムを含んでもよい。AR表示情報は、AR表示を行うための情報であり、画像(すなわち上述のAR画像)、映像、音声、三次元モデル、モーションデータ、表示座標、表示サイズ、または透過率等である。また、AR表示情報は、色相、彩度および明度のそれぞれの絶対値または変更割合であってもよい。
送信機100は、サーバ300としての機能を兼ねてもよい。つまり、送信機100は、AR認識情報およびAR表示情報を保持し、有線または無線通信によって、それらの情報を送信してもよい。
受信機200は、カメラ(具体的にはイメージセンサ)で画像を撮像する。また、受信機200は、可視光信号、または、WiFiもしくはBluetooth(登録商標)などの電波信号を受信する。また、受信機200は、GPS等によって得られる位置情報、ジャイロセンサもしくは加速度センサによって得られる情報、およびマイクからの音声などの情報を取得し、これらの全ての情報あるいは一部の情報を統合して付近に存在するAR対象物を認識してもよい。また、受信機200は、それらの情報を統合せず、何れかの情報のみを用いてAR対象物を認識してもよい。
図313は、実施の形態23の変形例4に係る表示システムの処理動作を示すフローチャートである。
受信機200は、まず、既に可視光信号を受信しているか否かを判定する(ステップS521)。つまり、受信機200は、例えば、可視光信号を光源の輝度変化により送信する送信機100を撮影することにより、識別情報を示す可視光信号を取得しているか否かを判定する。このときには、その撮影によって、送信機100の撮像画像が取得される。
ここで、受信機200は、既に可視光信号を受信していると判定した場合には(ステップS521のY)、受信した情報からAR対象物(物体、基準点、空間座標、または空間中の受信機200の位置と向き)を特定する。さらに、受信機200は、AR対象物の相対位置を認識する。この相対位置は、受信機200からAR対象物までの距離および方向によって表される。例えば、受信機200は、図244に示す輝線パターン領域の大きさおよび位置などに基づいて、AR対象物(すなわち輝線パターン領域である対象領域)を特定し、そのAR対象物の相対位置を認識する。
そして、受信機200は、可視光信号に含まれるID等の情報と相対位置とをサーバ300に送信し、その情報および相対位置とをキーとして用いることによって、サーバ300に登録されたAR認識情報とAR表示情報とを取得する(ステップS522)。このとき、受信機200は、認識したAR対象物の情報だけでなく、そのAR対象物の付近に存在する他のAR対象物の情報(すなわちAR認識情報およびAR表示情報)も同時に取得しても良い。これにより、付近に存在する他のAR対象物がその受信機200によって撮像された際に、受信機200は、素早く、また、誤りなく、その付近に存在する他のAR対象物を認識することができる。例えば、付近に存在する他のAR対象物は、最初に認識したAR対象物とは異なる。
なお、受信機200は、サーバ300にアクセスする代わりに、受信機200内のデータベースからこれらの情報を取得してもよい。受信機200は、これらの情報を、取得時から一定時間経過後、または特定の処理(例えば、画面のオフ、ボタン押下、アプリの終了もしくは停止、AR画像の表示、または、別のAR対象物の認識等)の後に廃棄してもよい。あるいは、受信機200は、取得される複数の情報のそれぞれで、その情報の取得から一定時間経過ごとに、その情報の信頼度を下げ、複数の情報のうち信頼度の高い情報を用いてもよい。
ここで、受信機200は、各AR対象物との相対位置に基づいて、その相対位置の関係において有効なAR対象物のAR認識情報を優先して取得してもよい。例えば、受信機200は、ステップS521において、複数の送信機100を撮影することにより、複数の可視光信号(すなわち識別情報)を取得し、ステップS522において、それらの複数の可視光信号に対応する複数のAR認識情報(すなわち画像特徴量)を取得する。このとき、受信機200は、ステップS522において、複数のAR対象物のうち、それらの送信機100の撮影を行う受信機200から最も近いAR対象物の画像特徴量を選択する。つまり、この選択された画像特徴量が、可視光信号を用いて特定される1つのAR対象物(すなわち第1の対象物)の特定に用いられる。これにより、複数の画像特徴量が取得されても、適切な画像特徴量を第1の対象物の特定に用いることができる。
一方、受信機200は、可視光信号を受信していないと判定した場合には(ステップS521のN)、さらに、既にAR認識情報を取得しているか否かを判定する(ステップS523)。AR認識情報を取得していないと判定すると(ステップS523のN)、受信機200は、可視光信号によって示されるID等の識別情報を用いずに、画像処理により、または、位置情報もしくは電波情報などのその他の情報を用いてAR対象物の候補を認識する(ステップS524)。この処理は受信機200のみで行われてもよい。あるいは、受信機200は、撮像画像、またはその撮像画像の画像特徴量などの情報をサーバ300へ送信し、サーバ300が、そのAR対象物の候補を認識してもよい。その結果、受信機200は、認識された候補に対応したAR認識情報とAR表示情報とを、サーバ300または自身のデータベースから取得する。
ステップS522の後、受信機200は、例えば画像認識など、可視光信号によって示されるID等の識別情報を用いない別の方法で、AR対象物を検出しているか否かを判定する(ステップS525)。つまり、受信機200は、複数の方法でAR対象物を認識したか否かを判定する。具体的には、受信機200は、可視光信号によって示される識別情報に基づいて取得された画像特徴量を用いて、撮像画像からAR対象物(すなわち第1の対象物)を特定する。そして、受信機200は、そのような識別情報を用いずに、画像処理により、撮像画像からAR対象物(すなわち第2の対象物)を特定しているか否かを判定する。
ここで、受信機200は、複数の方法でAR対象物を認識したと判定すると(ステップS525のY)、可視光信号による認識結果を優先する。つまり、受信機200は、各方法によって認識されたAR対象物が一致しているか否かを確認する。そして、一致していなければ、受信機200は、それらのAR対象物の中から、撮像画像中においてAR画像が重畳される1つのAR対象物を、可視光信号によって認識されたAR対象物に決定する(ステップS526)。つまり、第1の対象物が第2の対象物と異なる場合には、受信機200は、第1の対象物を優先して、AR画像が表示される対象物として認識する。なお、AR画像が表示される対象物は、AR画像が重畳される対象物である。
または、受信機200は、複数の方法のそれぞれに付与された優先順に基づいて、高い優先順位が付与された方法を優先してもよい。つまり、受信機200は、各方法によって認識されたAR対象物の中から、撮像画像中においてAR画像が重畳される1つのAR対象物を、例えば最も高い優先順位が付与された方法によって認識されたAR対象物に決定する。または、受信機200は、多数決もしくは優先度付き多数決によって、撮像画像中においてAR画像が重畳される1つのAR対象物を決定してもよい。この処理によって、それまでの認識結果が覆された場合は、受信機200はエラー対応処理を行う。
次に、受信機200は、取得したAR認識情報に基いて、撮像画像中のAR対象物の状態(具体的には、絶対位置、受信機200からの相対位置、大きさ、角度、照明状況、またはオクルージョン等)を認識する(ステップS527)。そして、受信機200は、その認識結果に合わせてAR表示情報(すなわちAR画像)を撮像画像に重畳して表示する(ステップS528)。つまり、受信機200は、撮像画像中の認識されたAR対象物にAR表示情報を重畳する。または、受信機200は、AR表示情報のみを表示する。
これらにより、画像処理のみでは困難な認識または検出が可能になる。その困難な認識または検出は、例えば、(文字内容だけが異なっているなどの)画像的に類似したAR対象物の識別、模様が少ないAR対象物の検出、反射率もしくは透過率が高いAR対象物の検出、形状もしくは模様が変化するAR対象物(例えば動物など)の検出、または、広い角度(いろいろな方向)からのAR対象物の検出である。つまり、本変形例では、これらのAR対象物の認識とAR表示とを行うことができる。また、可視光信号を用いない画像処理では、認識したいAR対象物が多くなるに従い、画像特徴量の近傍検索に時間がかかり、認識処理に時間がかかるようになり、また、認識率も悪化する。しかし、本変形例では、認識対象の増加による認識時間の増加と認識率の悪化の影響は、まったくないか極めて小さく、効果的なAR対象物の認識が可能となる。また、AR対象物の相対位置を用いることで、効率的な認識が可能となる。例えば、AR対象物までのおおよその距離を利用することで、画像特徴量の計算に際してAR対象物の大きさに非依存とするための処理を省いたり、大きさに依存する特徴を利用することができる。また、AR対象物の角度を利用し、通常であれば多くの角度に対して画像特徴量の評価が必要なところ、そのAR対象物の角度に対応する画像特徴量の保持と計算のみを行えばよく、計算速度またはメモリ効率を向上することができる。
[実施の形態23の変形例4のまとめ]
図314は、本発明の一態様に係る認識方法を示すフローチャートである。
本発明の一態様に係る表示方法は、拡張現実感画像(AR画像)が表示される対象物の認識方法であって、ステップS531~535を含む。
ステップS531では、受信機200は、可視光信号を光源の輝度変化により送信する送信機100を撮影することにより、識別情報を取得する。識別情報は例えば光IDである。ステップS532では、受信機200は、その識別情報をサーバ300に送信し、サーバ300から識別情報に対応する画像特徴量を取得する。画像特徴量は、AR認識情報または認識情報として示される。
ステップS533では、受信機200は、その画像特徴量を用いて、送信機100の撮像画像から第1の対象物を特定する。ステップS534では、受信機200は、識別情報(すなわち光ID)を用いずに、画像処理により、送信機100の撮像画像から第2の対象物を特定する。
ステップS535では、ステップS533で特定された第1の対象物が、ステップS534で特定された第2の対象物と異なる場合に、受信機200は、第1の対象物を優先して、拡張現実感画像が表示される対象物として認識する。
例えば、拡張現実感画像、撮像画像、および対象物はそれぞれ、実施の形態23およびその各変形例におけるAR画像、撮像表示画像、対象領域に相当する。
これにより、図313に示すように、可視光信号によって示される識別情報を用いて特定された第1の対象物と、その識別情報を用いずに画像処理によって特定された第2の対象物とが異なる場合であっても、拡張現実感画像が表示される対象物として第1の対象物が優先して認識される。したがって、撮像画像から、拡張現実感画像が表示される対象物を適切に認識することができる。
また、画像特徴量は、第1の対象物の画像特徴量に加え、第1の対象物の近辺に位置し、第1の対象物とは異なる第3の対象物の画像特徴量も含んでいてもよい。
これにより、図313のステップS522に示すように、第1の対象物の画像特徴量だけでなく、第3の対象物の画像特徴量も取得されるため、その後に、第3の対象物が撮像画像に現れるときには、迅速にその第3の対象物を特定または認識することができる。
また、受信機200は、ステップS531において、複数の送信機を撮影することにより、複数の識別情報を取得し、ステップS532において、複数の識別情報に対応する複数の画像特徴量を取得する場合がある。このような場合には、受信機200は、ステップS533では、複数の対象物のうち、複数の送信機の撮影を行う受信機200から最も近い対象物の画像特徴量を、第1の対象物の特定に用いてもよい。
これにより、図313のステップS522に示すように、複数の画像特徴量が取得されても、適切な画像特徴量を第1の対象物の特定に用いることができる。
なお、本変形例における認識装置は、例えば上述の受信機200に備えられた装置であって、プロセッサと記録媒体とを備える。この記録媒体には、図314に示す認識方法をプロセッサに実行させるプログラムが記録されている。また、本変形例におけるプログラムは、図314に示す認識方法をコンピュータに実行させるプログラムである。
(実施の形態24)
図315は、本実施の形態に係る可視光信号の動作モードの一例を示す図である。なお、本実施の形態は、実施の形態20の変形例に相当する。
可視光信号の物理(PHY)層の動作モードには、図315に示すように、2つのモードがある。1つ目の動作モードは、パケットPWM(Pulse Width Modulation)が行われるモードであり、2つ目の動作モードは、パケットPPM(Pulse-Position Modulation)が行われるモードである。上記各実施の形態またはその変形例に係る送信機は、この何れかの動作モードにしたがって送信対象の信号を変調することによって、可視光信号を生成して送信する。
パケットPWMの動作モードでは、RLL(Run-Length Limited)符号化は行われず、光クロックレートは100kHzであり、前方誤り訂正(FEC)は、繰り返し符号化され、典型的なデータレートは5.5kbpsである。
このパケットPWMでは、パルス幅が変調され、パルスは、2つの明るさの状態によって表される。2つの明るさの状態は、明るい状態(BrightまたはHigh)と暗い状態(DarkまたはLow)であるが、典型的には、光のオンとオフである。パケット(PHYパケットともいう)と呼ばれる物理層の信号のチャンクは、MAC(medium access control)フレームに対応している。送信機は、PHYパケットを繰り返し送信し、特別な順番によらずに複数のPHYパケットのセットを送信することができる。
なお、このパケットPWMは、例えば上述の図188、図189Aの(b)および図197などに示す変調である。また、パケットPWMは、通常の送信機から送信される可視光信号の生成に用いられる。
パケットPPMの動作モードでは、RLL符号化は行われず、光クロックレートは100kHzであり、前方誤り訂正(FEC)は、繰り返し符号化され、典型的なデータレートは8kbpsである。
このパケットPPMでは、短い時間長のパルスの位置が変調される。つまり、このパルスは、明るいパルス(High)と暗いパルス(Low)のうちの明るいパルスであり、このパルスの位置が変調される。また、このパルスの位置は、パルスと次のパルスとの間のインターバルによって示される。
パケットPPMは、深い調光を実現する。各実施の形態およびその変形例において説明されていないパケットPPMにおけるフォーマット、波形および特徴は、パケットPWMと同様である。なお、このパケットPPMは、例えば上述の図189B、図199および図213などに示す変調である。また、パケットPPMは、非常に明るく発光する光源を有する送信機から送信される可視光信号の生成に用いられる。
また、パケットPWMおよびパケットPPMのそれぞれにおいて、可視光信号の物理層における調光は、オプショナルフィールドの平均輝度によって制御される。
<パケットPWMのPPDUフォーマット>
ここで、PPDU(physical-layer data unit)のフォーマットについて説明する。
図316は、パケットPWMのモード1におけるPPDUフォーマットの一例を示す図である。図317は、パケットPWMのモード2におけるPPDUフォーマットの一例を示す図である。図318は、パケットPWMのモード3におけるPPDUフォーマットの一例を示す図である。
パケットPWMによって変調されるパケットは、モード1およびモード2では、図316および図317に示すように、PHYペイロードAと、SHR(synchronization header)と、PHYペイロードBと、オプショナルフィールドとを含む。SHRは、PHYペイロードAおよびPHYペイロードBに対するヘッダである。なお、PHYペイロードAおよびPHYペイロードBのそれぞれを総称してPHYペイロードという。
また、モード3では、パケットPWMによって変調されるパケットは、図318に示すように、SHRと、PHYペイロードと、SFT(synchronization footer)と、オプショナルフィールドとを含む。SHTは、PHYペイロードに対するヘッダであり、SFTは、PHYペイロードに対するフッタである。
モード1~3のそれぞれにおいて、PHYペイロードA、SHR、PHYペイロードBおよびSFTでは、互いに異なる輝度値である第1および第2の輝度値のそれぞれが、時間軸上に沿って交互に現れる。第1の輝度値は、BrightまたはHighであり、第2の輝度値は、DarkまたはLowである。
ここで、パケットPWMのSHRは、2つまたは4つのパルスを含む。それらのパルスは、BrightまたはDarkの明るさのパルスである。
図319は、パケットPWMのモード1~3のそれぞれのSHRにおけるパルス幅のパターンの一例を示す図である。
図319に示すように、パケットPWMのモード1では、SHRは2つのパルスを含む。この2つのパルスのうちの送信順で1番目のパルスのパルス幅H1は、100μ秒であり、2番目のパルスのパルス幅H2は、90μ秒である。パケットPWMのモード2では、SHRは4つのパルスを含む。この4つのパルスのうちの送信順で1番目のパルスのパルス幅H1は、100μ秒であり、2番目のパルスのパルス幅H2は、90μ秒であり、3番目のパルスのパルス幅H3は、90μ秒であり、4番目のパルスのパルス幅H4は、100μ秒である。パケットPWMのモード3では、SHRは4つのパルスを含む。この4つのパルスのうちの送信順で1番目のパルスのパルス幅H1は、50μ秒であり、2番目のパルスのパルス幅H2は、40μ秒であり、3番目のパルスのパルス幅H3は、40μ秒であり、4番目のパルスのパルス幅H4は、50μ秒である。
PHYペイロードは、モード1では、送信対象の信号として6ビットのデータ(すなわちx-x)を含み、モード2では、送信対象の信号として12ビットのデータ(すなわちx-x11)を含む。また、PHYペイロードは、モード3では、送信対象の信号として可変のビット数のデータ(すなわちx-x)を含む。nは、1以上の整数であるが、より具体的には、3の倍数から1を減算することによって得られる整数である。
ここで、パラメータykは、y=y=x3k+x3k+1×2+x3k+2×4として定義される。モード1では、kは0または1であり、モード2では、kは0、1、2または3である。モード3では、kは、0~{(n+1)/3-1}までの整数である。
モード1およびモード2のそれぞれでは、PHYペイロードAに含まれる送信対象の信号は、パルス幅PAk=120+30×(7-y)[μ秒]によって、2つのパルス幅PA1およびPA2、または4つのパルス幅PA1~PA4に変調される。PHYペイロードBに含まれる送信対象の信号は、パルス幅PBk=120+30×y[μ秒]によって、2つのパルス幅PB1およびPB2、または4つのパルス幅PB1~PB4に変調される。
また、モード3では、PHYペイロードに含まれる送信対象の信号は、パルス幅P=100+20×y[μ秒]によって、(n+1)/3個のパルス幅P1,P2,・・・に変調される。
モード1およびモード2では、PHYペイロードAとPHYペイロードBとを含む全ペイロードのうちの半分はオプショナルである。つまり、送信機は、PHYペイロードAおよびPHYペイロードBを送信してもよく、それらのうちの1つだけを送信してもよい。さらに、送信機は、PHYペイロードAの一部のみと、PHYペイロードBの一部のみとを送信してもよい。具体的には、送信機は、モード2では、PHYペイロードAにおけるパルス幅PA3のパルスおよびパルス幅PA4のパルスと、PHYペイロードBにおけるパルス幅PB1のパルスおよびパルス幅PB2のパルスとを送信してもよい。
モード3のSFTは、パルス幅F1~F4がそれぞれ40μ秒、50μ秒、60μ秒および40μ秒である4つのパルスを含む。また、SFTは、オプショナルである。したがって、送信機は、SFTの代わりに、次のSHRを送信してもよい。
送信機は、オプショナルフィールドに含まれる信号として、どのような種類の信号を送信してもよい。しかし、その信号は、SHRのパターンを含んではならない。このようなオプショナルフィールドは、直流電流の補償または調光制御などに用いられる。
<パケットPPMのPPDUフォーマット>
図320は、パケットPPMのモード1におけるPPDUフォーマットの一例を示す図である。図321は、パケットPPMのモード2におけるPPDUフォーマットの一例を示す図である。図322は、パケットPPMのモード3におけるPPDUフォーマットの一例を示す図である。
パケットPPMによって変調されるパケットは、モード1およびモード2では、図320および図321に示すように、SHRと、PHYペイロードと、オプショナルフィールドとを含む。SHRは、PHYペイロードに対するヘッダである。
また、モード3では、パケットPPMによって変調されるパケットは、図322に示すように、SHRと、PHYペイロードと、SFTと、オプショナルフィールドとを含む。SFTは、PHYペイロードに対するフッタである。
モード1~3のそれぞれにおいて、SHR、PHYペイロードおよびSFTでは、互いに異なる輝度値である第1および第2の輝度値のそれぞれが、時間軸上に沿って交互に現れる。第1の輝度値は、BrightまたはHighであり、第2の輝度値は、DarkまたはLowである。
パケットPPMにおける短く明るいパルスの時間長(図320~図322中のL)は、10μ秒よりも短い。これにより、可視光信号の平均的な輝度を抑えて暗くすることができる。
パケットPPMのSHRの時間長は、3つのインターバルH1~H3を含んでいる。3つのインターバルH1~H3のそれぞれは、連続する4つのパルス(具体的には上述の明るいパルス)のインターバルである。
図323は、パケットPPMのモード1~3のそれぞれのSHRにおけるインターバルのパターンの一例を示す図である。
図323に示すように、パケットPPMのモード1では、3つのインターバルH1~H3はそれぞれ160μ秒である。パケットPWMのモード2では、3つのインターバルH1~H3のうちの1番目のインターバルH1は160μ秒であり、2番目のインターバルH2は180μ秒であり、3番目のインターバルH3は160μ秒である。パケットPPMのモード3では、3つのインターバルH1~H3のうちの1番目のインターバルH1は80μ秒であり、2番目のインターバルH2は90μ秒であり、3番目のインターバルH3は80μ秒である。
PHYペイロードは、モード1では、送信対象の信号として6ビットのデータ(すなわちx-x)を含み、モード2では、送信対象の信号として12ビットのデータ(すなわちx-x11)を含む。また、PHYペイロードは、モード3では、送信対象の信号として可変のビット数のデータ(すなわちx-x)を含む。nは、5以上の整数であるが、より具体的には、3の倍数から1を減算することによって得られる整数である。
ここで、パラメータykは、y=y=x3k+x3k+1×2+x3k+2×4として定義される。モード1では、kは0または1であり、モード2では、kは0、1、2または3である。モード3では、kは、0~{(n+1)/3-1}までの整数である。
モード1およびモード2のそれぞれでは、PHYペイロードに含まれる送信対象の信号は、インターバルP=180+30×y[μ秒]によって、2つのインターバルP1およびP2、または4つのインターバルP1~P4に変調される。
また、モード3では、PHYペイロードに含まれる送信対象の信号は、インターバルP=100+20×y[μ秒]によって、(n+1)/3個のインターバルP1,P2,・・・に変調される。モード3では、SFTまたは次のSHRまで続くPHYペイロードが送信される。
また、モード3のSFTは、3つのインターバルF1~F3を含み、インターバルF1~F3のそれぞれは90μ秒、80μ秒、および90μ秒である。また、SFTは、オプショナルである。したがって、送信機は、SFTの代わりに、次のSHRを送信してもよい。
送信機は、オプショナルフィールドに含まれる信号として、どのような種類の信号を送信してもよい。しかし、その信号は、SHRのパターンを含んではならない。このようなオプショナルフィールドは、直流電流の補償または調光制御などに用いられる。
<PHYフレームフォーマット>
以下、パケットPWMおよびパケットPPMのそれぞれのモード1におけるPHYフレームについて説明する。
PHYペイロードは、上述のように、6ビットのデータ(すなわちx-x)を含む。そのデータを含むパケットのパケットアドレスA(a,a)は、(x,x)によって示される。そして、パケットデータD(d,d,d,d)は、(x,x,x,x)によって示される。上述のMACフレームであるPHYフレームは、4つのパケットのパケットデータD00,D01,D10,D11を含む16ビットからなる。ここで、パケットデータDkは、kを示すアドレスAを有するパケットのパケットデータDである。
ここで、上述のように、6ビット(x-x)のうちの2ビット(x,x)がパケットアドレスA(a,a)に用いられる。これにより、6ビットのPHYペイロードの時間長を短くすることができ、その結果、可視光信号を遠距離まで送信することができる。つまり、6ビット(x-x)のうちの2ビット(x,x)のそれぞれは、パケットアドレスAに用いられないため、0にすることができる。また、その2ビット(x,x)に対しては、上述のy=x3k+x3k+1×2+x3k+2×4によって、大きい係数4が乗算され、その乗算結果に基づいてパルス幅またはインターバルが決定される。したがって、その2ビット(x,x)のそれぞれが0の場合には、PHYペイロードの時間長を短くすることができ、その結果、可視光信号の送信距離を延ばすことができる。
また、6ビット(x-x)のうちの2ビット(x,x)のそれぞれは、パケットアドレスAに用いられないため、受信エラーを抑えることができる。つまり、6ビット(x-x)のうちの2ビット(x,x)による上述のパラメータy(x3k+x3k+1×2+x3k+2×4)に対する影響は小さい。したがって、この2ビット(x,x)をパケットアドレスAに用いれば、互いに異なるパケットアドレスAに対しても、同じようなパラメータyの数値、つまり同じようなパルス幅またはインターバルが決定される可能性がある。その結果、受信機は、パケットアドレスAを誤ることがある。パケットデータの一部を誤るよりも、パケットアドレスAを誤る方が、PHYフレームの受信エラー率は大きい。したがって、6ビット(x-x)のうちの2ビット(x,x)ではなく(x,x)のそれぞれをパケットアドレスAに用いることによって、受信エラーを抑えることができる。
ところで、MPDU(medium-access-control protocol-data unit)は、PHYフレームに対して非常に大きなオーバーヘッドを有し、その殆どのフィールドは、短く繰り返されるMSDU(medium-access-control service-data unit)に対して不要である。したがって、PHYフレームは、MHR(medium-access-control header)を持たず、MFR(medium-access-control footer)はオプショナルである。
次に、パケットPWMおよびパケットPPMのそれぞれのモード2におけるPHYフレームについて説明する。
図324は、PHYペイロードに含まれる12ビットのデータの一例を示す図である。
PHYペイロードは、上述のように、12ビットのデータ(すなわちx-x11)を含む。このデータは、パケットアドレスA(a-aの全てまたは一部)と、パケットデータDa(da0-da6の全てまたは一部)と、パケットデータDb(db0-db3の全てまたは一部)と、ストップビットS(s)とからなる。
つまり、図324に示すように、3ビット(x,x,x)は(da0,s,db0)を示し、3ビット(x,x,x)は(da1,aまたはda6,db1)を示す。さらに、3ビット(x,x,x)は(da2,aまたはda5,db2)を示し、3ビット(x,x10,x11)は(da3,aまたはda4,aまたはdb3)を示す。
なお、図324に示す12ビットのデータは、図215に示すデータと同一である。つまり、図215に示す符号w1、w2、w3およびw4は、それぞれ3ビット(x,x,x)、(x,x,x)、(x,x,x)および(x,x10,x11)に相当する。
ビットx、x、x10およびx11は、パケット分割ルールにしたがって、パケットアドレスおよびパケットデータのうちの何れか一方に用いられる。
図325~図332は、PHYフレームをパケットに分割する処理を示す図である。なお、図325~図332に示す処理は、図216~図226に示すパケットの生成の処理と同様であるが、分割によって生成されるパケットにパリティが含まれない点が、図216~図226に示す処理と異なる。また、図325~図332に示す各ボックス内の上から2行目の数値は、ビットサイズを示し、上から3行目の数値はビットの値(0または1)を示す。
図325は、PHYフレームを1パケットに収める処理を示す図である。つまり、図325は、PHYフレームを分割することなく、そのPHYフレームに含まれる7ビットのデータを1パケットに収める処理を示す。
具体的には、PHYフレームの7ビットのうち、4ビットからなるパケットデータDa(0)と、3ビットからなるパケットデータDb(0)とが、1ビットのストップビットと、4ビットのパケットアドレスとともにパケット0に収められる。そのストップビットは「1」を示し、パケットアドレスは「0000」を示す。
図326は、PHYフレームを2パケットに分割する処理を示す図である。
PHYフレームの18ビットのうちの、7ビットからなるパケットデータDa(0)と、4ビットからなるパケットデータDb(0)とが、1ビットのストップビットとともにパケット0に収められる。そのストップビットは「0」を示す。また、PHYフレームの18ビットのうちの、4ビットからなるパケットデータDa(1)と、3ビットからなるパケットデータDb(1)とが、1ビットのストップビットと、4ビットのパケットアドレスとともにパケット1に収められる。そのストップビットは「1」を示し、パケットアドレスは「1000」を示す。
図327は、PHYフレームを3パケットに分割する処理を示す図である。
PHYフレームの27ビットのうちの、6ビットからなるパケットデータDa(0)と、4ビットからなるパケットデータDb(0)とが、1ビットのストップビットと、1ビットのパケットアドレスとともにパケット0に収められる。そのストップビットは「0」を示し、パケットアドレスは「0」を示す。また、PHYフレームの27ビットのうちの、6ビットからなるパケットデータDa(1)と、4ビットからなるパケットデータDb(1)とが、1ビットのストップビットと、1ビットのパケットアドレスとともにパケット1に収められる。そのストップビットは「0」を示し、パケットアドレスは「1」を示す。さらに、PHYフレームの27ビットのうちの、4ビットからなるパケットデータDa(2)と、3ビットからなるパケットデータDb(2)とが、1ビットのストップビットと、4ビットのパケットアドレスとともにパケット2に収められる。そのストップビットは「1」を示し、パケットアドレスは「0100」を示す。
図328は、PHYフレームを4パケットに分割する処理を示す図である。
PHYフレームの34ビットのうちの、5ビットからなるパケットデータDa(0)と、4ビットからなるパケットデータDb(0)とが、1ビットのストップビットと、2ビットのパケットアドレスとともにパケット0に収められる。そのストップビットは「0」を示し、パケットアドレスは「00」を示す。また、PHYフレームの34ビットのうちの、5ビットからなるパケットデータDa(1)と、4ビットからなるパケットデータDb(1)とが、1ビットのストップビットと、2ビットのパケットアドレスとともにパケット1に収められる。そのストップビットは「0」を示し、パケットアドレスは「10」を示す。また、PHYフレームの34ビットのうちの、5ビットからなるパケットデータDa(2)と、4ビットからなるパケットデータDb(2)とが、1ビットのストップビットと、2ビットのパケットアドレスとともにパケット2に収められる。そのストップビットは「0」を示し、パケットアドレスは「01」を示す。さらに、PHYフレームの34ビットのうちの、4ビットからなるパケットデータDa(3)と、3ビットからなるパケットデータDb(3)とが、1ビットのストップビットと、4ビットのパケットアドレスとともにパケット3に収められる。そのストップビットは「1」を示し、パケットアドレスは「1100」を示す。
図329は、PHYフレームを5パケットに分割する処理を示す図である。
PHYフレームの43ビットのうちの、5ビットからなるパケットデータDa(0)と、4ビットからなるパケットデータDb(0)とが、1ビットのストップビットと、2ビットのパケットアドレスとともにパケット0に収められる。そのストップビットは「0」を示し、パケットアドレスは「00」を示す。同様に、パケット1~パケット3にも、5ビットからなるパケットデータDaと、4ビットからなるパケットデータDbとが、1ビットのストップビットと、2ビットのパケットアドレスとともに収められる。それらのパケットのストップビットは「0」を示す。さらに、PHYフレームの34ビットのうちの、4ビットからなるパケットデータDa(4)と、3ビットからなるパケットデータDb(4)とが、1ビットのストップビットと、4ビットのパケットアドレスとともにパケット4に収められる。そのストップビットは「1」を示し、パケットアドレスは「0010」を示す。
図330は、PHYフレームをN(N=6、7または8)パケットに分割する処理を示す図である。
PHYフレームの(8N-1)ビットのうちの、4ビットからなるパケットデータDa(0)と、4ビットからなるパケットデータDb(0)とが、1ビットのストップビットと、3ビットのパケットアドレスとともにパケット0に収められる。そのストップビットは「0」を示し、パケットアドレスは「000」を示す。同様に、パケット1~パケット(N-2)にも、4ビットからなるパケットデータDaと、4ビットからなるパケットデータDbとが、1ビットのストップビットと、3ビットのパケットアドレスとともに収められる。それらのパケットのストップビットは「0」を示す。さらに、PHYフレームの(8N-1)ビットのうちの、4ビットからなるパケットデータDa(N-1)と、3ビットからなるパケットデータDb(N-1)とが、1ビットのストップビットと、4ビットのパケットアドレスとともにパケット(N-1)に収められる。そのストップビットは「1」を示す。
図331は、PHYフレームを9パケットに分割する処理を示す図である。
PHYフレームの71ビットのうちの、4ビットからなるパケットデータDa(0)と、4ビットからなるパケットデータDb(0)とが、1ビットのストップビットと、3ビットのパケットアドレスとともにパケット0に収められる。そのストップビットは「0」を示し、パケットアドレスは「000」を示す。同様に、パケット1~パケット7にも、4ビットからなるパケットデータDaと、4ビットからなるパケットデータDbとが、1ビットのストップビットと、3ビットのパケットアドレスとともに収められる。それらのパケットのストップビットは「0」を示す。さらに、PHYフレームの71ビットのうちの、4ビットからなるパケットデータDa(8)と、3ビットからなるパケットデータDb(8)とが、1ビットのストップビットと、4ビットのパケットアドレスとともにパケット8に収められる。そのストップビットは「1」を示し、パケットアドレスは「0001」を示す。
図332は、PHYフレームをN(N=10~16)パケットに分割する処理を示す図である。
PHYフレームの7Nビットのうちの、4ビットからなるパケットデータDa(0)と、3ビットからなるパケットデータDb(0)とが、1ビットのストップビットと、4ビットのパケットアドレスとともにパケット0に収められる。そのストップビットは「0」を示し、パケットアドレスは「0000」を示す。同様に、パケット1~パケット(N-2)にも、4ビットからなるパケットデータDaと、3ビットからなるパケットデータDbとが、1ビットのストップビットと、4ビットのパケットアドレスとともに収められる。それらのパケットのストップビットは「0」を示す。さらに、PHYフレームの7Nビットのうちの、4ビットからなるパケットデータDa(N-1)と、3ビットからなるパケットデータDb(N-1)とが、1ビットのストップビットと、4ビットのパケットアドレスとともにパケット(N-1)に収められる。そのストップビットは「1」を示す。
また、送信機は、112ビットを超えるデータ(PHYフレーム)またはストリームデータなどの大量のデータを送信するときには、パケット15のストップビットを「1」にすることなく「0」に設定する。そして、送信機は、上述の大量のデータのうち、パケット0~パケット15に含めることができなかったデータを、新たにパケット0から配列される各パケットに格納して送信する。言い換えれば、送信機は、パケット0~パケット15に含めることができなかったデータを、再び「0000」から始まるパケットアドレスを有する各パケットに格納して送信する。
モード2におけるPHYフレームは、モード1におけるPHYフレームと同様に、MHRを持たず、MFRはオプショナルである。
(実施の形態24のまとめ)
実施の形態24に係る可視光信号の生成方法は、図230Aのフローチャートによって示される。
つまり、この可視光信号の生成方法は、送信機が備える光源の輝度変化によって送信される可視光信号を生成する方法であって、ステップSD1~SD3を含む。
ステップSD1では、互いに異なる輝度値である第1および第2の輝度値のそれぞれが、時間軸上に沿って交互に現れるデータであるプリアンブルを生成する。
ステップSD2では、第1および第2の輝度値が時間軸上に沿って交互に現れるデータにおいて、第1および第2の輝度値のそれぞれが継続する時間長を、送信対象の信号に応じた第1の方式にしたがって決定することにより、第1のペイロードを生成する。
最後に、ステップSD3では、プリアンブルと第1のペイロードとを結合することによって可視光信号を生成する。
例えば、図316~図318に示すように、第1および第2の輝度値は、Bright(High)およびDark(Low)であり、第1のデータは、PHYペイロード(PHYペイロードAまたはPHYペイロードB)である。このように生成された可視光信号を送信することによって、図191~図193に示すように、受信パケット数を増やすことができるとともに、信頼度を高めることができる。その結果、多様な機器間の通信を可能にすることができる。
また、この可視光信号の生成方法は、さらに、第1および第2の輝度値が時間軸上に沿って交互に現れるデータにおいて、第1および第2の輝度値のそれぞれが継続する時間長を、送信対象の信号に応じた第2の方式にしたがって決定することによって、第1のペイロードによって表現される明るさと補完関係を有する第2のペイロードを生成してもよい。この場合、可視光信号の生成では、第1のペイロード、プリアンブル、第2のペイロードの順に、プリアンブルと第1および第2のペイロードとを結合することによって、可視光信号を生成する。
例えば、図316および図317に示すように、第1および第2の輝度値は、Bright(High)およびDark(Low)であり、第1および第2のペイロードは、PHYペイロードAおよびPHYペイロードBである。
これにより、第1のペイロードの明るさと第2のペイロードの明るさとは、補完関係を有するため、送信対象の信号に関わらず明るさを一定に保つことができる。さらに、第1のペイロードおよび第2のペイロードは、同じ送信対象の信号を異なる方式にしたがって変調されたデータであるため、受信機は何れか一方のペイロードのみ受信すれば、そのペイロードを送信対象の信号に復調することができる。また、第1のペイロードと第2のペイロードとの間にプリアンブルであるヘッダ(SHR)が配置されている。したがって、受信機は、第1のペイロードの後側の一部のみと、ヘッダと、第2のペイロードの先頭側の一部のみとを受信すれば、それらを送信対象の信号に復調することができる。したがって、可視光信号の受信効率を高めることができる。
例えば、プリアンブルは、第1および第2のペイロードに対するヘッダであり、そのヘッダでは、第1の時間長の第1の輝度値、第2の時間長の第2の輝度値の順で、それぞれの輝度値が現れる。ここで、その第1の時間長は、100μ秒であり、第2の時間長は、90μ秒である。つまり、図319に示すように、パケットPWMのモード1におけるヘッダ(SHR)に含まれる各パルスの時間長(パルス幅)のパターンが定義される。
また、プリアンブルは、第1および第2のペイロードに対するヘッダであり、そのヘッダでは、第1の時間長の第1の輝度値、第2の時間長の第2の輝度値、第3の時間長の第1の輝度値、第4の時間長の第2の輝度値の順で、それぞれの輝度値が現れる。ここで、その第1の時間長は、100μ秒であり、第2の時間長は、90μ秒であり、第3の時間長は、90μ秒であり、第4の時間長は、100μ秒である。つまり、図319に示すように、パケットPWMのモード2におけるヘッダ(SHR)に含まれる各パルスの時間長(パルス幅)のパターンが定義される。
このように、パケットPWMのモード1およびモード2のそれぞれのヘッダのパターンが定義されるため、受信機は、可視光信号における第1および第2のペイロードを適切に受信することができる。
また、送信対象の信号は、第1のビットxから第6のビットxまでの6ビットからなり、第1および第2のペイロードのそれぞれでは、第3の時間長の第1の輝度値、第4の時間長の第2の輝度値の順で、それぞれの輝度値が現れる。ここで、パラメータyが、y=x3k+x3k+1×2+x3k+2×4として表される場合(kは0または1)、第1のペイロードの生成では、第1のペイロードにおける第3および第4の時間長のそれぞれを、第1の方式である時間長P=120+30×(7-y)[μ秒]にしたがって決定する。また、第2のペイロードの生成では、第2のペイロードにおける第3および第4の時間長のそれぞれを、第2の方式である時間長P=120+30×y[μ秒]にしたがって決定する。つまり、図316に示すように、パケットPWMのモード1では、送信対象の信号が、第1のペイロード(PHYペイロードA)と第2のペイロード(PHYペイロードB)のそれぞれに含まれる各パルスの時間長(パルス幅)として変調される。
また、送信対象の信号は、第1のビットxから第12のビットx11までの12ビットからなり、第1および第2のペイロードのそれぞれでは、第5の時間長の第1の輝度値、第6の時間長の第2の輝度値、第7の時間長の前記第1の輝度値、第8の時間長の第2の輝度値の順で、それぞれの輝度値が現れる。ここで、パラメータyが、y=x3k+x3k+1×2+x3k+2×4として表される場合(kは0、1、2または3)、第1のペイロードの生成では、第1のペイロードにおける前記第5~第8の時間長のそれぞれを、第1の方式である時間長P=120+30×(7-y)[μ秒]にしたがって決定する。また、第2のペイロードの生成では、第2のペイロードにおける第5~第8の時間長のそれぞれを、第2の方式である時間長P=120+30×y[μ秒]にしたがって決定する。つまり、図317に示すように、パケットPWMのモード2では、送信対象の信号が、第1のペイロード(PHYペイロードA)と第2のペイロード(PHYペイロードB)のそれぞれに含まれる各パルスの時間長(パルス幅)として変調される。
このように、パケットPWMのモード1およびモード2では、送信対象の信号が各パルスのパルス幅として変調されるため、受信機は、そのパルス幅に基づいて、可視光信号を適切に送信対象の信号に復調することができる。
また、プリアンブルは、第1のペイロードに対するヘッダであり、そのヘッダでは、第1の時間長の第1の輝度値、第2の時間長の第2の輝度値、第3の時間長の第1の輝度値、第4の時間長の第2の輝度値の順で、それぞれの輝度値が現れる。ここで、その第1の時間長は、50μ秒であり、第2の時間長は、40μ秒であり、第3の時間長は、40μ秒であり、第4の時間長は、50μ秒である。つまり、図319に示すように、パケットPWMのモード3におけるヘッダ(SHR)に含まれる各パルスの時間長(パルス幅)のパターンが定義される。
このように、パケットPWMのモード3のヘッダのパターンが定義されるため、受信機は、可視光信号における第1のペイロードを適切に受信することができる。
また、送信対象の信号は、第1のビットxから第3nのビットx3n-1までの3nビットからなり(nは2以上の整数)、第1のペイロードの時間長は、それぞれ第1または第2の輝度値が継続する第1~第nの時間長からなる。ここで、パラメータyが、y=x3k+x3k+1×2+x3k+2×4として表される場合(kは0~(n-1)までの整数)、第1のペイロードの生成では、第1のペイロードにおける第1~第nの時間長のそれぞれを、第1の方式である時間長P=100+20×y[μ秒]にしたがって決定する。つまり、図318に示すように、パケットPWMのモード3では、送信対象の信号が、第1のペイロード(PHYペイロード)に含まれる各パルスの時間長(パルス幅)として変調される。
このように、パケットPWMのモード3では、送信対象の信号が各パルスのパルス幅として変調されるため、受信機は、そのパルス幅に基づいて、可視光信号を適切に送信対象の信号に復調することができる。
図333Aは、実施の形態24に係る他の可視光信号の生成方法を示すフローチャートである。この可視光信号の生成方法は、送信機が備える光源の輝度変化によって送信される可視光信号を生成する方法であって、ステップSE1~SE3を含む。
ステップSE1では、互いに異なる輝度値である第1および第2の輝度値のそれぞれが、時間軸上に沿って交互に現れるデータであるプリアンブルを生成する。
ステップSE2では、第1および第2の輝度値が時間軸上に沿って交互に現れるデータにおいて、第1の輝度値が現れてから次の第1の輝度値が現れるまでのインターバルを、送信対象の信号に応じた方式にしたがって決定することにより、第1のペイロードを生成する。
ステップSE3では、プリアンブルと第1のペイロードとを結合することによって可視光信号を生成する。
図333Bは、実施の形態24に係る他の信号生成装置の構成を示すブロック図である。この信号生成装置E10は、送信機が備える光源の輝度変化によって送信される可視光信号を生成する信号生成装置であって、プリアンブル生成部E11と、ペイロード生成部E12と、結合部E13とを備える。また、この信号生成装置E10は、図333Aに示すフローチャートの処理を実行する。
つまり、プリアンブル生成部E11は、互いに異なる輝度値である第1および第2の輝度値のそれぞれが、時間軸上に沿って交互に現れるデータであるプリアンブルを生成する。
ペイロード生成部E12は、第1および第2の輝度値が時間軸上に沿って交互に現れるデータにおいて、第1の輝度値が現れてから次の第1の輝度値が現れるまでのインターバルを、送信対象の信号に応じた方式にしたがって決定することにより、第1のペイロードを生成する。
結合部E13では、プリアンブルと第1のペイロードとを結合することによって可視光信号を生成する。
例えば、図320~図322に示すように、第1および第2の輝度値は、Bright(High)およびDark(Low)であり、第1のペイロードは、PHYペイロードである。このように生成された可視光信号を送信することによって、図191~図193に示すように、受信パケット数を増やすことができるとともに、信頼度を高めることができる。その結果、多様な機器間の通信を可能にすることができる。
例えば、プリアンブルおよび第1のペイロードのそれぞれにおける第1の輝度値の時間長は、10μ秒以下である。
これにより、可視光通信を行いながら光源の平均的な輝度を抑えることができる。
また、プリアンブルは、第1のペイロードに対するヘッダであり、そのヘッダの時間長は、第1の輝度値が現れてから次の第1の輝度値が現れるまでのインターバルを3つ含む。ここで、その3つのインターバルのそれぞれは、160μ秒である。つまり、図323に示すように、パケットPPMのモード1におけるヘッダ(SHR)に含まれる各パルス間のインターバルのパターンが定義される。なお、上記各パルスは、例えば第1の輝度値を有するパルスである。
また、プリアンブルは、第1のペイロードに対するヘッダであり、そのヘッダの時間長は、第1の輝度値が現れてから次の第1の輝度値が現れるまでのインターバルを3つ含む。ここで、その3つのインターバルのうちの1つ目のインターバルは、160μ秒であり、2つ目のインターバルは、180μ秒であり、3つ目のインターバルは、160μ秒である。つまり、図323に示すように、パケットPPMのモード2におけるヘッダ(SHR)に含まれる各パルス間のインターバルのパターンが定義される。
また、プリアンブルは、第1のペイロードに対するヘッダであり、そのヘッダの時間長は、第1の輝度値が現れてから次の第1の輝度値が現れるまでのインターバルを3つ含む。ここで、3つのインターバルのうちの1つ目のインターバルは、80μ秒であり、2つ目のインターバルは、90μ秒であり、3つ目のインターバルは、80μ秒である。つまり、図323に示すように、パケットPPMのモード3におけるヘッダ(SHR)に含まれる各パルス間のインターバルのパターンが定義される。
このように、パケットPPMのモード1、モード2およびモード3のそれぞれのヘッダのパターンが定義されるため、受信機は、可視光信号における第1のペイロードを適切に受信することができる。
また、送信対象の信号は、第1のビットxから第6のビットxまでの6ビットからなり、第1のペイロードの時間長は、第1の輝度値が現れてから次の第1の輝度値が現れるまでのインターバルを2つ含む。ここで、パラメータyが、y=x3k+x3k+1×2+x3k+2×4として表される場合(kは0または1)、第1のペイロードの生成では、第1のペイロードにおける2つのインターバルのそれぞれを、上述の方式であるインターバルP=180+30×y[μ秒]にしたがって決定する。つまり、図320に示すように、パケットPPMのモード1では、送信対象の信号が、第1のペイロード(PHYペイロード)に含まれる各パルス間のインターバルとして変調される。
また、送信対象の信号は、第1のビットxから第12のビットx11までの12ビットからなり、第1のペイロードの時間長は、第1の輝度値が現れてから次の第1の輝度値が現れるまでのインターバルを4つ含む。ここで、パラメータyが、y=x3k+x3k+1×2+x3k+2×4として表される場合(kは0、1、2または3)、第1のペイロードの生成では、第1のペイロードにおける4つのインターバルのそれぞれを、上述の方式であるインターバルP=180+30×y[μ秒]にしたがって決定する。つまり、図321に示すように、パケットPPMのモード2では、送信対象の信号が、第1のペイロード(PHYペイロード)に含まれる各パルス間のインターバルとして変調される。
また、送信対象の信号は、第1のビットxから第3nのビットx3n-1までの3nビットからなり(nは2以上の整数)、第1のペイロードの時間長は、第1の輝度値が現れてから次の第1の輝度値が現れるまでのインターバルをn個含む。ここで、パラメータyが、y=x3k+x3k+1×2+x3k+2×4として表される場合(kは0~(n-1)までの整数)、第1のペイロードの生成では、第1のペイロードにおけるn個の前記インターバルのそれぞれを、上述の方式であるインターバルP=100+20×y[μ秒]にしたがって決定する。つまり、図322に示すように、パケットPPMのモード3では、送信対象の信号が、第1のペイロード(PHYペイロード)に含まれる各パルス間のインターバルとして変調される。
このように、パケットPPMのモード1、モード2およびモード3では、送信対象の信号が各パルス間のインターバルとして変調されるため、受信機は、そのインターバルに基づいて、可視光信号を適切に送信対象の信号に復調することができる。
また、可視光信号の生成方法では、さらに、第1のペイロードに対するフッタを生成し、可視光信号の生成では、第1のペイロードの次にそのフッタを結合してもよい。つまり、図318および図322に示すように、パケットPWMおよびパケットPPMのモード3では、第1のペイロード(PHYペイロード)に続いてフッタ(SFT)が送信される。これにより、第1のペイロードの終了をフッタによって明確に特定することができるため、可視光通信を効率的に行うことができる。
また、可視光信号の生成では、フッタが送信されない場合には、そのフッタに代えて、送信対象の信号の次の信号に対するヘッダを結合してもよい。つまり、パケットPWMおよびパケットPPMのモード3では、図318および図322に示すフッタ(SFT)の代わりに、第1のペイロード(PHYペイロード)に続いて、その次の第1のペイロードに対するヘッダ(SHR)が送信される。これにより、第1のペイロードの終了を、次の第1のペイロードに対するヘッダによって明確に特定することができるとともに、フッタが送信されないため、可視光通信をより効率的に行うことができる。
実施の形態24に係る信号生成装置の構成は、図230Bのブロック図によって示される。
つまり、実施の形態24に係る信号生成装置D10は、送信機が備える光源の輝度変化によって送信される可視光信号を生成する信号生成装置であって、プリアンブル生成部D11と、データ生成部D12と、結合部D13とを備える。
プリアンブル生成部D11は、互いに異なる輝度値である第1および第2の輝度値のそれぞれが、時間軸上に沿って交互に現れるデータであるプリアンブルを生成する。
データ生成部D12は、第1および第2の輝度値が時間軸上に沿って交互に現れるデータにおいて、第1および第2の輝度値のそれぞれが継続する時間長を、送信対象の信号に応じた第1の方式にしたがって決定することにより、第1のペイロードを生成する。
結合部D13は、プリアンブルと第1のペイロードとを結合することによって可視光信号を生成する。
この信号生成装置D10によって生成された可視光信号を送信することによって、図191~図193に示すように、受信パケット数を増やすことができるとともに、信頼度を高めることができる。その結果、多様な機器間の通信を可能にすることができる。
なお、上記各実施の形態および各変形例において、各構成要素は、専用のハードウェアで構成されるか、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPUまたはプロセッサなどのプログラム実行部が、ハードディスクまたは半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。例えばプログラムは、図230Aおよび図333Aのフローチャートによって示される可視光信号の生成方法をコンピュータに実行させる。
以上、一つまたは複数の態様に係る可視光信号の生成方法について、上記各実施の形態および各変形例に基づいて説明したが、本発明は、この実施の形態に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態および変形例における構成要素を組み合わせて構築される形態も、本発明の範囲内に含まれてもよい。
(実施の形態25)
本実施の形態では、可視光信号の復号方法および符号化方法などについて説明する。
図334は、MPMにおけるMACフレームのフォーマットを示す図である。
MPM(Mirror Pulse Modulation)におけるMAC(medium access control)フレームのフォーマットは、MHR(medium access control header)とMSDU(medium access control service-data unit)とから構成される。MHRフィールドは、シーケンス番号サブフィールドを含む。MSDUは、フレームペイロードを含み、可変長である。MHRとMSDUとを含むMPDU(medium access control protocol-data unit)のビット長は、macMpmMpduLengthとして設定される。
なお、MPMは、実施の形態20および実施の形態24における変調方式であって、例えば、図188~図189B、図197~図230B、および図315~図332に示されるように送信対象の情報または信号を変調する方式である。
図335は、MPMにおけるMACフレームを生成する符号化装置の処理動作を示すフローチャートである。具体的には、図335は、シーケンス番号サブフィールドのビット長の決め方を示す図である。なお、符号化装置は、例えば、可視光信号を送信する上述の送信機または送信装置などに備えられている。
シーケンス番号サブフィールドは、フレームシーケンス番号(シーケンス番号ともいう)を含む。シーケンス番号サブフィールドのビット長は、macMpmSnLengthとして設定される。シーケンス番号サブフィールドのビット長が可変長に設定されている場合、シーケンス番号サブフィールドにおける先頭のビットは、最終フレームフラグとして使用される。つまり、この場合、シーケンス番号サブフィールドは、最終フレームフラグと、シーケンス番号を示すビット列とを含む。その最終フレームフラグは、最終フレームでは1に設定され、その他のフレームでは、0に設定される。つまり、この最終フレームフラグは、処理対象フレームが最終フレームであるか否かを示す。なお、この最終フレームフラグは、上述のストップビットに相当する。また、シーケンス番号は、上述のアドレスに相当する。
まず、符号化装置は、SNが可変長に設定されているか否かを判定する(ステップS101a)。なお、SNは、シーケンス番号サブフィールドのビット長である。つまり、符号化装置は、macMpmSnLengthが0xfを示すか否かを判定する。macMpmSnLengthが0xfを示すときには、SNは可変長であり、macMpmSnLengthが0xf以外を示すときには、SNは固定長である。符号化装置は、SNが可変長に設定されていない、すなわち、SNが固定長に設定されていると判定すると(ステップS101aのN)、SNをmacMpmSnLengthによって示される値に決定する(ステップS102a)。このとき、符号化装置は、最終フレームフラグ(すなわちLFF)を使用しない。
一方、符号化装置は、SNが可変長に設定されていると判定すると(ステップS101aのY)、処理対象フレームが最終フレームか否かを判定する(ステップS103a)。ここで、符号化装置は、処理対象フレームが最終フレームであると判定すると(ステップS103aのY)、SNを5ビットに決定する(ステップS104a)。このとき、符号化装置は、シーケンス番号サブフィールドにおける先頭のビットとして、1を示す最終フレームフラグを決定する。
また、符号化装置は、処理対象フレームが最終フレームでないと判定すると(ステップS103aのN)、最終フレームのシーケンス番号の値が、1-15のうちの何れかを判定する(ステップS105a)。なお、シーケンス番号は、0から昇順に、各フレームに対して割り当てられる整数である。また、ステップS103aでNの場合には、フレーム数は2以上である。したがって、この場合には、最終フレームのシーケンス番号の値は、0を除く1-15のうちの何れかを取り得る。
符号化装置は、ステップS105aにおいて、最終フレームのシーケンス番号の値が1であると判定すると、SNを1ビットに決定する(ステップS106a)。このとき、符号化装置は、シーケンス番号サブフィールドにおける先頭のビットである最終フレームフラグの値を、0に決定する。
例えば、最終フレームのシーケンス番号の値が1である場合、最終フレームのシーケンス番号サブフィールドは、最終フレームフラグ(1)とシーケンス番号の値(1)とを含む(1,1)として表される。このとき、符号化装置は、処理対象フレームのシーケンス番号サブフィールドのビット長を1ビットに決定する。つまり、符号化装置は、最終フレームフラグ(0)のみを含むシーケンス番号サブフィールドを決定する。
符号化装置は、ステップS105aにおいて、最終フレームのシーケンス番号の値が2であると判定すると、SNを2ビットに決定する(ステップS107a)。このときにも、符号化装置は、最終フレームフラグの値を0に決定する。
例えば、最終フレームのシーケンス番号の値が2である場合、最終フレームのシーケンス番号サブフィールドは、最終フレームフラグ(1)とシーケンス番号の値(2)とを含む(1,0,1)として表される。なお、シーケンス番号は、ビット列によって示されるが、そのビット列では、左端のビットがLSB(least significant bit)であって、右端のビットがMSB(most significant bit)である。したがって、シーケンス番号の値(2)は、ビット列(0,1)と表記される。このように、最終フレームのシーケンス番号の値が2である場合、符号化装置は、処理対象フレームのシーケンス番号サブフィールドのビット長を2ビットに決定する。つまり、符号化装置は、最終フレームフラグ(0)と、シーケンス番号を示すビット(0)または(1)とを含むシーケンス番号サブフィールドを決定する。
符号化装置は、ステップS105aにおいて、最終フレームのシーケンス番号の値が3または4であると判定すると、SNを3ビットに決定する(ステップS108a)。このときにも、符号化装置は、最終フレームフラグの値を0に決定する。
符号化装置は、ステップS105aにおいて、最終フレームのシーケンス番号の値が5-8の何れかの整数であると判定すると、SNを4ビットに決定する(ステップS109a)。このときにも、符号化装置は、最終フレームフラグの値を0に決定する。
符号化装置は、ステップS105aにおいて、最終フレームのシーケンス番号の値が9-15の何れかの整数であると判定すると、SNを5ビットに決定する(ステップS110a)。このときにも、符号化装置は、最終フレームフラグの値を0に決定する。
図336は、MPMにおけるMACフレームを復号する復号装置の処理動作を示すフローチャートである。具体的には、図336は、シーケンス番号サブフィールドのビット長の決め方を示す図である。なお、復号装置は、例えば、可視光信号を受信する上述の受信機または受信装置などに備えられている。
ここで、復号装置は、SNが可変長に設定されているか否かを判定する(ステップS201a)。つまり、復号装置は、macMpmSnLengthが0xfを示すか否かを判定する。復号装置は、SNが可変長に設定されていない、すなわち、SNが固定長に設定されていると判定すると(ステップS201aのN)、SNをmacMpmSnLengthによって示される値に決定する(ステップS202a)。このとき、復号装置は、最終フレームフラグ(すなわちLFF)を使用しない。
一方、復号装置は、SNが可変長に設定されていると判定すると(ステップS201aのY)、復号対象フレームの最終フレームフラグの値が1であるか0であるかを判定する(ステップS203a)。つまり、復号装置は、復号対象フレームが最終フレームであるか否かを判定する。ここで、復号装置は、最終フレームフラグの値が1であると判定すると(ステップS203aの1)、SNを5ビットに決定する(ステップS204a)。
また、復号装置は、最終フレームフラグの値が0であると判定すると(ステップS203aの0)、最終フレームのシーケンス番号サブフィールドにおける第2ビットから第5ビットまでのビット列によって示される値が、1-15のうちの何れであるかを判定する(ステップS205a)。最終フレームは、1を示す最終フレームフラグを有し、復号対象フレームと同じソースから生成されたフレームである。また、各ソースは、撮像画像中の位置によって特定される。なお、ソースは、例えば図325~図332に示すように複数のフレーム(すなわちパケット)に分割される。つまり、最終フレームは、1つのソースの分割によって生成された複数のフレームの中の最後のフレームである。また、シーケンス番号サブフィールドにおける第2ビットから第5ビットまでのビット列によって示される値は、シーケンス番号の値である。
復号装置は、ステップS205aにおいて、上記ビット列によって示される値が1であると判定すると、SNを1ビットに決定する(ステップS206a)。例えば、最終フレームのシーケンス番号サブフィールドが(1,1)の2ビットである場合、最終フレームフラグは1であり、最終フレームのシーケンス番号、すなわち上記ビット列によって示される値は1である。このとき、復号装置は、復号対象フレームのシーケンス番号サブフィールドのビット長を1ビットに決定する。つまり、復号装置は、復号対象フレームのシーケンス番号サブフィールドを(0)に決定する。
復号装置は、ステップS205aにおいて、上記ビット列によって示される値が2であると判定すると、SNを2ビットに決定する(ステップS207a)。例えば、最終フレームのシーケンス番号サブフィールドが(1,0,1)の3ビットである場合、最終フレームフラグは1であり、最終フレームのシーケンス番号、すなわち上記ビット列(0,1)によって示される値は2である。なお、上記ビット列では、左端のビットがLSB(least significant bit)であって、右端のビットがMSB(most significant bit)である。このとき、復号装置は、復号対象フレームのシーケンス番号サブフィールドのビット長を2ビットに決定する。つまり、復号装置は、復号対象フレームのシーケンス番号サブフィールドを(0,0)または(0,1)に決定する。
復号装置は、ステップS205aにおいて、上記ビット列によって示される値が3または4であると判定すると、SNを3ビットに決定する(ステップS208a)。
復号装置は、ステップS205aにおいて、上記ビット列によって示される値が5-8の何れかの整数であると判定すると、SNを4ビットに決定する(ステップS209a)。
復号装置は、ステップS205aにおいて、上記ビット列によって示される値が9-15の何れかの整数であると判定すると、SNを5ビットに決定する(ステップS210a)。
図337は、MACのPIBの属性を示す図である。
MACのPIB(physical-layer personal-area-network information base)の属性には、macMpmSnLengthとmacMpmMpduLengthとがある。macMpmSnLengthは、0x0-0xfまでの範囲における何れかの整数値であって、シーケンス番号サブフィールドのビット長を示す。具体的には、macMpmSnLengthは、0x0-0xeまでの範囲における何れかの整数値である場合には、その整数値をシーケンス番号サブフィールドの固定のビット長として示す。また、macMpmSnLengthは、0xfである場合には、シーケンス番号サブフィールドのビット長が可変であることを示す。
macMpmMpduLengthは、0x00-0xffまでの範囲における何れかの整数値であって、MPDUのビット長を示す。
図338は、MPMの調光方法を説明するための図である。
MPMは、調光機能を有する。MPMの調光方法には、例えば図338に示す、(a)アナログ調光方式、(b)PWM調光方式、(c)VPPM調光方式、および(d)フィールド挿入調光方式とがある。
アナログ調光方式では、例えば(a2)に示すように、輝度を変化させることによって可視光信号を送信する。ここで、その可視光信号を暗くする場合には、例えば(a1)に示すように、可視光信号の全体の輝度を下げる。逆に、その可視光信号を明るくする場合には、例えば(a3)に示すように、可視光信号の全体の輝度を上げる。
PWM調光方式では、例えば(b2)に示すように、輝度を変化させることによって可視光信号を送信する。ここで、その可視光信号を暗くする場合には、例えば(b1)に示すように、(b2)に示す高い輝度の光が出力される期間において、僅かな期間だけその輝度を下げる。逆に、その可視光信号を明るくする場合には、例えば(b3)に示すように、(b2)に示す低い輝度の光が出力される期間において、僅かな期間だけその輝度を上げる。なお、上述の僅かな期間は、元のパルス幅の1/3未満で、50μ秒未満でなければならない。
VPPM調光方式では、例えば(c2)に示すように、輝度を変化させることによって可視光信号を送信する。ここで、その可視光信号を暗くする場合には、例えば(c1)に示すように、輝度の立ち下がりのタイミングを早める。逆に、その可視光信号を明るくする場合には、例えば(c3)に示すように、輝度の立ち下がりのタイミングを遅らせる。なお、VPPM変調方式は、MPMにおけるPHYのPPMモードに対してのみ用いることができる。
フィールド挿入調光方式では、例えば(d2)に示すように、複数のPPDU(physical-layer data unit)を含む可視光信号を送信する。ここで、その可視光信号を暗くする場合には、例えば(d1)に示すように、PPDUの間に、PPDUの輝度よりも低い輝度の調光フィールドを挿入する。逆に、その可視光信号を明るくする場合には、例えば(d3)に示すように、PPDUの間に、PPDUの輝度よりも高い輝度の調光フィールドを挿入する。
図339は、PHYのPIBの属性を示す図である。
PHY(physical layer)のPIBの属性には、phyMpmMode、phyMpmPlcpHeaderMode、phyMpmPlcpCenterMode、phyMpmSymbolSize、phyMpmOddSymbolBit、phyMpmEvenSymbolBit、phyMpmSymbolOffset、およびphyMpmSymbolUnitとがある。
phyMpmModeは、0または1であって、MPMのPHYモードを示す。具体的には、phyMpmModeは、0である場合には、PHYモードがPWMモードであることを示し、1である場合には、PHYモードがPWMモードであることを示す。
phyMpmPlcpHeaderModeは、0x0-0xfまでの範囲における何れかの整数値であって、PLCP(Physical Layer Conversion Protocol)ヘッダサブフィールドモードおよびPLCPフッタサブフィールドモードを示す。
phyMpmPlcpCenterModeは、0x0-0xfまでの範囲における何れかの整数値であって、PLCPセンタサブフィールドモードを示す。
phyMpmSymbolSizeは、0x0-0xfまでの範囲における何れかの整数値であって、ペイロードサブフィールドのシンボル数を示す。具体的には、phyMpmSymbolSizeは、0x0の場合には、そのシンボル数が可変であることを示し、Nとして参照される。
phyMpmOddSymbolBitは、0x0-0xfまでの範囲における何れかの整数値であって、ペイロードサブフィールドの各奇数シンボルに含まれるビット長を示し、Moddとして参照される。
phyMpmEvenSymbolBitは、0x0-0xfまでの範囲における何れかの整数値であって、ペイロードサブフィールドの各偶数シンボルに含まれるビット長を示し、Mevenとして参照される。
phyMpmSymbolOffsetは、0x00-0xffまでの範囲における何れかの整数値であって、ペイロードサブフィールドのシンボルのオフセット値を示し、Wとして参照される。
phyMpmSymbolUnitは、0x00-0xffまでの範囲における何れかの整数値であって、ペイロードサブフィールドのシンボルのユニット値を示し、Wとして参照される。
図340は、MPMを説明するための図である。
MPMは、PSDU(PHY service data unit)フィールドのみで構成される。また、PSDUフィールドは、MPMのPLCPによって変換されるMPDUを含む。
MPMのPLCPは、図340に示すように、MPDUを5つのサブフィールドに変換する。5つのサブフィールドは、PLCPヘッダサブフィールド、フロントペイロードサブフィールド、PLCPセンタサブフィールド、バックペイロードサブフィールド、およびPLCPフッタサブフィールドである。MPMのPHYモードは、phyMpmModeとして設定される。
図340に示すように、MPMのPLCPは、ビット再配置部301aと、複製部302aと、フロント変換部303aと、バック変換部304aとを備える。
ここで、(x、x、x、...)は、MPDUに含まれる各ビットであり、LSNは、シーケンス番号サブフィールドのビット長であり、Nは、各ペイロードサブフィールドのシンボル数である。ビット再配置部301aは、以下の(式1)にしたがって、(x、x、x、...)を(y、y、y、...)に再配置する。
Figure 0007134094000001
この再配置によって、MPDUの先頭にあるシーケンス番号サブフィールドに含まれる各ビットは、LSNだけ後側に移動する。複製部302aは、そのビット再配置後のMPDUを複製する。
フロントペイロードサブフィールドおよびバックペイロードサブフィールドはそれぞれ、N個のシンボルからなる。ここで、Moddは、奇数番目のシンボルに含まれるビット長であり、Mevenは、偶数番目のシンボルに含まれるビット長であり、Wは、シンボル値オフセット(上述のオフセット値)であり、Wは、シンボル値単位(上述のユニット値)である。なお、N、Modd、Meven、W、およびWは、図339に示すPHYのPIBによって設定される。
フロント変換部303aおよびバック変換部304aは、再配置されたMPDUのペイロードビット(y0、y1、y2、...)を、以下の(式2)~(式5)によってzに変換する。
Figure 0007134094000002
Figure 0007134094000003
フロント変換部303aは、zを用いて、フロントペイロードサブフィールドのi番目のシンボル(すなわちシンボル値)を以下の(式6)によって算出する。
Figure 0007134094000004
バック変換部304aは、zを用いて、バックペイロードサブフィールドのi番目のシンボル(すなわちシンボル値)を以下の(式7)によって算出する。
Figure 0007134094000005
なお、(式6)および(式7)によって算出されるシンボル値は、例えば図188に示す時間長DR1~DR4およびDL1~DL4に相当する。
図341は、PLCPヘッダサブフィールドを示す図である。
PLCPヘッダサブフィールドは、図341に示すように、PWMモードでは、4つのシンボルによって構成され、PPMモードでは、3つのシンボルによって構成される。
図342は、PLCPセンタサブフィールドを示す図である。
PLCPセンタのサブフィールドは、図342に示すように、PWMモードでは、4つのシンボルによって構成され、PPMモードでは、3つのシンボルによって構成される。
図343は、PLCPフッタサブフィールドを示す図である。
PLCPフッタサブフィールドは、図343に示すように、PWMモードでは、4つのシンボルによって構成され、PPMモードでは、3つのシンボルによって構成される。
図344は、MPMにおけるPHYのPWMモードの波形を示す図である。
PWMモードでは、シンボルは、光強度の2つの状態のうちの何れか、すなわち明るい状態または暗い状態として送信されなければならない。MPMにおけるPHYのPWMモードでは、シンボル値は、マイクロ秒単位の連続時間に対応する。例えば、図344に示すように、第1のシンボル値は、第1の明るい状態の連続時間に対応し、第2のシンボル値は、次の暗い状態の連続時間に対応する。なお、図344に示す例では、各サブフィールドの最初の状態は、明るい状態であるが、暗い状態であってもよい。
図345は、MPMにおけるPHYのPPMモードの波形を示す図である。
PPMモードでは、図345に示すように、シンボル値は、明るい状態の開始から次の明るい状態の開始までの時間をマイクロ秒単位で表す。明るい状態の時間は、シンボル値の90%より短くなければならない。
両方のモードについて、送信機は、複数のシンボルの一部のみを送信することができる。しかし、送信機は、PLCPセンタサブフィールドのすべてのシンボルと、少なくともN個のシンボルとを送信しなければならない。その少なくともN個のシンボルのぞれぞれは、フロントペイロードサブフィールドおよびバックペイロードサブフィールドの何れかに含まれるシンボルである。
(実施の形態25のまとめ)
図346は、実施の形態25の復号方法の一例を示すフローチャートである。なお、この図346に示すフローチャートは、図336に示すフローチャートに相当する。
この復号方法は、複数のフレームで構成される可視光信号を復号する方法であって、図346に示すように、ステップS310bと、ステップS320bと、ステップS330bとを含む。また、これらの複数のフレームのそれぞれはシーケンス番号とフレームペイロードとを含む。
ステップS310bでは、復号対象フレームにおいてシーケンス番号が格納されるサブフィールドのビット長を決定するための情報であるmacSnLengthに基づいて、そのサブフィールドのビット長が可変長か否かを判定する可変長判定処理を行う。
ステップS320bでは、その可変長判定処理の結果に基づいて、そのサブフィールドのビット長を決定する。そして、ステップS330bでは、決定されたサブフィールドのビット長に基づいて、復号対象フレームを復号する。
ここで、ステップS320bにおける上記サブフィールドのビット長の決定は、ステップS321b~S324bを含む。
つまり、ステップS310bの可変長判定処理において、サブフィールドのビット長が可変長ではないと判定された場合には、そのサブフィールドのビット長を、上述のmacSnLengthによって示される値に決定する(ステップS321b)。
一方、ステップS310bの可変長判定処理において、サブフィールドのビット長が可変長であると判定された場合には、復号対象フレームが、上記複数のフレームのうちの最終フレームであるか否か判定する最終判定処理を行う(ステップS322b)。ここで、最終フレームであると判定された場合には(ステップS322bのY)、そのサブフィールドのビット長を所定の値に決定する(ステップS323b)。一方、最終フレームでないと判定された場合には(ステップS322bのN)、最終フレームのシーケンス番号の値に基づいて、そのサブフィールドのビット長を決定する(ステップS324b)。
これにより、図346に示すように、シーケンス番号が格納されるサブフィールド(具体的には、シーケンス番号サブフィールド)のビット長が固定長であっても可変長であっても、そのサブフィールドのビット長を適切に決定することができる。
ここで、ステップS322bの最終判定処理では、復号対象フレームが最終フレームであるか否かを示す最終フレームフラグに基づいて、その復号対象フレームが最終フレームであるか否かを判定してもよい。具体的には、ステップS322bの最終判定処理では、最終フレームフラグが1を示す場合に、その復号対象フレームが最終フレームであると判定し、最終フレームフラグが0を示す場合に、その復号対象フレームが最終フレームではないと判定してもよい。例えば、最終フレームフラグは、そのサブフィールドの1ビット目に含まれていてもよい。
これにより、図336のステップS203aに示すように、復号対象フレームが最終フレームであるか否かを適切に判定することができる。
より具体的には、ステップS320bにおけるサブフィールドのビット長の決定では、ステップS322bの最終判定処理において、復号対象フレームが最終フレームであると判定された場合には、サブフィールドのビット長を、上述の所定の値である5ビットに決定してもよい。つまり、図336のステップS204aに示すように、サブフィールドのビット長SNが5ビットに決定される。
また、ステップS320bにおけるサブフィールドのビット長の決定では、ステップS322bの最終判定処理において、復号対象フレームが最終フレームではないと判定された場合に、最終フレームのシーケンス番号の値が1であるときには、サブフィールドのビット長を、1ビットに決定してもよい。また、最終フレームのシーケンス番号の値が2であるときには、そのサブフィールドのビット長を、2ビットに決定してもよい。また、最終フレームのシーケンス番号の値が3または4であるときには、そのサブフィールドのビット長を、3ビットに決定してもよい。また、最終フレームのシーケンス番号の値が5から8の何れかの整数であるときには、そのサブフィールドのビット長を、4ビットに決定してもよい。また、最終フレームのシーケンス番号の値が9から15の何れかの整数であるときには、そのサブフィールドのビット長を、5ビットに決定してもよい。つまり、図336のステップS206a~S210aに示すように、サブフィールドのビット長SNが1~5ビットの何れかに決定される。
図347は、実施の形態25の符号化方法の一例を示すフローチャートである。なお、この図347に示すフローチャートは、図335に示すフローチャートに相当する。
この符号化方法は、符号化対象の情報を、複数のフレームで構成される可視光信号に符号化する方法であって、図347に示すように、ステップS410aと、ステップS420aと、ステップS430aとを含む。また、これらの複数のフレームのそれぞれはシーケンス番号とフレームペイロードとを含む。
ステップS410aでは、処理対象フレームにおいてシーケンス番号が格納されるサブフィールドのビット長を決定するための情報であるmacSnLengthに基づいて、そのサブフィールドのビット長が可変長か否かを判定する可変長判定処理を行う。
ステップS420aでは、その可変長判定処理の結果に基づいて、そのサブフィールドのビット長を決定する。そして、ステップS430aでは、決定されたサブフィールドのビット長に基づいて、符号化対象の情報の一部を処理対象フレームに符号化する。
ここで、ステップS420aにおける上記サブフィールドのビット長の決定では、ステップS421a~S424aを含む。
つまり、ステップS410aの可変長判定処理において、サブフィールドのビット長が可変長ではないと判定された場合には、そのサブフィールドのビット長を、上述のmacSnLengthによって示される値に決定する(ステップS421a)。
一方、ステップS410aの可変長判定処理において、サブフィールドのビット長が可変長であると判定された場合には、処理対象フレームが、上記複数のフレームのうちの最終フレームであるか否か判定する最終判定処理を行う(ステップS422a)。ここで、最終フレームであると判定された場合には(ステップS422aのY)、そのサブフィールドのビット長を所定の値に決定する(ステップS423a)。一方、最終フレームでないと判定された場合には(ステップS422aのN)、最終フレームのシーケンス番号の値に基づいて、そのサブフィールドのビット長を決定する(ステップS424a)。
これにより、図347に示すように、シーケンス番号が格納されるサブフィールド(具体的には、シーケンス番号サブフィールド)のビット長が固定長であっても可変長であっても、そのサブフィールドのビット長を適切に決定することができる。
なお、本実施の形態における復号装置は、プロセッサとメモリとを備え、メモリには、図346に示す復号方法をプロセッサに実行させるプログラムが記録されている。本実施の形態における符号化装置は、プロセッサとメモリとを備え、メモリには、図347に示す符号化方法をプロセッサに実行させるプログラムが記録されている。また、本実施の形態におけるプログラムは、図346に示す復号方法、または図347に示す符号化方法をコンピュータに実行させるプログラムである。
(実施の形態26)
本実施の形態では、光IDを可視光信号によって送信する送信方法について説明する。なお、本実施の形態における送信機および受信機は、上記各実施の形態における送信機(または送信装置)および受信機(または受信装置)と同一の機能および構成を有していてもよい。
図348は、本実施の形態における受信機がAR画像を表示する例を示す図である。
本実施の形態における受信機200は、イメージセンサおよびディスプレイ201を備えた受信機であって、例えばスマートフォンとして構成されている。このような受信機200は、そのイメージセンサによる被写体の撮像によって、上述の通常撮影画像である撮像表示画像Paと、上述の可視光通信画像または輝線画像である復号用画像とを取得する。
具体的には、受信機200のイメージセンサは送信機100を撮像する。送信機100は、例えば電球のような形態を有し、ガラス球141と、そのガラス球141の内部で炎のように光りながら揺らめく発光部142とを備える。この発光部142は、送信機100に備えられた1つまたは複数の発光素子(例えばLED)の点灯によって光る。この送信機100は、その発光部142を点滅させることによって輝度変化し、その輝度変化によって光ID(光識別情報)を送信する。この光IDは、上述の可視光信号である。
受信機200は、送信機100を通常露光時間で撮像することによって、その送信機100が映し出された撮像表示画像Paを取得するとともに、その通常露光時間よりも短い通信用露光時間で送信機100を撮像することによって、復号用画像を取得する。なお、通常露光時間は、上述の通常撮影モードにおける露光時間であり、通信用露光時間は、上述の可視光通信モードにおける露光時間である。
受信機200は、その復号用画像に対する復号によって光IDを取得する。つまり、受信機200は、送信機100から光IDを受信する。受信機200は、その光IDをサーバに送信する。そして、受信機200は、その光IDに対応するAR画像P42と認識情報とをサーバから取得する。受信機200は、撮像表示画像Paのうち、その認識情報に応じた領域を対象領域として認識する。そして、受信機200は、その対象領域にAR画像P42を重畳し、AR画像P42が重畳された撮像表示画像Paをディスプレイ201に表示する。
例えば、受信機200は、図245に示す例と同様に、認識情報にしたがって、送信機100が映し出されている領域の左上にある領域を対象領域として認識する。その結果、例えば妖精を示すAR画像P42は、送信機100の周りを飛んでいるように表示される。
図349は、AR画像P42が重畳された撮像表示画像Paの他の例を示す図である。
受信機200は、図349に示すように、AR画像P42が重畳された撮像表示画像Paをディスプレイ201に表示する。
ここで、上述の認識情報は、撮像表示画像Paにおける閾値以上の輝度を有する範囲が基準領域であることを示す。さらに、その認識情報は、その基準領域に対して予め定められた方向に対象領域があることと、その対象領域が基準領域の中心(または重心)から予め定められた距離だけ離れていることを示す。
したがって、受信機200によって撮像されている送信機100の発光部142が揺らめくと、図349に示すように、撮像表示画像Paの対象領域に重畳されるAR画像p42も、その発光部142の動きに同期するように動く。つまり、発光部142が揺らめくと、撮像表示画像Paに映し出されている発光部142の像142aも揺らめく。この像142aは、上述の閾値以上の輝度を有する範囲であって、基準領域である。すなわち、基準領域が動くため、受信機200は、その基準領域と対象領域との間の距離が予め定められた距離に維持されるように、対象領域を移動させて、その移動する対象領域にAR画像P42を重畳する。その結果、発光部142が揺らめくと、撮像表示画像Paの対象領域に重畳されるAR画像P42も、その発光部142の動きに同期するように動く。なお、基準領域の中心位置は、発光部142の変形によっても移動することがある。したがって、発光部142が変形する場合にも、AR画像42は、その移動する基準領域の中心位置との間の距離が予め定められた距離に維持されるように動くことがある。
また、上述の例では、受信機200は、認識情報に基づいて対象領域を認識し、その対象領域にAR画像P42を重畳するが、その対象領域を中心にAR画像P42を振動させてもよい。つまり、受信機200は、時間に対する振幅の変化を示す関数にしたがって、そのAR画像P42を例えば上下方向に振動させる。その関数は、例えば正弦波などの三角関数である。
また、受信機200は、上述の閾値以上の輝度を有する範囲の大きさに応じて、AR画像P42の大きさを変化させてもよい。つまり、受信機200は、撮像表示画像Paにおける明るい領域の面積が大きくなるほど、AR画像P42のサイズを大きくし、逆に、その明るい領域の面積が小さくなるほど、AR画像P42のサイズを小さくする。
または、受信機200は、上述の閾値以上の輝度を有する範囲における平均輝度が高いほど、AR画像P42のサイズを大きくし、逆に、その平均輝度が低いほど、AR画像P42のサイズを小さくしてもよい。なお、AR画像P42のサイズの代わりに、AR画像P42の透明度を、その平均輝度に応じて変化させてもよい。
また、図349に示す例では、発光部142の像142aの中では何れの画素も閾値以上の輝度を有するが、何れかの画素が閾値未満であってもよい。つまり、像142aに相当する、閾値以上の輝度を有する範囲は、環状であってもよい。この場合にも、その閾値以上の輝度を有する範囲が基準領域として特定され、その基準領域の中心(または重心)から予め定められた距離だけ離れた対象領域に、AR画像P42が重畳される。
図350は、本実施の形態における受信機200がAR画像を表示する他の例を示す図である。
送信機100は、例えば図350に示すように、照明装置として構成され、例えば壁に描かれた3つの円からなる図形143を照らしながら輝度変化することによって、光IDを送信している。図形143は、その送信機100からの光によって照らされているため、送信機100と同様に輝度変化し、光IDを送信している。
受信機200は、送信機100によって照らされた図形143を撮像することによって、上述と同様に、撮像表示画像Paと復号用画像とを取得する。受信機200は、その復号用画像に対する復号によって光IDを取得する。つまり、受信機200は、図形143から光IDを受信する。受信機200は、その光IDをサーバに送信する。そして、受信機200は、その光IDに対応するAR画像P43と認識情報とをサーバから取得する。受信機200は、撮像表示画像Paのうち、その認識情報に応じた領域を対象領域として認識する。例えば、受信機200は、図形143が映し出されている領域を対象領域として認識する。そして、受信機200は、その対象領域にAR画像P43を重畳し、AR画像P43が重畳された撮像表示画像Paをディスプレイ201に表示する。例えば、AR画像P43は、キャラクターの顔画像である。
ここで、図形143は、上述のように3つの円からなるが、この図形143には幾何学的な特徴が少ない。したがって、図形143の撮像によって得られる撮像画像だけからでは、その図形143に応じたAR画像を、サーバに蓄積された多くの画像から適切に選択して取得することは難しい。しかし、本実施の形態では、受信機200は、光IDを取得し、その光IDに対応するAR画像P43をサーバから取得する。したがって、サーバに多くの画像が蓄積されていても、その光IDに対応するAR画像P43を、図形143に応じたAR画像として、その多くの画像の中から適切に選択して取得することができる。
図351は、本実施の形態における受信機200の動作を示すフローチャートである。
本実施の形態における受信機200は、まず、複数のAR画像候補を取得する(ステップS541)。例えば、受信機200は、可視光通信と異なる無線通信(BTLEまたはWi-Fiなど)によって、サーバから複数のAR画像候補を取得する。次に、受信機200は、被写体を撮像する(ステップS542)。受信機200は、この撮像によって、上述のように、撮像表示画像Paと復号用画像とを取得する。しかし、その被写体が送信機100の写真である場合には、その被写体からは光IDは送信されていないため、受信機200は、復号用画像に対する復号を行っても光IDを取得することはできない。
そこで、受信機200は、光IDを取得することができたか否か、すなわち、被写体から光IDを受信したか否かを判定する(ステップS543)。
ここで、光IDを受信していないと判定すると(ステップS543のNo)、受信機200は、自らに設定されているAR表示フラグが1であるか否かを判定する(ステップS544)。AR表示フラグは、光IDが取得されていなくても撮像表示画像PaだけからAR画像を表示してもよいか否かを示すフラグである。AR表示フラグが1である場合には、そのAR表示フラグは、撮像表示画像PaだけからAR画像を表示してもよいこと示し、AR表示フラグが0である場合には、そのAR表示フラグは、撮像表示画像PaだけからAR画像を表示してはいけないこと示す。
AR表示フラグが1であると判定すると(ステップS544のYes)、受信機200は、ステップS541で取得された複数のAR画像候補の中から、撮像表示画像Paに対応する候補をAR画像として選択する(ステップS545)。つまり、受信機200は、撮像表示画像Paに含まれる特徴量を抽出し、その抽出された特徴量に関連付けられている候補をAR画像として選択する。
そして、受信機200は、選択された候補であるAR画像を撮像表示画像Paに重畳して表示する(ステップS546)。
一方、AR表示フラグが0であると判定すると(ステップS544のNo)、受信機200は、AR画像を表示しない。
また、ステップS543で光IDを受信したと判定すると(ステップS543のYes)、受信機200は、ステップS541で取得された複数のAR画像候補の中から、その光IDに関連付けられている候補をAR画像として選択する(ステップS547)。そして、受信機200は、選択された候補であるAR画像を撮像表示画像Paに重畳して表示する(ステップS546)。
なお、上述の例では、AR表示フラグは受信機200に設定されているが、サーバに設定されていてもよい。この場合には、受信機200は、ステップS544において、サーバにAR表示フラグが1であるか0であるかを問い合わせる。
これにより、受信機200が撮像を行っても光IDを受信していないときに、その受信機200に対してAR画像を表示させるか否かを、AR表示フラグによって制御することができる。
図352は、本実施の形態における送信機100の動作を説明するための図である。
例えば、送信機100はプロジェクタとして構成されている。ここで、プロジェクタから照射されてスクリーンに反射される光の強度は、そのプロジェクタの光源の経年劣化、または、その光源からスクリーンまでの距離などの各要因によって変化する。光の強度が小さい場合には、送信機100から送信される光IDが受信機200に受信され難くなる。
そこで、本実施の形態における送信機100は、その各要因に応じた光の強度の変化を抑えるために、光源を発光させるためのパラメータを調整する。このパラメータは、光源を発光させるためにその光源に入力される電流の値と、その発光時間(より具体的には、単位時間当たりの発光時間)とのうちの少なくとも一方である。例えば、電流の値を大きくするほど、発光時間を長くするほど、光源の光の強度は大きくなる。
つまり、送信機100は、光源が経年劣化しているほど、その光源の光を強めるようにパラメータを調整する。具体的には、送信機100は、タイマを備え、そのタイマによって計測される光源の使用時間が長いほど、その光源の光を強めるようにパラメータを調整する。つまり、送信機100は、使用時間が長いほど、光源の電流の値を高めたり、発光時間を長くしたりする。または、送信機100は、光源から照射される光の強度を検出し、その検出された光の強度が低下しないようにパラメータを調整する。すなわち、送信機100は、検出される光の強度が小さいほど、その光を強めるようにパラメータを調整する。
また、送信機100は、光源からスクリーンまでの照射距離が長いほど、その光源の光を強めるようにパラメータを調整する。具体的には、送信機100は、照射されてスクリーンに反射された光の強度を検出し、その検出された光の強度が小さいほど、光源の光を強めるようにパラメータを調整する。つまり、送信機100は、検出された光の強度が小さいほど、その光源の電流の値を高めたり、発光時間を長くしたりする。これによって、反射される光の強度が照射距離に関わらず一定になるように、パラメータが調整される。または、送信機100は、光源からスクリーンまでの照射距離を測距センサによって検出し、その検出された照射距離が長いほど、光源の光を強めるようにパラメータを調整する。
また、送信機100は、スクリーンの色が黒いほど、その光源の光を強めるようにパラメータを調整する。具体的には、送信機100は、スクリーンを撮像することによって、そのスクリーンの色を検出し、その検出された色が黒いほど、光源の光を強めるようにパラメータを調整する。つまり、送信機100は、検出された色が黒いほど、その光源の電流の値を高めたり、発光時間を長くしたりする。これによって、反射される光の強度がスクリーンの色に関わらず一定になるように、パラメータが調整される。
また、送信機100は、外光が強いほど、その光源の光を強めるようにパラメータを調整する。具体的には、送信機100は、光源をONにして光を照射したときのスクリーンの明るさと、光源をOFFにして光を照射していないときのスクリーンの明るさとの差を検出する。そして、送信機100は、その明るさの差が小さいほど、光源の光を強めるようにパラメータを調整する。つまり、送信機100は、明るさの差が小さいほど、その光源の電流の値を高めたり、発光時間を長くしたりする。これによって、外光に関わらず、光IDのS/N比が一定になるように、パラメータが調整される。または、送信機100は、例えばLEDディスプレイとして構成されている場合には、太陽光の強度を検出し、その太陽光の強度が大きいほど、光源の光を強めるようにパラメータを調整してもよい。
なお、上述のようなパラメータの調整は、ユーザによる操作が行われたときに実施されてもよい。例えば、送信機100は、キャリブレーションボタンを備え、そのキャリブレーションボタンがユーザによって押下されたときに、上述のパラメータの調整を実施する。または、送信機100は、定期的に上述のパラメータの調整を実施してもよい。
図353は、本実施の形態における送信機100の他の動作を説明するための図である。
例えば、送信機100はプロジェクタとして構成され、光源からの光を、前部材を通してスクリーンに照射する。プロジェクタが液晶プロジェクタの場合には、その前部材は液晶パネルであり、プロジェクタがDLP(登録商標)プロジェクタの場合には、その前部材はDMD(Digital Mirror Device)である。つまり、前部材は、映像の輝度を画素ごとに調整する部材である。また、光源は、前部材に向けて光を照射するが、その光の強度をHighとLowとに切り替える。また、光源は、単位時間あたりのHighの時間を調整することによって、時間平均的な明るさを調整する。
ここで、前部材の透過率が例えば100%である場合には、プロジェクタからスクリーンへ投影される映像が明るすぎることがないように、光源は暗くなる。つまり、光源は、単位時間あたりのHighの時間を短くする。
このとき、光源は、輝度変化によって光IDを送信する場合には、光IDのパルス幅を広くする。
一方、前部材の透過率が例えば20%である場合には、プロジェクタからスクリーンへ投影される映像が暗すぎることがないように、光源は明るくなる。つまり、光源は、単位時間あたりのHighの時間を長くする。
このとき、光源は、輝度変化によって光IDを送信する場合には、光IDのパルス幅を狭くする。
このように、光源が暗い場合には、光IDのパルス幅が広くなり、逆に、光源が明るい場合には、光IDのパルス幅が狭くなるため、光IDの送信によって、光源からの光の強度が弱すぎたり、明るすぎたりしてしまうことを抑えることができる。
なお、上述の例では、送信機100はプロジェクタであるが、大型LEDディスプレイとして構成されていてもよい。大型LEDディスプレイは、図173、図175および図180Bに示すように画素スイッチと共通スイッチとを備える。画素スイッチのONおよびOFFによって映像が表現され、共通スイッチのONおよびオフによって光IDが送信される。この場合、機能的に、画素スイッチが前部材に相当し、共通スイッチが光源に相当する。画素スイッチによる平均輝度が高い場合には、共通スイッチによる光IDのパルス幅を短くしてもよい。
図354は、本実施の形態における送信機100の他の動作を説明するための図である。具体的には、図354は、調光機能付きスポットライトとして構成された送信機100の調光度と、その送信機100の光源に入力される電流(具体的にはピーク電流の値)との関係を示す。
送信機100は、自らに備えられている光源に対して指定される調光度を受け付け、その指定された調光度で光源を発光させる。なお、調光度は、光源の平均輝度の最大平均輝度に対する割合である。平均輝度は、瞬間的な輝度ではなく、時間平均における輝度である。また、調光度の調整は、光源に入力される電流の値を調整したり、光源の輝度がLowとなる時間を調整することによって実現される。光源の輝度がLowとなる時間は、光源をオフする時間であってもよい。
ここで、送信機100は、送信対象信号を光IDとして送信するときには、その送信対象信号を予め定められたモードで符号化することによって符号化信号を生成する。そして、送信機100は、その符号化信号にしたがって、自らに備えられた光源を輝度変化させることによって、その符号化信号を光ID(すなわち可視光信号)として送信する。
例えば、指定された調光度が0%以上x3(%)以下である場合には、送信機100は、デューティ比35%のPWMモードで送信対象信号を符号化することによって符号化信号を生成する。x3(%)は例えば50%である。なお、本実施の形態では、デューティ比35%のPWMモードを、第1のモードともいい、上述のx3を、第1の値ともいう。
つまり、送信機100は、指定される調光度が0%以上x3(%)以下である場合には、可視光信号のデューティ比を35%に維持しながら、光源の調光度をピーク電流の値によって調整する。
また、指定された調光度がx3(%)よりも大きく100%以下である場合には、送信機100は、デューティ比65%のPWMモードで送信対象信号を符号化することによって符号化信号を生成する。なお、本実施の形態では、デューティ比65%のPWMモードを、第2のモードともいう。
つまり、送信機100は、指定される調光度がx3(%)よりも大きく100%以下である場合には、可視光信号のデューティ比を65%に維持しながら、光源の調光度をピーク電流の値によって調整する。
このように、本実施の形態における送信機100は、光源に対して指定される調光度を指定調光度として受け付ける。そして、送信機100は、指定調光度が第1の値以下である場合には、その指定調光度で光源を発光させながら、第1のモードで符号化された信号を輝度変化により送信する。また、送信機100は、指定調光度の値が第1の値よりも大きい場合には、その指定調光度で光源を発光させながら、第2のモードで符号化された信号を輝度変化により送信する。具体的には、第2のモードで符号化された信号のデューティ比は、第1のモードで符号化された信号のデューティ比よりも大きい。
ここで、第2のモードのデューティ比は第1のモードのデューティ比よりも大きいため、第2のモードにおける調光度に対するピーク電流の変化率を、第1のモードにおける調光度に対するピーク電流の変化率よりも小さくすることができる。
また、指定される調光度がx3(%)を超えるときには、モードが第1のモードから第2のモードに切り替えられる。したがって、このときには、ピーク電流を瞬間的に低下させることができる。つまり、指定される調光度がx3(%)であるときには、ピーク電流はy3(mA)であるが、指定される調光度がx3(%)を少しでも超えると、ピーク電流をy2(mA)に抑えることができる。なお、y3(mA)は例えば143mAであり、y2(mA)は例えば100mAである。その結果、調光度を大きくするために、ピーク電流がy3(mA)よりも大きくなることを抑えることができ、大きな電流が流れることによって光源が劣化してしまうことを抑制することができる。
また、指定される調光度がx4(%)を超えるときには、モードが第2のモードであっても、ピーク電流がy3(mA)よりも大きくなる。しかし、指定される調光度がx4(%)を超える頻度が少ない場合には、光源の劣化を抑えることができる。なお、本実施の形態では、上述のx4を、第2の値ともいう。また、図354に示す例では、x4(%)は100%未満であるが、100%であってもよい。
つまり、本実施の形態における送信機100では、指定調光度が第1の値よりも大きく第2の値以下である場合に、第2のモードで符号化された信号を輝度変化により送信するための光源のピーク電流の値は、指定調光度が第1の値である場合に、第1のモードで符号化された信号を輝度変化により送信するための光源のピーク電流の値よりも小さい。
これにより、信号を符号化するモードの切り替えによって、指定調光度が第1の値よりも大きく第2の値以下である場合における光源のピーク電流の値は、指定調光度が第1の値である場合における光源のピーク電流の値よりも小さくなる。したがって、指定調光度を大きくするほど、大きなピーク電流が光源に流れることを抑えることができる。その結果、光源の劣化を抑制することができる。
さらに、本実施の形態における送信機100は、指定される調光度がx1(%)以上x2(%)よりも小さい場合には、指定される調光度で光源を発光させながら、第1のモードで符号化された信号を輝度変化により送信するとともに、指定される調光度の変化に対してピーク電流の値を一定の値に維持する。x2(%)はx3(%)よりも小さい。なお、本実施の形態では、上述のx2を第3の値ともいう。
つまり、送信機100は、指定調光度がx2(%)よりも小さい場合には、指定調光度が小さくなるにしたがって、光源をオフにする時間を長くすることにより、小さくなるその指定調光度で光源を発光させ、かつ、ピーク電流の値を一定の値に維持する。具体的には、送信機100は、符号化信号のデューティ比を35%に維持しながら、複数の符号化信号のそれぞれを送信する周期を長くする。これにより、光源をオフにする時間、すなわち消灯期間が長くなる。その結果、ピーク電流の値を一定に維持しながら、調光度を小さくすることができる。また、指定調光度が小さくなる場合でも、ピーク電流の値が一定に維持されるため、輝度変化によって送信される信号である可視光信号(すなわち光ID)を、受信機200に受信させ易くすることができる。
ここで、送信機100は、符号化信号を輝度変化により送信する時間と、光源をオフにする時間とを足した1周期が10ミリ秒を超えないように、光源をオフする時間を決定する。例えば、光源をオフにする時間が長すぎて、その1周期が10ミリ秒を超えると、符号化信号を送信するための光源の輝度変化がちらつきとして人の眼に認識されてしまう虞がある。そのため、本実施の形態では、1周期が10ミリ秒を超えないように、光源をオフする時間が決定されるため、ちらつきが人に認識されてしまうことを抑えることができる。
さらに、送信機100は、指定調光度がx1(%)よりも小さい場合にも、その指定調光度で光源を発光させながら、第1のモードで符号化された信号を輝度変化により送信する。このとき、送信機100は、指定調光度が小さくなるにしたがって、ピーク電流の値を小さくすることにより、その小さくなる指定調光度で光源を発光させる。x1(%)はx2(%)よりも小さい。なお、本実施の形態では、上述のx1を第4の値ともいう。
これにより、指定調光度がより小さくても、その指定調光度で光源を適切に発光させることができる。
ここで、図354に示す例では、第1のモードにおける最大のピーク電流の値(すなわちy3(mA))は、第2のモードにおける最大のピーク電流の値(すなわちy4(mA))よりも小さいが、同じであってもよい。すなわち、送信機100は、指定される調光度がx3(%)よりも大きいx3a(%)まで、第1のモードで送信対象信号を符号化する。そして、送信機100は、指定された調光度がx3a(%)である場合には、第2のモードにおける最大のピーク電流の値(すなわちy4(mA))と同じピーク電流の値で光源を発光させる。この場合、x3aが第1の値となる。なお、第2のモードにおける最大のピーク電流の値は、指定される調光度が最大値、すなわち100%であるときのピーク電流の値である。
つまり、本実施の形態では、指定調光度が第1の値である場合における、光源のピーク電流の値と、指定調光度が最大値である場合における、光源のピーク電流の値とは同じであってもよい。この場合には、y3(mA)以上のピーク電流で光源を発光させる調光度の範囲が広がるため、調光度の広い範囲で、光IDを受信機200に受信させ易くすることができる。言い換えれば、第1のモードでも、大きいピーク電流を光源に流すことができるため、その光源の輝度変化によって送信される信号を、受信機に受信させ易くすることができる。なお、この場合には、大きいピーク電流が流れる期間が長くなるため、光源が劣化し易くなる。
図355は、本実施の形態における光IDの受信し易さを説明するための比較例を示す図である。
本実施の形態では、図354に示すように、調光度が小さい場合には、第1のモードが用いられ、調光度が大きい場合には、第2のモードが用いられる。第1のモードは、調光度の増加が小さくてもピーク電流の増加を大きくするモードであり、第2のモードは、調光度の増加が大きくてもピーク電流の増加を抑えるモードである。したがって、第2のモードによって、大きなピーク電流が光源に流れることが抑えれるため、光源の劣化を抑制することができる。さらに、第1のモードによって、調光度が小さくても大きなピーク電流が光源に流れるため、光IDを受信機200に容易に受信させることができる。
一方、調光度が小さい場合にも第2のモードが用いられる場合には、図355に示すように、調光度が小さい場合には、ピーク電流の値も小さいため、光IDを受信機200に受信させることが難しくなる。
したがって、本実施の形態における送信機100では、光源の劣化の抑制と、光IDの受信し易さとの両立を図ることができる。
また、送信機100は、光源のピーク電流の値が第5の値を超えた場合、その光源の輝度変化による信号の送信を停止してもよい。第5の値は、例えばy3(mA)であってもよい。
これにより、光源の劣化をさらに抑制することができる。
また、送信機100は、図352に示す例と同様に、光源の使用時間を計測してもよい。そして、その使用時間が所定時間以上である場合、送信機100は、指定調光度よりも大きい調光度で光源を発光させるためのパラメータの値を用いて、信号を輝度変化により送信してもよい。この場合、パラメータの値は、ピーク電流の値または光源をオフにする時間であってもよい。これにより、光源の経時的な劣化によって光IDが受信機200に受信され難くなることを抑えることができる。
または、送信機100は、光源の使用時間を計測し、その使用時間が所定時間以上である場合、使用時間が所定時間未満である場合よりも、光源の電流のパルス幅を大きくしてもよい。これにより、上述と同様、光源の劣化によって光IDが受信され難くなることを抑えることができる。
なお、上記実施の形態では、送信機100は、指定される調光度に応じて第1のモードと第2のモードとが切り換えられるが、ユーザによる操作に応じてそのモードの切り替えを行ってもよい。つまり、送信機100は、ユーザによってスイッチが操作されると、第1のモードを第2のモードに切り替えたり、逆に、第2のモードを第1のモードに切り替えたりする。また、送信機100は、モードが切り換えられるときには、そのことをユーザに通知してもよい。例えば、送信機100は、音を鳴らしたり、人に視認可能な周期で光源を点滅させたり、通知用のLEDを点灯させたりすることによって、モードの切り替えをユーザに通知してもよい。また、送信機100は、モードの切り替えだけでなく、ピーク電流と調光度との関係が変化する時点にも、その関係が変化することをユーザに通知してもよい。その時点は、例えば図354に示す調光度がx1(%)から変化する時点、または調光度がx2(%)から変化する時点である。
図356Aは、本実施の形態における送信機100の動作を示すフローチャートである。
送信機100は、まず、光源に対して指定される調光度を指定調光度として受け付ける(ステップS551)。次に、送信機100は、信号を光源の輝度変化により送信する(ステップS552)。具体的には、送信機100は、指定調光度が第1の値以下である場合には、その指定調光度で光源を発光させながら、第1のモードで符号化された信号を輝度変化により送信する。また、送信機100は、指定調光度が第1の値よりも大きい場合には、その指定調光度で光源を発光させながら、第2のモードで符号化された信号を輝度変化により送信する。ここで、指定調光度が第1の値よりも大きく第2の値以下である場合に、第2のモードで符号化された信号を輝度変化により送信するための光源のピーク電流の値は、指定調光度が第1の値である場合に、第1のモードで符号化された信号を輝度変化により送信するための光源のピーク電流の値よりも小さい。
図356Bは、本実施の形態における送信機100の構成を示すブロック図である。
送信機100は、受付部551と、送信部552とを備える。受付部551は、光源に対して指定される調光度を指定調光度として受け付ける(ステップS551)。送信部552は、信号を光源の輝度変化により送信する。具体的には、送信部552は、指定調光度が第1の値以下である場合には、その指定調光度で光源を発光させながら、第1のモードで符号化された信号を輝度変化により送信する。また、送信部552は、指定調光度が第1の値よりも大きい場合には、その指定調光度で光源を発光させながら、第2のモードで符号化された信号を輝度変化により送信する。ここで、指定調光度が第1の値よりも大きく第2の値以下である場合に、第2のモードで符号化された信号を輝度変化により送信するための光源のピーク電流の値は、指定調光度が第1の値である場合に、第1のモードで符号化された信号を輝度変化により送信するための光源のピーク電流の値よりも小さい。
これにより、図354に示すように、信号を符号化するモードの切り替えによって、指定調光度が第1の値よりも大きく第2の値以下である場合における光源のピーク電流の値は、指定調光度が第1の値である場合における光源のピーク電流の値よりも小さくなる。したがって、指定調光度を大きくするほど、大きなピーク電流が光源に流れることを抑えることができる。その結果、光源の劣化を抑制することができる。
図357は、本実施の形態における受信機200がAR画像を表示する他の例を示す図である。
受信機200は、そのイメージセンサによる被写体の撮像によって、上述の通常撮影画像である撮像表示画像Pkと、上述の可視光通信画像または輝線画像である復号用画像とを取得する。
具体的には、受信機200のイメージセンサは、サイネージとして構成されている送信機100と、送信機100の隣にいる人物21とを撮像する。送信機100は、上記各実施の形態における送信機であって、1つまたは複数の発光素子(例えばLED)と、すりガラスのように透光性を有する透光板144とを備える。1つまたは複数の発光素子は、送信機100の内部で発光し、1つまたは複数の発光素子からの光は、透光板144を透過して外部に照射される。その結果、送信機100の透光板144が明るく光っている状態になる。このような送信機100は、その1つまたは複数の発光素子を点滅させることによって輝度変化し、その輝度変化によって光ID(光識別情報)を送信する。この光IDは、上述の可視光信号である。
ここで、透光板144には、「ここにスマートフォンをかざしてください」というメッセージが記載されている。そこで、受信機200のユーザは、人物21を送信機100の隣に立たせて、腕を送信機100の上にかけるようにその人物21に指示する。そして、ユーザは、受信機200のカメラ(すなわちイメージセンサ)を人物21および送信機100に向けて撮像を行う。受信機200は、送信機100および人物21を通常露光時間で撮像することによって、それらが映し出された撮像表示画像Pkを取得する。さらに、受信機200は、その通常露光時間よりも短い通信用露光時間で送信機100および人物21を撮像することによって、復号用画像を取得する。
受信機200は、その復号用画像に対する復号によって光IDを取得する。つまり、受信機200は、送信機100から光IDを受信する。受信機200は、その光IDをサーバに送信する。そして、受信機200は、その光IDに対応するAR画像P44と認識情報とをサーバから取得する。受信機200は、撮像表示画像Pkのうち、その認識情報に応じた領域を対象領域として認識する。例えば、受信機200は、送信機100であるサイネージが映し出されている領域を対象領域として認識する。
そして、受信機200は、その対象領域がAR画像P44によって覆い隠されるように、そのAR画像P44を撮像表示画像Pkに重畳し、その撮像表示画像Pkをディスプレイ201に表示する。例えば、受信機200は、サッカー選手を示すAR画像P44を取得する。この場合、撮像表示画像Pkの対象領域を覆い隠すようにそのAR画像P44が重畳されるため、人物21の隣にサッカー選手が現実に存在するように、撮像表示画像Pkを表示することができる。その結果、人物21は、サッカー選手が隣にいなくても、そのサッカー選手と一緒に写真に写ることができる。より具体的には、人物21の腕をサッカー選手の肩にかけた状態で、そのサッカー選手と一緒に写真に写ることができる。
(実施の形態27)
本実施の形態では、光IDを可視光信号によって送信する送信方法について説明する。なお、本実施の形態における送信機および受信機は、上記各実施の形態における送信機(または送信装置)および受信機(または受信装置)と同一の機能および構成を有していてもよい。
図358は、本実施の形態における送信機100の動作を説明するための図である。具体的には、図358は、調光機能付きスポットライトとして構成された送信機100の調光度と、その送信機100の光源に入力される電流(具体的にはピーク電流の値)との関係を示す。
本実施の形態における送信機100は、指定された調光度が0%以上x14(%)以下である場合には、デューティ比35%のPWMモードで送信対象信号を符号化することによって符号化信号を生成する。つまり、送信機100は、指定される調光度が0%からx14(%)に変化する場合には、可視光信号のデューティ比を35%に維持しながら、ピーク電流の値を増加することによって、その指定された調光度で光源を発光させる。なお、デューティ比35%のPWMモードは、実施の形態26と同様、第1のモードともいい、上述のx14を第1の値ともいう。例えば、x14(%)は、50~60%の範囲内の値である。
また、送信機100は、指定された調光度がx13(%)以上100%以下である場合には、デューティ比65%のPWMモードで送信対象信号を符号化することによって符号化信号を生成する。つまり、送信機100は、指定される調光度が100%からx13(%)に変化する場合には、可視光信号のデューティ比を65%に維持しながら、ピーク電流の値を抑えることによって、その指定された調光度で光源を発光させる。なお、デューティ比65%のPWMモードは、実施の形態26と同様、第2のモードともいい、上述のx13を第2の値ともいう。ここで、x13(%)は、x14(%)よりも小さい値であって、例えば、40~50%の範囲内の値である。
このように、本実施の形態では、指定される調光度が増加する場合には、PWMモードは、調光度x14(%)において、デューティ比35%のPWMモードからデューティ比65%のPWMモードに切り替えられる。一方、指定される調光度が減少する場合には、PWMモードは、調光度x14(%)よりも小さい調光度x13(%)において、デューティ比65%のPWMモードからデューティ比35%のPWMモードに切り替えられる。つまり、本実施の形態では、指定される調光度が増加する場合と、指定される調光度が減少する場合とで、PWMモードが切り替えられる調光度が異なる。以下、PWMモードが切り替えられる調光度を、切り替え点という。
したがって、本実施の形態では、PWMモードの頻繁な切り替えを抑制することができる。実施の形態26の図354に示す例では、PWMモードの切り替え点は、50%であって、指定される調光度が増加する場合と、指定される調光度が減少する場合とで同じである。その結果、図354に示す例では、指定される調光度の増減が50%の前後で繰り返されると、PWMモードが、デューティ比35%のPWMモードとデューティ比65%のPWMモードとに頻繁に切り替えられる。しかし、本実施の形態では、指定される調光度が増加する場合と、指定される調光度が減少する場合とで、PWMモードの切り替え点が異なるため、このようなPWMモードの頻繁な切り替えを抑えることができる。
また、本実施の形態では、実施の形態26の図354に示す例と同様、指定される調光度が小さい場合には、小さいデューティ比のPWMモードが用いられ、逆に、指定される調光度が大きい場合には、大きいデューティ比のPWMモードが用いられる。
したがって、指定される調光度が大きい場合には、大きいデューティ比のPWMモードが用いられるため、調光度に対するピーク電流の変化率を小さくすることができ、小さいピーク電流によって光源を大きい調光度で発光させることができる。例えば、デューティ比35%のように小さいデューティ比のPWMモードでは、ピーク電流を250mAにしなければ、光源を100%の調光度で発光させることができない。しかし、本実施の形態では、大きい調光度に対しては、デューティ比65%のように大きいデューティ比のPWMモードが用いられるため、例えば、ピーク電流をより小さい154mAにするだけで、光源を100%の調光度で発光させることができる。つまり、光源に過電流を流してその光源の寿命を縮めてしまうことを抑えることができる。
また、指定される調光度が小さい場合には、小さいデューティ比のPWMモードが用いられるため、調光度に対するピーク電流の変化率を大きくすることができる。その結果、小さい調光度で光源を発光させながら、大きいピーク電流によって可視光信号を送信することができる。光源は、入力される電流が大きいほど、明るく発光する。したがって、大きいピーク電流によって可視光信号が送信される場合には、受信機200に可視光信号を受信させ易くすることができる。言い換えれば、受信機200に受信可能な可視光信号を送信することができる調光度の範囲を、より小さい調光度まで広げることができる。例えば、図385に示すように、受信機200は、ピーク電流がIa(mA)以上であれば、そのピーク電流によって送信される可視光信号を受信することができる。この場合、デューティ比65%のように大きいデューティ比のPWMモードでは、受信可能な可視光信号を送信することができる調光度の範囲は、x12(%)以上である。しかし、デューティ比35%のように小さいデューティ比のPWMモードでは、受信可能な可視光信号を送信することができる調光度の範囲を、x12(%)よりも小さいx11(%)以上にすることができる。
このように、PWMモードを切り替えることによって、光源の寿命を長くし、且つ、広い調光度の範囲で可視光信号を送信することができる。
図359Aは、本実施の形態における送信方法を示すフローチャートである。
本実施の形態における送信方法は、光源の輝度変化により信号を送信する送信方法であって、受付ステップS561と、送信ステップS562とを含む。受付ステップS561では、送信機100は、光源に対して指定される調光度を指定調光度として受け付ける。送信ステップS562では、送信機100は、その指定調光度で光源を発光させながら、第1のモードまたは第2のモードで符号化された信号を輝度変化により送信する。ここで、第2のモードで符号化された信号のデューティ比は、第1のモードで符号化された前記信号のデューティ比よりも大きい。また、送信ステップS562では、送信機100は、指定調光度が小さい値から大きい値に変更される場合、指定調光度が第1の値であるときに、信号の符号化に用いられるモードを、第1のモードから第2のモードに切り替える。さらに、送信機100は、指定調光度が大きい値から小さい値に変更される場合、指定調光度が第2の値であるときに、信号の符号化に用いられるモードを、第2のモードから第1のモードに切り替える。ここで、第2の値は、第1の値よりも小さい。
例えば、第1モードおよび第2のモードはそれぞれ、図358に示すデューティ比35%のPWMモードおよびデューティ比65%のPWMモードである。また、第1の値および第2の値はそれぞれ、図358に示すx14(%)およびx15(%)である。
これにより、第1のモードと第2のモードとの切り替えが行われる指定調光度(すなわち切り替え点)は、指定用光度が増加する場合と減少する場合とで異なる。したがって、これらのモードの頻繁な切り替えを抑えることができる。すなわち、いわゆるチャタリングの発生を抑えることができる。その結果、信号を送信する送信機100の動作を安定させることができる。また、第2のモードで符号化された信号のデューティ比は、第1のモードで符号化された信号のデューティ比よりも大きい。したがって、図354に示す送信方法と同様に、指定調光度を大きくするほど、大きなピーク電流が光源に流れることを抑えることができる。その結果、光源の劣化を抑制することができる。また、光源の劣化が抑えられるため、多様な機器間の通信を長期的に行うことができる。また、指定調光度が小さい場合には、デューティ比が小さい第1のモードが用いられる。したがって、上述のピーク電流を大きくすることができ、受信機200に受信され易い信号を可視光信号として送信することができる。
また、送信ステップS562では、第1のモードから第2のモードへの切り替えが行われる際に、送信機100は、符号化された信号を輝度変化により送信するための光源のピーク電流を、第1の電流値から、その第1の電流値よりも小さい第2の電流値に変更する。さらに、第2のモードから第1のモードへの切り替えが行われる際に、送信機100は、ピーク電流を、第3の電流値から、第3の電流値よりも大きい第4の電流値に変更する。ここで、第1の電流値は、第4の電流値よりも大きく、第2の電流値は、第3の電流値よりも大きい。
例えば、第1の電流値、第2の電流値、第3の電流値、および第4の電流値はそれぞれ、図358に示す電流値Ie、電流値Ic、電流値Ib、および電流値Idである。
これにより、第1のモードと第2のモードとを適切に切り替えることができる。
図359Bは、本実施の形態における送信機100の構成を示すブロック図である。
本実施の形態における送信機100は、光源の輝度変化により信号を送信する送信機であって、受付部561と、送信部562とを備える。受付部561は、光源に対して指定される調光度を指定調光度として受け付ける。送信部562は、その指定調光度で光源を発光させながら、第1のモードまたは第2のモードで符号化された信号を輝度変化により送信する。ここで、第2のモードで符号化された信号のデューティ比は、第1のモードで符号化された前記信号のデューティ比よりも大きい。また、送信部562は、指定調光度が小さい値から大きい値に変更される場合、指定調光度が第1の値であるときに、信号の符号化に用いられるモードを、第1のモードから第2のモードに切り替える。さらに、送信部562は、指定調光度が大きい値から小さい値に変更される場合、指定調光度が第2の値であるときに、信号の符号化に用いられるモードを、第2のモードから第1のモードに切り替える。ここで、第2の値は、第1の値よりも小さい。
このような送信機100によって、図359Aに示すフローチャートの送信方法が実現される。
図360は、本実施の形態における可視光信号の詳細な構成の一例を示す図である。
このような可視光信号は、図188、図189Aの(b)、図197、図212、図316、および図317と同様に、PWMモードの信号である。
可視光信号のパケットは、Lデータ部と、プリアンブルと、Rデータ部とからなる。なお、Lデータ部およびRデータ部はそれぞれ、ペイロードに相当する。
プリアンブルは、図188、図189Aの(b)、図197および図212のプリアンブルに相当し、図316および図317のSHRに相当する。具体的には、プリアンブルは、時間軸に沿ってHighとLowの輝度値を交互に示す。つまり、プリアンブルは、時間長CだけHighの輝度値を示し、次の時間長CだけLowの輝度値を示し、次の時間長CだけHighの輝度値を示し、次の時間長CだけLowの輝度値を示す。なお、時間長CおよびCは、例えば100μsである。また、時間長CおよびCは、例えば時間長CおよびCよりも10μsだけ短い90μsである。
Lデータ部は、図188、図189Aの(b)、図197および図212のデータLに相当し、図316および図317のPHYペイロードAに相当する。具体的には、Lデータ部は、時間軸に沿ってHighとLowの輝度値を交互に示し、プリアンブルの直前に配置される。つまり、Lデータ部は、時間長D’だけHighの輝度値を示し、次の時間長D’だけLowの輝度値を示し、次の時間長D’だけHighの輝度値を示し、次の時間長D’だけLowの輝度値を示す。なお、時間長D’~D’は、送信対象の信号に応じた数式にしたがって決定される。この数式は、D’=W+W×(3-y)、D’=W+W×(7-y)、D’=W+W×(3-y)、およびD’=W+W×(7-y)である。ここで、定数Wは、例えば110μsであり、定数Wは、例えば30μsである。変数yおよびyは、2ビットで表される0~3の何れかの整数であり、変数yおよびyは、3ビットで表される0~7の何れかの整数である。また、変数y~yは送信対象の信号である。なお、図360~図363では、かけ算を意味する記号として「*」が用いられている。
Rデータ部は、図188、図189Aの(b)、図197および図212のデータRに相当し、図316および図317のPHYペイロードBに相当する。具体的には、Rデータ部は、時間軸に沿ってHighとLowの輝度値を交互に示し、プリアンブルの直後に配置される。つまり、Rデータ部は、時間長DだけHighの輝度値を示し、次の時間長DだけLowの輝度値を示し、次の時間長DだけHighの輝度値を示し、次の時間長DだけLowの輝度値を示す。なお、時間長D~Dは、送信対象の信号に応じた数式にしたがって決定される。この数式は、D=W+W×y、D=W+W×y、D=W+W×y、およびD=W+W×yである。
ここで、Lデータ部とRデータ部とは、明るさに対して補完関係がある。つまり、Lデータ部の明るさが明るければ、Rデータ部の明るさは暗く、逆に、Lデータ部の明るさが暗ければ、Rデータ部の明るさは明るくなる。つまり、Lデータ部の時間長とRデータ部の時間長との和は、送信対象の信号に関わらずに一定である。言い換えれば、送信対象の信号に関わらず、光源から送信される可視光信号の時間平均の明るさを一定にすることができる。
また、D’=W+W×(3-y)、D’=W+W×(7-y)、D’=W+W×(3-y)、およびD’=W+W×(7-y)における、3と7との比率を変更することによって、PWMモードのデューティ比を変更することができる。なお、3と7との比率は、変数yおよびyの最大値と、変数yおよびyの最大値との比率に相当する。例えば、その比率が3:7の場合には、デューティ比が小さいPWMモードが選択され、逆に、その比率が7:3の場合には、デューティ比が大きいPWMモードが選択される。したがって、その比率を調整することによって、PWMモードを、図354および図358に示すデューティ比35%のPWMモードと、デューティ比65%のPWMモードとに切り替えることができる。また、何れのPWMモードに切り替えられているかを受信機200に通知するために、プリアンブルを利用してもよい。例えば、送信機100は、切り替えられたPWMモードに対応付けられたパターンのプリアンブルをパケットに含めることによって、その切り替えられたPWMモードを受信機200に通知する。なお、プリアンブルのパターンは、時間長C、C、CおよびCによって変更される。
しかし、図360に示す可視光信号では、パケットに2つのデータ部が含まれているため、そのパケットの送信に時間がかかってしまう。例えば、送信機100がDLPプロジェクタである場合、送信機100は、赤、緑、および青のそれぞれの映像を時分割で投影する。ここで、送信機100は、赤の映像を投影するときに、可視光信号を送信することが望ましい。それは、このとき送信される可視光信号が、赤色の波長を有するため、受信機200に受信され易いからである。赤の映像が継続して投影される期間は例えば1.5msである。なお、この期間を、以下、赤色投影期間という。このように短い赤色投影期間に、上述のLデータ部、プリアンブルおよびRデータ部からなるパケットを送信することは困難である。
そこで、2つのデータ部のうちRデータ部のみを有するパケットが想起される。
図361は、本実施の形態における可視光信号の詳細な構成の他の例を示す図である。
図361に示す可視光信号のパケットは、図360に示す例と異なり、Lデータ部を含んでいない。その代わりに、図361に示す可視光信号のパケットは、無効データと、平均輝度調整部とを含む。
無効データは、時間軸に沿ってHighとLowの輝度値を交互に示す。つまり、無効データは、時間長AだけHighの輝度値を示し、次の時間長AだけLowの輝度値を示す。時間長Aは、例えば100μsであり、時間長Aは、例えばA=W-Wによって示される。このような無効データは、パケットにLデータ部が含まれていないことを示す。
平均輝度調整部は、時間軸に沿ってHighとLowの輝度値を交互に示す。つまり、無効データは、時間長BだけHighの輝度値を示し、次の時間長BだけLowの輝度値を示す。時間長Bは、例えばB=100+W×((3-y)+(3-y))によって示され、時間長Bは、例えばB=W×((7-y)+(7-y))によって示される。
このような平均輝度調整部によって、パケットにおける平均輝度を、送信対象の信号y~yに関わらず一定にすることができる。つまり、パケットにおいて輝度値がHighの時間長の総和(すなわち合計ON時間)を、A+C+C+D+D+B=790にすることができる。さらに、パケットにおいて輝度値がLowの時間長の総和(すなわち合計OFF時間)を、A+C+C+D+D+B=910にすることができる。
しかし、このような可視光信号の構成であっても、パケットにおける全時間長Eのうちの一部の時間長である有効時間長Eを短くすることができない。この有効時間長Eは、パケットにおいて最初にHighの輝度値が現れてから、最後に現れるHighの輝度が終了するまでの時間であって、受信機200が可視光信号のパケットを復調または復号するために必要な時間である。具体的には、有効時間長Eは、E=A+A+C+C+C2+C+D+D+D+D+Bである。なお、全時間長Eは、E=E+Bである。
つまり、有効時間長Eは、図361に示す構成の可視光信号であっても、最大1700μsであるため、送信機100は、上述の赤色投影期間に、その有効時間長Eだけ継続して1つのパケットを送信することは困難である。
そこで、有効時間長Eを短くし、かつ、パケットの平均輝度を送信対象の信号に関わらず一定にするために、HighとLowのそれぞれの輝度値の時間長だけでなく、Hightの輝度値も調整することが想起される。
図362は、本実施の形態における可視光信号の詳細な構成の他の例を示す図である。
図362に示す可視光信号のパケットでは、図361に示す例と異なり、有効時間長Eを短くするために、平均輝度調整部のHighの輝度値の時間長Bは、送信対象の信号に関わらず最短の100μsに固定されている。その代わりに、図362に示す可視光信号のパケットでは、送信対象の信号に含まれる変数yおよびyに応じて、すなわち、時間長DおよびDに応じて、Highの輝度値が調整される。例えば、時間長DおよびDが短い場合には、送信機100は、図362の(a)に示すように、Highの輝度値を大きな値に調整する。また、時間長DおよびDが長い場合には、送信機100は、図362の(b)に示すように、Highの輝度値を小さな値に調整する。具体的には、時間長DおよびDがそれぞれ最短のW(例えば110μs)である場合には、Highの輝度値は100%の明るさである。また、時間長DおよびDがそれぞれ最大の「W+3W」(例えば200μs)である場合には、Highの輝度値は77.2%の明るさである。
このような可視光信号のパケットでは、輝度値がHighの時間長の総和(すなわち合計ON時間)を、例えば、A+C+C+D+D+B=610~790にすることができる。さらに、輝度値がLowの時間長の総和(すなわち合計OFF時間)を、A+C+C+D+D+B=910にすることができる。
しかし、図362に示す可視光信号では、パケットにおける全時間長Eおよび有効時間長Eのそれぞれの最短の時間長を、図361に示す例よりも短くすることはできるが、最大の時間長を短くすることができない。
そこで、有効時間長Eを短くし、かつ、パケットの平均輝度を送信対象の信号に関わらず一定にするために、送信対象の信号に応じて、パケットに含まれるデータ部としてLデータ部とRデータ部とを使い分かることが想起される。
図363は、本実施の形態における可視光信号の詳細な構成の他の例を示す図である。
図363に示す可視光信号では、図360~図362に示す例と異なり、有効時間長を短くするために、送信対象の信号である変数y~yの総和に応じて、Lデータ部を含むパケットと、Rデータ部を含むパケットとが使い分けられる。
つまり、送信機100は、変数y~yの総和が7以上の場合には、図363の(a)に示すように、2つのデータ部のうちLデータ部のみを含むパケットを生成する。以下、このパケットをLパケットという。また、送信機100は、変数y~yの総和が6以下の場合には、図363の(b)に示すように、2つのデータ部のうちRデータ部のみを含むパケットを生成する。以下、このパケットをRパケットという。
Lパケットは、図363の(a)に示すように、平均輝度調整部と、Lデータ部と、プリアンブルと、無効データとを含む。
Lパケットの平均輝度調整部は、Highの輝度値を示すことなく、時間長B’だけLowの輝度値を示す。時間長B’は、例えばB’=100+W×(y+y+y+y-7)によって示される。
Lパケットの無効データは、時間軸に沿ってHighとLowの輝度値を交互に示す。つまり、無効データは、時間長A’だけHighの輝度値を示し、次の時間長A’だけLowの輝度値を示す。時間長A’は、A’=W-Wによって示され、例えば80μsであり、時間長A’は、例えば150μsである。このような無効データは、その無効データを有するパケットに、Rデータ部が含まれていないことを示す。
このようなLパケットでは、全時間長E’は、送信対象の信号に関わらず、E’=5W+12W+4b+230=1540μsである。また、有効時間長E’は、送信対象の信号に応じた時間長であって、900~1290μsの範囲にある。また、全時間長E’が一定の1540μsであるのに対して、輝度値がHighの時間長の総和(すなわち合計ON時間)は、490~670μsの範囲で送信対象の信号に応じて変化する。したがって、送信機100は、このLパケットにおいても、図362に示す例と同様に、合計ON時間に応じて、すなわち時間長DおよびDに応じて、Highの輝度値を100%~73.1%の範囲で変化させる。
Rパケットは、図361に示す例と同様、図363の(b)に示すように、無効データと、プリアンブルと、Rデータ部と、平均輝度調整部とを含む。
ここで、図363の(b)に示すRパケットでは、有効時間長Eを短くするために、平均輝度調整部におけるHighの輝度値の時間長Bは、送信対象の信号に関わらず最短の100μsに固定されている。また、平均輝度調整部におけるLowの輝度値の時間長Bは、全時間長Eを一定にするために、例えばB=W×(6-(y+y+y+y)によって示される。さらに、図363の(b)に示すRパケットにおいても、送信対象の信号に含まれる変数yおよびyに応じて、すなわち、時間長DおよびDに応じて、Highの輝度値が調整される。
このようなRパケットでは、全時間長Eは、送信対象の信号に関わらず、E=4W+6W+4b+260=1280μsである。また、有効時間長Eは、送信対象の信号に応じた時間長であって、1100~1280μsの範囲にある。また、全時間長Eが一定の1280μsであるのに対して、輝度値がHighの時間長の総和(すなわち合計ON時間)は、610~790μsの範囲で送信対象の信号に応じて変化する。したがって、送信機100は、このLパケットにおいても、図362に示す例と同様に、合計ON時間に応じて、すなわち時間長DおよびDに応じて、Highの輝度値を80.3%~62.1%の範囲で変化させる。
このように、図363に示す可視光信号では、パケットにおける有効時間長の最大値を短くすることができる。したがって、送信機100は、上述の赤色投影期間に、その有効時間長EまたはE’だけ継続して1つのパケットを送信することができる。
ここで、図363に示す例では、送信機100は、変数y~yの総和が7以上の場合に、Lパケットを生成し、変数y~yの総和が6以下の場合に、Rパケットを生成する。言い換えれば、変数y~yの総和は整数であるため、送信機100は、変数y~yの総和が6よりも大きい場合に、Lパケットを生成し、変数y~yの総和が6以下の場合に、Rパケットを生成する。つまり、この例では、パケットのタイプを切り替えるための閾値は6である。しかし、このようなパケットのタイプの切り替えの閾値は、6に限定されずに、3~10の何れかの値であってもよい。
図364は、変数y~yの総和と、全時間長および有効時間長との関係を示す図である。図364に示す全時間長は、Rパケットの全時間長Eと、Lパケットの全時間長E’とのうちの大きい方の時間長である。また、図364に示す有効時間長は、Rパケットの有効時間長Eの最大値と、Lパケットの有効時間長E’の最大値とのうちの大きい方の時間長である。なお、図364に示す例では、定数W、W、およびbは、それぞれW=110μs、W=15μsおよびb=100μsである。
全時間長は、図364に示すように、変数y~yの総和に応じて変化するが、その総和が約10で最小になる。また、有効時間長は、図364に示すように、変数y~yの総和に応じて変化するが、その総和が約3で最小になる。
したがって、パケットのタイプの切り替えの閾値は、3~10の範囲で、全時間長および有効時間長のうちの何れを短くするかに応じて設定されてもよい。
図365Aは、本実施の形態における送信方法を示すフローチャートである。
本実施の形態における送信方法は、発光体の輝度変化によって可視光信号を送信する送信方法であって、決定ステップS571と、送信ステップS572とを含む。決定ステップS571では、送信機100は、信号を変調することによって、輝度変化のパターンを決定する。送信ステップS572では、送信機100は、その発光体に含まれる光源によって表現される赤色の輝度を、決定されたパターンにしたがって変化させることによって可視光信号を送信する。ここで、可視光信号は、データと、プリアンブルと、ペイロードとを含む。データでは、第1の輝度値、および、その第1の輝度値よりも小さい第2の輝度値が、時間軸上に沿って現れ、第1の輝度値および第2の輝度値のうちの少なくとも一方が継続する時間長は第1の所定の値以下である。プリアンブルでは、第1および第2の輝度値のそれぞれが、時間軸上に沿って交互に現れる。ペイロードでは、第1および第2の輝度値が時間軸上に沿って交互に現れ、第1および第2の輝度値のそれぞれが継続する時間長は第1の所定の値よりも大きく、かつ、上述の信号および所定の方式にしたがって決定されている。
例えば、データ、プリアンブルおよびペイロードはそれぞれ、図363の(a)および(b)に示す無効データ、プリアンブル、およびLデータ部もしくはRデータ部である。また、例えば、第1の所定の値は100μsである。
これにより、図363の(a)および(b)に示すように、可視光信号は、変調される信号に応じて決定される波形のペイロード(すなわち、Lデータ部またはRデータ部)を1つ含み、2つのペイロードを含んでいない。したがって、可視光信号、すなわち可視光信号のパケットを、短くすることができる。その結果、例えば、発光体に含まれる光源によって表現される赤色の光の発光期間が短くても、その発光期間に可視光信号のパケットを送信することができる。
また、ペイロードでは、第1の時間長の第1の輝度値、第2の時間長の第2の輝度値、第3の時間長の第1の輝度値、第4の時間長の第2の輝度値の順で、それぞれの輝度値が現れてもよい。この場合、送信ステップS572では、送信機100は、第1の時間長と第3の時間長の和が、第2の所定の値よりも小さい場合、第1の時間長と第3の時間長の和が、第2の所定の値よりも大きい場合よりも、光源に流れる電流値を大きくする。ここで、第2の所定の値は、第1の所定の値よりも大きい。なお、第2の所定の値は、例えば220μsよりも大きい値である。
これにより、図362および図363に示すように、第1の時間長と第3の時間長の和が小さい場合には、光源の電流値は大きくされ、第1の時間長と第3の時間長の和が大きい場合には、光源の電流値は小さくされる。したがって、データ、プリアンブルおよびペイロードからなるパケットの平均輝度を、信号に関わらずに一定に保つことができる。
また、ペイロードでは、第1の時間長Dの第1の輝度値、第2の時間長Dの第2の輝度値、第3の時間長Dの第1の輝度値、第4の時間長Dの第2の輝度値の順で、それぞれの輝度値が現れてもよい。この場合、信号から得られる4つのパラメータy(k=0,1,2,3)の総和が第3の所定の値以下である場合、第1~4の時間長D~Dのそれぞれは、D=W+W×y(W、Wは、0以上の整数)に従って決定されている。例えば、図363の(b)に示すように、第3の所定の値は3である。
これにより、図363の(b)に示すように、第1~4の時間長D~DのそれぞれをW以上にしながら、信号に応じて短い波形のペイロードを生成することができる。
また、4つのパラメータy(k=0,1,2,3)の総和が第3の所定の値以下である場合、送信ステップS572では、データ、プリアンブルおよびペイロードを、データ、プリアンブル、ペイロードの順に送信してもよい。なお、図363の(b)に示す例の場合、そのペイロードはRデータ部である。
これにより、図363の(b)に示すように、データ(すなわち無効データ)を含む可視光信号のパケットがLデータ部を含んでいないことを、そのデータによって、そのパケットを受信する受信機200に知らせることができる。
また、4つのパラメータy(k=0,1,2,3)の総和が第3の所定の値よりも大きい場合、第1~4の時間長D~Dのそれぞれは、D=W+W×(A-y)、D=W+W×(B-y)、D=W+W×(A-y)、およびD=W+W×(B-y)(AおよびBはそれぞれ、0以上の整数)に従って決定されていてもよい。
これにより、図363の(a)に示すように、第1~4の時間長D~D(すなわち、第1~4の時間長D’~D’)のそれぞれをW以上にしながら、上述の総和が大きくても、信号に応じて短い波形のペイロードを生成することができる。
また、4つのパラメータy(k=0,1,2,3)の総和が第3の所定の値よりも大きい場合、送信ステップS572では、データ、プリアンブルおよびペイロードを、ペイロード、プリアンブル、データの順に送信してもよい。なお、図363の(a)に示す例の場合、そのペイロードはLデータ部である。
これにより、図363の(a)に示すように、データ(すなわち無効データ)を含む可視光信号のパケットがRデータ部を含んでいないことを、そのデータによって、そのパケットを受信する受信装置に知らせることができる。
また、発光体は、赤色の光源、青色の光源、および緑色の光源を含む複数の光源を有し、送信ステップS572では、その複数の光源のうち、赤色の光源のみを用いて可視光信号を送信してもよい。
これにより、発光体は、赤色の光源、青色の光源、および緑色の光源を用いて映像を表示することができるとともに、受信機200に受信し易い波長の可視光信号を送信することができる。
なお、発光体は例えばDLPプロジェクタであってもよい。DLPプロジェクタは、上述のように、赤色の光源、青色の光源、緑色の光源を含む複数の光源を有していてもよいが、1つの光源のみを有していてもよい。つまり、DLPプロジェクタは、1つの光源と、DMD(Digital Micromirror Device)と、光源とDMDとの間に配置されるカラーホイールとを備えていてもよい。この場合には、DLPプロジェクタは、光源からカラーホイールを介してDMDへ時分割で出力される赤色の光、青色の光、および緑色の光のうち、赤色の光が出力される期間に、可視光信号のパケットを送信する。
図365Bは、本実施の形態における送信機100の構成を示すブロック図である。
本実施の形態における送信機100は、発光体の輝度変化によって可視光信号を送信する送信機、決定部571と、送信部572とを備える。決定部571は、信号を変調することによって、輝度変化のパターンを決定する。送信部572は、その発光体に含まれる光源によって表現される赤色の輝度を、決定されたパターンにしたがって変化させることによって可視光信号を送信する。ここで、可視光信号は、データと、プリアンブルと、ペイロードとを含む。データでは、第1の輝度値、および、その第1の輝度値よりも小さい第2の輝度値が、時間軸上に沿って現れ、第1の輝度値および第2の輝度値のうちの少なくとも一方が継続する時間長は第1の所定の値以下である。プリアンブルでは、第1および第2の輝度値のそれぞれが、時間軸上に沿って交互に現れる。ペイロードでは、第1および第2の輝度値が時間軸上に沿って交互に現れ、第1および第2の輝度値のそれぞれが継続する時間長は第1の所定の値よりも大きく、かつ、上述の信号および所定の方式にしたがって決定されている。
このような送信機100によって、図365Aに示すフローチャートの送信方法が実現される。
本発明の送信方法は、例えばディスプレイまたは照明などから可視光信号を送信する送信装置等に利用でき、特に、例えばスポットライトなどから可視光信号を送信する送信装置などに利用することができる。
100 送信装置
551 受付部
552 送信部

Claims (10)

  1. 発光体の輝度変化によって可視光信号を送信する送信方法であって、
    信号を変調することによって、輝度変化のパターンを決定する決定ステップと、
    前記発光体に含まれる光源によって表現される赤色の輝度を、決定された前記パターンにしたがって変化させることによって前記可視光信号を送信する送信ステップとを含み、
    前記可視光信号は、
    第1ペイロードと、プリアンブルと、第2ペイロードとを含み、
    前記第1ペイロードでは、
    第1の輝度値、および、前記第1の輝度値よりも小さい第2の輝度値が、時間軸上に沿って現れ、前記第1の輝度値および前記第2の輝度値のうちの少なくとも一方が継続する時間長は第1の所定の値以下であり、
    前記プリアンブルでは、
    前記第1および第2の輝度値のそれぞれが、時間軸上に沿って交互に現れ、
    前記第2ペイロードでは、
    前記第1および第2の輝度値が時間軸上に沿って交互に現れ、前記第1および第2の輝度値のそれぞれが継続する時間長は前記第1の所定の値よりも大きく、かつ、前記信号および所定の方式にしたがって決定されている、
    送信方法。
  2. 前記第2ペイロードでは、
    第1の時間長の前記第1の輝度値、第2の時間長の前記第2の輝度値、第3の時間長の前記第1の輝度値、第4の時間長の前記第2の輝度値の順で、それぞれの輝度値が現れ、
    前記送信ステップでは、
    前記第1の時間長と前記第3の時間長の和が、第2の所定の値よりも小さい場合、前記第1の時間長と前記第3の時間長の和が、前記第2の所定の値よりも大きい場合よりも、前記光源に流れる電流値を大きくする、
    請求項1に記載の送信方法。
  3. 前記第2の所定の値は、前記第1の所定の値よりも大きい、
    請求項2に記載の送信方法。
  4. 前記第2ペイロードでは、
    第1の時間長Dの前記第1の輝度値、第2の時間長Dの前記第2の輝度値、第3の時間長Dの前記第1の輝度値、第4の時間長Dの前記第2の輝度値の順で、それぞれの輝度値が現れ、
    前記信号から得られる4つのパラメータy(k=0,1,2,3)の総和が第3の所定の値以下である場合、
    前記第1~4の時間長D~Dのそれぞれは、D=W+W×y(WおよびWはそれぞれ、0以上の整数)に従って決定されている、
    請求項1に記載の送信方法。
  5. 前記4つのパラメータy(k=0,1,2,3)の総和が前記第3の所定の値以下である場合、
    前記送信ステップでは、前記第1ペイロード、前記プリアンブルおよび前記第2ペイロードを、前記第1ペイロード、前記プリアンブル、前記第2ペイロードの順に送信する、
    請求項4に記載の送信方法。
  6. 前記4つのパラメータy(k=0,1,2,3)の総和が前記第3の所定の値よりも大きい場合、
    前記第1~4の時間長D~Dのそれぞれは、
    =W+W×(A-y)、
    =W+W×(B-y)、
    =W+W×(A-y)、および
    =W+W×(B-y)(AおよびBはそれぞれ、0以上の整数)に従って決定されている、
    請求項4に記載の送信方法。
  7. 前記4つのパラメータy(k=0,1,2,3)の総和が前記第3の所定の値よりも大きい場合、
    前記送信ステップでは、前記第1ペイロード、前記プリアンブルおよび前記第2ペイロードを、前記第2ペイロード、前記プリアンブル、前記第1ペイロードの順に送信する、
    請求項6に記載の送信方法。
  8. 前記発光体は、赤色の光源、青色の光源、および緑色の光源を含む複数の光源を有し、
    前記送信ステップでは、前記複数の光源のうち、前記赤色の光源のみを用いて前記可視光信号を送信する、
    請求項1に記載の送信方法。
  9. 発光体の輝度変化によって可視光信号を送信する送信装置であって、
    信号を変調することによって、輝度変化のパターンを決定する決定部と、
    前記発光体に含まれる光源によって表現される赤色の輝度を、決定された前記パターンにしたがって変化させることによって前記可視光信号を送信する送信部とを備え、
    前記可視光信号は、
    第1ペイロードと、プリアンブルと、第2ペイロードとを含み、
    前記第1ペイロードでは、
    第1の輝度値、および、前記第1の輝度値よりも小さい第2の輝度値が、時間軸上に沿って現れ、前記第1の輝度値および前記第2の輝度値のうちの少なくとも一方が継続する時間長は第1の所定の値以下であり、
    前記プリアンブルでは、
    前記第1および第2の輝度値のそれぞれが、時間軸上に沿って交互に現れ、
    前記第2ペイロードでは、
    前記第1および第2の輝度値が時間軸上に沿って交互に現れ、前記第1および第2の輝度値のそれぞれが継続する時間長は前記第1の所定の値よりも大きく、かつ、前記信号および所定の方式にしたがって決定されている、
    送信装置。
  10. 発光体の輝度変化によって可視光信号を送信するためのプログラムであって、
    信号を変調することによって、輝度変化のパターンを決定する決定ステップと、
    前記発光体に含まれる光源によって表現される赤色の輝度を、決定された前記パターンにしたがって変化させることによって前記可視光信号を送信する送信ステップとを、コンピュータに実行させ、
    前記可視光信号は、
    第1ペイロードと、プリアンブルと、第2ペイロードとを含み、
    前記第1ペイロードでは、
    第1の輝度値、および、前記第1の輝度値よりも小さい第2の輝度値が、時間軸上に沿って現れ、前記第1の輝度値および前記第2の輝度値のうちの少なくとも一方が継続する時間長は第1の所定の値以下であり、
    前記プリアンブルでは、
    前記第1および第2の輝度値のそれぞれが、時間軸上に沿って交互に現れ、
    前記第2ペイロードでは、
    前記第1および第2の輝度値が時間軸上に沿って交互に現れ、前記第1および第2の輝度値のそれぞれが継続する時間長は前記第1の所定の値よりも大きく、かつ、前記信号および所定の方式にしたがって決定されている、
    プログラム。
JP2018556601A 2016-12-15 2017-12-06 送信方法、送信装置、およびプログラム Active JP7134094B2 (ja)

Applications Claiming Priority (21)

Application Number Priority Date Filing Date Title
US201662434644P 2016-12-15 2016-12-15
US62/434,644 2016-12-15
JP2016243825 2016-12-15
JP2016243825 2016-12-15
US201762446632P 2017-01-16 2017-01-16
US62/446,632 2017-01-16
US201762457382P 2017-02-10 2017-02-10
US62/457,382 2017-02-10
US201762466534P 2017-03-03 2017-03-03
US62/466,534 2017-03-03
US201762467376P 2017-03-06 2017-03-06
US62/467,376 2017-03-06
JP2017080595 2017-04-14
JP2017080664 2017-04-14
JP2017080664 2017-04-14
JP2017080595 2017-04-14
US201762558629P 2017-09-14 2017-09-14
US62/558,629 2017-09-14
US201762583604P 2017-11-09 2017-11-09
US62/583,604 2017-11-09
PCT/JP2017/043726 WO2018110373A1 (ja) 2016-12-15 2017-12-06 送信方法、送信装置、およびプログラム

Publications (2)

Publication Number Publication Date
JPWO2018110373A1 JPWO2018110373A1 (ja) 2019-11-21
JP7134094B2 true JP7134094B2 (ja) 2022-09-09

Family

ID=67365135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018556601A Active JP7134094B2 (ja) 2016-12-15 2017-12-06 送信方法、送信装置、およびプログラム

Country Status (2)

Country Link
JP (1) JP7134094B2 (ja)
CN (1) CN110073612B (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113765585B (zh) * 2020-06-04 2024-03-26 中国电子科技集团公司第十一研究所 一种建立通信链接的方法及系统
CN111741093B (zh) * 2020-06-12 2023-06-30 喻军 基于屏幕的数据发送方法、接收方法、接收装置、设置系统及可读存储介质
CN111860251B (zh) * 2020-07-09 2023-09-15 迈克医疗电子有限公司 数据处理方法及装置
TWI766329B (zh) * 2020-08-04 2022-06-01 新唐科技股份有限公司 資料接收電路及其資料接收方法
CN112539712B (zh) * 2020-11-19 2022-07-05 广州视源电子科技股份有限公司 三维成像方法、装置及设备
CN113945888B (zh) * 2021-10-19 2022-05-03 江南大学 基于tdoa的区间化无源定位方法及系统
CN117705175A (zh) * 2024-02-05 2024-03-15 宁德时代新能源科技股份有限公司 检测设备的校验方法及装置、涂布系统和电子设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006325085A (ja) 2005-05-20 2006-11-30 Nakagawa Kenkyusho:Kk データ送信装置及びデータ受信装置
WO2015098108A1 (ja) 2013-12-27 2015-07-02 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 情報処理プログラム、受信プログラムおよび情報処理装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003115803A (ja) * 2001-10-09 2003-04-18 Nec Corp 発光装置及び通信システム
KR101009803B1 (ko) * 2008-02-21 2011-01-19 삼성전자주식회사 가시광 통신을 이용한 데이터 송수신 장치 및 방법
JP5155063B2 (ja) * 2008-08-21 2013-02-27 ビーコア株式会社 発光装置及び対象物の追尾方法
US8374201B2 (en) * 2009-09-16 2013-02-12 Samsung Electronics Co., Ltd. Preamble design for supporting multiple topologies with visible light communication
JP5648664B2 (ja) * 2012-09-21 2015-01-07 カシオ計算機株式会社 情報処理システム、情報処理方法、端末装置及びプログラム
CN104219031A (zh) * 2013-06-04 2014-12-17 中兴通讯股份有限公司 一种mac帧聚合方法和装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006325085A (ja) 2005-05-20 2006-11-30 Nakagawa Kenkyusho:Kk データ送信装置及びデータ受信装置
WO2015098108A1 (ja) 2013-12-27 2015-07-02 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 情報処理プログラム、受信プログラムおよび情報処理装置

Also Published As

Publication number Publication date
JPWO2018110373A1 (ja) 2019-11-21
CN110073612B (zh) 2022-10-25
CN110073612A (zh) 2019-07-30

Similar Documents

Publication Publication Date Title
JP6876617B2 (ja) 表示方法および表示装置
US10521668B2 (en) Display method and display apparatus
CN110114988B (zh) 发送方法、发送装置及记录介质
CN107466477B (zh) 显示方法、计算机可读取记录介质以及显示装置
US10530486B2 (en) Transmitting method, transmitting apparatus, and program
JP7023239B2 (ja) 送信方法、送信装置、およびプログラム
JP6122233B1 (ja) 可視光信号の生成方法、信号生成装置およびプログラム
JP6842413B2 (ja) 信号復号方法、信号復号装置およびプログラム
JP7134094B2 (ja) 送信方法、送信装置、およびプログラム
JP6591262B2 (ja) 再生方法、再生装置およびプログラム
WO2016136256A1 (ja) 信号生成方法、信号生成装置およびプログラム
WO2016098355A1 (ja) 送信方法、送信装置およびプログラム
WO2018110373A1 (ja) 送信方法、送信装置、およびプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211026

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20211209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220830

R150 Certificate of patent or registration of utility model

Ref document number: 7134094

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150