JP7129074B1 - Pulse-type propulsion machine using vacuum cathodic arc discharge - Google Patents

Pulse-type propulsion machine using vacuum cathodic arc discharge Download PDF

Info

Publication number
JP7129074B1
JP7129074B1 JP2021121313A JP2021121313A JP7129074B1 JP 7129074 B1 JP7129074 B1 JP 7129074B1 JP 2021121313 A JP2021121313 A JP 2021121313A JP 2021121313 A JP2021121313 A JP 2021121313A JP 7129074 B1 JP7129074 B1 JP 7129074B1
Authority
JP
Japan
Prior art keywords
anode
cathode
space
discharge
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021121313A
Other languages
Japanese (ja)
Other versions
JP2023017215A (en
Inventor
約亨 李
勝文 劉
後毅 李
添全 郭
耀中 許
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Cheng Kung University NCKU
Original Assignee
National Cheng Kung University NCKU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Cheng Kung University NCKU filed Critical National Cheng Kung University NCKU
Priority to JP2021121313A priority Critical patent/JP7129074B1/en
Application granted granted Critical
Publication of JP7129074B1 publication Critical patent/JP7129074B1/en
Publication of JP2023017215A publication Critical patent/JP2023017215A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Plasma Technology (AREA)

Abstract

【課題】使用過程において、炭素堆積の影響を低減し、炭素の堆積を燃料に転化し、使用寿命を延ばし、触発精度と制御精度を高める真空陰極アーク放電を用いたパルス型推進機を提供すること。【解決手段】筐体31の内部に、軸方向に並ぶ触発空間312と放電空間313が形成され、第一陽極32と第二陽極33は、触発空間312内と放電空間313内に、互いに間隔を開けて設置され、第一陽極32、絶縁燃料層34、第一陰極35と絶縁層36は、筐体31の中心線Rを中心として同心円状に設置され、絶縁燃料層34は第一陽極32に囲まれ、第一陰極35と第一陽極32の間に絶縁燃料層34が設置され、絶縁層36は第一陰極35によって囲まれ、第二陰極37は、筐体31の中心線Rに沿い、触発空間312から放電空間313内へ延長進入している。【選択図】図1A pulse-type propulsion machine using a vacuum cathodic arc discharge that reduces the effects of carbon deposits during use, converts the carbon deposits into fuel, prolongs service life, and enhances triggering accuracy and control accuracy. thing. A trigger space (312) and a discharge space (313) are formed in an axial direction inside a housing (31). The first anode 32, the insulating fuel layer 34, the first cathode 35, and the insulating layer 36 are placed concentrically around the center line R of the housing 31, and the insulating fuel layer 34 is placed on the first anode 32 , an insulating fuel layer 34 is placed between a first cathode 35 and a first anode 32 , an insulating layer 36 is surrounded by the first cathode 35 , a second cathode 37 is located on the centerline R of the housing 31 . , extending from the trigger space 312 into the discharge space 313 . [Selection drawing] Fig. 1

Description

本発明は、推進機に関し、特に真空陰極アーク放電を用いたパルス型推進機に関する。 The present invention relates to a propulsion machine, and more particularly to a pulse-type propulsion machine using vacuum cathodic arc discharge.

パルス型プラズマ推進機(pulsed plasma thruster)は近年開発された新型の推進機である。
それは、電場と磁場の相互作用を利用し、更にプラズマを加速して推力を生み出す電力推進装置であり、低コストで、構造が簡単で、重量が軽く消費電力が小さいという特性を備える。
同時に、パルス型プラズマ推進機は小型衛星の姿勢制御と位置の保持に有効であり、パルス型プラズマ推進機を有力な電気推進装置の一つとしている。
A pulsed plasma thruster is a new type of thruster developed in recent years.
It is a power propulsion device that uses the interaction of an electric field and a magnetic field to accelerate plasma to generate thrust, and has the characteristics of low cost, simple structure, light weight, and low power consumption.
At the same time, the pulse-type plasma thruster is effective for attitude control and position maintenance of small satellites, making the pulse-type plasma thruster one of the leading electric propulsion devices.

一般的なパルス型プラズマ推進機の原型は固体供給パルス型プラズマ推進機および気体誘発パルス型プラズマ推進機である。
固体供給パルス型プラズマ推進機は最もよく見かけるもので、構造が非常に簡単である。それは、主に燃料でスパークプラグの電極に合わせて放電を誘発し、推力を生む。しかしながら、真空環境下においてスパークプラグによる放電誘発の放電ニーズを達成するには非常に高い電圧が必要であり、且つ放電過程において発生した炭素がスパークプラグの電極表面および燃料表面に堆積して付着し、後続の放電誘発効果に影響を与え、固体供給パルス型プラズマ推進機の使用効率と寿命を大幅に下げるため、改善が必要である。
Common pulsed plasma thruster prototypes are the solid-fed pulsed plasma thruster and the gas-induced pulsed plasma thruster.
Solid-fed pulsed plasma thrusters are the most common and very simple in construction. It is primarily fuel that induces an electrical discharge in line with the spark plug electrodes to produce thrust. However, in a vacuum environment, a very high voltage is required to achieve the discharge needs of the spark plug, and the carbon generated during the discharge process deposits and adheres to the electrode surface and fuel surface of the spark plug. , which affects subsequent discharge-induced effects and significantly reduces the usage efficiency and lifetime of solid-fed pulsed plasma thrusters, and therefore needs to be improved.

気体誘発パルス型プラズマ推進機については、電極間で充分な電離気体が発生すると、コンデンサが放電し、アルゴンガスを用い起爆装置と共に放電を誘発する噴射剤となり、電離気体によって放電し、且つ破壊電圧は大気環境下の破壊電圧より小さく、最大単発パルスで発生した力積により、推進の目的を達成する。
しかしながら、気体を噴射剤とする方式は、燃料の消費が大きく、且つ推進効率も悪い。
また、気体誘発パルス型プラズマ推進機及び固体供給パルス型プラズマ推進機は、どちらもレイトタイムアブレーション (late-time ablation)現象が発生し、推進機の性能を下げ、使用寿命を縮める。依って、いかにして使用寿命が長く、高性能で、低消費電力を備えた推進機を設計するかが努力目標と言える。
For the gas-induced pulsed plasma propulsion machine, when enough ionized gas is generated between the electrodes, the capacitor discharges, and the argon gas is used as a propellant to induce the discharge together with the detonator, and the ionized gas discharges, and the breakdown voltage is smaller than the breakdown voltage under atmospheric conditions, and the impulse generated by the maximum single-shot pulse achieves the purpose of propulsion.
However, the method using gas as a propellant consumes a large amount of fuel and has poor propulsion efficiency.
In addition, both the gas-induced pulsed plasma thruster and the solid-supplied pulsed plasma thruster suffer from late-time ablation, degrading the performance of the thruster and shortening its service life. Therefore, it can be said that the challenge is how to design a propulsion device with a long service life, high performance, and low power consumption.

本発明が解決しようとする課題は、使用過程において、炭素堆積の影響を低減し、炭素の堆積を燃料に転化し、使用寿命を延ばし、更に触発精度と制御精度を高める真空陰極アーク放電を用いたパルス型推進機を提供することにある。 The problem to be solved by the present invention is to use vacuum cathodic arc discharge to reduce the effect of carbon deposition in the process of use, convert the carbon deposition into fuel, extend the service life, and further improve the triggering accuracy and control accuracy. The purpose of the present invention is to provide a pulse-type propulsion machine that has

上記課題を解決するために、本発明の真空陰極アーク放電を用いたパルス型推進機は、筐体、第一陽極、第二陽極、絶縁燃料層、第一陰極、絶縁層、及び、第二陰極を含む。
前記筐体は、その内壁面の内側に触発空間と放電空間を有し、且つ前記触発空間と前記放電空間は、軸方向に並べて配置されるとともに、相互に連通され、
前記第一陽極と前記第二陽極は、それぞれ前記触発空間内と前記放電空間内に設置され、前記第一陽極と前記第二陽極は間隔を開けて設置され、且つ前記筐体の内壁面にそれぞれ取り付けられ、
前記第一陽極、前記絶縁燃料層、前記第一陰極と前記絶縁層は、前記筐体の中心線を中心として同心円状に設置され、
前記絶縁燃料層は、第一陽極に囲まれ、
前記第一陰極は、前記触発空間内に設置され、且つ前記第一陽極との間に間隔を開けて設置され、前記絶縁燃料層が前記第一陰極と前記第一陽極との間に設置され、
前記絶縁層は、前記第一陰極によって囲まれ、
前記第二陰極は、前記筐体内に設置され、且つ前記筐体の中心線に沿い、前記触発空間から前記放電空間内へ延長進入している。
In order to solve the above problems, the pulse-type propulsion machine using vacuum cathodic arc discharge of the present invention includes a housing, a first anode, a second anode, an insulating fuel layer, a first cathode, an insulating layer, and a second Contains the cathode.
the housing has a triggering space and a discharge space inside its inner wall surface, and the triggering space and the discharge space are arranged side by side in the axial direction and communicate with each other;
The first anode and the second anode are respectively installed in the trigger space and the discharge space, the first anode and the second anode are spaced apart from each other, and the inner wall of the housing is attached to each
The first anode, the insulating fuel layer, the first cathode and the insulating layer are arranged concentrically around the center line of the housing,
the insulating fuel layer is surrounded by a first anode;
The first cathode is installed in the catalyst space and spaced apart from the first anode, and the insulating fuel layer is installed between the first cathode and the first anode. ,
the insulating layer is surrounded by the first cathode;
The second cathode is installed in the housing and extends from the trigger space into the discharge space along the centerline of the housing.

第一陽極と第一陰極が放電すると、第一陽極と第一陰極との間の絶縁燃料層を誘発してプラズマが放電空間内で発生する。更に、第二陽極と第二陰極が放電すると、該プラズマによって金属イオンの高速排気速度が推力を生む。 When the first anode and the first cathode discharge, a plasma is generated within the discharge space by inducing an insulating fuel layer between the first anode and the first cathode. In addition, when the second anode and second cathode are discharged, the plasma produces a thrust with a high pumping velocity of metal ions.

本発明の真空陰極アーク放電を用いたパルス型推進機は、プラズマによって金属イオンの高速排気速度が推力を生むので、スパークプラグ等を使用する必要がなく、このため、コストが低廉で、システムの複雑さを簡易化し、軽量で消費パワーが少なくて済み、同時に放電過程で発生する炭素の堆積が触発效果に影響を与えるのを防止し、炭素堆積が燃料のフィードバックとなり、更に触発精度と制御精度を高め、全体の使用寿命を伸ばすという利点がある。 The pulse-type propulsion machine using the vacuum cathodic arc discharge of the present invention does not require the use of spark plugs or the like because the high-speed pumping speed of metal ions is generated by the plasma. Simplify the complexity, light weight and low power consumption, at the same time prevent the carbon deposits generated during the discharge process from affecting the triggering effect, the carbon deposits serve as feedback for the fuel, and the triggering accuracy and control accuracy are improved. has the advantage of increasing the overall service life.

本発明の実施形態を示す真空陰極アーク放電を用いたパルス型推進機の断面図である。1 is a cross-sectional view of a pulse-type propulsion machine using vacuum cathodic arc discharge, showing an embodiment of the present invention; FIG. 本発明の実施形態を示す真空陰極アーク放電を用いたパルス型推進機の一部を破断した斜視図である。1 is a partially cutaway perspective view of a pulse-type propulsion machine using vacuum cathodic arc discharge, showing an embodiment of the present invention; FIG. 本発明の実施形態を示す真空陰極アーク放電を用いたパルス型推進機の動作第一段階における断面図である。1 is a cross-sectional view in the first stage of operation of a pulse-type propulsion machine using vacuum cathodic arc discharge, showing an embodiment of the present invention; FIG. 本発明の実施形態を示す真空陰極アーク放電を用いたパルス型推進機の動作第二段階における断面図である。FIG. 4 is a cross-sectional view in the second stage of operation of the pulse-type propulsion machine using vacuum cathodic arc discharge, showing the embodiment of the present invention; 本発明の実施形態を示す真空陰極アーク放電を用いたパルス型推進機の動作第三段階における断面図である。FIG. 4 is a cross-sectional view in the third stage of operation of the pulse-type propulsion machine using vacuum cathodic arc discharge, showing the embodiment of the present invention; 本発明の実施形態を示す真空陰極アーク放電を用いたパルス型推進機の動作第四段階における断面図である。FIG. 4 is a cross-sectional view of the fourth stage of operation of the pulse-type propulsion machine using vacuum cathodic arc discharge, showing the embodiment of the present invention;

以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、本発明は、実施形態に限定されないことはいうまでもない。
図1、図2に示すように、本発明の真空陰極アーク放電を用いたパルス型推進機3は、筐体31、第一陽極32、第二陽極33、絶縁燃料層34、第一陰極35、絶縁層36、及び、第二陰極37を含む。
本実施形態では、筐体31、第一陽極32、第二陽極33、絶縁燃料層34、第一陰極35及び絶縁層36は円筒形である。
また、第一陽極32、絶縁燃料層34、第一陰極35及び絶縁層36は、筐体31の中心線Rを中心として同心円状に設置される。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail based on the drawings. In addition, it cannot be overemphasized that this invention is not limited to embodiment.
As shown in FIGS. 1 and 2, the pulse-type propulsion machine 3 using the vacuum cathodic arc discharge of the present invention includes a housing 31, a first anode 32, a second anode 33, an insulating fuel layer 34, and a first cathode 35. , an insulating layer 36 and a second cathode 37 .
In this embodiment, the housing 31, the first anode 32, the second anode 33, the insulating fuel layer 34, the first cathode 35 and the insulating layer 36 are cylindrical.
Also, the first anode 32 , the insulating fuel layer 34 , the first cathode 35 and the insulating layer 36 are arranged concentrically around the center line R of the housing 31 .

筐体31の内壁面311の内側に、触発空間312と放電空間313が軸方向に並んで形成される。
第一陽極32及び第二陽極33は、筐体31と同心の筒状であり、第一陽極32は触発空間312内に設置され、第二陽極33は放電空間313内に設置される。且つ、第一陽極32と第二陽極33とは間隔をあけて設置され、筐体31の内壁面311にそれぞれ貼り合わされる。
絶縁燃料層34は、筐体31と同心の筒状であり、第一陽極32によって囲まれる。
A trigger space 312 and a discharge space 313 are axially aligned inside an inner wall surface 311 of the housing 31 .
The first anode 32 and the second anode 33 are cylindrical and concentric with the housing 31 , the first anode 32 is installed in the trigger space 312 and the second anode 33 is installed in the discharge space 313 . In addition, the first anode 32 and the second anode 33 are installed with a gap therebetween and are attached to the inner wall surface 311 of the housing 31 respectively.
The insulating fuel layer 34 is cylindrical concentric with the housing 31 and surrounded by the first anode 32 .

第一陰極35は、筐体31と同心の筒状であり、触発空間312内に、第一陽極32と間隔をあけて設置され、絶縁燃料層34が第一陽極32と第一陰極35の間に設置される。
絶縁層36は、筐体31と同心の筒状であり、第一陰極35によって囲まれる。
第二陰極37は、筐体31内に設置され、且つ、中心線Rに沿い触発空間312から放電空間313内に亘って延長設置される。
触発空間312と放電空間313は相互に連通する。また、第一陽極32、絶縁燃料層34、第一陰極35及び絶縁層36は、筐体31の中心線Rを中心として同心円状に設置される。
本実施形態において、絶縁燃料層34はフッ素樹脂(デュポン社のテフロン(登録商標)等)を素材とする。
The first cathode 35 has a cylindrical shape concentric with the housing 31 , and is placed in the trigger space 312 with a gap from the first anode 32 , and the insulating fuel layer 34 is between the first anode 32 and the first cathode 35 . placed in between.
The insulating layer 36 has a tubular shape concentric with the housing 31 and is surrounded by the first cathode 35 .
The second cathode 37 is installed in the housing 31 and extends along the center line R from the trigger space 312 to the discharge space 313 .
The trigger space 312 and the discharge space 313 communicate with each other. Also, the first anode 32 , the insulating fuel layer 34 , the first cathode 35 and the insulating layer 36 are arranged concentrically around the center line R of the housing 31 .
In this embodiment, the insulating fuel layer 34 is made of fluorine resin (Teflon (registered trademark) of DuPont, etc.).

本実施形態において、真空陰極アーク放電を用いたパルス型推進機3は、さらに仕切部材38および制御装置4を含む。
仕切部材38は、筐体31の内壁面311から突出して延びる環状の部材であり、第一陽極32と第二陽極33との間に設置される。また、仕切部材38の内周面で囲まれる開口は、触発空間312から放電空間313へ向けて徐々に縮小される。
制御装置4は、第一陽極32、第一陰極35、第二陽極33と第二陰極37にそれぞれ接続される。制御装置4は、第一陽極32および第二陽極33で正極電圧を入力し、また第一陰極35と第二陰極37で負極電圧を入力し、更に、第一陽極32と第一陰極35の放電を制御し、第二陽極33と第二陰極37の放電を制御する。
In this embodiment, the pulse-type propulsion machine 3 using vacuum cathodic arc discharge further includes a partition member 38 and a control device 4 .
The partition member 38 is an annular member that protrudes and extends from the inner wall surface 311 of the housing 31 and is installed between the first anode 32 and the second anode 33 . Also, the opening surrounded by the inner peripheral surface of the partition member 38 is gradually reduced from the trigger space 312 toward the discharge space 313 .
The control device 4 is connected to the first anode 32, the first cathode 35, the second anode 33 and the second cathode 37 respectively. The control device 4 inputs a positive voltage at the first anode 32 and the second anode 33, inputs a negative voltage at the first cathode 35 and the second cathode 37, and further inputs a voltage at the first anode 32 and the first cathode 35. It controls the discharge and controls the discharge of the second anode 33 and the second cathode 37 .

図3、図4に示すとおり、作動時、制御装置4は第一陽極32と第一陰極35を制御して誘発放電(図3のジグザク形で示す)を行い、第一陽極32と第一陰極35間にアークを発生させる。該アークは第一陰極35の表面で集中して陰極スポットを形成する。陰極スポットは非常に高い温度を有するため、イオン放出現象を引き起こしプラズマ(電離体とも言う:図4の細かい粒子で示す)を形成する。プラズマが触発空間312から放電空間313へ放出され、暫定推力を生み出す。同時に、プラズマは第一陰極35からの微小爆発と蒸発によるものであり、これは第一陰極35および絶縁燃料層34表層上の炭素を消費させる。 3 and 4, in operation, the control device 4 controls the first anode 32 and the first cathode 35 to produce an induced discharge (shown in zig-zag form in FIG. 3), the first anode 32 and the first cathode 35 An arc is generated between the cathodes 35 . The arc converges on the surface of the first cathode 35 to form a cathode spot. Since the cathode spot has a very high temperature, it causes an ion ejection phenomenon to form a plasma (also called ionizer, represented by fine particles in FIG. 4). Plasma is emitted from the trigger space 312 into the discharge space 313 to produce interim thrust. At the same time, the plasma is due to micro-explosions and vaporization from the first cathode 35, which consumes carbon on the first cathode 35 and insulating fuel layer 34 surface.

図5、図6に示すとおり、プラズマは触発空間312を経て放電空間313内へ入力される(図5の細かい粒子で示す)。同時に、該プラズマによって放電空間313内に通路が形成され、それにより、制御装置4が第二陽極33と第二陰極37を制御して放電し(図5のジグザク形で示す)、放電空間313のプラズマは放電により磁場と電場の相互作用を誘導し、それにより、ローレンツ力(Lorentz force)を生み出し、加速推力(図6の雲形で示す)を生成する。 As shown in FIGS. 5 and 6, the plasma is input into the discharge space 313 through the trigger space 312 (indicated by fine particles in FIG. 5). At the same time, the plasma forms a passage in the discharge space 313 , whereby the controller 4 controls the second anode 33 and the second cathode 37 to discharge (shown in zigzag form in FIG. 5 ), and the discharge space 313 plasma induces the interaction of the magnetic and electric fields by means of electrical discharges, thereby producing Lorentz forces and generating accelerating thrust (shown as clouds in FIG. 6).

更に、絶縁燃料層34はフッ素樹脂材を使用していることから、アークがプラズマを発生させる過程において、同時に一部の炭素が第一陰極35表面と絶縁燃料層34表面に堆積し、それは第一陰極35および絶縁燃料層34の炭素の補充となる。拠って、公知と異なり、後続の放電誘発効果に影響を与えず、絶縁燃料層34および第一陰極35の炭素補充を助け、それによって絶縁燃料層34および第一陰極35の使用寿命を延ばす。
即ち、公知技術で採用されているスパークプラグは非常に高い電圧に入力してはじめて放電效果を生み出し、更に該スパークプラグの電極が炭素堆積で覆われ点火効率に影響を与えるという欠点を有効に解決する。故に、真空陰極アーク放電を用いたパルス型推進機3は、炭素堆積の影響を受けず、更に制御精度と誘発精度を向上させる。
Furthermore, since the insulating fuel layer 34 uses a fluororesin material, a part of carbon is deposited on the surface of the first cathode 35 and the surface of the insulating fuel layer 34 at the same time in the process of plasma generation by the arc. It provides carbon replenishment for the one cathode 35 and the insulating fuel layer 34 . Thus, unlike the prior art, it does not affect subsequent discharge-induced effects and aids carbon replenishment of the insulating fuel layer 34 and the first cathode 35, thereby extending the service life of the insulating fuel layer 34 and the first cathode 35.
That is, it effectively solves the drawback that the spark plug used in the prior art produces a discharge effect only when a very high voltage is input, and the electrode of the spark plug is covered with carbon deposits, which affects the ignition efficiency. do. Therefore, the pulse-type propulsion machine 3 using vacuum cathodic arc discharge is not affected by carbon deposition, and further improves control accuracy and triggering accuracy.

以上は、本発明の良好な実施形態の説明であり、本発明の権利範囲を制限するものではなく、本発明の要旨を逸脱しない変化と修飾は、すべて本発明の権利範囲に属するものとする。 The above is a description of the preferred embodiments of the present invention, and does not limit the scope of the invention, and any changes and modifications that do not depart from the gist of the invention shall fall within the scope of the invention. .

3 真空陰極アーク放電を用いたパルス型推進機
31 筐体
311 内壁面
312 触発空間
313 放電空間
32 第一陽極
33 第二陽極
34 絶縁燃料層
35 第一陰極
36 絶縁層
37 第二陰極
38 仕切部材
4 制御装置
R 中心線
3 pulse-type propulsion machine using vacuum cathode arc discharge 31 housing 311 inner wall surface 312 triggering space 313 discharge space 32 first anode 33 second anode 34 insulating fuel layer 35 first cathode 36 insulating layer 37 second cathode 38 partition member 4 control device R center line

Claims (5)

真空陰極アーク放電を用いたパルス型推進機は、筐体、第一陽極、第二陽極、絶縁燃料層、第一陰極、絶縁層、及び、第二陰極を含み、
前記筐体は、その内壁面の内側に触発空間と放電空間を有し、且つ前記触発空間と前記放電空間は、軸方向に並べて配置されるとともに、相互に連通され、
前記第一陽極と前記第二陽極は、前記触発空間内と前記放電空間内にそれぞれ設置され、前記第一陽極と前記第二陽極は間隔を開けて設置され、且つ前記筐体の内壁面にそれぞれ取り付けられ、
前記第一陽極、前記絶縁燃料層、前記第一陰極と前記絶縁層は、前記筐体の中心線を中心として同心円状に設置され、
前記絶縁燃料層は、第一陽極に囲まれ、
前記第一陰極は、前記触発空間内に設置され、且つ前記第一陽極との間に間隔を開けて設置され、前記絶縁燃料層が前記第一陰極と前記第一陽極との間に設置され、
前記絶縁層は、前記第一陰極によって囲まれ、
前記第二陰極は、前記筐体内に設置され、且つ前記筐体の中心線に沿い、前記触発空間から前記放電空間内へ延長進入している、ことを特徴とする真空陰極アーク放電を用いたパルス型推進機。
A pulse-type propulsion machine using vacuum cathodic arc discharge includes a housing, a first anode, a second anode, an insulating fuel layer, a first cathode, an insulating layer, and a second cathode,
the housing has a triggering space and a discharge space inside its inner wall surface, and the triggering space and the discharge space are arranged side by side in the axial direction and communicate with each other;
The first anode and the second anode are respectively installed in the trigger space and the discharge space, the first anode and the second anode are spaced apart from each other, and the inner wall surface of the housing is attached to each
The first anode, the insulating fuel layer, the first cathode and the insulating layer are arranged concentrically around the center line of the housing,
the insulating fuel layer is surrounded by a first anode;
The first cathode is installed in the catalyst space and spaced apart from the first anode, and the insulating fuel layer is installed between the first cathode and the first anode. ,
the insulating layer is surrounded by the first cathode;
The vacuum cathode arc discharge is characterized in that the second cathode is installed in the housing and extends from the triggering space into the discharge space along the center line of the housing. Pulse-type propulsion machine.
制御装置を含み、前記制御装置は、前記第一陽極、前記第一陰極、前記第二陽極および前記第二陰極とそれぞれ接続され、前記第一陽極および前記第二陽極で正極電圧を入力し、前記第一陰極と前記第二陰極で負極電圧を入力し、前記第一陽極と前記第一陰極の放電を制御し、前記第二陽極と前記第二陰極の放電を制御することを特徴とする請求項1記載の真空陰極アーク放電を用いたパルス型推進機。 a control device, wherein the control device is connected to the first anode, the first cathode, the second anode and the second cathode, respectively, and inputs a positive voltage at the first anode and the second anode; A negative electrode voltage is input to the first cathode and the second cathode, the discharge of the first anode and the first cathode is controlled, and the discharge of the second anode and the second cathode is controlled. A pulse-type propulsion machine using the vacuum cathodic arc discharge according to claim 1. 前記絶縁燃料層は、フッ素樹脂を素材とすることを特徴とする請求項1記載の真空陰極アーク放電を用いたパルス型推進機。 2. A pulse-type propulsion machine using vacuum cathodic arc discharge according to claim 1, wherein said insulating fuel layer is made of fluororesin. 仕切部材を含み、前記仕切部材は、前記筐体の内壁面から突出し、前記第一陽極と前記第二陽極との間に設置されることを特徴とする請求項1記載の真空陰極アーク放電を用いたパルス型推進機。 2. The vacuum cathodic arc discharge according to claim 1, further comprising a partition member, said partition member protruding from the inner wall surface of said housing, and disposed between said first anode and said second anode. Pulse-type propulsion machine used. 前記仕切部材は環状の部材であり、前記仕切部材の内周面で囲まれる開口は、前記触発空間から前記放電空間へ向かって徐々に縮小していることを特徴とする請求項4記載の真空陰極アーク放電を用いたパルス型推進機。 5. The vacuum according to claim 4, wherein said partition member is an annular member, and an opening surrounded by an inner peripheral surface of said partition member gradually shrinks from said trigger space toward said discharge space. Pulse-type propulsion machine using cathodic arc discharge.
JP2021121313A 2021-07-26 2021-07-26 Pulse-type propulsion machine using vacuum cathodic arc discharge Active JP7129074B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021121313A JP7129074B1 (en) 2021-07-26 2021-07-26 Pulse-type propulsion machine using vacuum cathodic arc discharge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021121313A JP7129074B1 (en) 2021-07-26 2021-07-26 Pulse-type propulsion machine using vacuum cathodic arc discharge

Publications (2)

Publication Number Publication Date
JP7129074B1 true JP7129074B1 (en) 2022-09-01
JP2023017215A JP2023017215A (en) 2023-02-07

Family

ID=83114604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021121313A Active JP7129074B1 (en) 2021-07-26 2021-07-26 Pulse-type propulsion machine using vacuum cathodic arc discharge

Country Status (1)

Country Link
JP (1) JP7129074B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118145024A (en) * 2024-05-11 2024-06-07 北京易动宇航科技有限公司 Satellite two-arc thruster propulsion system and control method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007064128A (en) * 2005-09-01 2007-03-15 Allied Material Corp Ignition part of pulsed plasma thruster
JP2013174204A (en) * 2012-02-27 2013-09-05 Japan Aerospace Exploration Agency Pulse type propelling machine unit
JP2019502852A (en) * 2015-12-07 2019-01-31 ザ・ジョージ・ワシントン・ユニバーシティThe George Washingtonuniversity High thrust power ratio micro cathode arc thruster
US20200361636A1 (en) * 2017-10-10 2020-11-19 The George Washington University Micro-propulsion system
US20210009286A1 (en) * 2017-04-03 2021-01-14 The George Washington University Modular micro-cathode arc thruster
CN212615195U (en) * 2020-06-19 2021-02-26 中国人民解放军国防科技大学 Parallel segmented anode type laser-electromagnetic field coupling thruster and electromagnetic accelerating electrode

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007064128A (en) * 2005-09-01 2007-03-15 Allied Material Corp Ignition part of pulsed plasma thruster
JP2013174204A (en) * 2012-02-27 2013-09-05 Japan Aerospace Exploration Agency Pulse type propelling machine unit
JP2019502852A (en) * 2015-12-07 2019-01-31 ザ・ジョージ・ワシントン・ユニバーシティThe George Washingtonuniversity High thrust power ratio micro cathode arc thruster
US20210009286A1 (en) * 2017-04-03 2021-01-14 The George Washington University Modular micro-cathode arc thruster
US20200361636A1 (en) * 2017-10-10 2020-11-19 The George Washington University Micro-propulsion system
CN212615195U (en) * 2020-06-19 2021-02-26 中国人民解放军国防科技大学 Parallel segmented anode type laser-electromagnetic field coupling thruster and electromagnetic accelerating electrode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118145024A (en) * 2024-05-11 2024-06-07 北京易动宇航科技有限公司 Satellite two-arc thruster propulsion system and control method

Also Published As

Publication number Publication date
JP2023017215A (en) 2023-02-07

Similar Documents

Publication Publication Date Title
CN111852802B (en) Hall effect ring type ion thruster
CN110594115B (en) Ring-shaped ion thruster without discharge cathode
JP6935284B2 (en) Hall thruster
TWI778706B (en) Vacuum cathode arc-induced pulsed thruster
US11629706B2 (en) Vacuum cathode arc-induced pulsed thruster
CN110630460B (en) Segmented anode high specific impulse pulse plasma thruster
CN115681052B (en) Hall thruster, equipment with same and use method of Hall thruster
JP7129074B1 (en) Pulse-type propulsion machine using vacuum cathodic arc discharge
CN115898802B (en) Hall thruster, space device comprising same and use method thereof
Kronhaus et al. Experimental characterization of the inline-screw-feeding vacuum-arc-thruster operation
CN106704133A (en) Non-trigger type vacuum arc micro thruster using gas storage electrodes
CN115681063B (en) Operation method of multi-working-mode Hall propulsion system
CN111852803B (en) Mixed effect annular ion thruster based on segmented anode
WO2021221767A2 (en) Two-stage low-power and high-thrust to power electric propulsion system
US10436183B2 (en) Plasma accelerating apparatus and plasma accelerating method
JP2004169606A (en) Hollow cathode
CN114753981A (en) Micro propeller based on annular bombardment cathode
CN206592256U (en) A kind of triggerless micro-vacuum arc propeller of use gas storage electrode
RU2094896C1 (en) Fast neutral molecule source
CN111456921B (en) Colloid thruster based on microwave enhancement
CN111365207A (en) Sectional pulse plasma thruster
CN116313689A (en) Barium tungsten lanthanum hexaboride composite hollow cathode
US7701145B2 (en) Solid expellant plasma generator
RU116273U1 (en) SOURCE OF IONS
US4004172A (en) Gas discharge electron gun for generating an electron beam by means of a glow discharge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220812

R150 Certificate of patent or registration of utility model

Ref document number: 7129074

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350