JP7133750B2 - Iodine-containing condensed ring compound and organic electronic material using iodine-containing condensed ring compound - Google Patents

Iodine-containing condensed ring compound and organic electronic material using iodine-containing condensed ring compound Download PDF

Info

Publication number
JP7133750B2
JP7133750B2 JP2018137848A JP2018137848A JP7133750B2 JP 7133750 B2 JP7133750 B2 JP 7133750B2 JP 2018137848 A JP2018137848 A JP 2018137848A JP 2018137848 A JP2018137848 A JP 2018137848A JP 7133750 B2 JP7133750 B2 JP 7133750B2
Authority
JP
Japan
Prior art keywords
iodine
att
condensed ring
ring compound
containing condensed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018137848A
Other languages
Japanese (ja)
Other versions
JP2019043936A (en
Inventor
洋史 片桐
雄太 小川
周 松永
大介 熊木
静士 時任
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamagata University NUC
Original Assignee
Yamagata University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamagata University NUC filed Critical Yamagata University NUC
Publication of JP2019043936A publication Critical patent/JP2019043936A/en
Application granted granted Critical
Publication of JP7133750B2 publication Critical patent/JP7133750B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Description

特許法第30条第2項適用 日本化学会第97春季年会(2017)(発表日:平成29年3月18日)Application of Article 30, Paragraph 2 of the Patent Law The 97th Chemical Society of Japan Annual Meeting (2017) (Announcement date: March 18, 2017)

特許法第30条第2項適用 日本化学会第97春季年会 予稿集(3C5-31)(発行日:平成29年3月3日)Application of Article 30, Paragraph 2 of the Patent Law Proceedings of the 97th Annual Meeting of the Chemical Society of Japan (3C5-31) (Publication date: March 3, 2017)

本発明は、有機薄膜トランジスタ用の新規含ヨウ素縮合環化合物、及びこれを用いた有機電子材料に関する。 TECHNICAL FIELD The present invention relates to novel iodine-containing condensed ring compounds for organic thin film transistors and organic electronic materials using the same.

半導体から導体までの様々な電気特性を有する有機電子材料は、フレキシブルディスプレイ・多機能スイッチ・多機能センサー・有機太陽電池・有機電極など、有機化合物を用いた、薄くて曲がる電子デバイス(all-organic electronics)の実現に直接つながることから分子エレクトロニクスの中枢を担っている。特に、導電性材料や有機半導体を用いた薄膜トランジスタに関する研究は大きな注目を集めている。 Organic electronic materials with various electrical properties ranging from semiconductors to conductors are used in flexible displays, multifunctional switches, multifunctional sensors, organic solar cells, organic electrodes, and other thin and flexible electronic devices (all-organic materials) using organic compounds. It plays a central role in molecular electronics because it directly leads to the realization of electronics). In particular, research on thin film transistors using conductive materials and organic semiconductors has attracted a great deal of attention.

有機化合物の持つ本来の魅力はインクジェット法などのウエットプロセスによる大面積デバイスの作製であり、高溶解性及び高性能を示す材料のさらなる開発が望まれている。高性能の実現には活性層の結晶性薄膜における高次の分子配列が求められ、これまでπ電子系の拡張による強い分子間相互作用を期待した直線的な縮合環数の増加等が試みられてきた。しかし、π電子系の拡張と溶解性とはトレードオフの関係にあり、ウエットプロセスにおいて大きな障害となっている。 The original attraction of organic compounds is the fabrication of large-area devices by wet processes such as the inkjet method, and further development of materials exhibiting high solubility and high performance is desired. In order to achieve high performance, a high-order molecular arrangement is required in the crystalline thin film of the active layer. It's here. However, there is a trade-off relationship between the expansion of the π-electron system and the solubility, which is a major obstacle in wet processes.

このような中、近年、高い溶解性の獲得に分子骨格の非対称化が着目され、分子の片末端にアルキル基を導入した可溶性有機半導体材料が報告されている(非特許文献1~4)。しかしながら、アルキル基による配向制御は難しく、未だ分子配向における相互作用には不明な点が多く、しばしば半導体特性において明確な優位性を与えない(非特許文献5及び6)。よって、分子の溶解性と配向性の両立に向けた明確なメカニズムの解明と該メカニズムに基づく新しい材料群の設計コンセプトが求められている。 Under such circumstances, in recent years, attention has been paid to the asymmetry of the molecular skeleton to obtain high solubility, and soluble organic semiconductor materials in which an alkyl group is introduced at one end of the molecule have been reported (Non-Patent Documents 1 to 4). However, it is difficult to control the orientation with alkyl groups, and there are still many unclear points about the interactions in molecular orientation, and they often do not provide clear superiority in semiconductor properties (Non-Patent Documents 5 and 6). Therefore, there is a demand for elucidation of a clear mechanism for achieving compatibility between molecular solubility and orientation, and a design concept for a new group of materials based on this mechanism.

Tian, H.; Han, Y.; Bao, C.; Yan,D.; Geng, Y.; Wang, F. Chem. Commun. 2012, 48 (29), 3557.Bao, C.; Yan, D.; Geng, Y.; Wang, F. Chem. Commun. 2012, 48 (29), 3557. Iino, H.; Kobori, T.; Hanna,J.-I. Jpn. J. Appl. Phys. 2012, 51 (11S), 11PD02.Iino, H.; Kobori, T.; Hanna, J.-I. Jpn. J. Appl. Phys. 2012, 51 (11S), 11PD02. Iino, H.; Usui, T.; Hanna, J.-I. NatureCommunications 2015, 6, 1.Iino, H.; Usui, T.; Hanna, J.-I. Nature Communications 2015, 6, 1. Ogawa, Y.; Yamamoto, K.; Miura,C.; Tamura, S.; Saito, M.; Mamada, M.; Kumaki, D.; Tokito, S.; Katagiri, H. ACSAppl. Mater. Interfaces 2017, 9 (11), 9902.Ogawa, Y.; Yamamoto, K.; Miura, C.; Tamura, S.; Saito, M.; , 9 (11), 9902. Sawamoto, M.; Kang, M. J.;Miyazaki, E.; Sugino, H.; Osaka, I.; Takimiya, K. ACS Appl. Mater. Interfaces 2016,8 (6), 3810.Sawamoto, M.; Kang, M. J.; Miyazaki, E.; Sugino, H.; Osaka, I.; Takimiya, K. ACS Appl. Tang, M. L.; Reichardt, A. D.;Okamoto, T.; Miyaki, N.; Bao, Z. Adv. Funct. Mater. 2008, 18 (10), 1579.Tang, M. L.; Reichardt, A. D.; Okamoto, T.; Miyaki, N.; Bao, Z. Adv. Pitayatanakul, O.; Iijima, K.;Ashizawa, M.; Kawamoto, T.; Matsumoto, H.; Mori, T. J. Mater. Chem. C 2015, 3, 8612.Pitayatanakul, O.; Iijima, K.; Ashizawa, M.; Kawamoto, T.; Matsumoto, H.;

本発明は、上記の事情に鑑みてなされたものであり、その目的は、有機薄膜トランジスタ等に用いる有機電子材料として、高溶解性及び高性能を示す非対称型の拡張π共役系縮合環化合物を提供することにある。 The present invention has been made in view of the above circumstances, and its object is to provide an asymmetric extended π-conjugated condensed ring compound that exhibits high solubility and high performance as an organic electronic material used in organic thin-film transistors and the like. to do.

本発明の含ヨウ素縮合環化合物は、下記一般式(1)で表されることを特徴とする。

Figure 0007133750000001
一般式(1)中、nは1~3の整数である。
本発明の含ヨウ素縮合環化合物は、下記一般式(2)で表されることを特徴とする。
Figure 0007133750000002
一般式(2)中、nは1~3の整数であり、Yは一般式(s1)~(s7)に示される置換基である。
Figure 0007133750000003
本発明の有機電子材料は、上記含ヨウ素縮合環化合物を用いたものであることを特徴とする。
上記含ヨウ素縮合環化合物は、分子同士が同方向に整然と配列したヘリンボーン(herringbone)構造を有するため、薄膜状態での高い分子配向性を実現し、高い半導体性能を有する。さらに、上記含ヨウ素縮合環化合物は、有機溶媒への高溶解性を維持しているため、有機薄膜トランジスタ等に用いる有機半導体材料として好適である。 The iodine-containing condensed ring compound of the present invention is characterized by being represented by the following general formula (1).
Figure 0007133750000001
In general formula (1), n is an integer of 1-3.
The iodine-containing condensed ring compound of the present invention is characterized by being represented by the following general formula (2).
Figure 0007133750000002
In general formula (2), n is an integer of 1 to 3, and Y is a substituent represented by general formulas (s1) to (s7).
Figure 0007133750000003
The organic electronic material of the present invention is characterized by using the above iodine-containing condensed ring compound.
Since the iodine-containing condensed ring compound has a herringbone structure in which the molecules are arranged orderly in the same direction, it achieves high molecular orientation in a thin film state and has high semiconductor performance. Furthermore, since the iodine-containing condensed ring compound maintains high solubility in organic solvents, it is suitable as an organic semiconductor material for use in organic thin-film transistors and the like.

本発明の含ヨウ素縮合環化合物は、ヨウ素原子を含むアセン骨格が高い溶解性と高い分子配向性とを示すため、溶液プロセスでのデバイス作製が可能である。
よって、上記含ヨウ素縮合環化合物は、有機導電性材料又は有機薄膜トランジスタ用の有機半導体材料として、優れた性能を発揮する。
In the iodine-containing condensed ring compound of the present invention, the acene skeleton containing an iodine atom exhibits high solubility and high molecular orientation, so devices can be produced by a solution process.
Therefore, the iodine-containing condensed ring compound exhibits excellent performance as an organic conductive material or an organic semiconductor material for an organic thin film transistor.

図1はドロップキャスト法によって含ヨウ素縮合環化合物を製膜する様子を描いた図である。FIG. 1 is a drawing showing a state of forming a film of an iodine-containing condensed ring compound by a drop casting method. 図2はATT及びI-ATTをそれぞれ、クロロホルム溶液及び薄膜の状態にして測定したUV-vis吸収スペクトル(図2(a))、及びサイクリックボルタモグラム(図2(b))である。FIG. 2 shows UV-vis absorption spectra (FIG. 2(a)) and cyclic voltammograms (FIG. 2(b)) of ATT and I-ATT in the form of chloroform solution and thin film, respectively. 図3は、ATT及びI-ATTの単結晶によるX線構造解析の結果、ATTに比べてI-ATTでは、ヨウ素原子が分子配向の向上に寄与していることを示す図である。FIG. 3 is a diagram showing the result of X-ray structural analysis of single crystals of ATT and I-ATT that iodine atoms contribute to the improvement of molecular orientation in I-ATT as compared to ATT. 図4は、I-ATTからドロップキャスト法で素子を作製し、FET特性を評価した結果を表す図である。図4(a)は伝達特性を表し、図4(b)は出力特性を表す。FIG. 4 is a diagram showing the results of evaluating the FET characteristics of devices fabricated from I-ATT by the drop casting method. FIG. 4(a) represents transfer characteristics, and FIG. 4(b) represents output characteristics. 図5は、I-ATTをドロップキャスト法によって製膜し、薄膜の結晶構造をAFM(原子間力顕微鏡)及びXRD(X線回折)により評価した図である。左下図は、AFM高さプロファイルを示し、右下図は単結晶構造を示す。FIG. 5 is a diagram showing the evaluation of the crystal structure of the thin film by AFM (atomic force microscope) and XRD (X-ray diffraction) obtained by forming a film of I-ATT by the drop casting method. The lower left panel shows the AFM height profile and the lower right panel shows the single crystal structure. 図6(a)は、I-TNTTのId-Vg特性を表し、図6(b)は、XRD測定結果を表す。FIG. 6(a) shows the Id-Vg characteristics of I-TNTT, and FIG. 6(b) shows the XRD measurement results. 図7(a)は、I-TATTのId-Vg特性を表し、図7(b)は、XRD測定結果を表す。FIG. 7(a) represents the Id-Vg characteristics of I-TATT, and FIG. 7(b) represents the XRD measurement results.

以下、本発明について、詳細に説明する。
本発明の含ヨウ素縮合環化合物は、下記一般式(1)で表される。

Figure 0007133750000004
また、上記含ヨウ素縮合環化合物は、下記一般式(2)で表される。
Figure 0007133750000005
ただし、一般式(1)及び(2)中、nは1~3の整数であり、Yは下記一般式(s1)~(s7)に示される置換基である)。
Figure 0007133750000006
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.
The iodine-containing condensed ring compound of the present invention is represented by the following general formula (1).
Figure 0007133750000004
Further, the iodine-containing condensed ring compound is represented by the following general formula (2).
Figure 0007133750000005
However, in general formulas (1) and (2), n is an integer of 1 to 3, and Y is a substituent represented by the following general formulas (s1) to (s7)).
Figure 0007133750000006

すなわち、上記含ヨウ素縮合環化合物は、縮合環数が4~6の縮合環骨格を有する。これらのうち、含ヨウ素縮合環化合物として具体的には、以下の化合物がより好ましい。

Figure 0007133750000007
さらに、高い溶解性及び高い分子配向性を有する観点で、I-ATT、I-TNTTが特に好ましい。 That is, the iodine-containing condensed ring compound has a condensed ring skeleton with 4 to 6 condensed rings. Among these, the following compounds are more preferable as the iodine-containing condensed ring compound.
Figure 0007133750000007
Furthermore, I-ATT and I-TNTT are particularly preferred from the viewpoint of having high solubility and high molecular orientation.

上記含ヨウ素縮合環化合物は、例えば、以下に示す方法により合成することができる。一例として、I-ATTの合成方法を示す。

Figure 0007133750000008
The iodine-containing condensed ring compound can be synthesized, for example, by the method shown below. As an example, a method for synthesizing I-ATT is shown.
Figure 0007133750000008

不活性ガス雰囲気下で、アントラセノチエノ[3,2-b]チオフェン(ATT)をTHF等の溶剤に溶解させ、n-ブチルリチウムを加えてリチオ化した後、ヨウ素を加えて攪拌する。クエンチ後、濃縮、精製することにより、収率77%でI-ATTの黄色固体を得る。 In an inert gas atmosphere, anthracenothieno[3,2-b]thiophene (ATT) is dissolved in a solvent such as THF, and n-butyllithium is added for lithiation, after which iodine is added and stirred. After quenching, concentration and purification yield a yellow solid of I-ATT in 77% yield.

ATTは末端チエノチオフェン部位の選択的なリチオ化が可能であり、スズ化した後にStilleカップリング反応を用いて、ヨウ素原子を有するチオフェン骨格を導入することも可能である。
なお、本発明の含ヨウ素縮合環化合物は、上記した方法に限られず、種々の方法で合成することができる。
ATT is capable of selective lithiation of the terminal thienothiophene site, and it is also possible to introduce a thiophene skeleton having an iodine atom using Stille coupling reaction after tination.
The iodine-containing condensed ring compound of the present invention is not limited to the method described above, and can be synthesized by various methods.

本発明の含ヨウ素縮合環化合物を構成するアセン骨格は、高い溶解性を有することがすでにわかっている。例えば、ATTは、熱クロロホルムに対して、1.9g/Lの溶解度を示し、ATTの末端チエノチオフェン部位のα位(硫黄原子に隣接する位置)が2-オクチルチオフェン-5-イル基で置換された化合物は、熱クロロホルム(55℃)に対して、3.8g/Lの溶解度を示す。
本発明の含ヨウ素縮合環化合物のように、ヨウ素原子を含むアセン骨格を持つ分子は、クロロホルム、トルエン及びテトラヒドロフラン等、種々の溶媒に対して高い溶解性を示す。
It has already been found that the acene skeleton constituting the iodine-containing condensed ring compound of the present invention has high solubility. For example, ATT exhibits a solubility of 1.9 g/L in hot chloroform, and the α-position (position adjacent to the sulfur atom) of the terminal thienothiophene moiety of ATT is substituted with a 2-octylthiophen-5-yl group. The compound presented exhibits a solubility of 3.8 g/L in hot chloroform (55° C.).
A molecule having an acene skeleton containing an iodine atom, such as the iodine-containing condensed ring compound of the present invention, exhibits high solubility in various solvents such as chloroform, toluene and tetrahydrofuran.

また、上記含ヨウ素縮合環化合物は、高い分子配向性を示す。ヨウ素無置換のATTは交互にずれたスリップ・スタック型をとるが(非特許文献4)、ヨウ素を含むATT、すなわち、I-ATTは、分子が同方向に整然と配列したヘリンボーン(herringbone)構造を形成する。これにより、I-ATTは、薄膜状態での高い分子配向性を実現し、有機トランジスタ材料として優れた特性を示す。 In addition, the iodine-containing condensed ring compound exhibits high molecular orientation. Iodine-unsubstituted ATT takes an alternate slip-stack type (Non-Patent Document 4), whereas iodine-containing ATT, that is, I-ATT, has a herringbone structure in which molecules are orderly arranged in the same direction. Form. As a result, I-ATT achieves high molecular orientation in a thin film state and exhibits excellent properties as an organic transistor material.

なお、インディゴ骨格にヨウ素原子を導入した対称型の含ヨウ素有機導電性材料が報告されているが(非特許文献7)、インディゴのみで高い分子配向性が得られることからヨウ素の導入による分子配列の向上は認められないこと、また、対称型構造を有することから、溶解性が乏しく、蒸着プロセスでのデバイス作製に限られている。 A symmetrical iodine-containing organic conductive material in which iodine atoms are introduced into the indigo skeleton has been reported (Non-Patent Document 7). , and because of its symmetrical structure, it has poor solubility and is limited to device fabrication by a vapor deposition process.

上記含ヨウ素縮合環化合物は、溶液プロセスが可能な高い溶解性を示し、かつ、薄膜状態における分子配向性も高く、トランジスタ特性を示す。例えば、ドロップキャスト法により製膜したI-ATT薄膜を用いたトップコンタクト型電界効果トランジスタ(FET)では、移動度(μFET)が0.9cm2/Vsであり、高いp型特性を示す。薄膜X線回折(XRD)の結果から、I-ATTは基板に垂直にエッジオン(edge-on)配向し、ヘリンボーン構造を形成している。また、単結晶X線構造解析の結果、I-ATTのレイヤー間に明確なヨウ素-ヨウ素相互作用があることを確認することができる。I-ATT2分子間での大きなトランスファー積分(平均で12~64meV)が得られ、ヨウ素原子間で相互作用することも確認された。つまり、図3に示すとおり、ヨウ素-ヨウ素相互作用がI-ATTの高い秩序構造に寄与している。 The iodine-containing condensed ring compound exhibits high solubility that enables solution processing, high molecular orientation in a thin film state, and transistor characteristics. For example, a top-contact field effect transistor (FET) using an I-ATT thin film formed by the drop casting method has a mobility (μ FET ) of 0.9 cm 2 /Vs and exhibits high p-type characteristics. Thin film X-ray diffraction (XRD) results show that I-ATT is edge-on oriented perpendicular to the substrate and forms a herringbone structure. Further, as a result of single-crystal X-ray structure analysis, it can be confirmed that there is a clear iodine-iodine interaction between the layers of I-ATT. A large transfer integral (12 to 64 meV on average) was obtained between I-ATT2 molecules, confirming interaction between iodine atoms. That is, as shown in FIG. 3, iodine-iodine interactions contribute to the highly ordered structure of I-ATT.

ここで、ドロップキャスト法とは、スピンコート法と同じく代表的なウエットプロセスである。ゆっくりと溶媒を蒸発させ時間をかけて製膜するため、スピンコート法に比べて結晶性に優れる膜を形成することができる。トップコンタクト型FETの場合は、ゲート絶縁膜上に製膜され、ボトムコンタクト型FETの場合はゲート絶縁膜上、及び、ソース電極及びドレイン電極が形成された基板上に製膜される。図1はこのようなデバイスにおいて、ドロップキャスト法で製膜する様子を表す図である。なお、絶縁膜材料の種類やその表面状態、有機半導体層を形成する基板の表面状態、並びにソース電極及びドレイン電極の材料は様々であってよい。
一方、ヨウ素無置換のATTを用いた場合、同じくドロップキャスト法で製膜したFETデバイスではトランジスタ特性を示さず、薄膜状態における分子配向性も低い。
Here, the drop casting method is a representative wet process like the spin coating method. Since the film is formed over a long period of time by slowly evaporating the solvent, a film having excellent crystallinity can be formed as compared with the spin coating method. In the case of a top-contact FET, it is formed on the gate insulating film, and in the case of a bottom-contact FET, it is formed on the gate insulating film and the substrate on which the source electrode and the drain electrode are formed. FIG. 1 is a diagram showing how a film is formed by a drop casting method in such a device. The type and surface state of the insulating film material, the surface state of the substrate on which the organic semiconductor layer is formed, and the materials of the source electrode and the drain electrode may vary.
On the other hand, when ATT without iodine substitution is used, the FET device formed by the drop casting method does not exhibit transistor characteristics, and the molecular orientation in the thin film state is also low.

以下、本発明を実施例に基づいてさらに具体的に説明するが、本発明は下記実施例により制限されるものではない。 EXAMPLES The present invention will be more specifically described below based on examples, but the present invention is not limited to the following examples.

[実施例1]I-ATTの合成

Figure 0007133750000009
窒素雰囲気下、200mL三口フラスコにATT 400mgを入れ、THF 100mLに溶解し、氷浴で0℃とした後、n-ブチルリチウムを2mL加えて30分間攪拌した。その後、ヨウ素を1.74g加え,室温で12時間攪拌した。飽和亜硫酸ナトリウム水溶液100mL加え、さらに30分間攪拌した。THF層を分液し、ロータリーエバポレーターで濃縮し、析出した固体を吸引濾過によって得た。これをカラムクロマトグラフィー(充填剤;中性シリカゲル、溶離液:ジクロロメタン)を行い、黄色固体(I-ATT)を440mg(収率77%)得た。
得られたI-ATTの1HNMR(日本電子(株)製(500MHz)JNM-ECX型)の結果を以下に示す。
1HNMR(CDCl3,500MHz)δ8.59(s,1H),8.49(s,1H),8.45(s,1H),8.40(s,1H),8.03-8.02(m,2H),7.47-7.46(m,3H). [Example 1] Synthesis of I-ATT
Figure 0007133750000009
Under a nitrogen atmosphere, 400 mg of ATT was placed in a 200 mL three-necked flask, dissolved in 100 mL of THF, cooled to 0° C. in an ice bath, 2 mL of n-butyllithium was added, and the mixture was stirred for 30 minutes. After that, 1.74 g of iodine was added and stirred at room temperature for 12 hours. 100 mL of a saturated sodium sulfite aqueous solution was added, and the mixture was further stirred for 30 minutes. The THF layer was separated, concentrated with a rotary evaporator, and the precipitated solid was obtained by suction filtration. This was subjected to column chromatography (filler: neutral silica gel, eluent: dichloromethane) to obtain 440 mg of yellow solid (I-ATT) (yield 77%).
The results of 1 HNMR (JNM-ECX type (500 MHz) manufactured by JEOL Ltd.) of the obtained I-ATT are shown below.
1 H NMR (CDCl 3 , 500 MHz) δ 8.59 (s, 1H), 8.49 (s, 1H), 8.45 (s, 1H), 8.40 (s, 1H), 8.03-8. 02 (m, 2H), 7.47-7.46 (m, 3H).

[実施例2]
実施例1で得られたI-ATTと、ヨウ素無置換のATTとのそれぞれをクロロホルムに溶解させた1.0×10-5M溶液、及びこれをフィルムキャストした薄膜の紫外・可視(UV-vis)吸収スペクトル((株)島津製作所製 UV-3150)を測定した。
また、I-ATT及びATTのそれぞれに、ジクロロメタン(6mL)、フェロセン(1.0mg)及びテトラブチルアンモニウムテトラフルオロボレート(170mg)を添加して、0.5mMの試料溶液を調製し、グローブボックス中、窒素下で、サイクリックボルタンメトリー(CV)(ALS 660Bモデル 電気化学アナライザー(ビーエーエス(株))を測定した。
UV-vis吸収スペクトルとCVの測定結果を図2に示す。
吸収スペクトル及び酸化電位より、ATTに比べてI-ATTの方が、分子間の強い相互作用を有する会合体を形成し、また、電気化学的に安定であることがわかる。よって、I-ATTでは、ヨウ素原子の導入により、配向性及び安定性は明らかに向上している。
[Example 2]
A 1.0×10 −5 M solution of I-ATT obtained in Example 1 and iodine-unsubstituted ATT dissolved in chloroform, and a thin film cast from this solution were subjected to ultraviolet/visible (UV- vis) An absorption spectrum (UV-3150 manufactured by Shimadzu Corporation) was measured.
Further, to each of I-ATT and ATT, dichloromethane (6 mL), ferrocene (1.0 mg) and tetrabutylammonium tetrafluoroborate (170 mg) were added to prepare a 0.5 mM sample solution, and placed in a glove box. , under nitrogen, cyclic voltammetry (CV) (ALS 660B model electrochemical analyzer (BAS Co., Ltd.) was measured.
FIG. 2 shows the UV-vis absorption spectrum and CV measurement results.
From the absorption spectrum and oxidation potential, it is found that I-ATT forms an aggregate having stronger intermolecular interaction and is electrochemically more stable than ATT. Therefore, in I-ATT, the orientation and stability are clearly improved by the introduction of iodine atoms.

[実施例3]
I-ATT及びATTのそれぞれについて、単結晶X線構造解析((株)リガク製Saturn-724)を行った。
図3に示すように、I-ATTは単結晶中で分子間ヨウ素-ヨウ素相互作用を示した。ヨウ素無置換のATTはアンチパラレルな配向であるから、配向におけるヨウ素原子の寄与は明らかである。
[Example 3]
Single crystal X-ray structure analysis (Saturn-724 manufactured by Rigaku Co., Ltd.) was performed for each of I-ATT and ATT.
As shown in FIG. 3, I-ATT exhibited intermolecular iodine-iodine interactions in single crystals. Since the iodine-unsubstituted ATT has an antiparallel orientation, the contribution of the iodine atoms to the orientation is clear.

[実施例4]
I-ATT及びATTのそれぞれについて、FET特性を評価した。
I-ATTはドロップキャスト法による素子作製によって移動度0.9cm2/Vsのp型半導体特性を示した。I-ATTは-5.51eV、ATTは-5.30eVのイオン化ポテンシャルを示し、ヨウ素原子の導入による安定性の向上が示された。結果を図4に示す。
一方、ATTは溶液法においては半導体特性が発現していなかった。よって、非対称分子へのモノヨウ素化は溶液法を用いた素子作製において明らかな優位性を持つことがわかった。
[Example 4]
FET characteristics were evaluated for each of I-ATT and ATT.
I-ATT exhibited p-type semiconductor characteristics with a mobility of 0.9 cm 2 /Vs when the device was fabricated by the drop casting method. I-ATT showed an ionization potential of -5.51 eV, and ATT showed an ionization potential of -5.30 eV, indicating an improvement in stability due to the introduction of iodine atoms. The results are shown in FIG.
On the other hand, ATT did not exhibit semiconductor characteristics in the solution method. Therefore, mono-iodination of asymmetric molecules has a clear advantage in device fabrication using the solution method.

[実施例5]
I-ATT及びATTをそれぞれ、ドロップキャスト法によって製膜し、薄膜の結晶構造をAFM(原子間力顕微鏡)(Bruker社製Dimension Icon)及びXRD(X線回折)((株)リガク製SMART-Lab)により評価した。
結果を図5に示す。
I-ATTは薄膜構造において単結晶における分子配向を維持している。このことからモノヨウ素化の溶液法による結晶性薄膜の作製における優位性は明らかである。
AFM像及びXRDチャートの間にAFM像中のa-bの拡大図を示す。a-bの距離は300nmで、拡大図中の色の濃淡は凹凸を表し、濃いほど凹が深く、薄いほど凸が浅い。
[Example 5]
I-ATT and ATT were each formed by a drop casting method, and the crystal structure of the thin film was examined by AFM (Atomic Force Microscope) (Dimension Icon manufactured by Bruker) and XRD (X-ray diffraction) (SMART manufactured by Rigaku Co., Ltd.). Lab).
The results are shown in FIG.
I-ATT maintains the molecular orientation in the single crystal in the thin film structure. From this fact, the superiority in the production of crystalline thin films by the solution method of monoiodination is clear.
An enlarged view of ab in the AFM image is shown between the AFM image and the XRD chart. The distance ab is 300 nm, and the shading of the color in the enlarged view represents the unevenness.

[実施例6]I-TNTTの合成
(i)Sn-NTTの合成

Figure 0007133750000010
窒素雰囲気下、200mL三口フラスコにNTT 500mgを入れ、THF130mLに溶解し、氷浴で0℃とした後、n-ブチルリチウムを3.9mL加えて30分撹拌した。その後、塩化トリメチルスズ1.24gを加え、室温で1時間撹拌した。水500mLに加え室温で30分間撹拌した。これを濾過により白色固体768mg(収率91%)を得た。
得られたSn-NTTの1HNMR(日本電子(株)製(500MHz)JNM-ECX型)の結果を以下に示す。
1HNMR(CDCl3,500MHz)δ(ppm)8.29(s,2H),7.99-7.97(m,1H),7.90-7.88(m,1H),7.49-7.47(m,2H),7.53(s,1H),0.461(s,9H),
HRMS(FD+)calcd for C17162Sn(M+)m/z=403.97152、found 403.97098. [Example 6] Synthesis of I-TNTT (i) Synthesis of Sn-NTT
Figure 0007133750000010
Under a nitrogen atmosphere, 500 mg of NTT was placed in a 200 mL three-necked flask, dissolved in 130 mL of THF, cooled to 0° C. in an ice bath, 3.9 mL of n-butyllithium was added, and the mixture was stirred for 30 minutes. After that, 1.24 g of trimethyltin chloride was added and stirred at room temperature for 1 hour. It was added to 500 mL of water and stirred at room temperature for 30 minutes. This was filtered to obtain 768 mg of white solid (yield 91%).
The results of 1 HNMR (JNM-ECX type (500 MHz) manufactured by JEOL Ltd.) of the obtained Sn-NTT are shown below.
1 H NMR (CDCl 3 , 500 MHz) δ (ppm) 8.29 (s, 2H), 7.99-7.97 (m, 1H), 7.90-7.88 (m, 1H), 7.49 −7.47 (m, 2H), 7.53 (s, 1H), 0.461 (s, 9H),
HRMS (FD + )calcd for C17H16S2Sn (M+ ) m/z = 403.97152 , found 403.97098.

(ii)TNTTの合成

Figure 0007133750000011
窒素雰囲気下、300mL三口フラスコにSn-NTT 600mgを入れ、トルエン220mLに溶解させ、2-ブロモチオフェン647mg、テトラキス(トリフェニルホスフィン)パラジウム(0)153mgを加え130℃で還流し、4時間撹拌した。その後、ロータリーエバポレーターで濃縮し、シリカゲルカラムクロマトグラフィー(ジクロロメタン)により黄色固体TNTT408mg(収率85%)を得た。
得られたTNTTのHNMR(日本電子(株)製(500MHz)JNM-ECX型)の結果を以下に示す。
1HNMR(CDCl3,500MHz)δ(ppm)8.29(s,1H),8.24(s,1H),7.98-7.96(m,1H),7.89-7.88(m,1H),7.49-7.47(m,2H),7.40(s,1H),7.30-7.28(m,2H),7.08-7.06(m,1H),HRMS(FD+)calcd for C18103(M+) m/z=321.99446,found 321.99356. (ii) Synthesis of TNTT
Figure 0007133750000011
In a nitrogen atmosphere, 600 mg of Sn-NTT was placed in a 300 mL three-necked flask, dissolved in 220 mL of toluene, 647 mg of 2-bromothiophene, and 153 mg of tetrakis(triphenylphosphine)palladium (0) were added, refluxed at 130°C, and stirred for 4 hours. . Then, it was concentrated by a rotary evaporator and subjected to silica gel column chromatography (dichloromethane) to obtain 408 mg of yellow solid TNTT (yield 85%).
The results of 1 HNMR (manufactured by JEOL Ltd. (500 MHz) JNM-ECX type) of the obtained TNTT are shown below.
1 H NMR (CDCl 3 , 500 MHz) δ (ppm) 8.29 (s, 1H), 8.24 (s, 1H), 7.98-7.96 (m, 1H), 7.89-7.88 (m, 1H), 7.49-7.47 (m, 2H), 7.40 (s, 1H), 7.30-7.28 (m, 2H), 7.08-7.06 (m , 1H), HRMS (FD + ) calcd for C18H10S3 ( M + ) m/z = 321.99446, found 321.99356.

(iii)I-TNTTの合成

Figure 0007133750000012
窒素雰囲気下において200mL三口フラスコにTNTT 200mgを入れ、THF56mLに溶解し、氷浴で0℃とした後n-ブチルリチウムを1.13mL加えて30分撹拌した。その後、ヨウ素を458mg加え、室温で4時間撹拌した。5wt%亜硫酸ナトリウム100mL加え、室温で30分間撹拌した後、水500mLに入れ、1時間撹拌した。これを濾過により橙色固体を得た後、シリカゲルカラムクロマトグラフィー(ジクロロメタン)により褐色固体を46.3mg(収率11%)を得た。
得られたI-TNTTのHNMR(日本電子(株)製(500MHz)JNM-ECX型)の結果を以下に示す。
1HNMR(CDCl3)δ(ppm)8.30(s,1H),8.25(s,1H),7.98-7.96(m,1H),7.90-7.88(m,1H),7.50-7.48(m,2H),7.34(s,1H),7.22-7.21(d,J=4.0Hz,2H),6.97-6.96(d, J=4.0Hz,1H),HRMS(FD+)calcd for C189IS3,(M+)m/z=447.89110,found 447.89107. (iii) Synthesis of I-TNTT
Figure 0007133750000012
In a nitrogen atmosphere, 200 mg of TNTT was placed in a 200 mL three-necked flask, dissolved in 56 mL of THF, cooled to 0° C. in an ice bath, 1.13 mL of n-butyllithium was added, and the mixture was stirred for 30 minutes. After that, 458 mg of iodine was added, and the mixture was stirred at room temperature for 4 hours. After adding 100 mL of 5 wt % sodium sulfite and stirring at room temperature for 30 minutes, the mixture was poured into 500 mL of water and stirred for 1 hour. This was filtered to obtain an orange solid, and then subjected to silica gel column chromatography (dichloromethane) to obtain 46.3 mg (yield 11%) of a brown solid.
The results of 1 HNMR (manufactured by JEOL Ltd. (500 MHz) JNM-ECX type) of the obtained I-TNTT are shown below.
1 H NMR (CDCl 3 ) δ (ppm) 8.30 (s, 1H), 8.25 (s, 1H), 7.98-7.96 (m, 1H), 7.90-7.88 (m , 1H), 7.50-7.48 (m, 2H), 7.34 (s, 1H), 7.22-7.21 (d, J = 4.0Hz, 2H), 6.97-6 .96 (d, J=4.0 Hz, 1 H), HRMS (FD + )calcd for C18H9IS3 , (M + ) m/z=447.89110, found 447.89107.

[実施例7]I-TATTの合成
(i)TATTの合成

Figure 0007133750000013
窒素雰囲気下、300mL三口フラスコにSn-ATT 400mgを入れ、トルエン160mLに溶解させ、2-ブロモチオフェン430mg、テトラキス(トリフェニルホスフィン)パラジウム(0)102mgを加え、130℃で還流し、4時間撹拌した。その後、0℃において1時間撹拌し、ろ過によって橙色固体TATT262mg(収率79%)を得た。
得られたTATTの1HNMR(日本電子(株)製(500MHz)JNM-ECX型)の結果を以下に示す。
1HNMR(CDCl3,500MHz)δ(ppm)8.57(s,1H),8.47(s,1H),8.44(S,1H),8.40(s,1H),8.02-8.00(m,2H),7.45-7.43(m,2H),7.38(s,1H),7.32-7.29(m,2H),7.09-7.07(m,1H),HRMS(FD+)calcd for C22123(M+)m/z=372.01011,found 372.01025. [Example 7] Synthesis of I-TATT (i) Synthesis of TATT
Figure 0007133750000013
Put 400 mg of Sn-ATT in a 300 mL three-necked flask under a nitrogen atmosphere, dissolve in 160 mL of toluene, add 430 mg of 2-bromothiophene and 102 mg of tetrakis(triphenylphosphine)palladium(0), reflux at 130° C., and stir for 4 hours. did. After that, the mixture was stirred at 0° C. for 1 hour and filtered to obtain 262 mg of orange solid TATT (yield 79%).
The results of 1 HNMR (JNM-ECX type (500 MHz) manufactured by JEOL Ltd.) of the obtained TATT are shown below.
1 H NMR (CDCl 3 , 500 MHz) δ (ppm) 8.57 (s, 1H), 8.47 (s, 1H), 8.44 (S, 1H), 8.40 (s, 1H), 8. 02-8.00 (m, 2H), 7.45-7.43 (m, 2H), 7.38 (s, 1H), 7.32-7.29 (m, 2H), 7.09- 7.07 (m, 1H), HRMS (FD + ) calcd for C22H12S3 ( M + ) m/z = 372.01011 , found 372.01025.

(ii)I-TATTの合成

Figure 0007133750000014
窒素雰囲気下において200mL三口フラスコにTATT 260mgを入れ、THF100mLに溶解し、氷浴で0℃とした後n-ブチルリチウムを975μL加えて30分撹拌した。その後、ヨウ素を880mg加え,室温で4時間撹拌した。飽和亜硫酸ナトリウム136mL加え室温で30分間撹拌した後,水500mLに入れ、0℃で30分間撹拌した。これを濾過により暗褐色固体を得た後、シリカゲルカラムクロマトグラフィー(ジクロロメタン)により褐色化合物(I-TATT)を57.1mg(17%)得た。
得られたI-TATTのHNMR(日本電子(株)製(500MHz)JNM-ECX型)の結果を以下に示す。
1HNMR(CDCl3,500MHz)δ(ppm)8.58(s,1H),8.48(s,1H),8.44(s,1H),8.40(s,1H),8.20-8.00(m,2H),7.46-7.45(m,2H),7.32(s,1H),7.23-7.22(d,J=3.5Hz,2H),6.99-6.98(d,J=4.0Hz,1H),HRMS(FD+)calcd for C2211IS3(M+)M/z=497.90675,found 497.90685. (ii) Synthesis of I-TATT
Figure 0007133750000014
In a nitrogen atmosphere, 260 mg of TATT was placed in a 200 mL three-necked flask, dissolved in 100 mL of THF, cooled to 0° C. in an ice bath, 975 μL of n-butyllithium was added, and the mixture was stirred for 30 minutes. After that, 880 mg of iodine was added, and the mixture was stirred at room temperature for 4 hours. After adding 136 mL of saturated sodium sulfite and stirring at room temperature for 30 minutes, the mixture was added to 500 mL of water and stirred at 0° C. for 30 minutes. After this was filtered to obtain a dark brown solid, 57.1 mg (17%) of a brown compound (I-TATT) was obtained by silica gel column chromatography (dichloromethane).
The results of 1 H NMR (manufactured by JEOL Ltd. (500 MHz) JNM-ECX type) of the obtained I-TATT are shown below.
1 H NMR (CDCl 3 , 500 MHz) δ (ppm) 8.58 (s, 1H), 8.48 (s, 1H), 8.44 (s, 1H), 8.40 (s, 1H), 8. 20-8.00 (m, 2H), 7.46-7.45 (m, 2H), 7.32 (s, 1H), 7.23-7.22 (d, J=3.5Hz, 2H ), 6.99-6.98 (d, J = 4.0 Hz, 1 H), HRMS (FD + ) calcd for C 22 H 11 IS 3 (M + ) M/z = 497.90675, found 497.90685 .

[実施例8]
I-TNTT及びI-TATTをそれぞれ、ドロップキャスト法によって製膜し、薄膜の結晶構造をXRD(X線回折)((株)リガク製SMART-Lab)により評価した。結果を図6b(I-TNTT)及び図7b(I-TATT)に示す。
I-TNTT及びI-TATTの薄膜構造は実施例1のI-ATTと同様に電荷輸送に有利な配向であった。さらに、最も低角のピークより面間隔を算出したところ化合物の長軸方向の2分子分に相当するピークが得られたことから、ヨウ素-ヨウ素相互作用による2分子分の繰返し周期を示した。
[Example 8]
Each of I-TNTT and I-TATT was formed into a film by a drop casting method, and the crystal structure of the thin film was evaluated by XRD (X-ray diffraction) (SMART-Lab manufactured by Rigaku Corporation). The results are shown in Figure 6b (I-TNTT) and Figure 7b (I-TATT).
The thin film structures of I-TNTT and I-TATT, like I-ATT in Example 1, had orientations favorable to charge transport. Furthermore, when the interplanar spacing was calculated from the lowest angle peak, a peak corresponding to two molecules in the long axis direction of the compound was obtained, indicating the repetition period of two molecules due to the iodine-iodine interaction.

[実施例9]
I-TNTT及びI-TATTはドロップキャスト法による素子作製によってそれぞれ3.4×10-5、0.056cm2/Vsのp型半導体特性を示した。結果を図6a(I-TNTT)及び図7a(I-TATT)に示す。
[Example 9]
I-TNTT and I-TATT exhibited p-type semiconductor characteristics of 3.4×10 -5 and 0.056 cm 2 /Vs, respectively, when devices were fabricated by the drop casting method. The results are shown in Figure 6a (I-TNTT) and Figure 7a (I-TATT).

[実施例10]

Figure 0007133750000015
窒素雰囲気下、200mL三口フラスコにNTT 660mgを入れ、THF 160mLに溶解し、氷浴で0℃とした後、n-ブチルリチウムを1.7mL加えて30分撹拌した。その後、ヨウ素3.2gを加え、室温で1時間撹拌した。水500mLに加え室温で30分間撹拌した。これを濾過により白色固体を得た後、シリカゲルクロマトグラフィー(ジクロロメタン)により精製し、最後に再結晶(1,2-ジクロロエタン)によって白色固体213mg(収率:23%)を得た。
得られたI-NTTの1HNMR(日本電子(株)製(500MHz)JEOL-ECX500)の結果を以下に示す。
HNMR(CDCl3,500MHz)δ(ppm)8.28(s,1H),8.22(s,1H),7.98-7.96(m,1H),7.89-7.87(m,1H),7.50-7.48(m,3H). [Example 10]
Figure 0007133750000015
Under a nitrogen atmosphere, 660 mg of NTT was placed in a 200 mL three-necked flask, dissolved in 160 mL of THF, cooled to 0° C. in an ice bath, 1.7 mL of n-butyllithium was added, and the mixture was stirred for 30 minutes. After that, 3.2 g of iodine was added and stirred at room temperature for 1 hour. It was added to 500 mL of water and stirred at room temperature for 30 minutes. A white solid was obtained by filtration, purified by silica gel chromatography (dichloromethane), and finally recrystallized (1,2-dichloroethane) to obtain 213 mg of a white solid (yield: 23%).
The results of 1 HNMR (JEOL-ECX500 (500 MHz) manufactured by JEOL Ltd.) of the obtained I-NTT are shown below.
1 H NMR (CDCl 3 , 500 MHz) δ (ppm) 8.28 (s, 1H), 8.22 (s, 1H), 7.98-7.96 (m, 1H), 7.89-7.87 (m, 1H), 7.50-7.48 (m, 3H).

本発明の含ヨウ素縮合環化合物は、有機導電性材料又は有機薄膜トランジスタ用の有機半導体材料として好適に用いられる。 The iodine-containing condensed ring compound of the present invention is suitably used as an organic conductive material or an organic semiconductor material for organic thin film transistors.

Claims (3)

下記一般式(1)で表されることを特徴とする、含ヨウ素縮合環化合物;
Figure 0007133750000016
(一般式(1)中、nは1~3の整数である)。
An iodine-containing condensed ring compound characterized by being represented by the following general formula (1);
Figure 0007133750000016
(In general formula (1), n is an integer of 1 to 3).
下記一般式(2)で表されることを特徴とする、含ヨウ素縮合環化合物;
Figure 0007133750000017
(一般式(2)中、nは1~3の整数であり、Yは一般式(s1)~(s5)又は(s7)に示される置換基である)。
Figure 0007133750000018
An iodine-containing condensed ring compound characterized by being represented by the following general formula (2);
Figure 0007133750000017
(In general formula (2), n is an integer of 1 to 3, and Y is a substituent represented by general formulas (s1) to (s5) or (s7)).
Figure 0007133750000018
請求項1又は2に記載の含ヨウ素縮合環化合物を用いた有機電子材料。 An organic electronic material using the iodine-containing condensed ring compound according to claim 1 or 2.
JP2018137848A 2017-08-30 2018-07-23 Iodine-containing condensed ring compound and organic electronic material using iodine-containing condensed ring compound Active JP7133750B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017165095 2017-08-30
JP2017165095 2017-08-30

Publications (2)

Publication Number Publication Date
JP2019043936A JP2019043936A (en) 2019-03-22
JP7133750B2 true JP7133750B2 (en) 2022-09-09

Family

ID=65815457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018137848A Active JP7133750B2 (en) 2017-08-30 2018-07-23 Iodine-containing condensed ring compound and organic electronic material using iodine-containing condensed ring compound

Country Status (1)

Country Link
JP (1) JP7133750B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010087405A (en) 2008-10-02 2010-04-15 Mitsui Chemicals Inc Organic transistor
JP2010254636A (en) 2009-04-27 2010-11-11 Tosoh Corp Halobenzochalcogenophene derivative, raw material compound of the same and production method thereof
JP2016001659A (en) 2014-06-11 2016-01-07 株式会社東海理化電機製作所 Organic semiconductor material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010087405A (en) 2008-10-02 2010-04-15 Mitsui Chemicals Inc Organic transistor
JP2010254636A (en) 2009-04-27 2010-11-11 Tosoh Corp Halobenzochalcogenophene derivative, raw material compound of the same and production method thereof
JP2016001659A (en) 2014-06-11 2016-01-07 株式会社東海理化電機製作所 Organic semiconductor material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ACS Applied Materials & Interfaces,9(11),2017年,9902-9909

Also Published As

Publication number Publication date
JP2019043936A (en) 2019-03-22

Similar Documents

Publication Publication Date Title
KR101410150B1 (en) Field-effect transistor
EP2966077B1 (en) Chalcogen-containing organic compound and use therefor
US9761810B2 (en) Organic semiconductor material
KR101429370B1 (en) Organic semiconductor material, organic semiconductor thin film, and organic thin film transistor
WO2013125599A1 (en) Novel chalcogen-containing organic compound and use thereof
WO2014038708A1 (en) Benzothienobenzothiophene derivative, organic semiconductor material, and organic transistor
JP2007019086A (en) Organic semiconductor material, semiconductor device using same and field-effect transistor
KR101348436B1 (en) Tetrathiafulvalene derivative, and organic film and organic transistor using the same
TW201308702A (en) Organic field effect transistor and organic semiconductor material
JP2007091714A (en) New nitrogen-based semiconductor compound, organic thin membrane transistor, organic solar photovoltaic cell and organic electric field light-emitting element by using the same
JP5187737B2 (en) FIELD EFFECT TRANSISTOR, PROCESS FOR PRODUCING THE SAME, COMPOUND USED FOR THE SAME, AND INK FOR SEMICONDUCTOR DEVICE
JP2015199716A (en) Polycyclic fused ring compound, organic semiconductor material, organic semiconductor device, and organic transistor
JP2012169616A (en) Semiconductor compound
JP5335379B2 (en) Organic semiconductor material and organic electronic device using the same
JP2006182710A (en) Porphyrin compound and its manufacturing method, organic semiconductor film and its manufacturing method, and semiconductor device and its manufacturing method
JP5228411B2 (en) [1] Benzochalcogeno [3,2-b] [1] Compound having benzochalcogenophene skeleton and organic transistor using the same
JP7133750B2 (en) Iodine-containing condensed ring compound and organic electronic material using iodine-containing condensed ring compound
JP2017193521A (en) Benzobisthiadiazole compound, organic thin film containing the same, and organic semiconductor element
JP6962090B2 (en) Heteroacene derivatives, organic semiconductor layers, and organic thin film transistors
JP6404133B2 (en) An organic transistor using, as an organic semiconductor layer, an organic semiconductor material characterized by a bent thienothiophene skeleton having a thiophene at the end.
JP6143257B2 (en) Organic semiconductor material and organic semiconductor device using the same
JP2023116428A (en) Halogen-containing organic semiconductor material
JP2011165877A (en) Organic transistor using tetrathiafulvalene derivative and method of manufacturing the same
KR101101448B1 (en) Diethynylbenzene-Based Liquid Crystalline Semiconductor for Solution-Processable Organic Thin-Film Transistors
Yang Development of π-Extended Heteroacene-based Materials toward Application in Organic Field-Effect Transistors

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20180808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180911

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220317

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220701

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20220729

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220729

R150 Certificate of patent or registration of utility model

Ref document number: 7133750

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150