JP7131269B2 - Catalyst ink for electrode catalyst layer formation of polymer electrolyte fuel cells - Google Patents

Catalyst ink for electrode catalyst layer formation of polymer electrolyte fuel cells Download PDF

Info

Publication number
JP7131269B2
JP7131269B2 JP2018187556A JP2018187556A JP7131269B2 JP 7131269 B2 JP7131269 B2 JP 7131269B2 JP 2018187556 A JP2018187556 A JP 2018187556A JP 2018187556 A JP2018187556 A JP 2018187556A JP 7131269 B2 JP7131269 B2 JP 7131269B2
Authority
JP
Japan
Prior art keywords
polymer electrolyte
catalyst
catalyst layer
ink
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018187556A
Other languages
Japanese (ja)
Other versions
JP2020057526A (en
Inventor
直紀 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2018187556A priority Critical patent/JP7131269B2/en
Publication of JP2020057526A publication Critical patent/JP2020057526A/en
Priority to JP2022134303A priority patent/JP2022162112A/en
Application granted granted Critical
Publication of JP7131269B2 publication Critical patent/JP7131269B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、固体高分子形燃料電池の電極触媒層形成用の触媒インクに関する。 TECHNICAL FIELD The present invention relates to a catalyst ink for forming an electrode catalyst layer of a polymer electrolyte fuel cell.

高分子電解質膜をカソード電極触媒層及びアノード電極触媒層で挟持する構造を持つ固体高分子形燃料電池は、常温で作動し、起動時間が短いことから、自動車用電源、定置用電源などとして期待されている。
従来の膜電極接合体の製造方法としては、触媒を担持した炭素粒子、高分子電解質及び溶媒からなる触媒インクを、高分子電解質膜に直接塗布して作製する方法や、転写基材又はガス拡散層に塗布した後、高分子電解質膜に熱圧着して作製する方法が知られている。
中でも、高分子電解質膜に触媒インクを直接塗布して膜電極接合体を製造する方法は、高分子電解質膜と触媒層との界面の密着性が良く、また熱圧着により触媒層が押しつぶされることがないといった特徴から、発電性能及び耐久性に優れた膜電極接合体を作製することができる。
A polymer electrolyte fuel cell, which has a structure in which a polymer electrolyte membrane is sandwiched between a cathode electrode catalyst layer and an anode electrode catalyst layer, operates at room temperature and has a short start-up time. It is
Conventional methods for manufacturing membrane electrode assemblies include a method in which a catalyst ink composed of carbon particles supporting a catalyst, a polymer electrolyte, and a solvent is directly applied to a polymer electrolyte membrane; A method is known in which a layer is coated and then thermocompression bonded to a polymer electrolyte membrane.
Among them, the method of manufacturing a membrane electrode assembly by directly applying a catalyst ink to a polymer electrolyte membrane has good adhesion at the interface between the polymer electrolyte membrane and the catalyst layer, and the catalyst layer is not crushed by thermocompression bonding. Due to the feature that there is no nucleation, a membrane electrode assembly having excellent power generation performance and durability can be produced.

しかし、従来の触媒インクを電解質膜に直接塗布する製造方法では、触媒インクを塗布した際に、インク中の溶媒により高分子電解質膜が膨潤または収縮するため、形成した触媒層にしわやひび割れが発生するといった課題が生じる。
上記課題に対し、特許文献1では、電極触媒層にカーボンナノチューブ等の針状の炭素材料を使用することで、電解質膜に直接触媒層を形成可能としている。
しかし、この方法によると、触媒の利用率が低いため、発電性能が低下する可能性がある。さらに、カーボンナノチューブ等の針状の炭素材料は嵩高く、また、針状の炭素材料の絡み合いによって、触媒インクが高粘度になるため、塗布が困難になる可能性がある。
一方、特許文献2では、繊維状のプロトン伝導性材料を主要要素として形成した電極触媒層を作製することで、性能を向上させている。
しかし、この方法では、性能の向上はみられるものの、電解質膜に直接塗布した際に、触媒層のしわやひび割れを抑制する程の膜強度は得られない可能性がある。
However, in the conventional manufacturing method in which the catalyst ink is directly applied to the electrolyte membrane, when the catalyst ink is applied, the polymer electrolyte membrane swells or contracts due to the solvent in the ink, which causes wrinkles and cracks in the formed catalyst layer. The problem arises that it occurs.
In order to address the above problem, Patent Document 1 discloses that a needle-shaped carbon material such as a carbon nanotube is used for the electrode catalyst layer, so that the catalyst layer can be formed directly on the electrolyte membrane.
However, according to this method, there is a possibility that the power generation performance will be deteriorated due to the low utilization rate of the catalyst. Furthermore, acicular carbon materials such as carbon nanotubes are bulky, and the entanglement of the acicular carbon materials increases the viscosity of the catalyst ink, which may make application difficult.
On the other hand, in Patent Document 2, performance is improved by fabricating an electrode catalyst layer formed mainly of a fibrous proton-conducting material.
However, with this method, although the performance is improved, there is a possibility that the membrane strength that suppresses wrinkles and cracks in the catalyst layer when directly applied to the electrolyte membrane cannot be obtained.

国際公開第2002/027844号WO2002/027844 特開2007-220416号公報JP 2007-220416 A

本発明は、しわやひび割れの発生を抑制することができ、性能の低下を抑制することができ、高分子電解質膜に直接塗布可能な、固体高分子形燃料電池の電極触媒層形成用の触媒インクを提供することを目的とする。 INDUSTRIAL APPLICABILITY The present invention is a catalyst for forming an electrode catalyst layer of a polymer electrolyte fuel cell, which can suppress the occurrence of wrinkles and cracks, can suppress deterioration of performance, and can be directly applied to a polymer electrolyte membrane. Intended to provide ink.

上記課題を解決するため、本発明の一態様に係る固体高分子形燃料電池の電極触媒層形成用の触媒インクは、溶媒中に触媒担持炭素粒子、炭素繊維、高分子電解質、及び有機電解質繊維を含み、せん断速度10(1/s)時の粘度とせん断速度100(1/s)時の粘度のチクソトロピックインデクス(TI値)が、1.5以上10以下の範囲内である。
上記触媒インクを用いることにより、炭素繊維及び有機電解質繊維の絡み合いにより、膜強度が高まり、触媒インクを電解質膜に直接塗布した際においても、しわやひび割れを抑制することができる。
In order to solve the above problems, a catalyst ink for forming an electrode catalyst layer of a polymer electrolyte fuel cell according to one aspect of the present invention comprises catalyst-supporting carbon particles, carbon fibers, a polymer electrolyte, and organic electrolyte fibers in a solvent. The thixotropic index (TI value) of the viscosity at a shear rate of 10 (1/s) and the viscosity at a shear rate of 100 (1/s) is in the range of 1.5 to 10.
By using the catalyst ink, the entanglement of the carbon fibers and the organic electrolyte fibers increases the membrane strength, and even when the catalyst ink is directly applied to the electrolyte membrane, wrinkles and cracks can be suppressed.

本発明によれば、しわやひび割れの発生を抑制することができ、性能の低下を抑制することができ、高分子電解質膜に直接塗布可能な、固体高分子形燃料電池の電極触媒層形成用の触媒インクを提供することができる。 According to the present invention, it is possible to suppress the occurrence of wrinkles and cracks, to suppress the deterioration of performance, and to form an electrode catalyst layer of a solid polymer fuel cell that can be directly applied to a polymer electrolyte membrane. of catalyst ink can be provided.

図1は、本発明の実施形態に係る固体高分子形燃料電池の内部構造を示す分解斜視図である。FIG. 1 is an exploded perspective view showing the internal structure of a polymer electrolyte fuel cell according to an embodiment of the present invention. 図2は、本実施形態に係る電極触媒層の構成例を示す模式的断面図である。FIG. 2 is a schematic cross-sectional view showing a configuration example of an electrode catalyst layer according to this embodiment.

以下、本発明の実施形態について、図面を参照しつつ説明する。なお、本実施形態は、以下に記載する実施の形態に限定されるものではなく、当業者の知識に基づく設計の変更等の変形を加えることも可能であり、そのような変形が加えられた実施形態も本実施形態の範囲に含まれるものである。
また、以下の詳細な説明では、本発明の実施形態について、完全な理解を提供するように、特定の細部について記載する。しかしながら、かかる特定の細部が無くとも、一つ以上の実施形態が実施可能であることは明確である。また、図面を簡潔なものとするために、周知の構造及び装置を、略図で示す場合がある。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, this embodiment is not limited to the embodiment described below, and it is also possible to add modifications such as design changes based on the knowledge of those skilled in the art. Embodiments are also included in the scope of this embodiment.
Also, in the following detailed description, specific details are set forth in order to provide a thorough understanding of embodiments of the invention. It is evident, however, that one or more embodiments may be practiced without such specific details. In other instances, well-known structures and devices are shown in schematic form to simplify the drawings.

(固体高分子形燃料電池の構造)
図1は、本発明の実施形態に係る固体高分子形燃料電池の内部構造を示す分解斜視図である。図1に示すように、固体高分子形燃料電池1を構成する高分子電解質膜2には、その両面に、高分子電解質膜2を挟んで互いに向い合う一対の電極触媒層3A、3Fが配置されている。電極触媒層3Aにおいて、高分子電解質膜2に対向する面とは反対側の面には、ガス拡散層4Aが配置されている。また、電極触媒層3Fにおいて、高分子電解質膜2に対向する面とは反対側の面には、ガス拡散層4Fが配置されている。ガス拡散層4A、4Fは、高分子電解質膜2及び一対の電極触媒層3A、3Fを挟んで互いに向い合うように配置されている。
(Structure of polymer electrolyte fuel cell)
FIG. 1 is an exploded perspective view showing the internal structure of a polymer electrolyte fuel cell according to an embodiment of the present invention. As shown in FIG. 1, a pair of electrode catalyst layers 3A and 3F facing each other with the polymer electrolyte membrane 2 interposed are arranged on both sides of the polymer electrolyte membrane 2 constituting the polymer electrolyte fuel cell 1. It is A gas diffusion layer 4A is arranged on the surface of the electrode catalyst layer 3A opposite to the surface facing the polymer electrolyte membrane 2 . A gas diffusion layer 4F is arranged on the surface of the electrode catalyst layer 3F opposite to the surface facing the polymer electrolyte membrane 2 . The gas diffusion layers 4A, 4F are arranged to face each other with the polymer electrolyte membrane 2 and the pair of electrode catalyst layers 3A, 3F interposed therebetween.

ガス拡散層4Aの電極触媒層3Aに対向する面とは反対側の面には、セパレーター5Aが配置されている。セパレーター5Aは、ガス拡散層4Aに対向する主面に反応ガス流通用のガス流路6Aを備え、ガス流路6Aを備える主面に相対する主面に冷却水流通用の冷却水通路7Aを備える。さらに、ガス拡散層4Fの電極触媒層3Fに対向する面とは反対側の面には、セパレーター5Fが配置されている。セパレーター5Fは、ガス拡散層4Fに対向する主面に反応ガス流通用のガス流路6Fを備え、ガス流路6Fを備える主面に相対する主面に冷却水流通用の冷却水通路7Fを備える。以下、区別する必要がない場合には、電極触媒層3A及び3Fを単に「電極触媒層3」と記載する場合がある。 A separator 5A is arranged on the surface of the gas diffusion layer 4A opposite to the surface facing the electrode catalyst layer 3A. The separator 5A has a gas channel 6A for circulating reaction gas on the main surface facing the gas diffusion layer 4A, and a cooling water passage 7A for circulating cooling water on the main surface opposite to the main surface having the gas channel 6A. . Furthermore, a separator 5F is arranged on the surface of the gas diffusion layer 4F opposite to the surface facing the electrode catalyst layer 3F. The separator 5F has a gas channel 6F for circulating reaction gas on the main surface facing the gas diffusion layer 4F, and a cooling water passage 7F for circulating cooling water on the main surface opposite to the main surface having the gas channel 6F. . Hereinafter, the electrode catalyst layers 3A and 3F may be simply referred to as "the electrode catalyst layer 3" when there is no need to distinguish between them.

図2は、本実施形態に係る電極触媒層の構成例を示す模式的断面図である。図2に示すように、本実施形態に係る電極触媒層8は、高分子電解質膜9の表面に接合される。電極触媒層8は、触媒10、導電性担体としての炭素粒子11、高分子電解質12及び炭素繊維13、有機電解質繊維物質14を備える。そして、電極触媒層8において、触媒10、炭素粒子11、高分子電解質12、炭素繊維13及び有機電解質繊維物質14のいずれの構成要素も存在しない部分が空孔となっている。 FIG. 2 is a schematic cross-sectional view showing a configuration example of an electrode catalyst layer according to this embodiment. As shown in FIG. 2, the electrode catalyst layer 8 according to this embodiment is bonded to the surface of the polymer electrolyte membrane 9 . The electrode catalyst layer 8 comprises a catalyst 10 , carbon particles 11 as conductive carriers, a polymer electrolyte 12 and carbon fibers 13 , and an organic electrolyte fiber material 14 . The portions of the electrode catalyst layer 8 where none of the components of the catalyst 10, the carbon particles 11, the polymer electrolyte 12, the carbon fibers 13, and the organic electrolyte fibrous substance 14 are present are voids.

(触媒インクの製造)
次に、本実施形態に係る固体高分子形燃料電池1の電極触媒層3、8を形成するための触媒インク(固体高分子形燃料電池の電極触媒層形成用の触媒インク)の製造方法について説明する。まず、触媒10を担持した触媒担持炭素粒子(以下、単に炭素粒子ともいう)11、及び、炭素繊維13を分散媒中に混合・分散させ、触媒粒子スラリーを得る。
触媒10としては、例えば、白金族元素(白金、パラジウム、ルテニウム、イリジウム、ロジウム、オスミウム)、鉄、鉛、銅、クロム、コバルト、ニッケル、マンガン、バナジウム、モリブデン、ガリウム、アルミニウム等の金属及びこれらの金属の合金、酸化物、複酸化物、炭化物等を用いることができる。
(Manufacture of catalyst ink)
Next, a method for producing the catalyst ink for forming the electrode catalyst layers 3 and 8 of the polymer electrolyte fuel cell 1 according to the present embodiment (catalyst ink for forming the electrode catalyst layer of the polymer electrolyte fuel cell). explain. First, catalyst-carrying carbon particles (hereinafter also simply referred to as carbon particles) 11 carrying a catalyst 10 and carbon fibers 13 are mixed and dispersed in a dispersion medium to obtain a catalyst particle slurry.
Examples of the catalyst 10 include metals such as platinum group elements (platinum, palladium, ruthenium, iridium, rhodium, osmium), iron, lead, copper, chromium, cobalt, nickel, manganese, vanadium, molybdenum, gallium, and aluminum, and these metal alloys, oxides, double oxides, carbides, etc. of these metals can be used.

炭素粒子11としては、導電性を有し、触媒に侵されずに触媒を担持可能なものであれば、どのようなものでも構わないが、一般的にカーボン粒子が使用される。
炭素繊維13としては、カーボンファイバー、カーボンナノチューブ、カーボンナノホーン、導電性高分子ナノファイバー等が例示できる。これら繊維のうち一種のみを単独で使用してもよいが、二種以上を併用してもよい。
分散媒としては、水や、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール、ペンタノール等のアルコール類の中からいずれか一種を選択して用いることが可能である。また、上述した溶媒のうち二種以上が混合された溶媒を用いることが可能である。混合・分散には、例えば、ビーズミル、プラネタリーミキサー、ディゾルバー等を使用することができる。
As the carbon particles 11, any material may be used as long as it has conductivity and can support the catalyst without being attacked by the catalyst, but carbon particles are generally used.
Examples of carbon fibers 13 include carbon fibers, carbon nanotubes, carbon nanohorns, conductive polymer nanofibers, and the like. Only one type of these fibers may be used alone, or two or more types may be used in combination.
As the dispersion medium, one of water and alcohols such as methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, and pentanol is selected. can be used as Moreover, it is possible to use a solvent in which two or more of the above solvents are mixed. For mixing and dispersing, for example, a bead mill, planetary mixer, dissolver, or the like can be used.

次に、上記方法で製造した触媒粒子スラリーに高分子電解質12及び有機電解質繊維14を加える。高分子電解質膜2、9や高分子電解質12としては、プロトン伝導性を有するものであれば、どのようなものでもよく、フッ素系高分子電解質、炭化水素系高分子電解質を用いることができる。フッ素系高分子電解質としては、テトラフルオロエチレン骨格を有する高分子電解質、例えば、デュポン社製の「Nafion(登録商標)」を用いることができる。高分子電解質12は、高分子電解質が凝集した状態となっている。 Next, polymer electrolyte 12 and organic electrolyte fibers 14 are added to the catalyst particle slurry produced by the above method. As the polymer electrolyte membranes 2 and 9 and the polymer electrolyte 12, any material having proton conductivity may be used, and fluorine-based polymer electrolytes and hydrocarbon-based polymer electrolytes can be used. As the fluorine-based polymer electrolyte, a polymer electrolyte having a tetrafluoroethylene skeleton, for example, "Nafion (registered trademark)" manufactured by DuPont can be used. The polymer electrolyte 12 is in a state in which the polymer electrolyte aggregates.

高分子電解質12の凝集体と、有機電解質繊維14を構成する高分子電解質とは、同一であってもよいし、互いに異なっていてもよい。また、高分子電解質12の凝集体および高分子電解質繊維14の各々を構成する高分子電解質と、高分子電解質膜2、9を構成する高分子電解質とは、同一であってもよいし、互いに異なっていてもよい。
有機電解質繊維14の平均繊維径は、2μm以下である。平均繊維径が2μm以下であれば、電極触媒層に含有させる繊維材料として適当な細さが確保される。
Aggregates of the polymer electrolyte 12 and polymer electrolytes forming the organic electrolyte fibers 14 may be the same or different from each other. In addition, the polymer electrolytes forming the aggregates of the polymer electrolyte 12 and the polymer electrolyte fibers 14 and the polymer electrolytes forming the polymer electrolyte membranes 2 and 9 may be the same or may be the same. can be different.
The average fiber diameter of the organic electrolyte fibers 14 is 2 μm or less. If the average fiber diameter is 2 μm or less, a fineness appropriate for the fiber material contained in the electrode catalyst layer is ensured.

固体高分子形燃料電池の出力の向上のためには、電極触媒層に供給されるガスが、電極触媒層の有する空孔を通じて電極触媒層中に適切に拡散されること、および、特に空気極では電極反応により生成される水が空孔を通じて適切に排出されることが望ましい。また、空孔の存在により、ガスと触媒担持炭素と高分子電解質とが接する界面が形成されやすくなり、電極反応が促進されるため、これによっても固体高分子形燃料電池の出力の向上が可能である。 In order to improve the output of polymer electrolyte fuel cells, the gas supplied to the electrode catalyst layer should be appropriately diffused into the electrode catalyst layer through the pores of the electrode catalyst layer. Therefore, it is desirable that the water generated by the electrode reaction is properly discharged through the pores. In addition, the presence of pores facilitates the formation of an interface between the gas, the catalyst-carrying carbon, and the polymer electrolyte, promoting the electrode reaction, which can also improve the output of the polymer electrolyte fuel cell. is.

以上の観点から、電極触媒層は、的確な大きさおよび量の空孔を有していることが好ましい。有機電解質繊維14の平均繊維径が2μm以下であれば、電極触媒層において有機電解質繊維14が絡まり合う構造のなかに十分な間隙が形成されて十分に空孔が確保されるため、燃料電池の出力の向上が可能である。さらに、有機電解質繊維14の平均繊維径が0.5nm以上500nm以下であると、燃料電池の出力が特に高められる。 From the above point of view, it is preferable that the electrode catalyst layer has pores of an appropriate size and amount. If the average fiber diameter of the organic electrolyte fibers 14 is 2 μm or less, sufficient gaps are formed in the structure in which the organic electrolyte fibers 14 are entangled in the electrode catalyst layer, and sufficient pores are secured. It is possible to improve the output. Furthermore, when the average fiber diameter of the organic electrolyte fibers 14 is 0.5 nm or more and 500 nm or less, the output of the fuel cell is particularly enhanced.

有機電解質繊維22の平均繊維長は、平均繊維径よりも大きく、1μm以上200μm以下であることが好ましい。平均繊維長が上記範囲内であれば、電極触媒層中において高分子電解質繊維14が凝集することが抑えられ、空孔が形成されやすい。また、平均繊維長が上記範囲内であれば、電極触媒層中において有機電解質繊維14の絡み合う構造が好適に形成されるため、電極触媒層の強度が高められ、クラックの発生を抑える効果が高められる。
炭素粒子11及び炭素繊維13を合わせた質量に対する有機電解質繊維14の質量の比は、0.1以上3.0以下であることが好ましい。炭素粒子11及び炭素繊維13と有機電解質繊維14との質量比が上記範囲内であれば、電極触媒層におけるプロトンの伝導が促進されるため、燃料電池の出力の向上が可能である。
The average fiber length of the organic electrolyte fibers 22 is larger than the average fiber diameter, and is preferably 1 μm or more and 200 μm or less. When the average fiber length is within the above range, aggregation of the polymer electrolyte fibers 14 in the electrode catalyst layer is suppressed, and pores are easily formed. Further, when the average fiber length is within the above range, a structure in which the organic electrolyte fibers 14 are entangled in the electrode catalyst layer is preferably formed, so that the strength of the electrode catalyst layer is increased, and the effect of suppressing crack generation is enhanced. be done.
The ratio of the mass of the organic electrolyte fibers 14 to the combined mass of the carbon particles 11 and the carbon fibers 13 is preferably 0.1 or more and 3.0 or less. If the mass ratio of the carbon particles 11 and carbon fibers 13 to the organic electrolyte fibers 14 is within the above range, the conduction of protons in the electrode catalyst layer is promoted, so the output of the fuel cell can be improved.

上記比率に対し、炭素粒子11及び炭素繊維13の割合が多くなると、炭素繊維同士の絡み合いにより、触媒インクが高粘度になるため、塗布が困難となり、結果的に触媒層のしわやひび割れの原因となる。具体的には、せん断速度10(1/s)時の粘度とせん断速度100(1/s)時の粘度のチクソトロピックインデクス(TI値)が10を超えると、塗布が困難となり、しわ、ひび割れが発生しやすくなる。TI値が1.5を下回る際にも、粘度が低すぎて、塗布の際、しわ、ひび割れが発生しやすくなる。本実施形態に係る触媒インクの、せん断速度10(1/s)時の粘度とせん断速度100(1/s)時の粘度のチクソトロピックインデクス(TI値)は、1.5以上10以下の範囲内であることが好ましい。また、上記比率に対し、炭素粒子11及び炭素繊維13の割合が多くなると、触媒の利用率が低くなるため、性能が低下を引き起こす要因となる。 If the ratio of the carbon particles 11 and the carbon fibers 13 is greater than the above ratio, the entanglement of the carbon fibers will increase the viscosity of the catalyst ink, making it difficult to apply, resulting in wrinkles and cracks in the catalyst layer. becomes. Specifically, when the thixotropic index (TI value) of the viscosity at a shear rate of 10 (1/s) and the viscosity at a shear rate of 100 (1/s) exceeds 10, coating becomes difficult and wrinkles and cracks occur. becomes more likely to occur. When the TI value is less than 1.5, the viscosity is too low, and wrinkles and cracks tend to occur during application. The thixotropic index (TI value) of the viscosity at a shear rate of 10 (1/s) and the viscosity at a shear rate of 100 (1/s) of the catalyst ink according to the present embodiment is in the range of 1.5 to 10. preferably within In addition, when the ratio of the carbon particles 11 and the carbon fibers 13 is increased with respect to the above ratio, the utilization rate of the catalyst becomes low, which causes deterioration of the performance.

一方、上記比率に対し、有機電解質繊維14の割合が多いと、膜強度が不十分となりやすく、触媒インクを高分子電解質膜に直接塗布した際にしわやひび割れの原因となる。また、有機電解質繊維14の割合が多いと、触媒インクのフッ素系高分子電解質膜に対する接触角が、50°を下回る可能性が高くなる。フッ素系高分子電解質膜に対する接触角が、50°を下回ると、触媒インクの膜への染み込みが多くなり、塗布の際、しわ、ひび割れが発生しやすくなる。また、触媒インクのフッ素系高分子電解質膜に対する接触角が、90°を超えると、触媒インクの膜へのはじきにより塗布が不可となる。本実施形態に係る触媒インクのフッ素系高分子電解質膜に対する接触角は、50°以上90°以下の範囲内であることが好ましい。 On the other hand, if the ratio of the organic electrolyte fibers 14 is too high with respect to the above ratio, the membrane strength tends to be insufficient, which causes wrinkles and cracks when the catalyst ink is directly applied to the polymer electrolyte membrane. Moreover, when the ratio of the organic electrolyte fibers 14 is large, the contact angle of the catalyst ink with respect to the fluorine-based polymer electrolyte membrane is likely to fall below 50°. If the contact angle with respect to the fluorine-based polymer electrolyte membrane is less than 50°, the catalyst ink will permeate the membrane more, and wrinkles and cracks will tend to occur during application. Further, when the contact angle of the catalyst ink to the fluorine-based polymer electrolyte membrane exceeds 90°, the catalyst ink is repelled to the membrane, making application impossible. The contact angle of the catalyst ink according to the present embodiment with respect to the fluoropolymer electrolyte membrane is preferably in the range of 50° or more and 90° or less.

以上の理由から、炭素粒子11及び炭素繊維13を合わせた質量に対する有機電解質繊維14の質量の比は、0.1以上3.0以下とすることで、膜強度を保った触媒インクが製造でき、また、有機電解質繊維が良好なプロトン導電性を示すため、発電性能の低下も抑制することが出来る。 For the above reasons, the ratio of the mass of the organic electrolyte fibers 14 to the combined mass of the carbon particles 11 and the carbon fibers 13 is set to 0.1 or more and 3.0 or less, so that the catalyst ink can be manufactured while maintaining the film strength. In addition, since the organic electrolyte fibers exhibit good proton conductivity, deterioration of power generation performance can be suppressed.

(膜電極接合体の製造)
高分子電解質膜2の両面に電極触媒層3を接合することで、膜電極接合体の製造を行う。この時、高分子電解質膜2に電極触媒層3を接合する方法としては、例えば、転写基材に触媒インクを塗布した電極触媒層付き転写基材を用い、電極触媒層付き転写基材の電極触媒層の表面と高分子電解質膜とを接触させて加熱・加圧することで、高分子電解質膜2と電極触媒層3の接合を行う方法がある。
しかしながら、上記の方法によると、電極触媒層3と高分子電解質膜2の密着性が悪く、電極触媒層3と高分子電解質膜2の界面に空隙部が形成されやすい。そして、これにより、界面抵抗による発電性能の低下や、空隙部への水詰まりによるフラッディングによる発電性能の低下といった問題が発生しやすい傾向がある。
(Manufacturing of membrane electrode assembly)
A membrane electrode assembly is manufactured by joining the electrode catalyst layers 3 to both surfaces of the polymer electrolyte membrane 2 . At this time, as a method of bonding the electrode catalyst layer 3 to the polymer electrolyte membrane 2, for example, a transfer base material with an electrode catalyst layer, which is a transfer base material coated with a catalyst ink, is used, and an electrode of the transfer base material with an electrode catalyst layer is used. There is a method of bonding the polymer electrolyte membrane 2 and the electrode catalyst layer 3 by bringing the surface of the catalyst layer and the polymer electrolyte membrane into contact with each other and applying heat and pressure.
However, according to the above method, the adhesion between the electrode catalyst layer 3 and the polymer electrolyte membrane 2 is poor, and voids are likely to be formed at the interface between the electrode catalyst layer 3 and the polymer electrolyte membrane 2 . As a result, problems such as deterioration of power generation performance due to interfacial resistance and deterioration of power generation performance due to flooding due to water clogging in gaps tend to occur.

一方、高分子電解質膜2の表面に触媒インクを直接塗布した後に、触媒インクの塗膜から溶媒成分(分散媒)を除去する方法によっても膜電極接合体を製造することができる。この方法によると、電極触媒層3と高分子電解質膜2の密着性が良好で、上記の問題は生じにくい。しかしながら、触媒インクを高分子電解質膜2に直接塗布する方法では、高分子電解質膜2の膨潤により、塗布した電極触媒層3にしわやひび割れが生じやすく、これにより発電性能の低下や耐久性の低下が発生しやすいという課題があった。
これに対して、本実施形態のように触媒インク中に炭素繊維13と有機電解質繊維14が適量添加してあれば、電極触媒層3の強度が高まるため、触媒インクを高分子電解質膜2に直接塗布した場合においても電極触媒層3にしわやひび割れが生じにくく、また、有機電解質繊維が良好なプロトン導電性により、性能の低下を抑制することが可能となる。
On the other hand, the membrane electrode assembly can also be produced by a method of directly applying the catalyst ink to the surface of the polymer electrolyte membrane 2 and then removing the solvent component (dispersion medium) from the coating film of the catalyst ink. According to this method, the adhesion between the electrode catalyst layer 3 and the polymer electrolyte membrane 2 is good, and the above problems are less likely to occur. However, in the method of directly applying the catalyst ink to the polymer electrolyte membrane 2, swelling of the polymer electrolyte membrane 2 tends to cause wrinkles and cracks in the applied electrode catalyst layer 3, which leads to deterioration in power generation performance and durability. There was a problem that it is easy to cause a decrease.
In contrast, if appropriate amounts of the carbon fibers 13 and the organic electrolyte fibers 14 are added to the catalyst ink as in the present embodiment, the strength of the electrode catalyst layer 3 is increased. Even when directly applied, the electrode catalyst layer 3 is less prone to wrinkles and cracks, and the good proton conductivity of the organic electrolyte fibers makes it possible to suppress deterioration in performance.

(本実施形態の効果)
本実施形態によれば、膜電極接合体の製造時に、高分子電解質膜に触媒インクを直接塗布した際においても、発電性能の低下を抑制することが可能で、触媒層のしわやひび割れを抑制することが可能となる。
以下、本発明の実施例及び比較例を説明する。
(実施例1)
以下、本発明の実施例1を説明する。
(Effect of this embodiment)
According to this embodiment, even when the catalyst ink is directly applied to the polymer electrolyte membrane during the production of the membrane electrode assembly, it is possible to suppress the deterioration of the power generation performance, and suppress the wrinkles and cracks of the catalyst layer. It becomes possible to
Examples of the present invention and comparative examples will be described below.
(Example 1)
A first embodiment of the present invention will be described below.

(触媒インクの製造)
白金を50wt%担持した触媒担持炭素粒子(商品名:TEC10E50E、田中貴金属社製)及び、炭素繊維(商品名:VGCF-H、昭和電工製)に、水を加え、プラネタリーミキサーで混合し、触媒粒子スラリーを作製した。この時、触媒担持炭素粒子と炭素繊維の比率を2:1とした。
上記触媒粒子スラリーに、有機電解質繊維として高分子電解質繊維、高分子電解質の分散液(商品名:Nafion分散液、和光純薬工業社製)と1-プロパノールを加え、ビーズミル分散機により分散を行い、触媒インクを得た。高分子電解質繊維は、高分子電解質の分散液(Nafion分散液:和光純薬工業社製)を、エレクトロスピニング法を用いて繊維状にした後、冷却粉砕することによって作製した。有機電解質繊維として用いた高分子電解質繊維の平均繊維径は150nm(0.15μm)であり、平均繊維長は10μmであった。
このとき、触媒担持炭素粒子及び炭素繊維を合わせた質量に対する有機電解質繊維の質量の比が0.5となるよう調整を行った。
上記触媒インクのせん断速度10(1/s)時の粘度とせん断速度100(1/s)時の粘度のTI値を測定した結果、6.0であった。
また、上記触媒インクのNafion膜に対する接触角を測定した結果、60°となった。
(Manufacture of catalyst ink)
Water is added to catalyst-supporting carbon particles (trade name: TEC10E50E, manufactured by Tanaka Kikinzoku Co., Ltd.) supporting 50 wt% of platinum and carbon fibers (trade name: VGCF-H, manufactured by Showa Denko), and mixed with a planetary mixer. A catalyst particle slurry was prepared. At this time, the ratio of catalyst-carrying carbon particles to carbon fibers was set to 2:1.
Polymer electrolyte fibers as organic electrolyte fibers, a polymer electrolyte dispersion (trade name: Nafion dispersion, manufactured by Wako Pure Chemical Industries, Ltd.) and 1-propanol are added to the catalyst particle slurry, and dispersed using a bead mill disperser. , to obtain a catalyst ink. The polymer electrolyte fiber was produced by making a polymer electrolyte dispersion (Nafion dispersion: manufactured by Wako Pure Chemical Industries, Ltd.) fibrous using an electrospinning method, and then cooling and pulverizing the fiber. The polymer electrolyte fibers used as the organic electrolyte fibers had an average fiber diameter of 150 nm (0.15 μm) and an average fiber length of 10 μm.
At this time, the ratio of the mass of the organic electrolyte fibers to the combined mass of the catalyst-carrying carbon particles and the carbon fibers was adjusted to 0.5.
The viscosity of the above catalyst ink at a shear rate of 10 (1/s) and the viscosity at a shear rate of 100 (1/s) were measured and found to be 6.0.
Further, the contact angle of the catalyst ink with respect to the Nafion film was measured and found to be 60°.

(膜電極接合体の製造)
次いで、上記の触媒インクをダイコーティング法により、高分子電解質膜の両面に直接塗布することで、膜電極接合体を得た。
実施例1の触媒インクは、高分子電解質膜の両面に直接塗布した際、触媒層にしわやひび割れが生じず、また良好な発電性能が得られた。
(Manufacturing of membrane electrode assembly)
Then, the above catalyst ink was directly applied to both surfaces of the polymer electrolyte membrane by a die coating method to obtain a membrane electrode assembly.
When the catalyst ink of Example 1 was directly applied to both surfaces of the polymer electrolyte membrane, no wrinkles or cracks occurred in the catalyst layer, and good power generation performance was obtained.

(実施例2)
次に、本発明の実施例2を説明する。有機電解質繊維として、平均繊維径が1.0μm、平均繊維長が20μmである高分子電解質繊維を用いたこと以外は、実施例1と同様の工程によって、実施例2の触媒インクを得た。
上記触媒インクのせん断速度10(1/s)時の粘度とせん断速度100(1/s)時の粘度のTI値を測定した結果、8.0であった。
また、上記触媒インクのNafion膜に対する接触角を測定した結果、50°となった。
実施例2の触媒インクは、高分子電解質膜の両面に直接塗布した際、触媒層にしわやひび割れが生じず、また良好な発電性能が得られた。
(Example 2)
Next, Example 2 of the present invention will be described. A catalyst ink of Example 2 was obtained in the same manner as in Example 1, except that polymer electrolyte fibers having an average fiber diameter of 1.0 μm and an average fiber length of 20 μm were used as the organic electrolyte fibers.
As a result of measuring the TI value of the viscosity of the catalyst ink at a shear rate of 10 (1/s) and at a shear rate of 100 (1/s), it was 8.0.
Further, the contact angle of the catalyst ink with respect to the Nafion film was measured and found to be 50°.
When the catalyst ink of Example 2 was directly applied to both surfaces of the polymer electrolyte membrane, no wrinkles or cracks occurred in the catalyst layer, and good power generation performance was obtained.

(実施例3)
次に、本発明の実施例3を説明する。触媒担持炭素粒子及び炭素繊維を合わせた質量に対する前記有機電解質繊維の質量の比を2.0となるよう調整を行った以外は、実施例1と同様の工程によって、実施例3の触媒インクを得た。
上記触媒インクのせん断速度10(1/s)時の粘度とせん断速度100(1/s)時の粘度のTI値を測定した結果、2.0であった。
また、上記触媒インクのNafion膜に対する接触角を測定した結果、50°となった。
実施例3の触媒インクは、高分子電解質膜の両面に直接塗布した際、触媒層にしわやひび割れが生じず、また良好な発電性能が得られた。
(Example 3)
Next, Example 3 of the present invention will be described. The catalyst ink of Example 3 was prepared in the same manner as in Example 1, except that the ratio of the mass of the organic electrolyte fibers to the combined mass of the catalyst-supporting carbon particles and carbon fibers was adjusted to 2.0. Obtained.
As a result of measuring the TI value of the viscosity of the catalyst ink at a shear rate of 10 (1/s) and at a shear rate of 100 (1/s), it was 2.0.
Further, the contact angle of the catalyst ink with respect to the Nafion film was measured and found to be 50°.
When the catalyst ink of Example 3 was directly applied to both surfaces of the polymer electrolyte membrane, no wrinkles or cracks occurred in the catalyst layer, and good power generation performance was obtained.

(比較例1)
触媒インク中に炭素繊維を添加しなかったこと以外は、上記実施例1と同様の工程によって、比較例1の触媒インクを得た。
上記触媒インクのせん断速度10(1/s)時の粘度とせん断速度100(1/s)時の粘度のTI値を測定した結果、1.0であった。
また、上記触媒インクのNafion膜に対する接触角を測定した結果、40°となった。
比較例1の触媒インクは、高分子電解質膜の両面に直接塗布した際、触媒層にしわやひび割れが発生する結果となった。実施例1よりも発電性能が低下する結果となった。触媒インク中に炭素繊維が含まれていないと、炭素粒子及び高分子繊維が凝集しやすくなり、その結果触媒層内に十分な空孔が形成できず、発電性能が低下したためと考えられる。
(Comparative example 1)
A catalyst ink of Comparative Example 1 was obtained in the same manner as in Example 1 above, except that no carbon fiber was added to the catalyst ink.
As a result of measuring the TI value of the viscosity of the catalyst ink at a shear rate of 10 (1/s) and at a shear rate of 100 (1/s), it was 1.0.
Further, the contact angle of the catalyst ink with respect to the Nafion film was measured and found to be 40°.
When the catalyst ink of Comparative Example 1 was directly applied to both surfaces of the polymer electrolyte membrane, wrinkles and cracks occurred in the catalyst layer. The result was that the power generation performance was lower than that of Example 1. It is believed that if the catalyst ink did not contain carbon fibers, carbon particles and polymer fibers tended to agglomerate, and as a result, sufficient pores could not be formed in the catalyst layer, resulting in lower power generation performance.

(比較例2)
有機電解質繊維として、平均繊維径が3.0μm、平均繊維長が20μmである高分子電解質繊維を用いたこと以外は、実施例1と同様の工程によって、比較例2の触媒インクを得た。
上記触媒インクのせん断速度10(1/s)時の粘度とせん断速度100(1/s)時の粘度のTI値を測定した結果、12.0であった。
また、上記触媒インクのNafion膜に対する接触角を測定した結果、60°となった。
比較例2の触媒インクは、高分子電解質膜の両面に直接塗布した際、触媒層にしわやひび割れが生じなかったものの、発電性能の低下が生じる結果となった。
実施例1から3と、比較例1、2の評価結果を表1に示す。
(Comparative example 2)
A catalyst ink of Comparative Example 2 was obtained in the same manner as in Example 1, except that polymer electrolyte fibers having an average fiber diameter of 3.0 μm and an average fiber length of 20 μm were used as the organic electrolyte fibers.
The TI value of the viscosity of the above catalyst ink at a shear rate of 10 (1/s) and at a shear rate of 100 (1/s) was 12.0.
Further, the contact angle of the catalyst ink with respect to the Nafion film was measured and found to be 60°.
When the catalyst ink of Comparative Example 2 was directly applied to both surfaces of the polymer electrolyte membrane, the catalyst layer did not develop wrinkles or cracks, but the power generation performance was lowered.
Table 1 shows the evaluation results of Examples 1 to 3 and Comparative Examples 1 and 2.

Figure 0007131269000001
Figure 0007131269000001

1・・・固体高分子形燃料電池
2・・・高分子電解質膜
3A、3F・・・電極触媒層
4A、4F・・・ガス拡散層
5A、5F・・・セパレーター
6A、6F・・・ガス流路
7A、7F・・・冷却水通路
8・・・電極触媒層
9・・・高分子電解質膜
10・・・触媒
11・・・炭素粒子
12・・・高分子電解質
13・・・炭素繊維
14・・・有機電解質繊維
DESCRIPTION OF SYMBOLS 1... Polymer electrolyte fuel cell 2... Polymer electrolyte membrane 3A, 3F... Electrode catalyst layer 4A, 4F... Gas diffusion layer 5A, 5F... Separator 6A, 6F... Gas Flow path 7A, 7F... Cooling water passage 8... Electrode catalyst layer 9... Polymer electrolyte membrane 10... Catalyst 11... Carbon particles 12... Polymer electrolyte 13... Carbon fiber 14... Organic electrolyte fiber

Claims (5)

溶媒中に触媒担持炭素粒子、炭素繊維、高分子電解質、及び有機電解質繊維を含み、
せん断速度10(1/s)時の粘度とせん断速度100(1/s)時の粘度のチクソトロピックインデクス(TI値)が、1.5以上10以下の範囲内である、固体高分子形燃料電池の電極触媒層形成用の触媒インク。
including catalyst-supporting carbon particles, carbon fibers, polymer electrolytes, and organic electrolyte fibers in a solvent;
The thixotropic index (TI value) of the viscosity at a shear rate of 10 (1/s) and the viscosity at a shear rate of 100 (1/s) is in the range of 1.5 or more and 10 or less. Catalyst ink for electrode catalyst layer formation in batteries.
前記触媒インクのフッ素系高分子電解質膜に対する接触角が、50°以上90°以下の範囲内である、請求項1に記載の固体高分子形燃料電池の電極触媒層形成用の触媒インク。 2. The catalyst ink for forming an electrode catalyst layer of a polymer electrolyte fuel cell according to claim 1, wherein the contact angle of said catalyst ink with respect to a fluorine-based polymer electrolyte membrane is in the range of 50[deg.] or more and 90[deg.] or less. 前記炭素繊維がカーボンナノファイバー、カーボンナノチューブから選択した一種又は二種以上を含有する、請求項1又は2に記載の固体高分子形燃料電池の電極触媒層形成用の触媒インク。 3. The catalyst ink for forming an electrode catalyst layer of a polymer electrolyte fuel cell according to claim 1, wherein said carbon fibers contain one or more selected from carbon nanofibers and carbon nanotubes. 前記有機電解質繊維の平均繊維径が2μm以下、平均繊維長が1μm以上200μm以下である、請求項1から3のいずれか一項に記載の固体高分子形燃料電池の電極触媒層形成用の触媒インク。 4. The catalyst for forming an electrode catalyst layer of a polymer electrolyte fuel cell according to claim 1, wherein the organic electrolyte fibers have an average fiber diameter of 2 μm or less and an average fiber length of 1 μm or more and 200 μm or less. ink. 前記触媒担持炭素粒子及び炭素繊維を合わせた質量に対する前記有機電解質繊維の質量の比は、0.1以上3.0以下であることを特徴とする請求項1から4のいずれか一項に記載の固体高分子形燃料電池の電極触媒層形成用の触媒インク。 5. The method according to any one of claims 1 to 4, wherein a ratio of the mass of the organic electrolyte fiber to the combined mass of the catalyst-carrying carbon particles and the carbon fiber is 0.1 or more and 3.0 or less. A catalyst ink for forming an electrode catalyst layer of polymer electrolyte fuel cells.
JP2018187556A 2018-10-02 2018-10-02 Catalyst ink for electrode catalyst layer formation of polymer electrolyte fuel cells Active JP7131269B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018187556A JP7131269B2 (en) 2018-10-02 2018-10-02 Catalyst ink for electrode catalyst layer formation of polymer electrolyte fuel cells
JP2022134303A JP2022162112A (en) 2018-10-02 2022-08-25 Catalyst ink for forming electrode catalyst layer of solid polymer fuel battery, method for manufacturing membrane electrode assembly, membrane electrode assembly, and solid polymer fuel battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018187556A JP7131269B2 (en) 2018-10-02 2018-10-02 Catalyst ink for electrode catalyst layer formation of polymer electrolyte fuel cells

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022134303A Division JP2022162112A (en) 2018-10-02 2022-08-25 Catalyst ink for forming electrode catalyst layer of solid polymer fuel battery, method for manufacturing membrane electrode assembly, membrane electrode assembly, and solid polymer fuel battery

Publications (2)

Publication Number Publication Date
JP2020057526A JP2020057526A (en) 2020-04-09
JP7131269B2 true JP7131269B2 (en) 2022-09-06

Family

ID=70107577

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018187556A Active JP7131269B2 (en) 2018-10-02 2018-10-02 Catalyst ink for electrode catalyst layer formation of polymer electrolyte fuel cells
JP2022134303A Pending JP2022162112A (en) 2018-10-02 2022-08-25 Catalyst ink for forming electrode catalyst layer of solid polymer fuel battery, method for manufacturing membrane electrode assembly, membrane electrode assembly, and solid polymer fuel battery

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022134303A Pending JP2022162112A (en) 2018-10-02 2022-08-25 Catalyst ink for forming electrode catalyst layer of solid polymer fuel battery, method for manufacturing membrane electrode assembly, membrane electrode assembly, and solid polymer fuel battery

Country Status (1)

Country Link
JP (2) JP7131269B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002270189A (en) 2001-03-07 2002-09-20 Matsushita Electric Ind Co Ltd Manufacturing method for high polymer electrolyte type fuel cell and high polymer electrolyte type fuel cell using the same
JP2006164931A (en) 2004-11-10 2006-06-22 Toyobo Co Ltd Proton conductive polymer composition, ink and electrode for fuel cell electrode catalyst layer, and electrolyte film joining element
JP2008276990A (en) 2007-04-25 2008-11-13 Toshiba Corp Electrode for fuel cell, and fuel cell
JP2016100254A (en) 2014-11-25 2016-05-30 凸版印刷株式会社 Catalyst ink for forming electrode catalyst layer for solid polymer fuel cell, and method for manufacturing solid polymer fuel cell
WO2018155220A1 (en) 2017-02-23 2018-08-30 パナソニックIpマネジメント株式会社 Membrane electrode assembly and fuel cell
US20180269507A1 (en) 2015-10-02 2018-09-20 Vanderbilt University Nanofiber mats, making methods and applications of same
WO2019069789A1 (en) 2017-10-02 2019-04-11 凸版印刷株式会社 Electrode catalyst layer, membrane electrode assembly, and solid polymer-type fuel cell

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005085611A (en) * 2003-09-09 2005-03-31 Toyota Central Res & Dev Lab Inc Electrode for fuel cell
JP5040888B2 (en) * 2008-10-17 2012-10-03 旭硝子株式会社 Method for producing fiber and method for producing catalyst layer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002270189A (en) 2001-03-07 2002-09-20 Matsushita Electric Ind Co Ltd Manufacturing method for high polymer electrolyte type fuel cell and high polymer electrolyte type fuel cell using the same
JP2006164931A (en) 2004-11-10 2006-06-22 Toyobo Co Ltd Proton conductive polymer composition, ink and electrode for fuel cell electrode catalyst layer, and electrolyte film joining element
JP2008276990A (en) 2007-04-25 2008-11-13 Toshiba Corp Electrode for fuel cell, and fuel cell
JP2016100254A (en) 2014-11-25 2016-05-30 凸版印刷株式会社 Catalyst ink for forming electrode catalyst layer for solid polymer fuel cell, and method for manufacturing solid polymer fuel cell
US20180269507A1 (en) 2015-10-02 2018-09-20 Vanderbilt University Nanofiber mats, making methods and applications of same
WO2018155220A1 (en) 2017-02-23 2018-08-30 パナソニックIpマネジメント株式会社 Membrane electrode assembly and fuel cell
WO2019069789A1 (en) 2017-10-02 2019-04-11 凸版印刷株式会社 Electrode catalyst layer, membrane electrode assembly, and solid polymer-type fuel cell

Also Published As

Publication number Publication date
JP2020057526A (en) 2020-04-09
JP2022162112A (en) 2022-10-21

Similar Documents

Publication Publication Date Title
JP4185064B2 (en) Cathode electrode for liquid fuel type polymer electrolyte fuel cell and liquid fuel type polymer electrolyte fuel cell
JP5924530B2 (en) Gas diffusion layer for fuel cells
WO2019151310A1 (en) Membrane electrode assembly for solid polymer fuel cell, and solid polymer fuel cell
JP2006339124A (en) Membrane-electrode assembly for fuel cell, and solid polymer fuel cell using this
JP7385014B2 (en) membrane electrode assembly
JP2020145210A (en) Method of manufacturing electrode, electrode manufactured by the same, membrane-electrode assembly including the same, and fuel cell including the same
JPWO2019069789A1 (en) Electrode catalyst layer, membrane electrode assembly, and polymer electrolyte fuel cell
JP6332541B1 (en) Electrocatalyst layer
JP5410787B2 (en) Gas diffusion layer for polymer electrolyte fuel cells
JP2023073395A (en) Membrane electrode assembly for solid high polymer fuel cell and solid high polymer fuel cell, and method of manufacturing membrane electrode assembly for solid high polymer fuel cell
JP7131269B2 (en) Catalyst ink for electrode catalyst layer formation of polymer electrolyte fuel cells
JP2014135229A (en) Catalyst ink for fuel cell
JP6432703B1 (en) Membrane electrode assembly for polymer electrolyte fuel cell, polymer electrolyte fuel cell, and method for producing membrane electrode assembly for polymer electrolyte fuel cell
JP2020077474A (en) Membrane electrode assembly and polymer electrolyte fuel cell
WO2021117522A1 (en) Catalyst ink for use in forming electrode catalyst layer, and method for producing membrane electrode assembly
JP7067136B2 (en) Catalyst layer, membrane electrode assembly, polymer electrolyte fuel cell
JP7243208B2 (en) Electrode catalyst layer, membrane electrode assembly, and polymer electrolyte fuel cell
WO2022065419A1 (en) Electrode catalyst layer and membrane electrode assembly
JP7140256B2 (en) Electrocatalyst layer
WO2023243449A1 (en) Laminate for water electrolysis device, membrane electrode assembly for water electrolysis device, and water electrolysis device
JP6950617B2 (en) Electrode catalyst layer
JP5811058B2 (en) A fuel cell membrane electrode assembly, a fuel cell including the membrane electrode assembly, and a gas diffusion layer used in the membrane electrode assembly.
JP2011198502A (en) Manufacturing method of membrane electrode assembly for solid polymer fuel cell and membrane electrode assembly using it, fuel cell single cell, fuel cell stack
JP2011204605A (en) Electrode catalytic layer for fuel cell, membrane electrode assembly for fuel cell comprising the electrode catalytic layer, fuel cell comprising the membrane electrode assembly, and method of manufacturing the electrode catalytic layer for fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220808

R150 Certificate of patent or registration of utility model

Ref document number: 7131269

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150