JP7124027B2 - Eyepiece optical system and observation device having the same - Google Patents
Eyepiece optical system and observation device having the same Download PDFInfo
- Publication number
- JP7124027B2 JP7124027B2 JP2020168097A JP2020168097A JP7124027B2 JP 7124027 B2 JP7124027 B2 JP 7124027B2 JP 2020168097 A JP2020168097 A JP 2020168097A JP 2020168097 A JP2020168097 A JP 2020168097A JP 7124027 B2 JP7124027 B2 JP 7124027B2
- Authority
- JP
- Japan
- Prior art keywords
- lens
- optical system
- eyepiece optical
- image display
- observation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Lenses (AREA)
Description
本発明は、接眼光学系及びそれを有する観察装置に関し、例えばビデオカメラ、スチルカメラ、放送用カメラに用いられる電子ビューファインダーにおいて、画像表示素子の画像表示面に表示される画像を観察するのに好適なものである。 The present invention relates to an eyepiece optical system and an observation device having the same, and is used for observing an image displayed on an image display surface of an image display element in an electronic viewfinder used in, for example, a video camera, a still camera, or a broadcasting camera. is preferred.
従来、ビデオカメラ、スチルカメラ等の撮像装置(カメラ)に用いられている電子ビューファインダー(観察装置)においては、液晶画面等に表示した画像を拡大観察する為に接眼光学系が用いられている。電子ビューファインダーにおいて、画像表示面を視認性が良く、見やすくするには、観察倍率が高く、しかもアイレリーフが長いこと等が必要になってくる。 Conventionally, in an electronic viewfinder (observation device) used in an imaging device (camera) such as a video camera or a still camera, an ocular optical system is used for magnifying and observing an image displayed on a liquid crystal screen or the like. . In the electronic viewfinder, it is necessary to have a high observation magnification and a long eye relief in order to make the image display surface easy to see.
更に観察装置の小型化の要望より、観察装置に用いる画像表示素子は小さな寸法(例えば対角長で20mm以下)であることが要求されている。 Furthermore, due to the demand for miniaturization of the observation device, the image display element used in the observation device is required to have a small dimension (for example, 20 mm or less in diagonal length).
従来、観察倍率の高い接眼光学系が種々と提案されている(特許文献1乃至3)。
Conventionally, various eyepiece optical systems with high observation magnification have been proposed (
特許文献1では、画像表示素子側より観察側に向かって、正の屈折力の第1レンズ、負の屈折力の第2レンズ、正又は負の屈折力の第3レンズ、正の屈折力の第4レンズよりなる接眼光学系を開示している。
In
特許文献1では、全系の小型化を図りつつ、諸収差を良好に補正するために、少なくとも2枚の正の屈折力のレンズ、少なくとも1枚の負の屈折力のレンズ、そして回折光学素子を用いている。
In
また、特許文献2では、負の屈折力のレンズ群と、正の屈折面のレンズ群よりなる内視鏡用接眼レンズを開示している。 Further, Patent Document 2 discloses an endoscope eyepiece composed of a lens group with a negative refractive power and a lens group with a positive refractive surface.
また、特許文献3では、画像表示素子側より観察側へ順に、両凸形状で、正の屈折力の第1レンズ、負の屈折力の第2レンズ、正の屈折力の第3レンズと、正の屈折力の第4レンズからなる接眼光学系を開示している。特許文献3では高い観察倍率を有しつつ、諸収差が良好に補正された接眼光学系を開示している。 Further, in Patent Document 3, in order from the image display element side to the observation side, a biconvex first lens with a positive refractive power, a second lens with a negative refractive power, a third lens with a positive refractive power, It discloses an eyepiece optical system consisting of a fourth lens of positive refractive power. Patent Document 3 discloses an eyepiece optical system in which various aberrations are satisfactorily corrected while having a high observation magnification.
観察装置に用いられる接眼光学系において、観察倍率が高く、しかもアイレリーフを長く確保するには、接眼光学系のレンズ構成及び各レンズの屈折力等を適切に設定することが重要になってくる。この他、小型の画像表示面を用いるときは、画像表示面の大きさに対する接眼光学系の屈折力の比等を適切に設定することが重要になってくる。 In an eyepiece optical system used in an observation device, it is important to appropriately set the lens configuration of the eyepiece optical system and the refractive power of each lens in order to ensure a high observation magnification and a long eye relief. . In addition, when using a small image display surface, it is important to appropriately set the ratio of the refractive power of the eyepiece optical system to the size of the image display surface.
特許文献1に開示された画像表示装置用の接眼レンズは、曲面パネルや回折光学素子、高屈折率材料を使用することによって、高い観察倍率を確保しつつ、諸収差を補正している。そのため光学性能や仕様は確保しやすいが、製造が困難になる傾向があった。
An eyepiece for an image display device disclosed in
特許文献2に開示されている内視鏡用接眼レンズは、高屈折率材料のレンズと非球面レンズを使用することによってレンズ枚数を減らし、高い観察倍率を確保している。しかしながら、高屈折率の材料を多用しているため、製造が難しくなる傾向があった。 The endoscope eyepiece disclosed in Patent Document 2 uses a lens made of a high refractive index material and an aspherical lens to reduce the number of lenses and ensure a high observation magnification. However, since many materials with a high refractive index are used, it tends to be difficult to manufacture.
特許文献3に開示された接眼光学系では比較的低屈折率の材料を使用し、高い観察倍率を確保している。しかし、高倍率化のために光線を跳ね上げる第1レンズ面と第2レンズ面のレンズ面の曲率がきつくなり、急激に光線が変化する形状をしている。このために像面湾曲が発生しやすい。 The eyepiece optical system disclosed in Patent Document 3 uses a material with a relatively low refractive index to ensure a high observation magnification. However, in order to increase the magnification, the curvature of the first lens surface and the second lens surface, which bounce the light rays, becomes sharper, and the light rays are shaped to change abruptly. For this reason, curvature of field tends to occur.
また、非球面を多用することで諸収差の補正を容易にしているため、製造が複雑になる傾向があった。 In addition, since many aspherical surfaces are used to facilitate correction of various aberrations, manufacturing tends to be complicated.
本発明は、諸収差を良好に抑え高い光学性能を確保しつつ、製造が容易でしかも高視野の観察が容易な接眼光学系の提供を目的としている。 SUMMARY OF THE INVENTION It is an object of the present invention to provide an eyepiece optical system that is easy to manufacture and that facilitates observation of a wide field of view while suppressing various aberrations satisfactorily and ensuring high optical performance.
本発明の接眼光学系は、物体側から観察側へ順に配置された、正の屈折力の第1レンズ、負の屈折力の第2レンズ、第3レンズ、正の屈折力の第4レンズより構成される接眼光学系であって、前記第1レンズ乃至前記第4レンズの各レンズの材料のd線における屈折率の平均値をNda、前記第1レンズの観察側のレンズ面の曲率半径をL1R2、前記第2レンズの物体側のレンズ面の曲率半径をL2R1、前記第3レンズと前記第4レンズの合成焦点距離をf34、前記接眼光学系の焦点距離をfとするとき、
1.550≦Nda≦1.730
-5.2≦(L2R1+L1R2)/(L2R1-L1R2)≦0.0
0.68≦f34/f≦1.30
なる条件式を満たすことを特徴としている。
The eyepiece optical system of the present invention comprises a first lens with positive refractive power, a second lens with negative refractive power, a third lens, and a fourth lens with positive refractive power, which are arranged in order from the object side to the observation side. An eyepiece optical system configured, wherein Nda is the average value of the refractive index of the material of each lens of the first lens to the fourth lens at the d-line, and the radius of curvature of the observation side lens surface of the first lens is Let L1R2 be the radius of curvature of the object-side lens surface of the second lens, L2R1 be the radius of curvature of the lens surface, f34 be the combined focal length of the third lens and the fourth lens, and f be the focal length of the eyepiece optical system,
1.5 50 ≤ Nda ≤ 1.730
- 5.2 ≤ (L2R1 + L1R2) / (L2R1 - L1R2) ≤ 0.0
0.68≤f34/f≤1.30
It is characterized by satisfying the following conditional expression.
本発明によれば、諸収差を良好に抑え高い光学性能を確保しつつ、製造が容易でしかも高視野の観察が容易な接眼光学系が得られる。 According to the present invention, it is possible to obtain an eyepiece optical system that is easy to manufacture and that facilitates wide-field observation while suppressing various aberrations satisfactorily and ensuring high optical performance.
以下、本発明の接眼光学系及びそれを有する観察装置について説明する。本発明の接眼光学系は、画像表示面に表示された画像を観察するための接眼光学系である。接眼光学系は画像表示面側から観察側へ順に配置された、正の屈折力の第1レンズ、負の屈折力の第2レンズ、第3レンズ、正の屈折力の第4レンズより構成されている。 An eyepiece optical system of the present invention and an observation apparatus having the same will be described below. An eyepiece optical system of the present invention is an eyepiece optical system for observing an image displayed on an image display surface. The eyepiece optical system is composed of a first lens with positive refractive power, a second lens with negative refractive power, a third lens, and a fourth lens with positive refractive power, which are arranged in order from the image display side to the observation side. ing.
図1は本発明の接眼光学系の実施例1のレンズ断面図である。図2は本発明の接眼光学系の実施例1の視度が-1.0ディオプター(標準視度)における収差図である。 FIG. 1 is a lens sectional view of Example 1 of the eyepiece optical system of the present invention. FIG. 2 is an aberration diagram of Example 1 of the eyepiece optical system of the present invention when the diopter is -1.0 diopter (standard diopter).
図3は本発明の接眼光学系の実施例2のレンズ断面図である。図4は本発明の接眼光学系の実施例2の視度が-1.0ディオプターにおける収差図である。 FIG. 3 is a lens sectional view of Example 2 of the eyepiece optical system of the present invention. FIG. 4 is an aberration diagram of Example 2 of the eyepiece optical system of the present invention when the diopter is -1.0 diopter.
図5は本発明の接眼光学系の実施例3のレンズ断面図である。図6は本発明の接眼光学系の実施例3の視度が-1.0ディオプターにおける収差図である。 FIG. 5 is a lens sectional view of Example 3 of the eyepiece optical system of the present invention. FIG. 6 is an aberration diagram of Example 3 of the eyepiece optical system of the present invention when the diopter is -1.0 diopter.
図7は本発明の接眼光学系の実施例4のレンズ断面図である。図8は本発明の接眼光学系の実施例4の視度が-1.0ディオプターにおける収差図である。 FIG. 7 is a lens sectional view of Example 4 of the eyepiece optical system of the present invention. FIG. 8 is an aberration diagram of Example 4 of the eyepiece optical system of the present invention when the diopter is -1.0 diopter.
図9は本発明の接眼光学系の実施例5のレンズ断面図である。図10は本発明の接眼光学系の実施例5の視度が-1.0ディオプターにおける収差図である。 FIG. 9 is a lens sectional view of Example 5 of the eyepiece optical system of the present invention. FIG. 10 is an aberration diagram of Example 5 of the eyepiece optical system of the present invention at a diopter of -1.0 diopter.
図11は本発明の接眼光学系の実施例6のレンズ断面図である。図12は本発明の接眼光学系の実施例6の視度が-1.0ディオプターにおける収差図である。 FIG. 11 is a cross-sectional view of the lenses of Example 6 of the eyepiece optical system of the present invention. FIG. 12 is an aberration diagram of Example 6 of the eyepiece optical system of the present invention when the diopter is -1.0 diopter.
各実施例の接眼光学系は、デジタルカメラやビデオカメラ等の撮像装置の電子ビューファインダー(観察装置)に用いられる。レンズ断面図において左方は画像表示面側、右方は観察側(射出瞳側)である。レンズ断面図においてL0は接眼光学系である。Liは第iレンズである。IPは液晶又は有機EL等よりなる画像表示素子の画像表示面である。EPは観察のための観察面(アイポイント)(射出瞳)である。CG1はカバーガラスである。 The eyepiece optical system of each embodiment is used in an electronic viewfinder (observation device) of an imaging device such as a digital camera or a video camera. In the sectional view of the lens, the left side is the image display surface side, and the right side is the observation side (exit pupil side). In the lens sectional view, L0 is an eyepiece optical system. Li is the i-th lens. IP is an image display surface of an image display element made of liquid crystal, organic EL, or the like. EP is an observation plane (eyepoint) (exit pupil) for observation. CG1 is a cover glass.
各収差図のうち球面収差図において、実線のdはd線(波長587.6nm)、点線のFはF線(波長486.1nm)を示す。非点収差図においてΔSdはd線のサジタル像面、ΔMdはd線のメリディオナル像面を示す。ΔSFはF線のサジタル像面、ΔMFはF線のメリディオナル像面を示す。歪曲はd線について示している。倍率色収差はF線について示している。Hは画像表示面の対角線長の半分(最大像高)である。数値は後述する数値データをmm単位で表したときの値である。 In the spherical aberration diagrams among the aberration diagrams, the solid line d indicates the d-line (wavelength 587.6 nm), and the dotted line F indicates the F-line (wavelength 486.1 nm). In the astigmatism diagrams, ΔSd indicates a sagittal image plane for the d-line, and ΔMd indicates a meridional image plane for the d-line. ΔSF indicates the sagittal image plane of the F-line, and ΔMF indicates the meridional image plane of the F-line. Distortion is shown for the d-line. Lateral chromatic aberration is shown for the F-line. H is half the diagonal length (maximum image height) of the image display surface. Numerical values are values when numerical data to be described later are expressed in units of mm.
画像表示素子の画像表示面の対角線長が約20mm以下の小型の画像表示面(表示パネル)を大きな観察視野(視野角約30度以上)で観察するためには、接眼光学系全体で強い正の屈折力(パワー)を持つ必要がある。そのためには、接眼光学系を構成する各レンズに強い正の屈折力、負の屈折力が必要になる。そうすると多く場合、像面湾曲、倍率色収差が増大し、これらの諸収差の補正が難しくなる。 In order to observe a small image display surface (display panel) with a diagonal length of about 20 mm or less on the image display device with a large observation field (viewing angle of about 30 degrees or more), the entire eyepiece optical system must have a strong positive angle. must have a refractive power (power) of For this purpose, each lens constituting the eyepiece optical system needs to have strong positive and negative refractive powers. As a result, field curvature and lateral chromatic aberration often increase, making it difficult to correct these aberrations.
そこで、各実施例に係る接眼光学系では、各レンズ断面図に示すように、画像表示面IP側(物体側)より観察面(アイポイント)EP側に順に、4つのレンズ群より構成している。具体的には、正の屈折力の第1レンズL1、負の屈折力の第2レンズL2、正または負の屈折力の第3レンズL3、正の屈折力の第4レンズL4によって構成している。 Therefore, in the eyepiece optical system according to each embodiment, as shown in each lens cross-sectional view, it is composed of four lens groups in order from the image display plane IP side (object side) to the observation plane (eyepoint) EP side. there is Specifically, it comprises a first lens L1 with positive refractive power, a second lens L2 with negative refractive power, a third lens L3 with positive or negative refractive power, and a fourth lens L4 with positive refractive power. there is
各実施例において観察面EPは、画像表示面IPの最周辺からの光線が観測者の瞳を通過する範囲内であれば光軸方向に移動しても良い。また、レンズ最終面(第4レンズL4の観察側の面)から観察面EPまでの距離をアイレリーフとする。カバーガラスは画像表示面IPやレンズを保護するプレートであり、画像表示面IPからレンズの間やレンズと観察面EPの間に設けても良いし、また必ずしも設置しなくても良い。 In each embodiment, the observation plane EP may move in the optical axis direction as long as the light rays from the outermost periphery of the image display plane IP pass through the observer's pupil. Also, the eye relief is the distance from the final lens surface (the observation side surface of the fourth lens L4) to the observation plane EP. The cover glass is a plate that protects the image display surface IP and the lenses.
本発明の接眼レンズL0において、第1レンズL1乃至第4レンズL4の各レンズの材料のd線における屈折率の平均値をNdaとする。第1レンズL1の観察側のレンズ面の曲率半径をL1R2、第2レンズL2の画像表示面側のレンズ面の曲率半径をL2R1とする。第3レンズL3と第4レンズL4の合成焦点距離をf34とする。接眼光学系の焦点距離をfとする。 In the eyepiece L0 of the present invention, Nda is the average value of the refractive indices for the d-line of the materials of the first lens L1 to the fourth lens L4. Let L1R2 be the radius of curvature of the observation side lens surface of the first lens L1, and L2R1 be the radius of curvature of the image display surface side lens surface of the second lens L2. Assume that the combined focal length of the third lens L3 and the fourth lens L4 is f34. Let f be the focal length of the eyepiece optical system.
このとき、
1.520≦Nda≦1.730 ・・・(1)
-15.0≦(L2R1+L1R2)/(L2R1-L1R2)≦0.0 ・・・(2)
0.68≦f34/f≦1.30 ・・・(3)
なる条件式を満たす。
At this time,
1.520≦Nda≦1.730 (1)
−15.0≦(L2R1+L1R2)/(L2R1−L1R2)≦0.0 (2)
0.68≦f34/f≦1.30 (3)
satisfies the following conditional expression.
次に前述の各条件式の技術的意味について説明する。 Next, the technical meaning of each of the above conditional expressions will be explained.
条件式(1)は、第1レンズL1乃至第4レンズL4の各レンズの材料のd線における屈折率の平均値を規定している。条件式(1)の上限を超えて、各レンズの材料の屈折率が高くなると、全系のパワーを強くすることが出来、高い観察倍率を得るのが(高視野角化)容易になる。しかしながら、高い屈折率の材料としては、例えばガラス等を多用しなければならず、製造が難しくなる。また、下限値を下回り各レンズの材料の屈折率が低くなると、全系の屈折力が弱くなり、高視野角化するのが困難になる。 Conditional expression (1) defines the average value of the refractive index of the material of each lens of the first lens L1 to the fourth lens L4 at the d-line. If the refractive index of the material of each lens is increased beyond the upper limit of conditional expression (1), the power of the entire system can be increased, making it easier to obtain a high observation magnification (increase viewing angle). However, as a material with a high refractive index, for example, glass or the like must be used frequently, which makes manufacturing difficult. Further, when the refractive index of the material of each lens becomes lower than the lower limit, the refractive power of the entire system becomes weak, making it difficult to increase the viewing angle.
条件式(2)は、第1レンズL1と第2レンズL2との間で形成される空気レンズの形状を規定している。条件式(2)は高い観察倍率を保ちつつ像面湾曲を良好に補正する為のものである。各実施例では高い観察倍率を得るために第1レンズL1から射出される光線を、第2レンズL2で跳ね上げている。この条件式(2)の、下限値を下回ると第1レンズL1と第2レンズL2間で光線の曲がりが急になりすぎる為、諸収差の補正、特に像面湾曲の収差が困難になる。上限値を上回ると光線の跳ね上げが不十分になり、高い観察倍率を得るのが困難になる。 Conditional expression (2) defines the shape of the air lens formed between the first lens L1 and the second lens L2. Conditional expression (2) is for satisfactorily correcting curvature of field while maintaining a high observation magnification. In each embodiment, the light rays emitted from the first lens L1 are bounced up by the second lens L2 in order to obtain a high observation magnification. If the lower limit of conditional expression (2) is not reached, the light rays bend too sharply between the first lens L1 and the second lens L2, making it difficult to correct various aberrations, particularly curvature of field. When the upper limit is exceeded, the bounce of light rays becomes insufficient, making it difficult to obtain a high observation magnification.
条件式(3)は、第3レンズL3と第4レンズL4とからなる合成系の合成焦点距離と全系の焦点距離を規定している。条件式(3)の上限を越えると合成系の正の屈折力が弱くなり高い観察倍率を得るのが困難になる。条件式(3)の下限値を下回ると、合成系の正の屈折力が強くなり、十分な長さのアイレリーフを確保するのが困難になり、画像表示面の良好なる観察が困難になる。 Conditional expression (3) defines the combined focal length of the combined system composed of the third lens L3 and the fourth lens L4 and the focal length of the entire system. If the upper limit of conditional expression (3) is exceeded, the positive refracting power of the synthetic system becomes weak, making it difficult to obtain a high observation magnification. If the lower limit of conditional expression (3) is not reached, the positive refractive power of the composite system becomes strong, making it difficult to secure a sufficiently long eye relief and making it difficult to observe the image display surface satisfactorily. .
好ましくは条件式(1)乃至(3)の数値範囲を次の如く設定するのが良い。
1.550≦Nda≦1.730 ・・・(1a)
-12.0≦(L2R1+L1R2)/(L2R1-L1R2)≦0.0・・・(2a)
0.68≦f34/f≦1.25 ・・・(3a)
更に好ましくは条件式(1a)乃至(3a)の数値範囲を次の如く設定するのが良い。
1.550≦Nda≦1.700 ・・・(1b)
-10.0≦(L2R1+L1R2)/(L2R1-L1R2)≦0.0・・・(2b)
0.70≦f34/f≦1.25 ・・・(3b)
以上のように、本発明によれば高い観察倍率で高い光学性能を有した電子ビューファインダーに最適な接眼光学系を得ることができる。
Preferably, the numerical ranges of conditional expressions (1) to (3) are set as follows.
1.550≦Nda≦1.730 (1a)
−12.0≦(L2R1+L1R2)/(L2R1−L1R2)≦0.0 (2a)
0.68≦f34/f≦1.25 (3a)
More preferably, the numerical ranges of conditional expressions (1a) to (3a) are set as follows.
1.550≦Nda≦1.700 (1b)
−10.0≦(L2R1+L1R2)/(L2R1−L1R2)≦0.0 (2b)
0.70≦f34/f≦1.25 (3b)
As described above, according to the present invention, it is possible to obtain an optimal eyepiece optical system for an electronic viewfinder having high observation magnification and high optical performance.
各実施例において更に好ましくは次の条件式のうち1つ以上を満足するのが良い。第1レンズL1と第2レンズL2の光軸上の間隔をd3、第2レンズ群L2と第3レンズL3の光軸上の間隔をd5とする。画像を表示する画像表示素子と、画像表示素子の画像表示面IPに表示される画像を観察するために用いられる接眼光学系を有する観察装置においては、画像表示素子の画像表示面の対角線長の半分をPNとする。画像表示面IPから第1レンズL1の画像表示面側のレンズ面までの光軸上の距離をd1とする。 More preferably, in each embodiment, one or more of the following conditional expressions should be satisfied. Let d3 be the distance on the optical axis between the first lens L1 and the second lens L2, and d5 be the distance on the optical axis between the second lens group L2 and the third lens L3. In an observation device having an image display element that displays an image and an eyepiece optical system that is used to observe the image displayed on the image display surface IP of the image display element, the diagonal length of the image display surface IP of the image display element is Let the half be PN. Let d1 be the distance on the optical axis from the image display surface IP to the lens surface of the first lens L1 on the image display surface side.
このとき次の条件式のうち1つ以上を満足するのが良い。
0.00≦d5/d3≦0.75 ・・・(4)
0.25<PN/f<0.55 ・・・(5)
0.0≦d1/f<0.8 ・・・(6)
次に前述の各条件式の技術的意味について説明する。条件式(4)は第2レンズL2と第3レンズL3の間隔に対する第1レンズL1と第2レンズL2の間隔の比を規定している。条件式(4)は大きな観察倍率を得つつ、倍率色収差を良好に補正するためのものである。
At this time, it is preferable to satisfy one or more of the following conditional expressions.
0.00≦d5/d3≦0.75 (4)
0.25<PN/f<0.55 (5)
0.0≦d1/f<0.8 (6)
Next, the technical meaning of each of the above conditional expressions will be explained. Conditional expression (4) defines the ratio of the distance between the first lens L1 and the second lens L2 to the distance between the second lens L2 and the third lens L3. Conditional expression (4) is for satisfactorily correcting lateral chromatic aberration while obtaining a large observation magnification.
条件式(4)の上限値を超えて、第2レンズL2と第3レンズL3の間隔が大きくなると、倍率色収差の補正が困難になる。また、第1レンズL1と第2レンズL2の間隔が狭くなると第2レンズL2へ入射する光束の光線角がきつくなり、特に像高の高いところでの像面湾曲が増大してくる。下限値を下回り、第1レンズL1と第2レンズL2の間隔が広がると、第2レンズに入射する光線高さが低くなる為、光線を跳ね上げ高い観察視野倍率を得ることが困難になる。 If the distance between the second lens L2 and the third lens L3 increases beyond the upper limit of conditional expression (4), it becomes difficult to correct lateral chromatic aberration. Further, when the distance between the first lens L1 and the second lens L2 becomes narrower, the ray angle of the light beam incident on the second lens L2 becomes sharper, and the curvature of field increases particularly at high image heights. If the distance between the first lens L1 and the second lens L2 is increased below the lower limit, the height of the light rays incident on the second lens becomes low, so that the light rays are bounced up and it becomes difficult to obtain a high observation field magnification.
条件式(5)は、画像表示素子の画像表示面の対角線長の半分と全系の焦点距離の比を規定している。条件式(5)は長いアイレリーフを確保しつつ、高い観察倍率を確保するためのものである。この条件式(5)の上限を超えて全系の焦点距離が短くなると、高い観察倍率には有利だが、高い光学性能の確保が難しくなる。条件式(5)の下限値を下回ると、全系の屈折力が弱くなり、高い観察倍率を確保することが難しくなる。 Conditional expression (5) defines the ratio of half the diagonal length of the image display surface of the image display device to the focal length of the entire system. Conditional expression (5) is for ensuring a high observation magnification while ensuring a long eye relief. If the focal length of the entire system is shortened beyond the upper limit of conditional expression (5), it is advantageous for high observation magnification, but it becomes difficult to ensure high optical performance. If the lower limit of conditional expression (5) is not reached, the refractive power of the entire system will be weak, making it difficult to ensure a high observation magnification.
条件式(6)は、画像表示素子の画像表示面から第1レンズL1の画像表示面側のレンズ面までの光軸上の長さと、全系の焦点距離を規定する。上限を越えると、画像表示面から第1レンズの画像表示面側のレンズ面までの間隔が広がるため、全系の小型化が困難になる。 Conditional expression (6) defines the length on the optical axis from the image display surface of the image display element to the lens surface of the first lens L1 on the image display surface side and the focal length of the entire system. If the upper limit is exceeded, the distance from the image display surface to the lens surface of the first lens on the image display surface side increases, making it difficult to reduce the size of the entire system.
好ましくは条件式(4)乃至(6)の数値範囲を次の如く設定するのが良い。
0.0≦d5/d3≦0.6 ・・・(4a)
0.25<PN/f<0.50 ・・・(5a)
0.00≦d1/f<0.60 ・・・(6a)
更に好ましくは条件式(4a)乃至(6a)の数値範囲を次の如く設定するのが良い。
0.0≦d5/d3≦0.5 ・・・(4b)
0.25<PN/f<0.45 ・・・(5b)
0.00≦d1/f<0.55 ・・・(6b)
以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。
Preferably, the numerical ranges of conditional expressions (4) to (6) are set as follows.
0.0≦d5/d3≦0.6 (4a)
0.25<PN/f<0.50 (5a)
0.00≦d1/f<0.60 (6a)
More preferably, the numerical ranges of conditional expressions (4a) to (6a) are set as follows.
0.0≦d5/d3≦0.5 (4b)
0.25<PN/f<0.45 (5b)
0.00≦d1/f<0.55 (6b)
Although preferred embodiments of the present invention have been described above, the present invention is not limited to these embodiments, and various modifications and changes are possible within the scope of the gist.
以下に本発明の各実施例に対応する数値データを示す。数値データにおいて、ωは視度が-1ディオプター(標準視度)時の見かけ視野(半画角)を示す。画像表示面IPから観察側EPへ順に「ri」は第i番目の面の近軸曲率半径を示す。「di」は画像表示面IPから順に第i番目の面と第i+1番目の面との間の軸上面間隔を示す。さらに、「Ndi」は第i番目の材料のd線(波長=578.6nm)に対する屈折率を示し、「νdi」は第i番目の材料のd線に対するアッベ数を示す。r0は画像表示面IP、r9、r10はカバーガラスである。 Numerical data corresponding to each example of the present invention are shown below. In the numerical data, ω indicates the apparent field of view (half angle of view) when the diopter is -1 diopter (standard diopter). From the image display plane IP to the viewing side EP, "ri" indicates the paraxial radius of curvature of the i-th plane. "di" indicates the axial top surface distance between the i-th plane and the (i+1)-th plane in order from the image display plane IP. Furthermore, "Ndi" indicates the refractive index for the d-line (wavelength=578.6 nm) of the i-th material, and "νdi" indicates the Abbe number for the d-line of the i-th material. r0 is an image display surface IP, and r9 and r10 are cover glasses.
なお、数値データでは、記載されている長さの単位は、特記の無い場合[mm]が使われている。ただし、光学系は、比例拡大または比例縮小しても同等の光学性能が得られるので、単位は[mm]に限定されることなく、他の適当な単位を用いることが出来る。なお、数値データにおいて近軸曲率半径の欄に「*」の添え字が書かれている面は次の数1式によって定義される非球面形状である。 In numerical data, [mm] is used as the unit of length unless otherwise specified. However, since the optical system can obtain the same optical performance even if it is proportionally enlarged or proportionally reduced, the unit is not limited to [mm], and other appropriate units can be used. In the numerical data, the surface with the suffix "*" written in the paraxial radius of curvature column has an aspheric shape defined by the following formula (1).
なお、(数1式)において、xはレンズ面の頂点からの光軸方向の距離、hは光軸と垂直な方向の高さ、Rはレンズ面の頂点での近軸曲率半径、kは円錐定数、c2、c4、c6は多項式係数である。非球面係数において、「E-i」は10を底とする指数表現、すなわち「10-i」を表している。 In (Equation 1), x is the distance in the optical axis direction from the vertex of the lens surface, h is the height in the direction perpendicular to the optical axis, R is the paraxial radius of curvature at the vertex of the lens surface, and k is The conic constants, c2, c4, c6 are polynomial coefficients. In the aspherical coefficients, "Ei" represents a base 10 exponential expression, ie, "10-i".
以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。 Although preferred embodiments of the present invention have been described above, the present invention is not limited to these embodiments, and various modifications and changes are possible within the scope of the gist.
[数値データ1]
全体緒元
焦点距離 画像表示面対角長 2ω[°]
18.97 12.6 35.0
レンズデータ
面 近軸曲率半径 軸上面間隔 屈折率(Nd) アッベ数(νd)
r0 表示パネル d1 可変
r1 553.90 d2 3.30 1.821 42.7
*r2 -14.37 d3 2.84
*r4 -7.18 d4 1.65 1.636 23.9
r5 -50.31 d5 0.62
*r6 -31.65 d6 2.63 1.592 67.0
r7 -16.79 d7 0.22
r8 50.42 d8 6.50 1.535 55.7
*r9 -13.05 d9 可変
r10 0.00 d10 0.80 1.492 57.4
r11 0.00 d11 23.00
EP
非球面係数
k C2 C4 C6 C8
r2 0.00E+00 0.00E+00 3.88E-05 3.65E-08 0.00E+00
r3 -8.22E-01 0.00E+00 -9.72E-05 -9.34E-07 0.00E+00
r5 0.00E+00 0.00E+00 1.10E-05 0.00E+00 0.00E+00
r8 -2.30E+00 0.00E+00 -4.87E-05 2.14E-07 -2.73E-10
可変間隔
視度[dpt] 0 -3 +1 -1
d1 7.76 6.66 8.15 7.42
d9 1.51 2.60 1.12 1.85
[数値データ2]
全体緒元
焦点距離 画像表示面対角長 2ω[°]
13.37 9.9 40.6
レンズデータ
面 近軸曲率半径 軸上面間隔 屈折率(Nd) アッベ数(νd)
r0 表示パネル d1 可変
*r1 13.421 d2 6.14 1.535 56.0
*r2 -8.334 d3 2.15
*r3 -5.637 d4 1.48 1.636 23.9
r4 -15.213 d5 0.17
r5 -34.833 d6 2.11 1.535 56.0
r6 -17.151 d7 0.15
r7 -152.436 d8 3.31 1.535 56.0
*r8 -11.013 d9 可変
r9 0.000 d10 0.70 1.492 57.4
r10 0.000 d11 18.00
EP
非球面係数
k C2 C4 C6
r1 -6.34E+00 0.00E+00 0.00E+00 0.00E+00
r2 -1.68E+00 0.00E+00 -9.39E-05 0.00E+00
r3 -9.67E-01 0.00E+00 0.00E+00 0.00E+00
r8 -2.34E+00 0.00E+00 3.69E-06 3.31E-07
可変間隔
視度[dpt] 0 -3 +1 -1
d1 5.74 5.14 5.91 5.55
d9 0.67 1.26 0.50 0.86
[数値データ3]
全体緒元
焦点距離 画像表示面対角長 2ω[°]
17.96 9.9 29.1
レンズデータ
面 近軸曲率半径 軸上面間隔 屈折率(Nd) アッベ数(νd)
r0 表示パネル d1 可変
r1 24.08 d2 4.02 1.532 55.8
*r2 -9.64 d3 3.62
*r3 -5.70 d4 1.50 1.636 23.9
r4 -35.58 d5 1.30
r5 -16.99 d6 3.32 1.532 55.8
*r6 -9.80 d7 0.33
r7 39.45 d8 3.23 1.532 55.8
*r8 -16.38 d9 可変
r9 0.00 d10 1.00 1.516 64.1
r10 0.00 d11 21.00
EP
非球面係数
k C2 C4 C6
r2 0.00E+00 0.00E+00 2.28E-04 0.00E+00
r3 -4.72E-01 0.00E+00 1.67E-04 0.00E+00
r6 0.00E+00 0.00E+00 1.67E-05 0.00E+00
r8 0.00E+00 0.00E+00 6.95E-05 5.15E-08
可変間隔
視度[dpt] 0 -3 +1 -1
d1 5.95 4.88 6.24 5.59
d9 0.79 1.86 0.50 1.15
[数値データ4]
全体緒元
焦点距離 画像表示面対角長 2ω[°]
16.50 9.9 32.0
レンズデータ
面 近軸曲率半径 軸上面間隔 屈折率(Nd) アッベ数(νd)
r0 表示パネル d1 可変
r1 21.75 d2 4.95 1.535 55.7
*r2 -10.27 d3 2.39
*r3 -5.62 d4 1.75 1.636 23.9
r4 -18.39 d5 0.22
*r5 -22.78 d6 2.62 1.535 55.7
r6 -11.84 d7 0.22
r7 105.20 d8 3.87 1.535 55.7
*r8 -13.85 d9 可変
r9 0.00 d10 0.80 1.492 57.4
r10 0.00 d11 21.00
EP
非球面係数
k C2 C4 C6 C8
r2 0.00E+00 0.00E+00 1.57E-04 8.64E-07 0.00E+00
r3 -7.62E-01 0.00E+00 8.52E-05 0.00E+00 0.00E+00
r5 0.00E+00 0.00E+00 -7.94E-05 0.00E+00 0.00E+00
r8 0.00E+00 0.00E+00 1.27E-04 -3.08E-07 3.21E-09
可変間隔
視度[dpt] 0 -3 +1 -1
d1 7.10 6.25 7.35 6.83
d9 1.05 1.90 0.80 1.32
[数値データ5]
全体緒元
焦点距離 画像表示面対角長 2ω[°]
25.22 16.8 35.1
レンズデータ
面 近軸曲率半径 軸上面間隔 屈折率(Nd) アッベ数(νd)
r0 表示パネル d1 可変
r1 49.56 d2 6.43 1.535 55.7
*r2 -17.25 d3 4.39
*r3 -8.84 d4 1.95 1.636 23.9
r4 -30.05 d5 0.22
r5 266.69 d6 5.26 1.531 55.9
r6 -27.75 d7 0.22
r7 235.81 d8 5.82 1.535 55.7
*r8 -18.98 d9 可変
r9 0.00 d10 0.80 1.492 57.4
r10 0.00 d11 30.00
EP
非球面係数
k C2 C4 C6
r1 0.00E+00 0.00E+00 2.91E-05 0.00.E+00
r2 -1.33E+00 0.00E+00 -1.12E-04 0.00.E+00
r8 -2.17E+00 0.00E+00 1.01E-05 1.04E-08
可変間隔
視度[dpt] 0 -3 +1 -1
d1 10.39 8.38 11.02 9.74
d9 2.04 4.05 1.41 2.69
[数値データ6]
全体緒元
焦点距離 画像表示面対角長 2ω[°]
20.46 12.6 33.1
レンズデータ
面 近軸曲率半径 軸上面間隔 屈折率(Nd) アッベ数(νd)
r0 表示パネル d1 可変
r1 59.97 d2 5.95 1.694 53.2
*r2 -11.68 d3 2.38
*r3 -6.74 d4 1.67 1.636 23.9
r4 -28.97 d5 0.00
r5 -28.97 d6 3.09 1.535 56.0
r6 -35.80 d7 0.25
r7 61.73 d8 5.49 1.535 56.0
*r8 -12.03 d9 可変
r9 0.00 d10 0.80 1.492 57.4
r10 0.00 d11 24.00
EP
非球面係数
k C2 C4 C6
r2 0.00E+00 0.00E+00 1.15E-04 2.75E-07
r3 -9.93E-01 0.00E+00 0.00E+00 0.00E+00
r8 -5.80E-01 0.00E+00 6.48E-05 8.67E-08
可変間隔
視度[dpt] 0 -3 +1 -1
d1 9.47 8.06 9.85 9.01
d9 0.87 2.28 0.50 1.34
[Numeric data 1]
Overall specifications Focal length Diagonal length of image display surface 2ω[°]
18.97 12.6 35.0
Lens Data Surface Paraxial Radius of Curvature Axial Top Distance Refractive Index (Nd) Abbe Number (νd)
r0 display panel d1 variable
r1 553.90 d2 3.30 1.821 42.7
*r2 -14.37 d3 2.84
*r4 -7.18 d4 1.65 1.636 23.9
r5 -50.31 d5 0.62
*r6 -31.65 d6 2.63 1.592 67.0
r7 -16.79 d7 0.22
r8 50.42 d8 6.50 1.535 55.7
*r9 -13.05 d9 variable
r10 0.00 d10 0.80 1.492 57.4
r11 0.00 d11 23.00
EP
Aspheric coefficient k C2 C4 C6 C8
r2 0.00E+00 0.00E+00 3.88E-05 3.65E-08 0.00E+00
r3 -8.22E-01 0.00E+00 -9.72E-05 -9.34E-07 0.00E+00
r5 0.00E+00 0.00E+00 1.10E-05 0.00E+00 0.00E+00
r8 -2.30E+00 0.00E+00 -4.87E-05 2.14E-07 -2.73E-10
Variable interval diopter [dpt] 0 -3 +1 -1
d1 7.76 6.66 8.15 7.42
d9 1.51 2.60 1.12 1.85
[Numeric data 2]
Overall specifications Focal length Diagonal length of image display surface 2ω[°]
13.37 9.9 40.6
Lens data surface Paraxial curvature radius Axial top surface distance Refractive index (Nd) Abbe number (νd)
r0 display panel d1 variable
*r1 13.421 d2 6.14 1.535 56.0
*r2 -8.334 d3 2.15
*r3 -5.637 d4 1.48 1.636 23.9
r4 -15.213 d5 0.17
r5 -34.833 d6 2.11 1.535 56.0
r6 -17.151 d7 0.15
r7 -152.436 d8 3.31 1.535 56.0
*r8 -11.013 d9 variable
r9 0.000 d10 0.70 1.492 57.4
r10 0.000 d11 18.00
EP
aspheric coefficient
k C2 C4 C6
r1 -6.34E+00 0.00E+00 0.00E+00 0.00E+00
r2 -1.68E+00 0.00E+00 -9.39E-05 0.00E+00
r3 -9.67E-01 0.00E+00 0.00E+00 0.00E+00
r8 -2.34E+00 0.00E+00 3.69E-06 3.31E-07
Variable interval diopter [dpt] 0 -3 +1 -1
d1 5.74 5.14 5.91 5.55
d9 0.67 1.26 0.50 0.86
[Numeric data 3]
Overall specifications Focal length Diagonal length of image display surface 2ω[°]
17.96 9.9 29.1
Lens data surface Paraxial curvature radius Axial top surface distance Refractive index (Nd) Abbe number (νd)
r0 display panel d1 variable
r1 24.08 d2 4.02 1.532 55.8
*r2 -9.64 d3 3.62
*r3 -5.70 d4 1.50 1.636 23.9
r4 -35.58 d5 1.30
r5 -16.99 d6 3.32 1.532 55.8
*r6 -9.80 d7 0.33
r7 39.45 d8 3.23 1.532 55.8
*r8 -16.38 d9 variable
r9 0.00 d10 1.00 1.516 64.1
r10 0.00 d11 21.00
EP
aspheric coefficient
k C2 C4 C6
r2 0.00E+00 0.00E+00 2.28E-04 0.00E+00
r3 -4.72E-01 0.00E+00 1.67E-04 0.00E+00
r6 0.00E+00 0.00E+00 1.67E-05 0.00E+00
r8 0.00E+00 0.00E+00 6.95E-05 5.15E-08
Variable interval diopter [dpt] 0 -3 +1 -1
d1 5.95 4.88 6.24 5.59
d9 0.79 1.86 0.50 1.15
[Numeric data 4]
Overall specifications Focal length Diagonal length of image display surface 2ω[°]
16.50 9.9 32.0
Lens Data Surface Paraxial Radius of Curvature Axial Top Distance Refractive Index (Nd) Abbe Number (νd)
r0 display panel d1 variable
r1 21.75 d2 4.95 1.535 55.7
*r2 -10.27 d3 2.39
*r3 -5.62 d4 1.75 1.636 23.9
r4 -18.39 d5 0.22
*r5 -22.78 d6 2.62 1.535 55.7
r6 -11.84 d7 0.22
r7 105.20 d8 3.87 1.535 55.7
*r8 -13.85 d9 variable
r9 0.00 d10 0.80 1.492 57.4
r10 0.00 d11 21.00
EP
Aspheric coefficient k C2 C4 C6 C8
r2 0.00E+00 0.00E+00 1.57E-04 8.64E-07 0.00E+00
r3 -7.62E-01 0.00E+00 8.52E-05 0.00E+00 0.00E+00
r5 0.00E+00 0.00E+00 -7.94E-05 0.00E+00 0.00E+00
r8 0.00E+00 0.00E+00 1.27E-04 -3.08E-07 3.21E-09
Variable interval diopter [dpt] 0 -3 +1 -1
d1 7.10 6.25 7.35 6.83
d9 1.05 1.90 0.80 1.32
[Numeric data 5]
Overall specifications Focal length Diagonal length of image display surface 2ω[°]
25.22 16.8 35.1
Lens Data Surface Paraxial Radius of Curvature Axial Top Distance Refractive Index (Nd) Abbe Number (νd)
r0 display panel d1 variable
r1 49.56 d2 6.43 1.535 55.7
*r2 -17.25 d3 4.39
*r3 -8.84 d4 1.95 1.636 23.9
r4 -30.05 d5 0.22
r5 266.69 d6 5.26 1.531 55.9
r6 -27.75 d7 0.22
r7 235.81 d8 5.82 1.535 55.7
*r8 -18.98 d9 variable
r9 0.00 d10 0.80 1.492 57.4
r10 0.00 d11 30.00
EP
Aspheric coefficient k C2 C4 C6
r1 0.00E+00 0.00E+00 2.91E-05 0.00.E+00
r2 -1.33E+00 0.00E+00 -1.12E-04 0.00.E+00
r8 -2.17E+00 0.00E+00 1.01E-05 1.04E-08
Variable interval diopter [dpt] 0 -3 +1 -1
d1 10.39 8.38 11.02 9.74
d9 2.04 4.05 1.41 2.69
[Numerical data 6]
Overall specifications Focal length Diagonal length of image display surface 2ω[°]
20.46 12.6 33.1
Lens Data Surface Paraxial Radius of Curvature Axial Top Distance Refractive Index (Nd) Abbe Number (νd)
r0 display panel d1 variable
r1 59.97 d2 5.95 1.694 53.2
*r2 -11.68 d3 2.38
*r3 -6.74 d4 1.67 1.636 23.9
r4 -28.97 d5 0.00
r5 -28.97 d6 3.09 1.535 56.0
r6 -35.80 d7 0.25
r7 61.73 d8 5.49 1.535 56.0
*r8 -12.03 d9 variable
r9 0.00 d10 0.80 1.492 57.4
r10 0.00 d11 24.00
EP
aspheric coefficient
k C2 C4 C6
r2 0.00E+00 0.00E+00 1.15E-04 2.75E-07
r3 -9.93E-01 0.00E+00 0.00E+00 0.00E+00
r8 -5.80E-01 0.00E+00 6.48E-05 8.67E-08
Variable interval diopter [dpt] 0 -3 +1 -1
d1 9.47 8.06 9.85 9.01
d9 0.87 2.28 0.50 1.34
L0 接眼光学系
L1 第1レンズ
L2 第2レンズ
L3 第3レンズ
L4 第4レンズ
IP 画像表示面
EP 観察面
L0 Eyepiece optical system L1 First lens L2 Second lens L3 Third lens L4 Fourth lens IP Image display surface EP Observation surface
Claims (11)
前記第1レンズ乃至前記第4レンズの各レンズの材料のd線における屈折率の平均値をNda、前記第1レンズの観察側のレンズ面の曲率半径をL1R2、前記第2レンズの物体側のレンズ面の曲率半径をL2R1、前記第3レンズと前記第4レンズの合成焦点距離をf34、前記接眼光学系の焦点距離をfとするとき、
1.550≦Nda≦1.730
-5.2≦(L2R1+L1R2)/(L2R1-L1R2)≦0.0
0.68≦f34/f≦1.30
なる条件式を満たすことを特徴とする接眼光学系。 An eyepiece optical system comprising a first lens with positive refractive power, a second lens with negative refractive power, a third lens, and a fourth lens with positive refractive power, which are arranged in order from the object side to the observation side. hand,
Nda is the average value of the refractive index of the material of each lens of the first lens to the fourth lens at the d-line, L1R2 is the curvature radius of the observation side lens surface of the first lens, and the object side of the second lens is When the radius of curvature of the lens surface is L2R1, the combined focal length of the third lens and the fourth lens is f34, and the focal length of the eyepiece optical system is f,
1.5 50 ≤ Nda ≤ 1.730
- 5.2 ≤ (L2R1 + L1R2) / (L2R1 - L1R2) ≤ 0.0
0.68≤f34/f≤1.30
An eyepiece optical system characterized by satisfying the following conditional expression:
0.00≦d5/d3≦0.75
なる条件式を満たすことを特徴とする請求項1に記載の接眼光学系。 When the distance on the optical axis between the first lens and the second lens is d3, and the distance on the optical axis between the second lens and the third lens is d5,
0.00≤d5/d3≤0.75
2. An eyepiece optical system according to claim 1, wherein the following conditional expression is satisfied.
0.68≦f34/f≦1.25
なる条件式を満たすことを特徴とする請求項2に記載の接眼光学系。 1.600≦Nda≦1.730
0.68≤f34/f≤1.25
3. An eyepiece optical system according to claim 2, wherein the following conditional expression is satisfied.
0.25<PN/f<0.55
なる条件式を満たすことを特徴とする請求項9に記載の観察装置。 When half the diagonal length of the image display surface of the image display element is PN,
0.25<PN/f<0.55
10. The observation device according to claim 9 , wherein the following conditional expression is satisfied.
0.0≦d1/f<0.8
なる条件式を満たすことを特徴とする請求項9又は10に記載の観察装置。 When the distance on the optical axis from the image display surface to the lens surface of the first lens on the image display surface side is d1,
0.0≦d1/f<0.8
11. The observation device according to claim 9 , wherein the following conditional expression is satisfied.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020168097A JP7124027B2 (en) | 2020-10-02 | 2020-10-02 | Eyepiece optical system and observation device having the same |
JP2022117714A JP7159500B2 (en) | 2020-10-02 | 2022-07-25 | Eyepiece optical system and observation device having the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020168097A JP7124027B2 (en) | 2020-10-02 | 2020-10-02 | Eyepiece optical system and observation device having the same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017093784A Division JP6797747B2 (en) | 2017-05-10 | 2017-05-10 | Eyepiece optical system and observation device with it |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022117714A Division JP7159500B2 (en) | 2020-10-02 | 2022-07-25 | Eyepiece optical system and observation device having the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021005111A JP2021005111A (en) | 2021-01-14 |
JP7124027B2 true JP7124027B2 (en) | 2022-08-23 |
Family
ID=74097687
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020168097A Active JP7124027B2 (en) | 2020-10-02 | 2020-10-02 | Eyepiece optical system and observation device having the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7124027B2 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002048985A (en) | 2000-08-02 | 2002-02-15 | Minolta Co Ltd | Eyepiece optical system |
JP2007264179A (en) | 2006-03-28 | 2007-10-11 | Fujinon Corp | Eyepiece |
JP2014074814A (en) | 2012-10-04 | 2014-04-24 | Nikon Corp | Ocular optical system, optical device, and observation method |
JP2014074816A5 (en) | 2012-10-04 | 2015-11-05 | Eyepiece optical system, optical equipment | |
JP2016224238A (en) | 2015-05-29 | 2016-12-28 | 株式会社ニコン | Eyepiece lens, optical device including eyepiece and eyepiece lens manufacturing method |
JP2016224239A (en) | 2015-05-29 | 2016-12-28 | 株式会社ニコン | Eyepiece lens, optical device including eyepiece lens, and eyepiece lens manufacturing method |
JP2017068129A (en) | 2015-09-30 | 2017-04-06 | 株式会社ニコン | Ocular lens, optical device, and method of manufacturing ocular lens |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61285418A (en) * | 1985-06-13 | 1986-12-16 | Asahi Optical Co Ltd | Ocular lens |
JPH05313073A (en) * | 1991-04-16 | 1993-11-26 | Olympus Optical Co Ltd | Eyepiece for endoscope |
JPH05215974A (en) * | 1992-01-31 | 1993-08-27 | Nikon Corp | Aspherical ocular lens |
JPH085937A (en) * | 1994-06-16 | 1996-01-12 | Canon Inc | Ocular |
JPH11133316A (en) * | 1997-10-31 | 1999-05-21 | Sony Corp | Ocular and virtual image providing device |
JP6079111B2 (en) * | 2012-10-04 | 2017-02-15 | 株式会社ニコン | Eyepiece optical system, optical equipment |
-
2020
- 2020-10-02 JP JP2020168097A patent/JP7124027B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002048985A (en) | 2000-08-02 | 2002-02-15 | Minolta Co Ltd | Eyepiece optical system |
JP2007264179A (en) | 2006-03-28 | 2007-10-11 | Fujinon Corp | Eyepiece |
JP2014074814A (en) | 2012-10-04 | 2014-04-24 | Nikon Corp | Ocular optical system, optical device, and observation method |
JP2014074816A5 (en) | 2012-10-04 | 2015-11-05 | Eyepiece optical system, optical equipment | |
JP2016224238A (en) | 2015-05-29 | 2016-12-28 | 株式会社ニコン | Eyepiece lens, optical device including eyepiece and eyepiece lens manufacturing method |
JP2016224239A (en) | 2015-05-29 | 2016-12-28 | 株式会社ニコン | Eyepiece lens, optical device including eyepiece lens, and eyepiece lens manufacturing method |
JP2017068129A (en) | 2015-09-30 | 2017-04-06 | 株式会社ニコン | Ocular lens, optical device, and method of manufacturing ocular lens |
Also Published As
Publication number | Publication date |
---|---|
JP2021005111A (en) | 2021-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6797747B2 (en) | Eyepiece optical system and observation device with it | |
JP5136618B2 (en) | Observation optical system, finder apparatus including the observation optical system, and method for manufacturing the observation optical system | |
US9995925B2 (en) | Observation optical system, and image displaying apparatus having the same | |
JP6098838B2 (en) | Eyepiece optical system and imaging apparatus | |
CN107765421B (en) | Eyepiece lens and imaging device | |
JPH05307139A (en) | Endoscope objective | |
JP6257171B2 (en) | Eyepiece optical system and imaging apparatus having the same | |
JP5745186B2 (en) | Eyepiece and imaging device | |
JP2022136208A (en) | Observation device | |
JP6195345B2 (en) | Eyepiece optical system, electronic viewfinder, and imaging device | |
US10831016B2 (en) | Eyepiece optical system and observation apparatus | |
JP2009003105A (en) | Finder optical system and imaging apparatus | |
JP2016090828A (en) | Ocular optical system | |
US9551864B2 (en) | Eyepiece lens and observation apparatus having the same | |
JP7124027B2 (en) | Eyepiece optical system and observation device having the same | |
JP7159500B2 (en) | Eyepiece optical system and observation device having the same | |
JP2019215411A (en) | Eyepiece optical system, electronic view finder, and imaging apparatus | |
JP7191005B2 (en) | Eyepieces, viewing optics, and optics | |
JP7362871B2 (en) | Eyepiece optical system and observation device having the same | |
JP6736595B2 (en) | Eyepiece optical system and observation device having the same | |
JP2021117457A (en) | Ocular optical system and image capturing device having the same | |
JP2020181222A (en) | Eyepiece and imaging apparatus | |
JP2010039321A (en) | Eyepiece | |
JP2020030421A (en) | Ocular lens and image capturing device | |
JP2019133055A (en) | Ocular optical system, observation device having the same, and image capturing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20201002 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201014 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211019 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211207 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220315 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220712 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220810 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7124027 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |