JP7128398B2 - Empty can type cylindrical grinding wheel - Google Patents

Empty can type cylindrical grinding wheel Download PDF

Info

Publication number
JP7128398B2
JP7128398B2 JP2019094847A JP2019094847A JP7128398B2 JP 7128398 B2 JP7128398 B2 JP 7128398B2 JP 2019094847 A JP2019094847 A JP 2019094847A JP 2019094847 A JP2019094847 A JP 2019094847A JP 7128398 B2 JP7128398 B2 JP 7128398B2
Authority
JP
Japan
Prior art keywords
empty
cylindrical body
shaped cylindrical
abrasive grains
grinding wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019094847A
Other languages
Japanese (ja)
Other versions
JP2020179493A (en
Inventor
隆太郎 松原
成希 松原
光作 松原
篤史 日下部
幸男 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2019094847A priority Critical patent/JP7128398B2/en
Publication of JP2020179493A publication Critical patent/JP2020179493A/en
Application granted granted Critical
Publication of JP7128398B2 publication Critical patent/JP7128398B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Description

本発明は、砥粒を台金となる円筒体の外周面に付着させた超砥粒研削砥石に関するも、特に円筒体を薄肉で形成した空き缶状の円筒体とし、この外周面や側面に多数の孔を開けるとともに超砥粒を円筒体の内側壁面である内周面に特定して固着させた空き缶型円筒研削砥石と、この砥石を装着使用する研削装置及び空き缶型円筒体の製造法を提供するものに係わる。The present invention also relates to a superabrasive grinding wheel in which abrasive grains are adhered to the outer peripheral surface of a cylindrical body serving as a base metal. Manufacture of an empty can-type cylindrical grinding wheel in which a large number of holes are drilled in a cylindrical body and superabrasive grains are fixed to the inner peripheral surface of the inner wall surface of the cylindrical body, and a grinding device and an empty can-shaped cylindrical body using this grinding wheel. Concerned with those who provide the law.

近年、金属製の台金にΦ0.5mm程度の細孔が回転中心から放射状に約1,000ヶ所以上ある砥石内から研削液を通過させる研削砥石が開発されている。
また、同じく金属製の台金外周に0.3mm幅の溝が120ヶ所に渡り設けた砥石内の各溝から研削液を加工点に到達させて通過させる研削砥石が開発されている。
上記の細孔又は溝を微細加工した台金に、超砥粒を電着加工した後に、マスク除去が必須で高い製作費と長い製作時間が必須であるから、研削砥石として普及しないままの現状にある。
In recent years, a grinding wheel has been developed in which a grinding fluid is passed through a metal base metal having approximately 1,000 or more fine holes of about Φ0.5 mm radially from the center of rotation.
Also, a grinding wheel has been developed in which 120 grooves of 0.3 mm width are provided on the outer circumference of the metal base metal, and the grinding fluid is passed through each groove to reach the machining point.
After the superabrasive grains are electroplated on the base metal with finely machined pores or grooves, the mask must be removed, requiring high production costs and a long production time. It is in.

また、別の研削砥石は、研削工具において、砥粒の保持力を高め、耐用寿命を増大し、且つ切削屑の排除を良好にし、高精度の加工を高速度に行えるよう改良したものがある。より具体的には、炭素、ガラス、セラミックス、熱硬化性樹脂、金属等の繊維を、織、編、もしくは不織により多層に多孔質に形成したチューブ1に、多孔質の穴の中から表面にかけて砥粒2を固着する。固着は電気メッキ、無電解メッキとか、PVD、CVDの気相メッキ、レーザー溶着による。この砥粒2を固着したチューブ1より成る研削部材をシャンク3に固定して取付け、シャンク3には中心軸に冷却液の供給孔3aとチューブ1の嵌合部分に開口3bが形成され、多孔質チューブの穴1aから冷却液の噴出ができるようにして成るものがある(例えば、特許文献1参照。)。 In addition, there is another grinding wheel that has been improved to increase the holding power of abrasive grains, increase the service life of the grinding tool, improve the removal of cutting debris, and perform high-precision machining at high speed. . More specifically, fibers such as carbon, glass, ceramics, thermosetting resins, metals, etc. are woven, knitted, or non-woven into a multi-layered porous tube 1, and the inside of the porous holes is exposed to the surface. to fix the abrasive grains 2. Adhesion is by electroplating, electroless plating, PVD, CVD vapor phase plating, or laser welding. A grinding member consisting of a tube 1 to which abrasive grains 2 are fixed is fixedly attached to a shank 3. The shank 3 is formed with a cooling liquid supply hole 3a in the central axis and an opening 3b in the portion where the tube 1 is fitted. There is one in which cooling liquid can be jetted from the hole 1a of the cooling tube (see, for example, Patent Document 1).

特開平5-208371号公報JP-A-5-208371

上記特開平5-208371号公報における研削工具は、炭素、ガラス、セラミックス、熱硬化性樹脂、金属等の繊維を、織、編、もしくは不織により多層に多孔質に形成したチューブ1に、多孔質の穴の中から表面にかけて砥粒2を固着する。これにより、砥粒2を固着したチューブ1より成る研削部材をシャンク3に固定して取付け、シャンク3には中心軸に冷却液の供給孔3aとチューブ1の嵌合部分に開口3bが形成され、多孔質チューブの穴1aから冷却液の噴出ができる。然し乍ら、砥石外周面は多孔質の穴の中から表面にかけて砥粒2が固着されているから狭い隙間の穴となり、短期間の間に穴の目詰まりを起こしてしまい、初期の冷却液の噴出が維持できなくなると言う、問題点が指摘される。 The grinding tool disclosed in Japanese Patent Laid-Open No. 5-208371 includes a tube 1 in which fibers such as carbon, glass, ceramics, thermosetting resins, and metals are woven, knitted, or non-woven into a multi-layer porous structure. Abrasive grains 2 are fixed from the inside of the hole to the surface. As a result, a grinding member consisting of a tube 1 to which abrasive grains 2 are fixed is fixedly attached to a shank 3. The shank 3 is formed with a cooling liquid supply hole 3a in the central axis thereof and an opening 3b at the fitting portion of the tube 1. , the coolant can be ejected from the hole 1a of the porous tube. However, since the abrasive grains 2 are fixed to the outer peripheral surface of the grindstone from the inside of the porous hole to the surface, the hole becomes a narrow gap, and the hole is clogged in a short period of time, resulting in the initial ejection of the cooling liquid. A problem is pointed out that it will not be possible to maintain

また、上記金属製の台金にΦ0.5mm程度の細孔が回転中心から放射状に約1,000ヶ所以上ある砥石内から研削液を加工点に到達させる研削砥石や、金属製の台金外周に0.3mm幅の溝が120ヶ所に渡り設けた砥石内の各溝から研削液を加工点に到達させる研削砥石においは、台金の重量が重く、しかも高剛性であるから、被研削ワークの研削面に対して高い剛性体である台金の超砥粒で強制的に擦り付ける可能性があるから、研削面に歪みや面粗さが現れ、精度不足の欠陥商品となる問題が出る。 In addition, the above metal base metal has about 1,000 or more pores with a diameter of about 0.5 mm radially from the center of rotation. 120 grooves with a width of 0.3 mm are provided in the grinding wheel, and the grinding fluid reaches the processing point from each groove in the wheel. Since the superabrasive grains of the base metal, which is a highly rigid body, may be forcibly rubbed against the ground surface, distortion and surface roughness appear on the ground surface, resulting in a problem of defective products with insufficient accuracy.

本願発明者は、上記の如く台金にΦ0.5mm程度の細孔が回転中心から放射状に約1,000ヶ所以上ある砥石内から研削液(以下、クーラント液とも言う)を加工点に到着させる研削砥石や、金属製の台金外周に0.3mm幅の溝が120ヶ所に渡り設けた砥石内の各溝から研削液を通過させる研削砥石。更に、多孔質の環状砥石等々が持つ問題点に鑑みて研削砥石の新規開発を試みた。
そこで、特に被研削ワークの研削面に対して高い剛性体である台金の超砥粒で強制的に擦り付ける研削砥石では、研削面に歪みや面粗さとして現れてしまう欠点に着目し、台金となる円筒体を薄肉で片側面が開放した空き缶状の円筒体とし、この外周面に多数の小孔を開けるとともに超砥粒を電着させた空き缶型円筒研削砥石とこの研削装置及び空き缶型円筒体の製造法を精鋭開発した。
As described above, the inventor of the present application makes the grinding liquid (hereinafter also referred to as coolant liquid) from within the grinding wheel, which has about 1,000 or more pores of about Φ0.5 mm radially from the center of rotation, reach the processing point. A grinding wheel or a grinding wheel in which 120 grooves of 0.3 mm width are provided on the outer circumference of a metal base metal, and a grinding fluid is passed through each groove in the wheel. Furthermore, in view of the problems inherent in porous annular grindstones, etc., an attempt was made to develop a new grinding wheel.
Therefore, we focused on the drawbacks of the grinding wheel that forcibly rubs the grinding surface of the work to be ground with the superabrasive grains of the base metal, which is a highly rigid body, which appears as distortion and surface roughness on the grinding surface. Empty can-type cylindrical grinding whetstone in which the cylindrical body to be the metal is a thin can-shaped cylindrical body with one side open, a large number of small holes are formed in the outer peripheral surface of the cylindrical body, and superabrasive grains are electrodeposited, the grinding device, and the empty can We have developed an elite method for manufacturing mold cylinders.

上記目的を達成する請求項1の空き缶型円筒研削砥石は、円筒体を薄肉で片側面が閉塞した空き缶状円筒体となし、上記空き缶状円筒体の片側面と反対側の側壁の中心位置に回転軸との取付穴を有し、上記空き缶状円筒体の外周面には多数の小孔又はスリット孔が設けられ、上記回転軸にはセンタースルークーラント液を空き缶状円筒体内に繋るセンター孔が開けられ、クーラント供給装置からの脈動乃至無脈動圧のクーラント液を空き缶状円筒体内に供給し加工点へ到達させる空き缶型円筒研削砥石において、上記空き缶状円筒体の内側壁面にゴム製薄膜材が内張りされ、上記ゴム製薄膜材の表面にダイヤ砥粒又はCBN砥粒又はWA砥粒又はGC砥粒の何れかが固着されていることを特徴とする。The empty can-shaped cylindrical grinding wheel according to claim 1, which achieves the above object, has a thin can-shaped cylindrical body with one side closed, and a central position of the side wall opposite to one side of the empty can-shaped cylindrical body. It has a mounting hole with a rotating shaft, a large number of small holes or slit holes are provided on the outer peripheral surface of the empty can-shaped cylindrical body, and the center of the rotating shaft connects the center through coolant liquid to the empty can-shaped cylindrical body. An empty can-shaped cylindrical grinding wheel having a hole and supplying a pulsating or non-pulsating coolant liquid from a coolant supply device into an empty can-shaped cylindrical body to reach a machining point, wherein a rubber thin film is formed on the inner wall surface of the empty can-shaped cylindrical body. material is lined, and diamond abrasive grains, CBN abrasive grains, WA abrasive grains, or GC abrasive grains are fixed to the surface of the rubber thin film material.

請求項2の空き缶型円筒研削砥石は、円筒体を薄肉で片側面が閉塞した空き缶状円筒体となし、上記空き缶状円筒体の片側面と反対側の側壁の中心位置に回転軸との取付穴を有し、上記空き缶状円筒体の外周面には多数の小孔又はスリット孔が設けられ、上記回転軸にはセンタースルークーラント液を空き缶状円筒体内に繋るセンター孔が開けられ、クーラント供給装置からの脈動乃至無脈動圧のクーラント液を空き缶状円筒体内に供給し加工点へ到達させる空き缶型円筒研削砥石において、上記空き缶状円筒体の内側壁面にゴム製薄膜材が内張りされ、上記ゴム製薄膜材にダイヤ砥粒又はCBN砥粒又はWA砥粒又はGC砥粒の何れかが混練含有されていることを特徴とする。The empty can-shaped cylindrical grinding wheel according to claim 2 has a thin can-shaped cylindrical body with one side closed, and a rotary shaft is mounted at the center position of the side wall on the side opposite to one side of the empty can-shaped cylindrical body. having holes, a large number of small holes or slit holes are provided on the outer peripheral surface of the empty can-shaped cylindrical body, and the rotating shaft is provided with a center hole for connecting the center through coolant liquid to the empty can-shaped cylindrical body, An empty can-shaped cylindrical grinding wheel in which pulsating or non-pulsating coolant is supplied from a coolant supply device into an empty can-shaped cylindrical body to reach a machining point, wherein the inner wall surface of the empty can-shaped cylindrical body is lined with a rubber thin film material, The rubber thin film material is characterized in that diamond abrasive grains, CBN abrasive grains, WA abrasive grains, or GC abrasive grains are kneaded and contained.

請求項3の空き缶型円筒研削砥石は、円筒体を薄肉で片側面が閉塞した空き缶状円筒体となし、上記空き缶状円筒体の片側面と反対側の側壁の中心位置に回転軸との取付穴を有し、上記空き缶状円筒体の外周面には多数の小孔又はスリット孔が設けられ、上記回転軸にはセンタースルークーラント液を空き缶状円筒体内に繋るセンター孔が開けられ、クーラント供給装置からの脈動乃至無脈動圧のクーラント液を空き缶状円筒体内に供給し加工点へ到達させる空き缶型円筒研削砥石において、上記空き缶状円筒体の内側壁面にダイヤ砥粒又はCBN砥粒又はWA砥粒又はGC砥粒の何れかを編み込んだ不織布を内張したことを特徴とする。The empty can-shaped cylindrical grinding wheel according to claim 3 has a thin can-shaped cylindrical body with one side closed, and a rotating shaft is attached to the center of the side wall on the side opposite to one side of the empty can-shaped cylindrical body. having holes, a large number of small holes or slit holes are provided on the outer peripheral surface of the empty can-shaped cylindrical body, and the rotating shaft is provided with a center hole for connecting the center through coolant liquid to the empty can-shaped cylindrical body, In an empty can-shaped cylindrical grinding wheel in which a pulsating or non-pulsating coolant liquid is supplied from a coolant supply device into an empty can-shaped cylindrical body to reach a machining point, diamond abrasive grains or CBN abrasive grains or It is characterized by lining with a non-woven fabric woven with either WA abrasive grains or GC abrasive grains.

請求項4の空き缶型円筒研削砥石は、円筒体を薄肉で閉塞した空き缶状円筒体となし、上記空き缶状円筒体の片側面と反対側の側壁の中心位置に回転軸との取付穴を有し、上記空き缶状円筒体の片側面には多数の小孔又はスリット孔が設けられ、上記回転軸にはセンタースルークーラント液を空き缶状円筒体内に繋るセンター孔が開けられ、クーラント供給装置からの脈動乃至無脈動圧のクーラント液を空き缶状円筒体内に供給し加工点へ到達させる空き缶型円筒研削砥石において、上記空き缶状円筒体の内側壁面にゴム製薄膜材が内張りされ、上記ゴム製薄膜材の表面にダイヤ砥粒又はCBN砥粒又はWA砥粒又はGC砥粒の何れかを固着されていることを特徴とする。The empty can-shaped cylindrical grinding wheel according to claim 4 has a hollow can-shaped cylindrical body closed with a thin wall, and has a mounting hole for a rotary shaft at the center position of one side wall and the opposite side wall of the empty can-shaped cylindrical body. A large number of small holes or slit holes are provided on one side surface of the empty can-shaped cylindrical body, and a center hole is formed in the rotating shaft to connect the center-through coolant liquid to the empty can-shaped cylindrical body. In an empty can-shaped cylindrical grinding wheel in which a coolant liquid with pulsating or non-pulsating pressure is supplied into an empty can-shaped cylindrical body and reaches a processing point, the inner wall surface of the empty can-shaped cylindrical body is lined with a rubber thin film material, and the rubber It is characterized in that either diamond abrasive grains, CBN abrasive grains, WA abrasive grains, or GC abrasive grains are adhered to the surface of the thin film material.

請求項5の空き缶型円筒研削砥石は、円筒体を薄肉で閉塞した空き缶状円筒体となし、上記空き缶状円筒体の片側面と反対側の側壁の中心位置に回転軸との取付穴を有し、上記空き缶状円筒体の片側面には多数の小孔又はスリット孔が設けられ、上記回転軸にはセンタースルークーラント液を空き缶状円筒体内に繋るセンター孔が開けられ、クーラント供給装置からの脈動乃至無脈動圧のクーラント液を空き缶状円筒体内に供給し加工点へ到達させる空き缶型円筒研削砥石において、上記空き缶状円筒体の内側壁面にゴム製薄膜材が内張りされ、上記ゴム製薄膜材にダイヤ砥粒又はCBN砥粒又はWA砥粒又はGC砥粒の何れかを混練含有されていることを特徴とする。The empty can-shaped cylindrical grinding wheel of claim 5 has a hollow can-shaped cylindrical body closed with a thin wall, and has a mounting hole for a rotating shaft at the center position of one side wall and the opposite side wall of the empty can-shaped cylindrical body. One side surface of the empty can-shaped cylindrical body is provided with a large number of small holes or slit holes, and the rotating shaft is provided with a center hole for connecting the center-through coolant liquid to the empty can-shaped cylindrical body, supplying coolant. In an empty can-shaped cylindrical grinding wheel in which a pulsating or non-pulsating coolant liquid from a device is supplied into an empty can-shaped cylindrical body to reach a machining point, the inner wall surface of the empty can-shaped cylindrical body is lined with a rubber thin film material, and the rubber The thin film material is characterized by kneading diamond abrasive grains, CBN abrasive grains, WA abrasive grains or GC abrasive grains.

請求項6の空き缶型円筒研削砥石は、円筒体を薄肉で閉塞した空き缶状円筒体となし、上記空き缶状円筒体の片側面と反対側の側壁の中心位置に回転軸との取付穴を有し、上記空き缶状円筒体の外側面には多数の小孔又はスリット孔が設けられ、上記回転軸にはセンタースルークーラント液を空き缶状円筒体内に繋るセンター孔が開けられ、クーラント供給装置からの脈動乃至無脈動圧のクーラント液を空き缶状円筒体内に供給し加工点へ到達させる空き缶型円筒研削砥石において、上記空き缶状円筒体の内側壁面にダイヤ砥粒又はCBN砥粒又はWA砥粒又はGC砥粒の何れかを編み込んだ不織布を内張したことを特徴とする。The empty can-shaped cylindrical grinding wheel according to claim 6 has a hollow can-shaped cylindrical body closed with a thin wall, and has a mounting hole for a rotating shaft at the center position of one side wall and the opposite side wall of the empty can-shaped cylindrical body. The outer surface of the empty can-shaped cylindrical body is provided with a large number of small holes or slit holes, and the rotating shaft is provided with a center hole for connecting the center-through coolant liquid to the empty can-shaped cylindrical body. In an empty can-shaped cylindrical grinding wheel in which a pulsating or non-pulsating coolant liquid is supplied into an empty can-shaped cylindrical body and reaches a machining point, diamond abrasive grains, CBN abrasive grains, or WA abrasive grains are provided on the inner wall surface of the empty can-shaped cylindrical body. or lined with a non-woven fabric woven with either GC abrasive grains.

請求項1の空き缶型円筒研削砥石によると、台金となる空き缶状円筒体の重量は非常に軽く、被研削ワークの研削面に対して缶状円筒体の外周面がしなやかに軽く触れ合い、更に、空き缶状円筒体の閉塞内に研削液が圧入されると、空き缶状円筒体の外周面の小孔又はスリット孔の内側壁面に内張りしたゴム製薄膜材は、空き缶状円筒体内に流入するセンタースルからのクーラント液の加圧により外周面に開けた多数の小孔又はスリット孔から外径側に膨出し、この膨出したゴム製薄膜材の外周面の超砥粒により研削面を軽く研削できる。これにより、バルーン砥石の如く、研削面に歪みや面粗さを生じることなく高精度な研削・研磨面が得られる。According to the empty can-shaped cylindrical grinding wheel of claim 1 , the weight of the empty can-shaped cylindrical body serving as the base metal is very light, and the outer peripheral surface of the can-shaped cylindrical body flexibly and lightly contacts the grinding surface of the workpiece to be ground. , When the grinding liquid is pressurized into the blockage of the empty can-shaped cylindrical body, the rubber thin film material lining the inner wall surface of the small hole or slit hole on the outer peripheral surface of the empty can-shaped cylindrical body flows into the empty can-shaped cylindrical body. When the coolant is pressurized from the sluice, the grinding surface is lightly ground by the superabrasive grains on the outer peripheral surface of the rubber thin film that bulges out from the large number of small holes or slit holes opened on the outer peripheral surface. can. As a result, unlike a balloon grindstone, a highly accurate ground/polished surface can be obtained without causing distortion or surface roughness on the ground surface.

請求項2の空き缶型円筒研削砥石によると、上記請求項1の空き缶型円筒研削砥石において、上記空き缶状円筒体の内側壁面にゴム製薄膜材が内張りされ、上記ゴム製薄膜材にダイヤ砥粒又はCBN砥粒又はWA砥粒又はGC砥粒の何れかが混練含有させているから、空き缶状円筒体の外周面の小孔又はスリット孔の内側壁面に内張りしたゴム製薄膜材は、空き缶状円筒体内に流入するセンタースルからのクーラント液の加圧により外周面の小孔又はスリット孔からバルーン砥石の如く、研削面に突出して触れ歪みや面粗さを生じることなく高精度な研削面が得られる。更に、ゴム製薄膜材が摩耗しても内部から砥粒が露出して研削・研磨性能が維持される。According to the empty can-shaped cylindrical grinding wheel of claim 2 , in the empty can-shaped cylindrical grinding wheel of claim 1 , the inner wall surface of the empty can-shaped cylindrical body is lined with a rubber thin film material, and the rubber thin film material is lined with diamond abrasive grains . Or, since either CBN abrasive grains, WA abrasive grains, or GC abrasive grains are kneaded and contained, the rubber thin film material lined on the inner wall surface of the small hole or slit hole on the outer peripheral surface of the empty can-shaped cylindrical body is an empty can-like The pressurization of the coolant liquid from the center through which flows into the cylindrical body protrudes from the small holes or slit holes on the outer peripheral surface to the grinding surface like a balloon grindstone, and the highly accurate ground surface is produced without causing distortion or surface roughness. can get. Furthermore, even if the rubber thin film material wears away, the abrasive grains are exposed from the inside and the grinding and polishing performance is maintained.

請求項3の空き缶型円筒研削砥石によると、上記請求項1の空き缶型円筒研削砥石において、空き缶状円筒体の内側壁面にゴム製薄膜材に替えて、ダイヤ砥粒又はCBN砥粒又はWA砥粒又はGC砥粒の何れかを編み込んだ不織布を内張したから、クーラント液の水圧で不織布の網目及び穴から飛び出しポリシング加工、ラッピング加工が可能で飛躍的に研削・研磨面の面粗さが向上する。According to the empty can-type cylindrical grinding wheel of claim 3 , in the empty can-type cylindrical grinding wheel of claim 1 , diamond abrasive grains, CBN abrasive grains, or WA abrasive grains are used instead of the rubber thin film material on the inner wall surface of the empty can-shaped cylindrical body. Because the inner lining is a non-woven fabric woven with either grains or GC abrasive grains, the water pressure of the coolant liquid will pop out from the mesh and holes of the non- woven fabric , making it possible to perform polishing and lapping, resulting in dramatically improved surface roughness. improves.

請求項4の空き缶型円筒研削砥石は、上記空き缶状円筒体の内側壁面にゴム製薄膜材が内張りされ、上記ゴム製薄膜材にダイヤ砥粒,CBN砥粒又はWA砥粒又はGC砥粒の何れかがが固着されているから、空き缶状円筒体内に流入するセンタースルからのクーラント液の加圧により外周面の小孔又はスリット孔からバルーン砥石の如く、研削面に突出して触れ歪みや面粗さを生じることなく高精度な研削面が得られる。
更に、請求項5の空き缶型円筒研削砥石は、ゴム製薄膜材にダイヤ砥粒,CBN砥粒又はWA砥粒又はGC砥粒の何れかが混練含有されているから、ゴム製薄膜材が摩耗しても内部から砥粒が逐次露出して研磨性能が長期間に渡り維持される。これにより、バルーン砥石の如く、研削面に歪みや面粗さを生じることなく高精度な研削・研磨面が得られる。
In the empty can-shaped cylindrical grinding wheel according to claim 4, the inner wall surface of the empty can-shaped cylindrical body is lined with a rubber thin film material, and the rubber thin film material contains diamond abrasive grains, CBN abrasive grains, WA abrasive grains, or GC abrasive grains . Since either one is fixed, the pressurization of the coolant liquid from the center through which flows into the empty can-shaped cylindrical body projects from the small holes or slit holes on the outer peripheral surface to the grinding surface like a balloon grindstone, causing distortion and surface distortion. A high-precision ground surface can be obtained without causing roughness.
Further, in the empty can type cylindrical grinding wheel of claim 5 , diamond abrasive grains, CBN abrasive grains, WA abrasive grains or GC abrasive grains are kneaded into the rubber thin film material, so the rubber thin film material is worn. However, the abrasive grains are sequentially exposed from the inside, and the polishing performance is maintained for a long period of time. As a result, unlike a balloon grindstone, a highly accurate ground/polished surface can be obtained without causing distortion or surface roughness on the ground surface.

請求項6の空き缶型円筒研削砥石は、上記空き缶状円筒体の内側壁面にダイヤ砥粒,CBN砥粒又はWA砥粒又はGC砥粒の何れかを編み込んだ不織布を内張したから、クーラント液がこの水圧で不織布の網目及び穴から飛び出しポリシング加工、ラッピング加工が可能で飛躍的に研削・研磨面の面粗さが向上する。In the empty can-shaped cylindrical grinding wheel according to claim 6 , the inner wall surface of the empty can-shaped cylindrical body is lined with a non-woven fabric woven with diamond abrasive grains, CBN abrasive grains, WA abrasive grains, or GC abrasive grains . With this water pressure, it pops out from the mesh and holes of the non- woven fabric , enabling polishing and lapping, which dramatically improves the surface roughness of the ground/polished surface.

本発明の第1実施の形態を示し、側面が開口・閉口の空き缶状円筒体の製造工程図である。 FIG. 2 shows the first embodiment of the present invention and is a manufacturing process diagram of an empty can-shaped cylindrical body with open and closed side surfaces. 本発明の第2実施の形態を示し、側面が開口の空き缶状円筒体の斜視図である。 FIG. 10 is a perspective view of an empty can-shaped cylindrical body having an opening on a side surface, showing a second embodiment of the present invention; 本発明の第3実施の形態を示し、側面が開口し外周面に小孔付きの各空き缶状円筒体の斜視図である。 FIG. 10 is a perspective view of each empty can-shaped cylindrical body having an open side surface and a small hole on the outer peripheral surface, showing a third embodiment of the present invention; 本発明の第4実施の形態を示し、側面が閉口し外周面に小孔付きの各空き缶状円筒体の斜視図である。 FIG. 10 is a perspective view of each empty can-shaped cylindrical body with closed side surfaces and small holes on the outer peripheral surface, showing a fourth embodiment of the present invention; 本発明の第5実施の形態を示し、空き缶状円筒体内にゴム製薄膜材他を内蔵した斜視図である。 FIG. 11 is a perspective view showing a fifth embodiment of the present invention, in which a rubber thin film material and others are built in an empty can-shaped cylindrical body; 本発明の第6実施の形態を示し、閉口した片側面に小孔付空き缶状円筒体砥石の斜視図である。 FIG. 10 is a perspective view of a closed empty can-shaped cylindrical grindstone with a small hole on one side, showing a sixth embodiment of the present invention. 本発明の第7実施の形態を示し、側面が開口した空き缶状円筒体砥石の砥石軸取付図である。 FIG. 10 is a view showing a seventh embodiment of the present invention, and is an installation view of a grinding wheel shaft of an empty can-shaped cylindrical grinding wheel with an open side surface. 本発明の実施例を示し、空き缶状円筒体内にセンサーユニットを内蔵の断面図である。 Fig. 2 is a cross-sectional view showing an embodiment of the present invention, in which a sensor unit is built in an empty can-shaped cylindrical body; 本発明の実施例を示し、ブレード研磨加工に適用の空き缶状円筒体研削砥石の斜視図である。 BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of an empty can-shaped cylindrical grinding wheel applied to blade polishing, showing an embodiment of the present invention; 本発明の実施例を示し、脈動圧及び無脈動圧液体を発生するクーラント供給装置の機能図である。 1 is a functional diagram of a coolant supply device for generating pulsating pressure and non-pulsating pressure liquid, showing an embodiment of the present invention; FIG. 本発明の実施例を示し、クーラント供給装置からの脈動圧及び無脈動圧液体による各砥石の研削作用断面図である。 FIG. 2 shows an embodiment of the present invention, and is a cross-sectional view of grinding action of each grindstone with pulsating pressure and non-pulsating pressure liquid from a coolant supply device. 本発明の実施例を示し、面が閉口し外周面及び側面に小孔付きの各空き缶状円筒体の具体的な実装断面図である。 FIG. 4 is a specific mounting cross-sectional view of each empty can-shaped cylindrical body, showing an embodiment of the present invention, with closed faces and small holes on the outer peripheral face and side faces; 本発明の実施例を示し、側面が開口し外周面に小孔付きの空き缶状円筒体の具体的な実装断面図である。 FIG. 2 is a specific mounting cross-sectional view of an empty can-shaped cylindrical body having an open side surface and a small hole on the outer peripheral surface, showing an embodiment of the present invention. 本発明の実施例を示し、側面が閉口し外周面に小孔付き空き缶状円筒体にゴム製薄膜材他を内蔵した具体的な実装断面図である。 FIG. 2 is a cross-sectional view of a concrete implementation of an embodiment of the present invention, in which a rubber thin film material and the like are built in an empty can-shaped cylindrical body with closed sides and small holes on the outer peripheral surface. 本発明の実施例を示し、側面が閉口し外周面に小孔付き空き缶状円筒体にゴム製薄膜材他を内蔵した具体的な実装断面図である。 FIG. 2 is a cross-sectional view of a concrete implementation of an embodiment of the present invention, in which a rubber thin film material and the like are built in an empty can-shaped cylindrical body with closed sides and small holes on the outer peripheral surface.

以下、図1~図15において、本発明の実施例は円筒体を薄肉で形成した空き缶状の円筒体を主体に、この外周面や側面に多数の孔を開けるとともに各種砥粒を円筒体の外周面又は内周面に固着させた各形態の空き缶型円筒研削砥石を開示する。更に、上記各空き缶型円筒研削砥石を研削装置に装備する他、各空き缶型円筒研削砥石の製造法の実施態様を順次説明する。1 to 15, the embodiment of the present invention is mainly composed of an empty can-shaped cylindrical body formed with a thin wall, and a large number of holes are formed in the outer peripheral surface and the side surface of the cylindrical body, and various abrasive grains are placed in the cylindrical body. Disclosed are various forms of empty can type cylindrical grinding wheels fixed to the outer or inner peripheral surface. Further, in addition to equipping a grinding apparatus with the empty can-type cylindrical grinding wheels, embodiments of manufacturing methods for the empty can-type cylindrical grinding wheels will be sequentially described.

先ず、図1と図2において、本発明の第1実施形態となる片側面が開口の空き缶状円筒体10の製造工程図と、第2実施形態の片側面が閉口の空き缶状円筒体20の製造工程図で、空き缶状円筒体の製造法の製作手順を説明する。
図1において、空き缶状円筒体10は、雄型となる割型1の回転中心Oの側方に薄板2を付設する工程Aと、上記割型の回転時にヘラ棒3で薄板を絞る絞り工程Bと、絞り成型された空き缶体10の開放工程Cと、開放された空き缶体10の外周面10Aへの小孔h又はスリットL及び主軸Sとの取付穴S1を空き缶体10の側壁10Bに開ける孔明け工程Dと、マスク工程Eと、電着槽4での空き缶体10の外周面10Aへの超砥粒11を固着させる超砥粒電着工程Fと、マスクMの剥がし工程Gにより完成工程Hと、から製造される。
First, FIGS. 1 and 2 show manufacturing process diagrams of an empty can-shaped cylindrical body 10 with one side open, which is the first embodiment of the present invention, and an empty can-shaped cylinder 20 with one side closed, according to the second embodiment. A manufacturing procedure for manufacturing an empty can-shaped cylindrical body will be described with reference to manufacturing process diagrams.
In FIG. 1, an empty can-shaped cylindrical body 10 is produced by a process A in which a thin plate 2 is attached to the side of the rotation center O of a split mold 1 that serves as a male mold, and a drawing process in which the thin plate is squeezed with a spatula bar 3 when the split mold rotates. B, an opening process C of the drawn empty can body 10, a small hole h or a slit L in the outer peripheral surface 10A of the opened empty can body 10, and a mounting hole S1 for the main shaft S in the side wall 10B of the empty can body 10. A hole punching process D, a masking process E, a superabrasive grain electrodeposition process F for fixing the superabrasive grains 11 to the outer peripheral surface 10A of the empty can body 10 in the electrodeposition bath 4, and a mask M peeling process G It is manufactured from the completion process H and.

図2と図3は、空き缶状円筒体10の完成した斜視図である。この空き缶状円筒体10は、片側面10Cが開口されたオープンタイプである。続いて、空き缶状円筒体20は、側面20Cが閉口されたクローズタイプである。その製造工程は図1と図4において、細かく分解可能な雄型の割型1の回転中心の側方に薄板2を付設する工程Aと、上記割型の回転時にヘラ棒3で薄板を絞ることにより薄板の外周縁20Aを取付穴S1と成す絞り工程Bと、成型された空き缶体20内の割型1を粉砕する工程Cと、開放された空き缶体20の外周面20Aへの小孔h又はスリットLの孔明け工程Dと、マスク工程Eと、電着槽4での空き缶体20の外周面20Aへの超砥粒13を固着させる超砥粒電着工程Fと、マスクMの剥がし工程Gにより完成工程Hと、から製造される。 2 and 3 are perspective views of the completed empty can-like cylindrical body 10. FIG. This empty can-shaped cylindrical body 10 is an open type in which one side 10C is opened. Next, the empty can-shaped cylindrical body 20 is a closed type with a closed side surface 20C. 1 and 4, the manufacturing process is a step A of attaching a thin plate 2 to the side of the rotation center of a male split mold 1 that can be finely disassembled, and squeezing the thin plate with a spatula bar 3 when the split mold rotates. A drawing step B in which the outer peripheral edge 20A of the thin plate forms a mounting hole S1, a step C in which the split mold 1 in the molded empty can body 20 is pulverized, and a small hole is formed in the outer peripheral surface 20A of the opened empty can body 20. h or slit L drilling step D, masking step E, superabrasive grain electrodeposition step F for adhering superabrasive grains 13 to the outer peripheral surface 20A of the empty can body 20 in the electrodeposition bath 4, and mask M It is manufactured from a completion process H and a peeling process G.

上記空き缶状円筒体10,20は、古典的なへら絞り法により製造されるも、その製造工程A~Gにおいて、従来の円筒体の絞りによる製作工程A~C,の他、新規工程D~Gを介して製造される。上記絞りによる製造法は、切削加工法やプレス加工法によっても製造可能であるが、しかしながら、薄肉で任意形状となる空き缶状円筒体10,20他の製造が高い生産性の基に実行される。 The above empty can-shaped cylindrical bodies 10 and 20 are manufactured by the classical spatula drawing method. Manufactured through G. The manufacturing method by drawing can also be manufactured by a cutting method or a pressing method. However, thin can-shaped cylindrical bodies 10, 20, etc., which are thin and have arbitrary shapes, are manufactured with high productivity. .

続いて、図3において、第3実施形態と第4実施形態となる空き缶状円筒体10,11について説明する。空き缶状円筒体10の構成は、図3(a)において、円筒体を剛性の低い薄肉で片側面10Cが開放した空き缶状円筒体10となし、上記空き缶状円筒体の反対側の側壁10Bに回転軸Sとの取付穴S1を有し、上記空き缶状円筒体の外周面10Aには多数の小孔hが設けられ、更に、上記空き缶状円筒体の外周面に、ダイヤ,CBN電着砥粒又はWA、GC砥粒の超砥粒13を固着させた空き缶型円筒研削砥石K1が構成されている。 Next, empty can-shaped cylindrical bodies 10 and 11 according to a third embodiment and a fourth embodiment will be described with reference to FIG. The configuration of the empty can-shaped cylindrical body 10 is as shown in FIG. 3(a). A large number of small holes h are provided in the outer peripheral surface 10A of the empty can-shaped cylindrical body. An empty can-type cylindrical grinding wheel K1 is constructed to which superabrasive grains 13 such as grains or WA and GC abrasive grains are fixed.

また、図3(b)に示す空き缶状円筒体11は、上記図3(a)の空き缶状円筒体10において、外周面10Aに明けた小孔hに替えて、空き缶状円筒体11の外周面11Aに無数のスリット孔Lを設けた実施態様である。即ち、円筒体を剛性の低い薄肉で片側面11Cが開放した空き缶状円筒体11となし、上記空き缶状円筒体の反対側の側壁11Bに回転軸Sとの取付穴S1を有し、上記空き缶状円筒体の外周面11Aには無数のスリット孔Lが設けられ、更に、上記空き缶状円筒体の外周面11Aに、ダイヤ砥粒,CBN砥粒又はWA砥粒又はGC砥粒の超砥粒13を固着させた空き缶型円筒研削砥石K2が構成されている。上記のように各空き缶状円筒体10,11は、外周面10A,11Aに超砥粒が電着、圧着、溶着等(総称して固着と言う)の手段で固着されており、側壁10B,11Bの取付穴S1とは反対側の側壁面10C,11Cが開口したオープンタイプである。The empty can-shaped cylindrical body 11 shown in FIG. 3(b) is the empty can-shaped cylindrical body 10 shown in FIG. In this embodiment, a large number of slit holes L are provided on the surface 11A. That is, the cylindrical body is a thin can-shaped cylindrical body 11 having a low rigidity and one side 11C is open, and the side wall 11B on the opposite side of the empty can-shaped cylindrical body has a mounting hole S1 for the rotating shaft S, Innumerable slit holes L are provided on the outer peripheral surface 11A of the cylindrical body, and superabrasive grains such as diamond abrasive grains, CBN abrasive grains, WA abrasive grains, or GC abrasive grains are provided on the outer peripheral surface 11A of the empty can-shaped cylindrical body. An empty can type cylindrical grinding wheel K2 to which 13 is fixed is constructed. As described above, each of the empty can-shaped cylindrical bodies 10 and 11 has superabrasive grains fixed to the outer peripheral surfaces 10A and 11A by means of electrodeposition, crimping, welding or the like (generally referred to as fixing), and the side walls 10B and 11B. It is an open type in which the side wall surfaces 10C and 11C opposite to the mounting hole S1 of 11B are opened.

続いて、第5実施形態と第6実施形態となる図4(a),図4(b)に示す空き缶状円筒体20,21について説明する。その構成は側壁面20C,21Cが閉口したクローズタイプである。上記空き缶型円筒研削砥石K3,K4は、円筒体を剛性の低い薄肉で片側面20C,21Cが閉塞した空き缶状円筒体20,21となし、上記空き缶状円筒体の反対側の側壁20B,21Bに回転軸Sとの取付穴S1,S1を有し、上記空き缶状円筒体の外周面20A,21Aには無数の小孔h又はスリット孔Lが設けられ、更に、上記空き缶状円筒体の外周面に超砥粒13が電着、圧着、溶着等(総称して固着と言う)の手段で固着されている。以上の構成により、空き缶型円筒研削砥石K3と空き缶型円筒研削砥石K4を構成している。 Next, empty can-shaped cylindrical bodies 20 and 21 shown in FIGS. 4A and 4B, which are fifth and sixth embodiments, will be described. The structure is a closed type with closed side wall surfaces 20C and 21C. The empty can-shaped cylindrical grinding wheels K3 and K4 are composed of empty can-shaped cylindrical bodies 20 and 21 which are thin with low rigidity and closed at one side 20C and 21C, and have side walls 20B and 21B on opposite sides of the empty can-shaped cylindrical bodies. has mounting holes S1, S1 with the rotating shaft S, and the outer peripheral surfaces 20A, 21A of the empty can-shaped cylindrical body are provided with countless small holes h or slit holes L, and the outer periphery of the empty can-shaped cylindrical body Superabrasive grains 13 are fixed to the surface by means of electrodeposition, crimping, welding or the like (generally referred to as fixing). The empty can type cylindrical grinding wheel K3 and the empty can type cylindrical grinding wheel K4 are configured by the above configuration.

更に、第7実施形態と第8実施形態となる図5(a),(b)において、空き缶型円筒研削砥石K5と空き缶型円筒研削砥石K6の構成を説明する。この実施例は、上記空き缶状円筒体20,21の内側壁面にゴム製薄膜材Gが内張りされ、上記ゴム製薄膜材の表面にダイヤ砥粒,CBN砥粒又はWA砥粒又はGC砥粒の何れかの砥粒13を固着させたものである。更に、設計変更で、上記空き缶状円筒体20,21の内側壁面にゴム製薄膜材Gが内張りされ、上記ゴム製薄膜材の内部にダイヤ,CBN電着砥粒又はWA又はGC砥粒の何れかの超砥粒13を固着するか、内部に混練含有させても良い。尚、上記ゴム製薄膜材には、クーラント液CKをつうかさせられる小穴h1が多数開けられている。更に、空き缶状円筒体20,21の内側壁面に貼るのはゴム製薄膜材Gに限らず、図5(c)の第9実施形態に示すように、ゴム製薄膜材Gに替えてダイヤ砥粒他を付着して編み込んだ不織布Wとしても良い。この不織布Wによる空き缶型円筒研削砥石K7は、クーラント液CKがこの水圧で不織布Wを通過し、穴h又はスリットLから飛び出し、ラッピング加工も可能で飛躍的に研削面の面粗さが向上する。Further, referring to FIGS. 5A and 5B, which are seventh and eighth embodiments, the structures of the empty can-type cylindrical grinding wheel K5 and the empty can-type cylindrical grinding wheel K6 will be described. In this embodiment, the inner wall surfaces of the empty can-shaped cylindrical bodies 20 and 21 are lined with a rubber thin film material G, and the surface of the rubber thin film material is coated with diamond abrasive grains, CBN abrasive grains, WA abrasive grains, or GC abrasive grains. Any one of the abrasive grains 13 is fixed. Further, in a design change, the inner wall surfaces of the empty can-shaped cylindrical bodies 20 and 21 are lined with a rubber thin film material G, and diamond, CBN electrodeposited abrasive grains, WA or GC abrasive grains are placed inside the rubber thin film material. The superabrasive grains 13 may be fixed or kneaded and contained inside. The rubber thin film has a large number of small holes h1 through which the coolant CK can flow. Furthermore, the rubber thin film material G is not limited to be attached to the inner wall surface of the empty can-shaped cylindrical bodies 20 and 21. As shown in the ninth embodiment of FIG. The non-woven fabric W may be woven with grains attached thereto. In the empty can type cylindrical grinding wheel K7 made of this nonwoven fabric W, the coolant liquid CK passes through the nonwoven fabric W under this water pressure, jumps out from the hole h or the slit L, and can also be wrapped, thereby dramatically improving the surface roughness of the grinding surface. .

そして、第10実施形態となる図6(a)は、平面を呈するワークの研削面の加工を行うダイヤフラム型の空き缶状円筒体30とした空き缶型円筒研削砥石K8である。上記空き缶状円筒体30は、剛性の低い薄肉からなり、側壁面30Bが閉塞し、反対側の側壁30Cに回転軸Sとの取付穴S1を有する。上記側壁面30Bには無数の小孔h(又はスリット孔L)が設けられ、更に、側壁面30Bの外側面にダイヤ砥粒,CBN砥粒又はWA砥粒又はGC砥粒の何れかの超砥粒13が固着されている。FIG. 6A, which is the tenth embodiment, shows an empty can-shaped cylindrical grinding wheel K8 having a diaphragm-type empty can-shaped cylindrical body 30 for processing the grinding surface of a flat workpiece. The empty can-shaped cylindrical body 30 is made of a thin wall with low rigidity, has a closed side wall surface 30B, and has a mounting hole S1 for the rotary shaft S on the side wall 30C on the opposite side. Innumerable small holes h (or slit holes L) are provided in the side wall surface 30B, and diamond abrasive grains, CBN abrasive grains, WA abrasive grains, or GC abrasive grains are provided on the outer surface of the side wall surface 30B. Abrasive grains 13 are fixed.

勿論、空き缶状円筒体30の内側壁面には、図6(b)の第11実施形態において、上記ゴム製薄膜材Gを内張りした空き缶型円筒研削砥石K9とし、図6(c)の第12実施形態において、ゴム製薄膜材Gに替えてダイヤ砥粒他を編み込んだ不織布Wを採用した空き缶型円筒研削砥石K10としても良い。このゴム製薄膜材Gや不織布Wによると、クーラント液CKがこの水圧で小穴h1や織目穴から飛び出しポリシング加工、ラッピング加工に至る磨きが可能で飛躍的に研削面の面粗さが向上する。 Of course, on the inner wall surface of the empty can-shaped cylindrical body 30, in the eleventh embodiment shown in FIG. In the embodiment, instead of the rubber thin film material G, an empty can-type cylindrical grinding wheel K10 that employs a non-woven fabric W woven with diamond abrasive grains or the like may be used. According to this thin rubber material G and non-woven fabric W, the coolant liquid CK is ejected from the small holes h1 and the holes in the weave by the water pressure, and polishing up to polishing and lapping is possible, and the surface roughness of the ground surface is dramatically improved. .

上記各空き缶型円筒研削砥石K1~K10を研削盤100の主軸となる回転軸Sに取付けた研削装置100(詳細な図示なし)による加工例を続いて説明する。図7において、センタースルータイプの回転軸Sに対する各研削砥石K1~K10の取付と、外部ノズルNの回転軸S1に対する各研削砥石K1,K2の取付状態を説明する。図7(a)は、センタースルータイプの回転軸Sに空き缶型円筒研削砥石K1~K10を装着する状態を示し、K1,K2の開放した片側面10C,11Cを外側にして取付けた状態。
図7(b)は、外部ノズルNの回転軸S3に空き缶型円筒研削砥石K1,K2の開放した片側面10C,11Cを内側にして取付けた状態。図7(c)は、センタースルータイプの回転軸Sに空き缶型円筒研削砥石K3~K10の取付穴S1を内側にして取付けた状態を示している。
An example of processing by a grinding machine 100 (not shown in detail) in which the empty can-type cylindrical grinding wheels K1 to K10 are attached to a rotating shaft S, which is the main axis of the grinding machine 100, will be described next. In FIG. 7, the attachment of the grinding wheels K1 to K10 to the center-through type rotary shaft S and the attachment of the grinding wheels K1 and K2 to the rotary shaft S1 of the external nozzle N will be described. FIG. 7(a) shows a state in which empty can-type cylindrical grinding wheels K1 to K10 are mounted on a center-through type rotating shaft S, with the open sides 10C and 11C of K1 and K2 facing outward.
FIG. 7(b) shows a state in which empty can-type cylindrical grinding wheels K1 and K2 are attached to the rotating shaft S3 of the external nozzle N with the open sides 10C and 11C facing inward. FIG. 7(c) shows a state in which the empty can type cylindrical grinding wheels K3 to K10 are mounted on the center-through type rotating shaft S with the mounting holes S1 inside.

上記図7(a)に示す外部ノズルNの回転軸S3に空き缶型円筒研削砥石K1,K2の開放した片側面10C,11Cを内側にして取付けたオープンタイプの実装装置は、図13に示す。即ち、センタースルーの工具ホルダH0に回転軸Sを締め付け、空き缶型円筒研削砥石K1,K2内にクーラント液CKが供給され、小穴h又はスリットLから飛び出し研削面KMに向けて噴射される。尚、補助的にサイドノズルNが設置される。 FIG. 13 shows an open-type mounting device in which empty can-type cylindrical grinding wheels K1 and K2 are attached to the rotating shaft S3 of the external nozzle N shown in FIG. That is, the rotating shaft S is fastened to the center-through tool holder H0, and the coolant CK is supplied into the empty can-type cylindrical grinding wheels K1 and K2, and is ejected from the small holes h or slits L toward the grinding surface KM. A side nozzle N is additionally installed.

しかして、片側面10C,11Cを開放した空き缶型円筒研削砥石K1,K2は、図7(a)におけるセンタースルータイプの回転軸Sへの取付けと、図7(b)に示すように、サイドノズルNの回転軸S3への取付けとなる。上記回転軸SやサイドノズルNへの研削液CKの供給は、図10に示すクーラント供給装置50からの脈動圧乃至無脈動圧のクーラント液CKを各空き缶型円筒研削砥石[K1~K10]に供給するものである。上記クーラント供給装置50は、駆動源のモーターMOによりタンクT内のクーラント液CKを供給する2気筒プランジャーポンプP(単筒AC、BC)と、該プランジャーポンプPから吐出する脈動圧のクーラント液CKを多種多様に切替える逆止弁V1~V5を備えている。上記逆止弁V1~V5の切り替えで、4種類のクーラント液CKを各空き缶型円筒研削砥石K1~K10まで配管・供給する経路を形成している。尚、吐出されるクーラント液CKは、NC制御装置60からのNC制御プログラムPGにより、単筒ACの圧力P1、単筒BCの圧力P2、両方の合成圧力(P1+P2)P3と、該合成圧力(P1+P2)P3をアキュームレーターAQに入れて一定圧P0とする4種類に切替えられる。 Thus, the empty can type cylindrical grinding wheels K1 and K2 with one side 10C and 11C open are attached to the center-through type rotary shaft S in FIG. This is the attachment of the nozzle N to the rotation shaft S3. The supply of the grinding fluid CK to the rotating shaft S and the side nozzle N is performed by supplying the coolant fluid CK at pulsating pressure to non-pulsating pressure from the coolant supply device 50 shown in FIG. supply. The coolant supply device 50 includes a two-cylinder plunger pump P (single-cylinder AC, BC) that supplies the coolant liquid CK in the tank T by a motor MO as a drive source, and a pulsating pressure coolant discharged from the plunger pump P. Equipped with check valves V1 to V5 for switching the liquid CK in various ways. By switching the check valves V1 to V5, four types of coolant liquid CK are piped and supplied to the empty can type cylindrical grinding wheels K1 to K10. The coolant liquid CK to be discharged is controlled by the NC control program PG from the NC control device 60, the pressure P1 of the single cylinder AC, the pressure P2 of the single cylinder BC, the combined pressure (P1+P2) P3 of both, and the combined pressure ( P1+P2) P3 is put into the accumulator AQ and it is switched to 4 kinds of constant pressure P0.

しかして、図3~図4と図7(a)に示すように、に示すように、外周面10A,11A,20A,21Aに超砥粒13を固着した空き缶型円筒研削砥石K1~K4においては、図10のクーラント供給装置50からの単筒Aの圧力P1、単筒Bの圧力P2、両方の合成圧力P3又はアキュームレーターAQによる一定圧P0の何れかが供給されると、外周面の無数の小h孔又はスリット孔Lから研削液(クーラント液とも言う)CKが研削面KMに噴射されながら超砥粒13で軽快に研削される。即ち、外周面10A,11A,20A,21Aの超砥粒13で研削面を研削時に静圧又は脈動する研削液CKで剥がれた研削塵や砥粒を洗い流して研削される基本的な研削作用が遂行される。そして、台金となる空き缶状円筒体10,11,20,21の重量は非常に軽く、被研削ワークの研削面KMに対して空き缶状円筒体の外周面10A,11A,20A,21Aがしなやかに軽く触れ合い、研削面が発熱せずに歪みや面粗さを生じることなく研削液CKの流れで高精度な研削面や磨き面が得られる。 Thus, as shown in FIGS. 3 to 4 and FIG. 7A, empty can type cylindrical grinding wheels K1 to K4 having superabrasive grains 13 fixed to the outer peripheral surfaces 10A, 11A, 20A, and 21A When either the pressure P1 of the single cylinder A, the pressure P2 of the single cylinder B, the combined pressure P3 of both, or the constant pressure P0 by the accumulator AQ is supplied from the coolant supply device 50 of FIG. Grinding fluid (also referred to as coolant fluid) CK is sprayed onto the grinding surface KM from countless small h-holes or slit holes L, and the super-abrasive grains 13 lightly grind the grinding surface KM. That is, the basic grinding action is to wash off the grinding dust and abrasive grains with the static pressure or pulsating grinding fluid CK while grinding the grinding surface with the superabrasive grains 13 of the outer peripheral surfaces 10A, 11A, 20A, and 21A. carried out. The weight of the empty can-shaped cylindrical bodies 10, 11, 20, 21, which serve as the base metal, is very light, and the outer peripheral surfaces 10A, 11A, 20A, 21A of the empty can-shaped cylindrical bodies are flexible with respect to the grinding surface KM of the work to be ground. The flow of the grinding fluid CK makes it possible to obtain a highly accurate ground or polished surface without heat generation, distortion or surface roughness of the ground surface.

また、図7(b)に示すように、空き缶状円筒体K1,K2の開放した側方から研削液CKがノズルNから内部に噴射されると、外周面の無数の小h孔又はスリット孔Lから研削液CKが研削面KMに均等に噴射されながら超砥粒で軽く研削できる。即ち、クーラント供給装置50からの単筒Aの圧力P1、単筒Bの圧力P2、両方の合成圧力P3又はアキュームレーターAQによる一定圧P0の何れかが供給されると、外周面の無数の小h孔又はスリット孔Lから研削液CKが研削面KMに噴射されながら超砥粒13で軽快に研削される。これにより、研削面が発熱せずに歪みや面粗さを生じることなく研削液の流れで高精度な研削面や磨き面が得られる。 Further, as shown in FIG. 7(b), when the grinding fluid CK is sprayed from the nozzle N into the empty can-shaped cylindrical bodies K1 and K2 from the open sides, the countless small h-holes or slit holes on the outer peripheral surface Grinding liquid CK is evenly sprayed from L onto the grinding surface KM, and the surface can be lightly ground with superabrasive grains. That is, when either the pressure P1 of the single cylinder A, the pressure P2 of the single cylinder B, the combined pressure P3 of both, or the constant pressure P0 by the accumulator AQ is supplied from the coolant supply device 50, the countless small particles on the outer peripheral surface are supplied. While the grinding fluid CK is sprayed from the h-hole or the slit hole L onto the grinding surface KM, the super-abrasive grains 13 lightly grind. As a result, a highly accurate ground or polished surface can be obtained due to the flow of the grinding liquid without the grinding surface generating heat, causing distortion or surface roughness.

また図4と図5の空き缶状円筒体20,21からなる空き缶型円筒研削砥石K3~K10は、図7(c)及び図11(a)のように、センタースルータイプの回転軸Sへの取付けとなる。そして、クーラント供給装置50から吐出されるクーラント液CKは、単筒Aの圧力P1、単筒Bの圧力P2、両方の合成圧力P3、アキュームレーターAQによる一定圧P0等が選択されて切替えられ、空き缶状円筒体内へ脈動圧P1,P2,P3乃至無脈動圧P0のクーラント液CKが噴射される。これで、外周面の無数の小h孔又はスリット孔Lから研削液CKが研削面KMに均等に噴射されながら超砥粒13で軽く研削される。しかして、研削面KMは、発熱せずに歪みや面粗さを生じることなく研削液CKの流れで高精度な研削面や磨きが得られる。 The can-shaped cylindrical grinding wheels K3 to K10 composed of the empty can-shaped cylindrical bodies 20 and 21 shown in FIGS. It will be installed. The coolant liquid CK discharged from the coolant supply device 50 is selected and switched to the pressure P1 of the single cylinder A, the pressure P2 of the single cylinder B, the combined pressure P3 of both, the constant pressure P0 by the accumulator AQ, etc. Coolant liquid CK at pulsating pressures P1, P2, P3 to non-pulsating pressure P0 is injected into the empty can-shaped cylindrical body. As a result, the grinding fluid CK is evenly sprayed onto the grinding surface KM from the countless small h-holes or slit holes L on the outer peripheral surface, and the superabrasive grains 13 lightly grind the grinding surface KM. As a result, the ground surface KM can be ground and polished with high accuracy by the flow of the grinding fluid CK without generating heat, distortion, or surface roughness.

上記図7(c)に示す実装装置は、図12に示す。即ち、センタースルーの工具ホルダH0に回転軸Sを締め付け、空き缶型円筒研削砥石K3~K10内にクーラント液CKが供給され、小穴h又はスリットLから飛び出し研削面KMに向けて噴射される。
また、図5(a)(b)(c)や図11(b)(c)における実装装置は、図14と図15に示す。即ち、センタースルーの工具ホルダH0に回転軸Sを締め付け、空き缶型円筒研削砥石K3~K7内にクーラント液CKが供給され、ゴム製薄膜材G又は不織布Wの小穴から飛び出し研削面KMに向けて噴射される。
The mounting apparatus shown in FIG. 7(c) is shown in FIG. That is, the rotating shaft S is fastened to the center-through tool holder H0, and the coolant CK is supplied into the empty can-type cylindrical grinding wheels K3 to K10, and ejected from the small holes h or slits L toward the grinding surface KM.
5(a), 5(b), 5(c) and 11(b), 11(c) are shown in FIG. 14 and FIG. That is, the rotating shaft S is tightened to the center-through tool holder H0, and the coolant liquid CK is supplied into the empty can-type cylindrical grinding wheels K3 to K7, and the coolant liquid CK projects out from the small holes of the thin rubber material G or the non-woven fabric W toward the grinding surface KM. be jetted.

ところで、図11(b)に示すように、空き缶型円筒研削砥石K3~K7の内側壁面にゴム製薄膜材Gが内張りされ、このゴム製薄膜材の表面にダイヤ,CBN電着砥粒又はWA、GC砥粒11の何れかを固着されていると、クーラント供給装置50から吐出されるクーラント液CKは、単筒ACの圧力P1、単筒BCの圧力P2、両方の合成圧力P3、アキュームレーターAQによる一定圧P0のいずれかに切替えられる。しかして、ゴム製薄膜材Gを内蔵しているときは、単筒ACの圧力P1、単筒BCの圧力P2、両方の合成圧力P3、アキュームレーターAQによる一定圧P0の何れかの選択でゴム製薄膜材Gを膨張させる。これで、図11(b)に示すように、ゴム製薄膜材Gは、空缶状円筒体内に流入するクーラント液CKの例えば、加圧P0により外周面に開けた無数の小孔又はスリット孔から外径側に膨出し、この膨出したゴム製薄膜材Gの外周面の超砥粒13により研削面を軽く研削する。これにより、バルーン砥石の如く、研削面KMに歪みや面粗さを生じることなく高精度な研削面が得られる。また、ゴム製薄膜材Gに明けた多数の小孔h1から内部に溜まるクーラント液CKの一部が膨出した個所から噴出し、研削面を軽く潤滑する。この時、単筒ACの圧力P1、単筒BCの圧力P2、両方の合成圧力P3の何れかによると、ゴム製薄膜材Gは小孔h又はスリット孔Lから外径側への膨出量と小孔h1からからのクーラント液の噴射量が変動・脈動し、より滑らかな磨き作用が得られる。 By the way, as shown in FIG. 11(b), the inner wall surface of the empty can type cylindrical grinding wheels K3 to K7 is lined with a rubber thin film material G, and the surface of this rubber thin film material is coated with diamond, CBN electrodeposited abrasive grains or WA. , GC abrasive grains 11, the coolant liquid CK discharged from the coolant supply device 50 has the pressure P1 of the single cylinder AC, the pressure P2 of the single cylinder BC, the combined pressure P3 of both, the accumulator It is switched to one of the constant pressures P0 by AQ. Thus, when the rubber thin film material G is built in, the pressure P1 of the single cylinder AC, the pressure P2 of the single cylinder BC, the combined pressure P3 of both, or the constant pressure P0 by the accumulator AQ can be selected. The thin film material G is expanded. Thus, as shown in FIG. 11(b), the thin rubber material G has a large number of small holes or slit holes formed in the outer peripheral surface by the pressure P0 for the coolant liquid CK flowing into the empty can-shaped cylindrical body. The surface to be ground is lightly ground by the superabrasive grains 13 on the outer peripheral surface of the bulging thin rubber material G. As a result, unlike a balloon grindstone, a highly accurate ground surface can be obtained without distortion or surface roughness on the ground surface KM. Further, part of the coolant liquid CK accumulated inside is ejected from a large number of small holes h1 opened in the rubber thin film material G from the bulged portions to lightly lubricate the grinding surface. At this time, according to any of the pressure P1 of the single cylinder AC, the pressure P2 of the single cylinder BC, and the combined pressure P3 of both, the rubber thin film material G bulges from the small hole h or the slit hole L toward the outer diameter side. , the injection amount of the coolant liquid from the small hole h1 fluctuates and pulsates, and a smoother polishing action can be obtained.

即ち、クーラント供給装置50から吐出するクーラント液CKを、単筒Aの圧力P1、単筒Bの圧力P2、両方の合成圧力P3に選択されると、バルーン砥石の如く小孔h又はスリット孔Lからゴム製薄膜材Gの一部が外径側に膨出するとともに、その膨出量が脈動する高精度な研削面が得られるから、外部ノズルNからクーラント液CKが噴射されて研削面KMが発熱せず、歪みや面粗さを生じることなく研削液の流れで高精度な研削面や磨き面が得られる。 That is, when the coolant liquid CK discharged from the coolant supply device 50 is selected as the pressure P1 of the single cylinder A, the pressure P2 of the single cylinder B, and the combined pressure P3 of both, the small hole h or the slit hole L A part of the thin rubber material G bulges outward from the outer nozzle N, and a high-precision ground surface in which the amount of swelling pulsates can be obtained. does not generate heat, and the flow of the grinding fluid produces highly accurate ground and polished surfaces without causing distortion or surface roughness.

従って、上記各空き缶型円筒研削砥石K3~K7において、小孔h又はスリットLだけからなる時は、上記各種の吐出圧のクーラント液CKが小孔h又はスリットLから吐出し、研削面KMに噴射される。この時、脈動圧乃至無脈動圧のクーラント液を空き缶状円筒体内に供給すると、砥石とワークの研削面KMとに滞留する砥粒が、脈動圧乃至無脈動圧のクーラント液により積極的に洗い流される。これにより、研削面に砥粒13による擦傷が皆無となり、効率良く高精度な研削面からホーニング面、ポリシング面が得られる。即ち、砥粒で研磨される研削面の冷却と、剥離した砥粒の排出、研削面および砥粒の冷却効果が得られる。 Therefore, when each of the empty can-type cylindrical grinding wheels K3 to K7 has only the small holes h or the slits L, the coolant liquid CK at various discharge pressures is discharged from the small holes h or the slits L, and is discharged onto the grinding surface KM. be jetted. At this time, when the coolant liquid with pulsating pressure or non-pulsating pressure is supplied into the empty can-shaped cylindrical body, the abrasive grains remaining on the grinding surface KM of the grinding wheel and the workpiece are actively washed away by the liquid coolant with pulsating pressure or non-pulsating pressure. be As a result, the ground surface is completely free of scratches caused by the abrasive grains 13, and a honed surface and a polished surface can be obtained from the ground surface with high efficiency and high accuracy. That is, the cooling effect of the grinding surface to be polished with the abrasive grains, the discharge of the peeled abrasive grains, and the cooling effect of the ground surface and the abrasive grains are obtained.

また、空き缶状円筒体K3~K7の内側壁面に内張りしたゴム製薄膜材Gによる時は、空き缶状円筒体の閉塞内にクーラント液CKが圧入されると、空き缶状円筒体の外周面の小孔h又はスリット孔Lの内側壁面に内張りしたゴム製薄膜材Gは、空き缶状円筒体内に流入するクーラント液CKの加圧により外周面に開けた無数の小孔又はスリット孔から外径側に膨出し、この膨出したゴム製薄膜材の外周面の超砥粒13により研削面KMを軽く撫ぜるように研削できる。しかして、バルーン砥石の如く、研削面に歪みや面粗さを生じることなく高精度な研削からホーニング面、ポリシング面が得られる。尚、ゴム製薄膜材の内部に砥粒を混練含有させた時は、砥粒が摩耗脱落しても新たな砥粒がゴム製薄膜材の内部から露出し、研磨力が維持される。 Further, when the inner wall surfaces of the empty can-shaped cylindrical bodies K3 to K7 are lined with the rubber thin film material G, when the coolant liquid CK is press-fitted into the closed space of the empty can-shaped cylindrical body, the outer peripheral surface of the empty can-shaped cylindrical body becomes small. The rubber thin film material G lining the inner wall surface of the hole h or the slit hole L extends from the countless small holes or slit holes opened in the outer peripheral surface by the pressure of the coolant liquid CK flowing into the empty can-shaped cylindrical body to the outer diameter side. The superabrasive grains 13 on the outer peripheral surface of the bulging rubber thin film material can grind the grinding surface KM so as to stroke lightly. Thus, a honed surface and a polished surface can be obtained from highly accurate grinding without causing distortion or surface roughness on the ground surface unlike a balloon grindstone. When abrasive grains are kneaded inside the thin rubber material, new abrasive grains are exposed from the inside of the rubber thin film material even if the abrasive grains wear off and the polishing power is maintained.

更に、ゴム製薄膜材Gに限らず、図11(c)の如く、ダイヤ砥粒他を編み込んだ不織布Wとすれば、クーラント液CKがこの水圧で網目又は穴から飛び出しポリシング加工、ラッピング加工が可能で飛躍的に研削面の面粗さが向上する。この時、上記クーラント液は、NC制御装置60からのNC制御プログラムPGにより、単筒ACの圧力P1、単筒BCの圧力P2、両方の合成圧力P3、アキュームレーターAQによる一定圧P0に切替えられるから、研削面KMが要求する研削からポリシング迄、多種多様な繊細な研削磨き面が得られる。 Furthermore, not only the rubber thin film material G, but also the nonwoven fabric W woven with diamond abrasive grains, etc., as shown in FIG. It is possible to dramatically improve the surface roughness of the ground surface. At this time, the coolant liquid is switched by the NC control program PG from the NC control device 60 to the pressure P1 of the single cylinder AC, the pressure P2 of the single cylinder BC, the combined pressure P3 of both, and the constant pressure P0 by the accumulator AQ. From grinding to polishing required by the ground surface KM, a wide variety of finely ground and polished surfaces can be obtained.

図6(a)(b)(c)に示すように、上記空き缶型円筒研削砥石K8を、側面30Bに砥粒13を備え、更に、内部にゴム製薄膜材Gを備えた砥石K9、ダイヤ砥粒他を編み込んだ不織布Wを採用する砥石K10においても、上記作用が同様に得られる。例えば、クーラント供給装置50から吐出するクーラント液CKを、単筒Aの圧力P1、単筒Bの圧力P2、両方の合成圧力P3に選択されると、図11(b)に見るバルーン砥石の如く小孔又はスリット孔からゴム製薄膜材Gの一部が外径側に小孔h1も膨出するとともに、その膨出量が脈動する高精度な研削面からポリシング面が得られる。また、不織布Wとすれば、クーラント液CKがこの水圧で網目又は穴から飛び出しポリシング加工、ラッピング加工が可能で飛躍的に研削面の面粗さが向上する。 As shown in FIGS. 6(a), 6(b) and 6(c), the empty can-type cylindrical grinding wheel K8 is provided with abrasive grains 13 on the side surface 30B and further with a rubber thin film material G inside. The above effect can also be obtained with the grindstone K10 that employs the nonwoven fabric W woven with abrasive grains and the like. For example, when the coolant liquid CK discharged from the coolant supply device 50 is selected to be the pressure P1 of the single cylinder A, the pressure P2 of the single cylinder B, and the combined pressure P3 of both, the balloon grindstone shown in FIG. A portion of the rubber thin film material G bulges outward from the small hole or the slit hole, and the small hole h1 also bulges outward. In the case of the non-woven fabric W, the coolant liquid CK is ejected from the mesh or holes by the water pressure, and polishing processing and lapping processing are possible, and the surface roughness of the ground surface is dramatically improved.

更に、空き缶型円筒研削砥石K1,K2は、図8に示すように、空き缶状円筒体の側壁に設けた取付穴S1に回転軸S3を嵌着するとともに、上記空き缶状円筒体10,11内の回転軸Sにリング状のセンサーユニットSUが嵌着される。上記センサーユニットSUは、熱センサHS、振動センサSS、メモリM、受発信器R、電源Pと演算CPUを備えた自立型環状体から成る。しかして、空き缶型円筒研削砥石K1,K2による研削状況がダイレクトに外部の監視装置MUに伝達され、最適な研削作用と研削結果が研削加工を進行させながら効率良く得られる。 Further, as shown in FIG. 8, the empty can-shaped cylindrical grinding wheels K1 and K2 are fitted with a rotating shaft S3 in a mounting hole S1 provided in the side wall of the empty can-shaped cylindrical body, and the inside of the empty can-shaped cylindrical bodies 10 and 11 is mounted. A ring-shaped sensor unit SU is fitted to the rotating shaft S of the. The sensor unit SU consists of a self-supporting annular body equipped with a heat sensor HS, a vibration sensor SS, a memory M, a receiver/transmitter R, a power source P and an arithmetic CPU. Thus, the grinding conditions of the empty can type cylindrical grinding wheels K1 and K2 are directly transmitted to the external monitoring device MU, and the optimum grinding action and grinding results can be obtained efficiently while the grinding process is progressing.

更に、空き缶型円筒研削砥石K1,K2は、図9に示すように、例えば、タービンブレードTBの湾曲面を研磨する時において、泡状クーラント液CKによる研削方法と研削装置にも採用される。これは、3次元自由曲面加工と言わるもので、冷風(泡)研削により湾曲面を超高精度に研磨が可能である。その手段は、空き缶状円筒体の側壁に設けた取付穴S1に回転軸S3を嵌着するとともに、空き缶状円筒体の開放した片側面外にクーラントノズルNを配置し、該クーラントノズルから空き缶状円筒体内にクーラント供給装置50からの脈動圧乃至無脈動圧のクーラント液CKを噴射可能に供給する。更には、クーラント液を泡状クーラント液とするとともに大気中の空気を0℃以下の冷風とする冷却器から供給させる。 Furthermore, as shown in FIG. 9, the empty can type cylindrical grinding wheels K1 and K2 are also employed in a grinding method and a grinding apparatus using a foam coolant liquid CK when grinding the curved surface of a turbine blade TB, for example. This is called three-dimensional free curved surface processing, and cold air (bubble) grinding enables curved surfaces to be ground with ultra-high precision. This means is such that a rotating shaft S3 is fitted in a mounting hole S1 provided in the side wall of the empty can-shaped cylindrical body, and a coolant nozzle N is arranged outside one open side of the empty can-shaped cylindrical body. A coolant liquid CK having a pulsating pressure or a non-pulsating pressure is supplied from a coolant supply device 50 into the cylinder so as to be able to be injected. Furthermore, the cooling liquid is supplied from a cooling device that converts the coolant liquid into a foamed coolant liquid and cools the air in the atmosphere to 0° C. or less.

以上のごとく、各空き缶型円筒研削砥石は、空き缶状円筒体の片側面の中心位置に回転軸との取付穴を有し、上記空き缶状円筒体の外周面や片側面には多数の小孔又はスリット孔が設けられ、上記回転軸にはセンタースルークーラント液を空き缶状円筒体内に繋がるセンター孔が開けられ、クーラント供給装置からの脈動乃至無脈動圧のクーラント液を空き缶状円筒体内に供給し、ここから加工点へ到達させる構成である。上記空き缶型円筒研削砥石K1~K9とこの研削装置100及び空き缶型円筒体K1~K10の製造法によると、下記の効果が発揮される。
(1)先ず、空き缶型円筒研削砥石K1~K10によると、台金となる空き缶状円筒体の重量は非常に軽く、被研削ワークの研削面に対して缶状円筒体の外周面がしなやかに軽く触れ合い、更に、空き缶状円筒体の開放した側方から研削液が内部に噴射され、外周面の無数の小孔又はスリット孔から研削液が研削面に均等に噴射されながら超砥粒で軽く研削できる。これで、研削面が発熱せずに歪みや面粗さを生じることなく研削液の流れで高精度な研削・研磨面が得られる。
(2)また、空き缶型円筒研削砥石K1~K10によると、空き缶状円筒体の内側壁面にゴム製薄膜材が内張りされ、上記ゴム製薄膜材の表面に小穴h1とダイヤ砥粒,CBN砥粒又はWA砥粒又はGC砥粒を固着し又は混練含有する。更に、ゴム製薄膜材Gに替えてダイヤ砥粒他を編み込んだ不織布Wを採用することで、クーラント液の水圧でバルーン砥石の様に穴から飛び出して膨出しポリシング加工やラッピング加工が可能で、飛躍的に研削面の面粗さが向上する。これで、バルーン砥石の如く、研削面に歪みや面粗さを生じることなく高精度な研削・研磨面が得られる。
(3)そして、空き缶型円筒研削砥石K1~K10を駆動する研削装置100に採用すると、上記優れた研削、研磨、ポリシングが正確無比に容易に実施できる。
(4)更に、クーラント供給装置50によると、該クーラント供給装置50からの脈動圧乃至無脈動圧のクーラント液を各空き缶型円筒研削砥石K1~K10に、NC制御装置60からのNC制御プログラムPGにより供給するから、単筒ACの圧力P1、単筒BCの圧力P2、両方の合成圧力P3の他に、アキュームレーターAQによる一定圧P0に切替えられ、研削面が要求する研削からポリシング迄、多種多様な繊細な研削・磨き面が得られる。
(5)更に、空き缶型円筒体K1~K10の製造法によると、古典的なへら絞り法により製造されるも、その製造工程A~Gにおいて、従来の円筒体の絞りによる製作工程A~C,C1には見られない新規工程D~Gを介して製造される。上記絞り法には、切削加工法やプレス加工法によっては得られない薄肉で任意形状となる空き缶状円筒体10,20他の製作が高い生産性の基に実行される。
As described above, each empty can-shaped cylindrical grinding wheel has a mounting hole for the rotating shaft at the center position of one side surface of the empty can-shaped cylindrical body. Alternatively, a slit hole is provided, and the rotating shaft is provided with a center hole for connecting the center through coolant liquid to the empty can-shaped cylindrical body, and the coolant liquid with pulsating or non-pulsating pressure is supplied from the coolant supply device to the empty can-shaped cylindrical body. , to reach the processing point from here. According to the empty can-shaped cylindrical grinding wheels K1 to K9, the grinding apparatus 100, and the manufacturing method of the empty can-shaped cylindrical bodies K1 to K10, the following effects are exhibited.
(1) First, according to the empty can-shaped cylindrical grinding wheels K1 to K10, the weight of the empty can-shaped cylindrical body serving as the base metal is very light, and the outer peripheral surface of the can-shaped cylindrical body is supple with respect to the grinding surface of the workpiece to be ground. Grinding fluid is sprayed inside from the open side of the empty can-shaped cylindrical body, and the grinding fluid is evenly sprayed onto the grinding surface from countless small holes or slit holes on the outer peripheral surface while being lightly rubbed with superabrasive grains. can be ground. As a result, a highly accurate ground/polished surface can be obtained by the flow of the grinding liquid without generating heat on the ground surface and causing distortion and surface roughness.
(2) According to the empty can-shaped cylindrical grinding wheels K1 to K10, the inner wall surface of the empty can-shaped cylindrical body is lined with a rubber thin film material, and the surface of the rubber thin film material has small holes h1 and diamond abrasive grains and CBN abrasive grains. Alternatively, WA abrasive grains or GC abrasive grains are fixed or kneaded. Furthermore, by adopting a non-woven fabric W woven with diamond abrasive grains etc. instead of the rubber thin film material G, the water pressure of the coolant liquid can pop out from the hole like a balloon grindstone and bulge out, making it possible to perform polishing and lapping. Dramatically improves the surface roughness of the ground surface. As a result, a highly accurate ground/polished surface can be obtained without causing distortion or surface roughness on the ground surface like a balloon grindstone.
(3) When employed in the grinding apparatus 100 that drives the empty can-type cylindrical grinding wheels K1 to K10, the excellent grinding, polishing, and polishing can be performed with unparalleled accuracy and ease.
(4) Further, according to the coolant supply device 50, the pulsating pressure to non-pulsating pressure coolant liquid from the coolant supply device 50 is applied to the empty can type cylindrical grinding wheels K1 to K10, and the NC control program PG from the NC control device 60 Therefore, in addition to the pressure P1 of the single cylinder AC, the pressure P2 of the single cylinder BC, and the combined pressure P3 of both, it is switched to a constant pressure P0 by the accumulator AQ. A variety of delicate grinding and polishing surfaces can be obtained.
(5) Furthermore, according to the manufacturing method of the empty can-shaped cylindrical bodies K1 to K10, although they are manufactured by the classical spinning method, in the manufacturing processes A to G, manufacturing processes A to C by conventional drawing of cylindrical bodies , C1 through the new steps D to G not found. According to the drawing method, thin-walled empty can-shaped cylindrical bodies 10, 20, etc., which have a thin wall and an arbitrary shape, which cannot be obtained by the cutting method or the press working method, can be manufactured on the basis of high productivity.

本発明は、上記空き缶型円筒研削砥石K1~K10において、多種多様な研削装置やこれによる研削からラッピングまでに適用可能である。また、空き缶型円筒研削砥石K1~K10の研削装置100及び空き缶型円筒体の製造法において、図示する各実施形態に限定されない。更に、設計変更となる細部の構成に係わる変更や用途変更等の広範囲にわたる実施形態に適用される。 INDUSTRIAL APPLICABILITY The present invention can be applied to a wide variety of grinding devices and to grinding and lapping using the above empty can type cylindrical grinding wheels K1 to K10. Further, the grinding apparatus 100 for the empty can-type cylindrical grinding wheels K1 to K10 and the method for manufacturing an empty can-type cylindrical body are not limited to the illustrated embodiments. Furthermore, it is applicable to a wide range of embodiments, such as changes related to detailed configurations that result in design changes and changes in usage.

10 空き缶状円筒体
10A 外周面
10B 側壁
13 超砥粒
20,21 空き缶状円筒体
20A,21A 外周面
20C,21C 側壁面
20B,21B 側壁
50 クーラント供給装置
60 NC制御装置
100 研削装置
M0 モーター
T タンク
P 2気筒プランジャーポンプ
AC 単筒
P1 圧力
BC 単筒
P2 圧力
P3 合成圧力
AQ アキュームレーター
PG NC制御プログラム
P0 一定圧
S 回転軸
S3 回転軸
S1 取付穴,
SS 振動センサ
h 小孔
h1 ゴム製薄膜材の小孔
L スリット孔
K1~K10 空き缶型円筒研削砥石
SU センサーユニット
HS 熱センサ
M メモリ
R 受発信器
CK クーラント液
P プランジャーポンプ
AQ アキュームレーター
G ゴム製薄膜材
V1~V5 逆止弁
V6,V7 切換弁
W 不織布
10 Empty can-shaped cylindrical body 10A Peripheral surface 10B Side wall 13 Super abrasive grains 20, 21 Empty can-shaped cylindrical body 20A, 21A Peripheral surfaces 20C, 21C Side wall surfaces 20B, 21B Side wall 50 Coolant supply device 60 NC control device 100 Grinding device M0 Motor T Tank P 2-cylinder plunger pump AC Single cylinder P1 Pressure BC Single cylinder P2 Pressure P3 Combined pressure AQ Accumulator PG NC control program P0 Constant pressure S Rotation shaft S3 Rotation shaft S1 Mounting hole,
SS Vibration sensor h Small hole h1 Small hole L in rubber thin film material Slit hole K1 to K10 Empty can type cylindrical grinding wheel SU Sensor unit HS Heat sensor M Memory R Receiver/transmitter CK Coolant liquid P Plunger pump AQ Accumulator G Rubber Thin film materials V1 to V5 Check valves V6, V7 Switching valve W Non-woven fabric

Claims (6)

円筒体を薄肉で片側面が閉塞した空き缶状円筒体となし、上記空き缶状円筒体の片側面と反対側の側壁の中心位置に回転軸との取付穴を有し、上記空き缶状円筒体の外周面には多数の小孔又はスリット孔が設けられ、上記回転軸にはセンタースルークーラント液を空き缶状円筒体内に繋るセンター孔が開けられ、クーラント供給装置からの脈動乃至無脈動圧のクーラント液を空き缶状円筒体内に供給し加工点へ到達させる空き缶型円筒研削砥石において、上記空き缶状円筒体の内側壁面にゴム製薄膜材が内張りされ、上記ゴム製薄膜材の表面にダイヤ砥粒又はCBN砥粒又はWA砥粒又はGC砥粒の何れかが固着されていることを特徴とする空き缶型円筒研削砥石。The cylindrical body is a thin can-shaped cylindrical body with one side closed, and the empty can-shaped cylindrical body has a mounting hole for a rotating shaft at the center position of the side wall opposite to one side of the empty can-shaped cylindrical body. A large number of small holes or slit holes are provided on the outer peripheral surface, and a center hole for connecting the center-through coolant liquid to the empty can-shaped cylindrical body is opened in the rotating shaft, and the pulsating or non-pulsating pressure from the coolant supply device is provided. In an empty can-shaped cylindrical grinding wheel in which a coolant liquid is supplied into an empty can-shaped cylindrical body to reach a machining point, the inner wall surface of the empty can-shaped cylindrical body is lined with a rubber thin film material, and the surface of the rubber thin film material is lined with diamond abrasive grains. Alternatively, an empty can type cylindrical grinding wheel characterized by having either CBN abrasive grains, WA abrasive grains, or GC abrasive grains fixed thereto. 円筒体を薄肉で片側面が閉塞した空き缶状円筒体となし、上記空き缶状円筒体の片側面と反対側の側壁の中心位置に回転軸との取付穴を有し、上記空き缶状円筒体の外周面には多数の小孔又はスリット孔が設けられ、上記回転軸にはセンタースルークーラント液を空き缶状円筒体内に繋るセンター孔が開けられ、クーラント供給装置からの脈動乃至無脈動圧のクーラント液を空き缶状円筒体内に供給し加工点へ到達させる空き缶型円筒研削砥石において、上記空き缶状円筒体の内側壁面にゴム製薄膜材が内張りされ、上記ゴム製薄膜材にダイヤ砥粒又はCBN砥粒又はWA砥粒又はGC砥粒の何れかが混練含有されていることを特徴とする空き缶型円筒研削砥石。The cylindrical body is a thin can-shaped cylindrical body with one side closed, and the empty can-shaped cylindrical body has a mounting hole for a rotating shaft at the center position of the side wall opposite to one side of the empty can-shaped cylindrical body. A large number of small holes or slit holes are provided on the outer peripheral surface, and a center hole for connecting the center-through coolant liquid to the empty can-shaped cylindrical body is opened in the rotating shaft, and the pulsating or non-pulsating pressure from the coolant supply device is provided. In an empty can-shaped cylindrical grinding wheel in which a coolant liquid is supplied into an empty can-shaped cylindrical body to reach a machining point, the inner wall surface of the empty can-shaped cylindrical body is lined with a rubber thin film material, and the rubber thin film material is lined with diamond abrasive grains or CBN. An empty can type cylindrical grinding wheel characterized by kneading and containing abrasive grains or either WA abrasive grains or GC abrasive grains. 円筒体を薄肉で片側面が閉塞した空き缶状円筒体となし、上記空き缶状円筒体の片側面と反対側の側壁の中心位置に回転軸との取付穴を有し、上記空き缶状円筒体の外周面には多数の小孔又はスリット孔が設けられ、上記回転軸にはセンタースルークーラント液を空き缶状円筒体内に繋るセンター孔が開けられ、クーラント供給装置からの脈動乃至無脈動圧のクーラント液を空き缶状円筒体内に供給し加工点へ到達させる空き缶型円筒研削砥石において、上記空き缶状円筒体の内側壁面にダイヤ砥粒又はCBN砥粒又はWA砥粒又はGC砥粒の何れかを編み込んだ不織布を内張したことを特徴とする空き缶型円筒研削砥石。The cylindrical body is a thin can-shaped cylindrical body with one side closed, and the empty can-shaped cylindrical body has a mounting hole for a rotating shaft at the center position of the side wall opposite to one side of the empty can-shaped cylindrical body. A large number of small holes or slit holes are provided on the outer peripheral surface, and a center hole for connecting the center-through coolant liquid to the empty can-shaped cylindrical body is opened in the rotating shaft, and the pulsating or non-pulsating pressure from the coolant supply device is provided. In an empty can-shaped cylindrical grinding wheel in which a coolant liquid is supplied into an empty can-shaped cylindrical body to reach a machining point, either diamond abrasive grains, CBN abrasive grains, WA abrasive grains, or GC abrasive grains are applied to the inner wall surface of the empty can-shaped cylindrical body. An empty can-type cylindrical grinding wheel characterized by being lined with a woven nonwoven fabric. 円筒体を薄肉で閉塞した空き缶状円筒体となし、上記空き缶状円筒体の片側面と反対側の側壁の中心位置に回転軸との取付穴を有し、上記空き缶状円筒体の片側面には多数の小孔又はスリット孔が設けられ、上記回転軸にはセンタースルークーラント液を空き缶状円筒体内に繋るセンター孔が開けられ、クーラント供給装置からの脈動乃至無脈動圧のクーラント液を空き缶状円筒体内に供給し加工点へ到達させる空き缶型円筒研削砥石において、上記空き缶状円筒体の内側壁面にゴム製薄膜材が内張りされ、上記ゴム製薄膜材の表面にダイヤ砥粒又はCBN砥粒又はWA砥粒又はGC砥粒の何れかを固着したことを特徴とする空き缶型円筒研削砥石。The cylindrical body is a thin closed can-shaped cylindrical body, and has a mounting hole for a rotating shaft at the center position of one side surface of the empty can-shaped cylindrical body and the side wall on the opposite side, and one side surface of the empty can-shaped cylindrical body. is provided with a large number of small holes or slit holes, and the rotating shaft is provided with a center hole for connecting the center-through coolant liquid to the empty can-shaped cylindrical body, and the pulsating or non-pulsating coolant liquid from the coolant supply device is supplied. In an empty can-shaped cylindrical grinding wheel that is fed into an empty can-shaped cylindrical body to reach a processing point, the inner wall surface of the empty can-shaped cylindrical body is lined with a rubber thin film material, and the surface of the rubber thin film material is coated with diamond abrasive grains or CBN abrasive grains. An empty can-type cylindrical grinding wheel characterized by having either granules, WA abrasive grains or GC abrasive grains adhered thereto. 円筒体を薄肉で閉塞した空き缶状円筒体となし、上記空き缶状円筒体の片側面と反対側の側壁の中心位置に回転軸との取付穴を有し、上記空き缶状円筒体の片側面には多数の小孔又はスリット孔が設けられ、上記回転軸にはセンタースルークーラント液を空き缶状円筒体内に繋るセンター孔が開けられ、クーラント供給装置からの脈動乃至無脈動圧のクーラント液を空き缶状円筒体内に供給し加工点へ到達させる空き缶型円筒研削砥石において、上記空き缶状円筒体の内側壁面にゴム製薄膜材が内張りされ、上記ゴム製薄膜材にダイヤ砥粒又はCBN砥粒又はWA砥粒又はGC砥粒の何れかを混練含有されていることを特徴とする空き缶型円筒研削砥石。The cylindrical body is a thin closed can-shaped cylindrical body, and one side surface of the empty can-shaped cylindrical body and the side wall on the opposite side have a mounting hole for a rotating shaft at the center position, and one side surface of the empty can-shaped cylindrical body. is provided with a large number of small holes or slit holes, and the rotating shaft is provided with a center hole that connects the center through coolant liquid to the empty can-shaped cylindrical body, and the coolant liquid with pulsating or non-pulsating pressure from the coolant supply device is supplied into an empty can-shaped cylindrical body to reach the processing point, the inner wall surface of the empty can-shaped cylindrical body is lined with a rubber thin film material, and the rubber thin film material is lined with diamond abrasive grains or CBN abrasive grains Or an empty can type cylindrical grinding wheel characterized by kneading and containing either WA abrasive grains or GC abrasive grains. 円筒体を薄肉で閉塞した空き缶状円筒体となし、上記空き缶状円筒体の片側面と反対側の側壁の中心位置に回転軸との取付穴を有し、上記空き缶状円筒体の片側面には多数の小孔又はスリット孔が設けられ、上記回転軸にはセンタースルークーラント液を空き缶状円筒体内に繋るセンター孔が開けられ、クーラント供給装置からの脈動乃至無脈動圧のクーラント液を空き缶状円筒体内に供給し加工点へ到達させる空き缶型円筒研削砥石において、上記空き缶状円筒体の内側壁面にダイヤ砥粒又はCBN砥粒又はWA砥粒又はGC砥粒の何れかを編み込んだ不織布を内張したことを特徴とする空き缶型円筒研削砥石。The cylindrical body is a thin closed can-shaped cylindrical body, and has a mounting hole for a rotating shaft at the center position of one side surface of the empty can-shaped cylindrical body and the side wall on the opposite side, and one side surface of the empty can-shaped cylindrical body. is provided with a large number of small holes or slit holes, and the rotating shaft is provided with a center hole for connecting the center-through coolant liquid to the empty can-shaped cylindrical body, and the pulsating or non-pulsating coolant liquid from the coolant supply device is supplied. A non-woven fabric in which either diamond abrasive grains, CBN abrasive grains, WA abrasive grains, or GC abrasive grains are woven into the inner wall surface of the empty can-shaped cylindrical body in an empty can-shaped cylindrical grinding wheel that is supplied into an empty can-shaped cylindrical body and reaches a processing point. An empty can type cylindrical grinding wheel characterized by lining with
JP2019094847A 2019-04-24 2019-04-24 Empty can type cylindrical grinding wheel Active JP7128398B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019094847A JP7128398B2 (en) 2019-04-24 2019-04-24 Empty can type cylindrical grinding wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019094847A JP7128398B2 (en) 2019-04-24 2019-04-24 Empty can type cylindrical grinding wheel

Publications (2)

Publication Number Publication Date
JP2020179493A JP2020179493A (en) 2020-11-05
JP7128398B2 true JP7128398B2 (en) 2022-08-31

Family

ID=73023251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019094847A Active JP7128398B2 (en) 2019-04-24 2019-04-24 Empty can type cylindrical grinding wheel

Country Status (1)

Country Link
JP (1) JP7128398B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7317279B2 (en) * 2021-03-10 2023-07-31 伊藤 憲秀 Automatic Grinding Operation Method for Turbine Blades Using Fine Air Bubbles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3034101U (en) 1996-06-27 1997-02-14 日本ジーシー工業株式会社 Rotary blade and rotary tool
JP2011161520A (en) 2010-02-04 2011-08-25 Koyo Electronics Ind Co Ltd Centerless grinding machine
JP2014046368A (en) 2012-08-29 2014-03-17 Mitsubishi Heavy Ind Ltd Grinding stone tool

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS512095A (en) * 1974-06-21 1976-01-09 Shigeji Kanayama Sekizainikaikoshi dojinienchutaio kiridasukaikosui
JPS56171163U (en) * 1980-05-21 1981-12-17
JPS64284Y2 (en) * 1980-06-30 1989-01-06
JPS6044259A (en) * 1983-08-19 1985-03-09 Inoue Japax Res Inc Polishing device
JPS6062469A (en) * 1983-09-14 1985-04-10 Toyoda Autom Loom Works Ltd Polishing device
JPS61219576A (en) * 1985-03-27 1986-09-29 Tokyo Bafu Kk Grinding cylinder
JP3678502B2 (en) * 1996-07-19 2005-08-03 豊田工機株式会社 Grinding wheel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3034101U (en) 1996-06-27 1997-02-14 日本ジーシー工業株式会社 Rotary blade and rotary tool
JP2011161520A (en) 2010-02-04 2011-08-25 Koyo Electronics Ind Co Ltd Centerless grinding machine
JP2014046368A (en) 2012-08-29 2014-03-17 Mitsubishi Heavy Ind Ltd Grinding stone tool

Also Published As

Publication number Publication date
JP2020179493A (en) 2020-11-05

Similar Documents

Publication Publication Date Title
EP0887152A2 (en) Carrier for double-side polishing
JP7128398B2 (en) Empty can type cylindrical grinding wheel
CN111230653A (en) Novel wheeled gasbag polishing device
JP2013141738A (en) Processing apparatus
JPH0386464A (en) Honing device for machining running surface for hole wall part especially cylinder hole for internal combustion engine
JPH11254279A (en) Device and method for finish polishing inner surface of metallic pipe
US4373933A (en) Method of producing precision abrasive tools
JPH02145398A (en) Dampening roller, manufacture of dampening roller and dampening water supply device for printer
CA1250146A (en) Means and methods for abrading a work surface
WO2002055261A1 (en) Polisher and polishing method
JP7534142B2 (en) Dressing device and polishing device
JP2005271101A (en) Dressing device of polishing pad and polishing apparatus having the dressing device of polishing pad
JPWO2019131846A1 (en) Polishing method and polishing apparatus
JPH1177535A (en) Conditioner and its manufacture
US20180207766A1 (en) Multiple smooth elements bonded to a ground; novel tools and methods for surface improvement of metals and other materials
JP6371681B2 (en) Method for regenerating resin layer of guide roller for wire saw
KR100435368B1 (en) A Brush heel Unit for Grinding
TW202015860A (en) Apparatus for grinding wheel chip removing and sharpening
JP7194888B2 (en) Internal Diameter Machining Increase/Decrease Diameter Honing Grinding Wheel
JP4370743B2 (en) Polishing wheel dressing equipment
JPH11254300A (en) Washing device for carrier in surface polishing device
JP2021070080A (en) Polishing system
JP2006142391A (en) Centering device for optical lens
RU2261167C1 (en) Elastic polishing wheel made of diamond-abrasive cloth
JP2017196725A (en) Wrapping polishing surface plate and device using the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190808

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220726

R150 Certificate of patent or registration of utility model

Ref document number: 7128398

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150